
A Multi-objective Reinforcement
Learning Perspective on Internet Congestion Control

Zhenchang Xia∗, Yanjiao Chen†§, Libing Wu∗§, Yu-Cheng Chou∗, Zhicong Zheng∗, Haoyang Li∗ and Baochun Li‡
∗Wuhan University, P. R. China
†Zhejiang University, P. R. China
‡University of Toronto, Canada

§Co-corresponding author

Abstract—The advent of new network architectures has re-
sulted in the rise of network applications with different network
performance requirements: live video streaming applications
require low latency. In contrast, file transfer applications require
high throughput. Existing congestion control protocols may fail
to simultaneously meet the performance requirements of these
different types of applications since their designed objective func-
tion is fixed and difficult to readjust according to the needs of the
application. In this paper, we develop MOCC (Multi-Objective
Congestion Control), a novel multi-objective congestion control
protocol that can meet the performance requirements of different
applications without the need to redesign the objective function.
MOCC leverages multi-objective reinforcement learning with
preferences in order to adapt to different types of applications.
By addressing challenges such as slow convergence speed and the
difficulty of designing the end of the episode, MOCC can quickly
converge to the equilibrium point and adapt multi-objective rein-
forcement learning to congestion control. Through an extensive
array of experiments, we discover that MOCC outperforms the
most recent state-of-the-art congestion control protocols and can
achieve a trade-off between throughput, latency, and packet
loss, meeting the performance requirements of different types
of applications by setting preferences.

Index Terms—congestion control, multi-objective reinforce-
ment learning, communication network, TCP initial window

I. INTRODUCTION

Multi-objective reinforcement learning has gained

widespread popularity due to its applicability to solving

problems with multiple conflicting objectives. Compared to

traditional congestion control protocols, where the designed

objective function is fixed, the optimal policy in a multi-

objective congestion control protocol relies on the application’s

performance requirements. For example, there are numerous

applications on smartphones (Fig 1), including latency-sensitive

and throughput-sensitive applications. Depending on the type

of application and its network performance requirements (e.g.

high throughput, low latency, and low packet loss), the agent

might need to follow completely different policies. If an

application is a throughput-sensitive file transfer application

and throughput is critical, the application requires high

throughput for file transfer, will prefer congestion control

protocols that improve higher throughput and will have

relatively low latency requirements. Moreover, the agent’s

reward function might reward the increase of throughput. On

the other hand, if an application is a latency-sensitive live

Fig. 1: Performance-oriented applications are a real-life exam-

ple of different preferences.

streaming application for which minimizing delay is crucial,

it requires low transmission latency to reduce video jams

and will have relatively low packet loss requirements. The

agent’s reward function in this situation needs to reward delay

reduction. Therefore, using the same objective function for

applications with different performance preferences will limit

the congestion control algorithm’s ability to improve the

network application’s performance.

Over the past decades, extensive active research has been

conducted on Congestion Control (CC) with the goal of

achieving higher throughput, lower delay, and lower loss rates

for network services such as file transfer, video streaming, and

online gaming. Traditional congestion control protocols aim to

reduce network congestion according to predetermined rules.

For example, the delay-based congestion control protocols,

Verus [1], Vegas [2], and LEDBAT [3] use delay changes as

congestion control signals and adjust the congestion window

using the measured delay. However, while such delay-based

protocols can lower latency, they cannot improve network

throughput, and they can only meet the performance needs

of delay-sensitive applications. Several recently proposed

congestion control protocols, such as Copa [4], and BBR [5],

attempt to achieve a trade-off between delay and throughput;

unfortunately, however, these approaches can cause degradation

of both performance metrics.

Recently, learning-based congestion control protocols have

become enormously popular. Unlike traditional congestion

control protocols, learning-based protocols control congestion

using a real-time network state rather than pre-defined rules.

Unlike traditional algorithms, PCC [6] and PCC Vivace

[7] learn the relationship between sending rate control and

Fig. 2: The steady-state behavior
performance in an online fashion. Unfortunately, the main

limitation is the low convergence speed in the congestion

control protocol for online learning. Indigo [8] employs offline

learning to determine sending rates by using a recurrent neural

network (RNN) to store the mapping from states to actions.

As the latest congestion control protocol, Aurora [9] uses deep

reinforcement learning algorithms to control the sending rate.

However, the objective function or reward function of these

approaches is fixed, making it impossible for them to meet the

performance needs of more than one type of application, e.g.,

delay-tolerant network [10], smartphone applications [11] or

real-time streaming services.

Accordingly, to meet the performance needs of different

types of applications, we propose a novel congestion control

algorithm, called Multi-Objective Congestion Control (MOCC),

which uses multi-objective reinforcement learning for perfor-

mance goals for different types of applications. To begin with,

MOCC trains a single policy network that is optimized over the

entire space of preferences in congestion control. This enables

the trained model to produce the optimal policy for any given

preference; unlike existing protocols, the objective function is

fixed, making it challenging for these protocols to meet the

needs of a wide range of applications. In addition, we design a

novel dynamic initialization method to set the initial value of

the congestion window depending on the network bandwidth,

thus efficiently accelerating the convergence. Furthermore, the

MOCC agent can end an episode in the most appropriate

manner by designing a terminal algorithm that draws on the

concepts of a winning game, losing the game, and tie-breaker

derived from game theory.

To test the performance of MOCC, we conduct extensive

experiments using the Pantheon platform and Linux kernel in

which we compare MOCC with a large number of state-of-the-

art congestion control algorithms. MOCC achieves a trade-off

between high throughput and low latency and accordingly

outperforms recent state-of-the-art congestion control protocols

in different emulated networks at 12Mbps and 50Mbps. For

different cellular network scenarios, MOCC is found to meet

the performance needs for different types of applications and

exceed the performance of other protocols by setting different

preferences.

II. MOTIVATIONS AND CHALLENGES

In recent years, a number of new congestion control protocols

have been proposed to solve network congestion problems and

improve network performance. However, these new congestion

control protocols have introduced their own problems. In the

following, we will summarise the problems with the existing

protocols and outline the key challenges that MOCC needs to

address.

A. Motivations

To shed light on the problems with current congestion control

protocols, we perform experiments to examine the existing

protocols’ convergence behavior on links with 100Mbps

bandwidth in Fig 2. We further test the different trade-off

points between latency and throughput for common protocols

on links with a bandwidth of 12Mbps and 50Mbps and present

the results in Fig 3. We test both rule-based schemes and

classic schemes, including include TCP Cubic [12], Vegas [2],

BBR [5], LEDBAT [3], PCC Vivace [7], Fillp [8], Fillp-Sheep

[8] to verify their performance. After analyzing the results of

these experiments, we identify two key performance issues

with current congestion control protocols:

• Convergence issue. We test the common protocols’

change in throughput over time to assess their con-

vergence behavior (see Fig 2). From the figure, we

can observe that the learning-based congestion control

protocol, PCC Vivace, needs more time to converge to a

stable condition. This is because learning-based congestion

control protocols use prior knowledge to train the network

model without defining the proper initialization congestion

window (init-cwnd) to improve the network convergence

speed according to the network conditions. Moreover, it

is also difficult to improve convergence speed in a shorter

time when the initialization window of the network is

relatively small (similar to LEDBAT in Fig 2).

• Inability to achieve a trade-off between different
performance metrics. In Fig 3, we test the different trade-

off points between latency and throughput for common

protocols to determine whether these can be balanced

by existing protocols. We can observe that the latency

of the protocol varies significantly in different network

environments (e.g. TCP Vegas, LEDBAT, TCP Cubic).

For example, TCP Cubic has a lower delay at 50Mbps

bandwidth, while the latency of TCP Cubic is significantly

increased at 12Mbps bandwidth. This is because the design

of some existing congestion control protocols’ objective

functions is fixed for particular networks. Existing pro-

tocols, therefore, need to redesign the objective function

when they are used in a new network environment.

B. The Challenges of Existing Congestion Control

As we have observed, most existing congestion control

protocols are able to optimize performance for a particular

aspect of the network and may thus achieve high performance

in a particular network scenario but are unable to do this in

other network scenarios. Moreover, there is also a convergence

issue. To address these problems, we have designed a new

congestion control protocol, MOCC, which is designed to

tackle the following challenges.

(a) 12 mbps bandwidth (b) 50 mbps bandwidth

Fig. 3: Performance over different bandwidth

Lack of multi-objective. Most learning-based congestion

control protocols are performance-driven by means of pre-

designed reward or objective functions, which are fixed. When

new applications emerge, these protocols are unable to meet

the performance requirements of these applications, resulting

in a need to redesign objective functions and train new models.

Consequently, it may be necessary to design a protocol over

multiple competing objectives in order to meet the performance

needs of different types of applications simultaneously.

Slow convergence. Setting a fixed init-cwnd for all network

environments may reduce the network performance. For

example, traditional congestion control protocols that use an

additive-increase/multiplicative-decrease algorithm to increase

the congestion window will result in lower throughput and

under-utilization of network resources. We think that the factor

causes convergence issues: lack of dynamic mechanisms to

set the initialized congestion window value according to the

network bandwidth.

Lack of generalization. Most congestion control protocols

were designed for a specific network environment, given that

different types of networks have different features (e.g., cellular

networks experience high packet loss, but WiFi has high

latency). Therefore, existing protocols can perform well in only

one type of network. For example, Sprout [13] can lower the

latency in cellular networks but not wireline connections. We

accordingly require new congestion control protocols that can

improve the performance in different network environments.

III. SYSTEM DESIGN OVERVIEW

MOCC is a multi-objective congestion control framework,

an outline of which is presented in Fig 4. It consists of three

major steps:

Interaction. In the Interaction, the agent observes the states

of the network environment st and selects an action at, then

observes a reward rt. In the network environment, the sender

sends data to the receiver and gets ACKs from the receiver

according to the set congestion window size, which helps

the MOCC agent determine the state of the network. To

improve the convergence speed of MOCC, we design a novel

dynamic initialization window method that sets the initialization

congestion window depending on the bandwidth in question.

For the agent, we design a dynamic terminal episode approach

that applies multi-objective reinforcement learning to CC, based

on the concept of a game of win-lose-tie. Through its use of

the dynamic terminal episode mechanism, MOCC reflects the

network data transmission more realistically and improves the

model’s training efficiency.

Multi-objective reinforcement learning. To meet the per-

formance requirements of different application types, MOCC

learns a policy simultaneously over multiple preferences by

using multi-objective reinforcement learning. Each preference

corresponds to the relative importance representation of multi-

ple competing objectives.

Preference-oriented strategy. Depending on the relevant

preference, we select the optimal model to meet the perfor-

mance needs of different types of applications. We can set

different preferences to realize a trade-off between the different

performance objectives of throughput, latency, and packet loss.

IV. DESIGN OF MOCC

A. Agent

A Multi-Objective Markov Decision Process (MOMDP) can

be represented as a 6-tuple 〈S,A,P, r,Ω, fΩ〉, where S is the

state space, A is the action space, P (s′ | s, a) is the transition

distribution, r(s, a) is the vector reward function, Ω is the

space of preference, and fΩ is preference function, which take

preference ω ∈ Ω as inputs and outputs the scalar utility for

each action in a given state, i.e., fω(r(s, a)) = ω�r(s, a). Our

goal is to maximize the utility and thus reveal the optimal

policy for any preference ω ∈ Ω set during inference.

State space. The state can be used to represent the network

and should be carefully designed to reflect the congestion

in an environment so that the agent can decide on the

appropriate action according to what it has received. While a

large number of states can more accurately reflect the state

of the network, it can also lower the model’s convergence

speed. We, therefore, need to select the performance metric

that best represents the network’s condition as the state of

MOCC. To this end, the state space of MOCC is represented as

St = [Delay(t),ACK rate(t), Sending rate(t), cwnd(t)]: here,

Delay(t) is the delay in data transmission, and the change

in delay can be used to reflect network congestion, while

Fig. 4: The proposed multi-objective congestion control protocol is based on multi-objective reinforcement learning for the communication
network MOCC. During the initialization phase, the sender sends data to the receiver according to the set initial congestion window size,
improving the convergence speed of congestion control protocols.

ACK rate(t) and Sending rate(t) can represent the loss in

the link; finally, cwnd(t) indicates the size of the congestion

window (cwnd) calculated from the previous step.

Action space. The design of actions has a significant impact

on the congestion control protocol performance, as the actions

make it clear that the MOCC protocol should adjust the size

of congestion window according to changes in the network

environment. To improve the network performance, we select

the action from {∗0.5,−50,−10.0,+0.0,+10.0, ∗2.0,+50} to

adjust the congestion window. By selecting the appropriate

action, we expect the congestion control protocol to increase

the convergence rate during the initial data sending phase,

quickly lower the data sending rate when network congestion

occurs, and steadily adjust the size of congestion window based

on changes in the network state during other phases.

Reward definition. The purpose of multi-objective rein-

forcement learning (MORL) is to learn policies on multiple

objectives and relative importance (preferences). In comparison

to traditional reinforcement learning, which optimizes for scalar

rewards, the optimal strategy for multi-objective reinforcement

learning relies on the relative preference of competing criteria.

To test the robustness of the protocol, we perform a simple

experiment to compare the average throughput of MOCC

with other state-of-the-art protocols in different bandwidth

environments. The reward function of MOCC network metrics

is unprocessed. We can see that the throughput of the MOCC

decreases to 0 in network environments above 60 Mbps. The

throughput of other congestion control protocols increases with

increasing bandwidth. This is because the bandwidth in the test

network environment exceeds the bandwidth of the training

environment resulting in a significant degradation in network

performance. In addition, when the network latency is excessive,

the reward function in the agent penalizes the latency too little

to stop the congestion window from increasing in time which

causes the imaginary timeout of sending data.

To overcome the aforementioned problem to suc-

cessfully design a vectorized reward that comprises

[L(Throughput(t)), L(Loss rate(t)), L(Delay(t))] as three ob-

jectives, where L(x) = (−10)−x +1 is the activation function

for each objective to increase penalties for network metrics that

grow too fast and rewards slow changes in network metrics. For

each objective, it has been normalized to match the significant

interval of the activation function. As for the implementation

Fig. 5: Designed reward for agents with different bandwidth.

detail of normalization, we directly divide Throughput(t) by

bandwidth, as well as divide Loss rate(t) by timeout. Since

Loss rate(t) is already represented in zero to one, there is

no need for normalization. By utilizing the aforementioned

method, the model outperforms other state-of-the-art methods

and shows its robustness in various network environments.

B. Initializing the Congestion Window Approach based on
Different Bandwidths

As observed in the Section II, most congestion control

protocols suffer from convergence issues due to the fact that

they set a fixed value for the initial congestion window (init-

cwnd). Moreover, the init-cwnd has a significant impact on

the model convergence speed. One straightforward approach,

which is used by most existing congestion control protocols, is

to set the init-cwnd as a fixed value. However, these protocols

fail to achieve fast convergence in different network scenarios

due to their differing link capacities. Therefore, to improve

the model’s convergence speed, it is necessary to develop

a dynamic adaptive initial congestion window approach to

set initial congestion window values according to different

network bandwidths. However, it is difficult for congestion

control protocols to accurately obtain the bandwidth of the

network.

To set the initial congestion window based on the different

network bandwidths, we propose a novel dynamic adaptive

initial congestion window method to set the value of init-

cwnd with reference to the network bandwidth. In this

method, we define the set of bandwidths Bandwidth =
(bw1, bw2, bw3, ...bwi..., bwn−1, bwn), where bwi denotes the

bandwidth of the network. We determine Winit−cwnd using

the estimated bwi, as in Eqn (1):

Winit−cwnd = b ∗ bwi, (1)

where bwi is the estimated bandwidth size, while b is the

weight factor. Through experimentation, we determine that

MOCC can achieve a faster convergence rate when b = 2.5.

To estimate the size of bwi, we determine the relationship

between the average number of received acks Numave and

the bandwidth bwi, then estimate the size of bwi according to

the number of acks received in n steps. The number of acks

received in n steps is Numack, and the average number of

acks is Numave = Numack/n. The segmentation function

F(Numave) is defined in Eq. (2) to determine bwi:

F (Numave) =

n∑
j=1

BandwidthjI{(aj−1,aj)} (Numave) ,

(2)

where I(aj−1,aj) is a characteristic function of the receive

rate and is defined in Eq. (3), where (aj−1, aj) is the set of

the receive rate.

I(aj−1,aj)(x) =

{
1 x ∈ (aj−1, aj)
0 x /∈ (aj−1, aj)

(3)

C. Dynamic Terminal Episode Mechanism

To apply multi-objective reinforcement learning to conges-

tion control, we take inspiration from game theory and design

a terminal algorithm capable of ending an episode in the

most appropriate way. An episode is a complete process in

which the agent begins by performing a task in the network,

then selects a series of actions in turn based on the network

state and congestion control policy at each moment until

it has finished sending the data. The length of the episode

has a significant impact on whether the agent will learn

the best model. Several current reinforcement learning-based

congestion control protocols use a fixed number of episodes

or a fixed time to determine the endpoints of the episode.

However, this approach leads to a pseudo-terminal-state issue

that introduces a considerable bias into the training. To address

the pseudo-terminal-state problem caused by the application of

multi-objective reinforcement learning algorithms to congestion

control, we design a dynamic terminal episode method, inspired

by the idea of winning, losing, and tying games, that makes

decisions according to the changes in the network environment.

The terminal method is able to end the episode at an appropriate

time according to the changes in the bandwidth utilization,

delay, and throughput of the network, thus improving the

model’s training efficiency.

To judge the agent’s wins and losses, we define B as the

bandwidth utilization. If 90% of bandwidth ≤ B ≤ 110% of

bandwidth, while the delay is less than 0.7 times the timeout

value, this indicates that the network resources are fully utilized,

and we deem the network model to have achieved the goal of

congestion control, thus increasing the number of wins by 1.

Algorithm 1: Termination Mechanism

1 Initialize the parameters of agent WinNum = 0, the LoseNum = 0,
M=50, L=50, and T=200;

2 if 90% of Bandwidth ≤ Throughput(t) ≤
110% of Bandwidth and Delay(t) ≤ 0.7× T imeout then

3 Increase WinNum by 1

4 else
5 WinNum = 0

6 if
50% of Bandwidth ≤ Throughput(t) ≤ 70% of Bandwidth
and 0.7× T imeout ≤ Delay(t) then

7 Increase LossNum by 1

8 else
9 LossNum = 0

10 if WinNum ≥ M then
11 Terminate the episode with a win;

12 else if LossNum ≥ L then
13 Terminate the episode with a lose;

14 else if (WinNum ≤ M and step=200) or (LossNum ≤ L and
step=200) then

15 Terminate the episode with a tie;

When the number of consecutive wins exceeds M , we assume

that the sender has finished sending the data and thus ends the

episode. If 50% of bandwidth < B < 70% of bandwidth and

the delay exceeds 0.7 times the timeout value, this indicates that

the network has become very congested and that the network

resources are not being fully utilized, thus incrementing the

number of losses. When the number of consecutive losses

exceeds L, we assume that the network is always congested

and ends the episode. If the agent continues to execute T steps

and the number of consecutive losses and wins both do not

exceed L and M , we consider the policy to have finished

sending the data and end the episode by recording a tie. For

MOCC, we determined experimentally that larger and smaller

M , L, and T both negatively influence the performance of the

network; thus, as a satisfactory trade-off, M and L is set to 50

steps, while T is set to 200 steps. MOCC’ dynamic terminal

episode algorithm is summarized in Algorithm 1.

D. Learning Algorithm

Multi-Objective Reinforcement Learning Formulation.
Compared to traditional Reinforcement Learning (RL) tasks,

Multi-Objective Reinforcement Learning (MORL) tasks desire

the agent to get policies that could simultaneously optimize

more than one objective. When all objectives are relevant,

we can combine all objectives together to form a single

objective. When all the objectives are entirely unrelated, each

of them can be optimized separately. However, if any of

these objectives are conflicting, a given policy can achieve a

trade-off between multiple conflicting objectives or maximize

one of the key objectives. In MORL, the reward is a vector

since each performance metric has its own related reward

signal. In congestion control, congestion control protocols need

to optimize several relevant performance metrics to improve

the performance of different types of applications. Therefore,

MORL can be applied to congestion control problems to meet

the performance requirements of different applications without

the need to redesign the reward function.

MORL algorithms can be classified into multiple-policy,

and single-policy MORL approaches [14]. For their part, the

multiple-policy MORL algorithm is implemented by seeking

a set of policies that closely approximate the Pareto frontier

[15]. The goal of the single policy algorithm is to find an

optimal policy that can satisfy multiple objectives preferences

simultaneously among the multiple objectives specified by

the user or defined by the application domain. However,

learning a single policy that meets the performance needs of all

applications is difficult across different network environments.

We accordingly select a multi-policy MORL approach to solve

the congestion control problem.

MORL can be considered as a combination of Multi-

Objective Optimization (MOO) and Reinforcement Learning

(RL) to solve sequential decision-making problems with

multiple conflicting objectives [16]. The MOO problem of

congestion control can be formulated as follows:

maxM(O) =
[
m1(O),m2(O), . . . ,mmf

(O)
]

s.t. gi(O) ≤ 0, i = 1, . . . , ag,
(4)

where the “max” operator for a vector is a weighted

scalar defined to maximize all network performance measures

or the Pareto optimality. O = [o1, o2, . . . oN]
T ∈ RN is

the variable vector to be optimised, while the functions

gi(O) (i = 1, 2, . . . , ag) are the constraint function for the

congestion control problem, and mi(O) (i = 1, 2, . . . , af) are

the objective functions.

In congestion control, we design a synthetic objective

function TQ(s, a, ω) to address multiple network performance

metrics by using the naı̈ve approach, and the synthetic function

represents the overall preference of the congestion control

protocol. For each objective, it is updated with the following

rules:

Qi(s, a, ω) = Qi(s, a, ω) +
(
ri +max

a′
Qi (s

′, a′, ω′)
)
, (5)

where N ≥ i ≥ 1. The single policy can be determined

based on TQ(s, a), which can be used for all objectives by

considering a value space Q ⊆ (Ω → R
m)

S×A
. The value

space includes all bounded functions Q(s, a, ω)-estimates of

expected total rewards under m-dimensional preference (ω)
vectors. In the congestion control task, we formulate the

optimality operator as follows:

(TQ)(s, a, ω) := r(s, a) + γEs′∼P(·|s,a)(HQ) (s′, ω) , (6)

where

(HQ)(s, ω) := argQ sup
a∈A,ω′∈Ω

ω�Q (s, a, ω′) . (7)

Let Q∗ ∈ Q be the preferred optimal value function in the

value space, such that:

Q∗(s, a,ω) = argQ sup
π∈Π

ω�
E|s0=s,a0=a

[∞∑
t=0

γtr (st, at)

]
, (8)

where the argQ takes the multi-objective value corresponding

to the supremum. Then, Q∗ = TQ∗.

Learning algorithm. As we aim to optimise a model capable

of adapting to the entire space of Ω, we utilize a parameterised

function to denote Q ⊆ (Ω → R
m)

S×A
. We accomplish the

goal by taking advantage of:

LS(θ) = Es,a,ω

[‖y −Q(s, a, ω; θ)‖22
]
, (9)

where

y = Es′

[
r + γ argQ max

a,ω′
ω�Q (s′, a, ω′; θk)

]
, (10)

which can be empirically estimated by sampling the transition

(s, a, s′, r) from the replay buffer.

Due to the large number of discrete solutions included in

the optimal frontier in MOCC, that causes the landscape of

the loss function to become non-smooth, so in practice, it is

very challenging to go directly to optimizing LS. To cope with

this issue, we utilize the following auxiliary loss function LT:

LT(θ) = Es,a,ω

[∣∣ω�y − ω�Q(s, a, ω; θ)
∣∣] . (11)

By combining LS and LT, our final loss function is

(1− λ) · LA(θ) + λ · LB(θ), (12)

where ε is a weight to trade-off between LS and LT. More

specifically, in order to transfer our loss function from LS to

LT, we raise the value of ε from 0 to 1. This approach is very

effective due to the fact that it uses the results of the previous

optimization step as an initial guess at each update step. LS

first ensures that Q’s forecast is near to any actual expected

total reward, although it may not be optimal. For its part LT

provides an auxiliary pull along the direction, which has better

effectiveness. We summarize the main algorithm of MOCC in

Algorithm 2.

V. EVALUATION

To evaluate the performances of MOCC, we conduct a

series of experiments under different network scenarios by

using Pantheon [8], Kernel (on top of Linux Kernel 4.13),

and Mahimahi [17]. Pantheon can provide experimental results

that can be reproduced and used to approximate real-world

scenarios by using mahimahi shells. Moreover, Pantheon

contains wrappers for many popular and research congestion

control schemes, to which we can add our new congestion

control schemes. It provides a popular and standard platform on

which we can run these different congestion control protocols

in a diverse testbed of the network on both wireless and wired

networks using only a standard interface. After simple data

processing, we can see the running result of these congestion

control protocols. In these experiments, we compare MOCC

and several other state-of-the-art congestion control protocols,

namely TCP CUBIC [12], PCC Vivace [7], Fillp [8], Vegas

[2], BBR [5], LEDBAT [3], and Fillp-sheep [8]. We also apply

our algorithm in different network conditions, which helps us

to understand and describe how MOCC performs.

Algorithm 2: Congestion Control based on MOCC

Framework
1 Initialize replay buffer Dτ , network Qθ, and ε = 0, which increases

from 0 to 1
2 for each iteration do
3 Reset the network environment;
4 Initialize the Senderi and the Receiveri;
5 Successfully handshake between Senderi and Receiveri;
6 Sample a linear preference ω ∼ Dω ;
7 for each step do
8 if iteration = 2 then
9 cwnd = 2.5 × ACK rate(t);

10 else
11 Set termination of the episode by Algorithm 1.
12 Sample an action ε-greedily:

13 at =

{
random action in A, w.p. ε
maxa∈A ω�Q (st, a, ω; θ) , w.p 1− ε

;

14 Apply action ai to the congestion window cwnd;
15 Receive a vectorized reward rt and observe st+1;
16 Store transition (st, at, rt, st+1) in Dτ ;
17 if update then
18 Sample Nτ transitions (sj , aj , rj , sj+1) ∼ Dτ ;
19 Sample Nω preferences W = {ωi ∼ Dω};
20 Compute yij = (T Q)ij =

21
{

rj + γ argQ max a∈A,
ω′∈W

ω�
i Q(sj+1, a, ω

′; θ),

22 for all 1 ≤ i ≤ Nω and 1 ≤ j ≤ Nτ

23 Update Qθ by descending its stochastic gradient
according to:

24 ∇θL(θ) = (1− ε) · ∇θL
S(θ) + ε · ∇θL

T(θ)
25 Where LS(θ) = Es,a,ω

[
‖y −Q(s, a, ω; θ)‖22

]
,

26 LT(θ) = Es,a,ω
[∣∣ω�y − ω�Q(s, a, ω; θ)

∣∣]
27 Increase ε

A. Choice of Parameters

To test the effect of different initialization windows on the

model convergence speed, we set up a series of experiments

related to the initial cwnd by comparing different forms of

initializing cwnd, including setting the init-cwnd as a constant

or using an initializing congestion window function that uses the

mappings between the ACK rate and cwnd. The variable b is an

essential parameter to improve the speed of convergence. Fig 6

presents the results of different forms of init-cwnd and different

values of initializing congestion window function. We conduct

this experiment in an environment with 12Mbps bandwidth and

a delay of 20ms. First, we can conclude that the init-cwnd does

affect MOCC convergence process. In this network scenario,

the convergence cwnd is about 22. However, even if we set

the cwnd to 20, it cannot achieve rapid convergence in this

network scenario. Second, we find that the value of b does

affect the convergence rate of MOCC. In Fig 6, MOCC can

be seen to achieve convergence in a shorter time when b =

2.5 compared with other values of b. It also achieves better

performance than results when init-cwnd is set a constant.

Consequently, we can conclude that using a mapping function

to set init-cwnd can utilize the network state to help MOCC

achieve a faster convergence speed than initializing cwnd as

a constant. By summarizing these results, we can determine

that using a proper mapping to set the initial cwnd enables

us to utilize the network information in order to help MOCC

Fig. 6: Comparison of convergence steps between different

methods of initializing the congestion windows. b is an essential

parameter when using our mapping.

Fig. 7: Comparison of convergence between different protocols

achieve faster convergence than is achievable when cwnd is

initialized as a constant.

To further demonstrate the advantages of our new approach

to setting initial congestion windows, we conduct an experiment

to compare the convergence rate of MOCC and other state-of-

the-art protocols. We run different protocols in an environment

of 100Mbps with a delay of 10 ms and a buffer size of 375KB.

Fig 7 presents the results of the convergence process of different

protocols. We focus on the beginning of the entire process

to assess the convergence rate of each protocol. From Fig

7, we can see that in the first second of the whole process,

MOCC has the highest throughput among all listed protocols.

This means that MOCC exhibits a faster surge in throughput

at the beginning of the process and that MOCC can achieve

convergence in a shorter time compared with other protocols.

B. Performance in Stable Networks

To better describe the MOCC algorithm’s performance

and stability, we compare MOCC with other state-of-the-art

congestion control protocols in two links provided by Mahimahi.

One is a 12Mbps network with a delay of 10ms and a buffer

size of 375KB; the other is a 50Mbps network with no delay

and a buffer size of 375KB. The experimental results are

presented in Fig 8.

From Fig 8, we can see that in the link of 12Mbps, MOCC

has a throughput similar to that of Cubic, LEDBAT, Fillp, BBR,

and Vegas, but achieves a lower delay. Moreover, MOCC still

has a 14% higher throughput than Fillp-Sheep and 65% higher

throughput than Vivace, while the delay of MOCC is lower

Fig. 8: Experimental results of different congestion control

protocols running on stable networks of 12Mbps and 50Mbps

than all protocols except for Vivace. In the link of 50Mbps,

MOCC has a similar throughput to BBR, Cubic, Fillp, and

LEDBAT, but a lower delay than Cubic, Fillp, and LEDBAT.

We can conclude that that the MOCC ranks in the top two of

all tested protocols when running in a stable network scenario.

C. Changing Network in Real-life Situations

Excellent congestion protocols should provide outstanding

performance for different types of applications in highly

dynamic networks. A dynamic network presents a challenge to

the flexibility and sensitivity of a congestion protocol. In fact, in

our daily life, we most commonly use cellular networks when

we use wireless devices. A cellular network is not as stable as a

wired network, which means more changes and variations. We

conduct a series of experiments to determine whether MOCC

can provide the performance required for different types of

applications when facing a dynamic network in daily life.

We select three typical cellular network scenarios: in a taxi,

in a bus, and at home. The experiment is carried out using

these cellular networks with a delay of 10ms and a buffer

size of 375KB. Table I summarizes the experimental results.

We can see that, under these three circumstances, MOCC can

achieve high throughput by setting a high preference ratio and

achieve a low delay by setting a low preference ratio. More

specifically, in the taxi scenario, when we set the preference as

(0.975, 0.025), the throughput of MOCC is very close to that

of Cubic and LEDBAT, which have the top two throughputs

among all listed protocols. However, MOCC has a 44% lower

delay than Cubic, 102% lower loss rate than Cubic, and a 20

% lower loss rate than LEDBAT. Moreover, when we set the

preference to (0.96, 0.04), MOCC has a lower delay and loss

rate than all listed protocols except Vegas. In the bus scenario,

by setting different preferences, MOCC can achieve the lowest

loss rate or a lower delay compared with all other protocols

except Vegas. In the home scenario, MOCC can also achieve

the lowest loss rate and a very low delay. This demonstrates

that MOCC can achieve an optimal trade-off between different

performance metrics, thereby meeting the performance needs of

different types of applications in the dynamic network scenarios

by setting different preferences.

D. Performance at Different Buffer Sizes

The buffer is a vital resource for using by routers to store and

forward packets and significantly impacts network performance:

too large a buffer can easily lead to buffer flow, while a

router with an insufficient buffer can drop packets and result

in network resource underutilization. Therefore, we conduct

extensive experiments to verify whether MOCC can efficiently

utilize the network scenarios’ bottleneck capacity with different

buffer sizes through comparison with other state-of-the-art

protocols.

We conduct the experiment in an environment with 12Mbps

bandwidth, a delay of 10ms, and buffer sizes varying from

18KB to 90KB. We train the MOCC model on a 12Mbps

network with a delay of 10ms and a buffer size of 375KB. In

Fig 9a, we can see that the throughput of some protocols like

(Fillp, LEDBAT, Vivace, and Fillp-Sheep) drop quickly when

the buffer size decreases; by contrast, MOCC can maintain a

high throughput performance in networks with different buffer

sizes. In Fig 9b, we can see that the delays of most protocols

are affected by the increasing buffer size. However, MOCC

can maintain a low delay when the buffer size increases, while

other protocols (except Vivace) exhibit a higher delay when

the buffer size increases. In Fig 9c, we can see that Fillp, Fillp-

Sheep, and BBR have a high loss rate in the low buffer size

environment, meaning that they are unsuitable for low buffer

size networks. Compared to other protocols, MOCC has a 97%
lower average loss rate than Cubic and a 255% lower average

loss rate than LEDBAT. We can accordingly conclude that

MOCC achieves outstanding performance and ranks among

the best two protocols under different buffer conditions.

E. Performance in Unseen Network Conditions

As Pantheon is unable to implement network scenarios with

varying bandwidths, we moved to the Linux Kernel to test

the performance of MOCC under unseen network conditions.

Now, we wish to evaluate the performance of MOCC over

the unseen network environment, we choose a network with

a minimum RTT of 20ms where bottleneck link bandwidth

changes every 10s in the Linux kernel. Since the time scale

of the change is 500 times the minimum delay, it is enough

time for any protocol to converge to the equilibrium point. Fig

10 and Fig 11 show the changes in throughput and delay in

the varying bandwidth, respectively. We can see that MOCC

can achieve 99.8% link utilization, which is much higher than

Vegas and BBR. As shown in Fig 11, the mean delay of MOCC

is 26.02ms, which is 11.22% lower than BBR, which is 72.64%
lower than Vegas, which is 91.35% lower than Cubic. This

verifies that MOCC based on multi-objective reinforcement

learning can achieve high performance over unseen conditions.

TABLE I: Comparison of throughput, delay and loss rate for different congestion control protocols in three different scenarios.

Congestion Control
Protocol

Trace-taxi Trace-bus Trace-home
Throughpu

t(Mbps)
Delay
(ms)

Loss
Rate(%)

Throughpu
t(Mbps)

Delay
(ms)

Loss
Rate(%)

Throughpu
t(Mbps)

Delay
(ms)

Loss
Rate(%)

TCP BBR 18.83 140.75 0.18 19.85 80.67 0.19 15.29 103.38 0.23

TCP Cubic 19.2 259.63 0.69 20.2 167.97 0.54 15.52 223.19 0.55

Fillp 18.77 160.98 1.3 19.84 147.57 5.43 15.33 194.44 1.31

Fillp-Sheep 16.96 84.39 0.57 17.74 56.88 4.9 14.47 81.34 0.77

LEDBAT 19.09 154.13 0.41 20.05 128.16 0.37 15.42 139.16 0.37

TCP Vegas 18.35 38.61 0.05 19.41 27.31 0.06 14.4 28.43 0.06

PCC-Vivace 7.84 106.58 2.03 10.68 184.86 10.85 8.53 126.66 1.02

MOCC(0.96/0.04) 15.48 53.74 0.08 12.68 34.36 0.06 11.3 62.38 0.03
MOCC(0.965/0.035) 16.84 105.3 0.08 12.96 40.58 0.02 12.25 67.05 0.12

MOCC(0.97/0.03) 17.62 108.95 0.25 15.52 83.07 0.04 13.09 90.16 0.19

MOCC(0.975/0.025) 19.08 180.58 0.34 17.76 103.67 0.36 14.41 166.96 0.17

(a) High throughput (b) Low delay (c) Low loss rate

Fig. 9: The performance of different protocols at different buffer sizes

Fig. 10: MOCC achieves high throughput faces unseen network

Fig. 11: MOCC achieves low delay faces unseen network

VI. RELATED WORK

More than three decades of concerted research into conges-

tion control has produced a large number of congestion control

protocols, including rule-based protocols and learning-based

protocols. Here, we aim to review several closely related works.

A. Rule-based Protocols

Many prior rule-based protocols employed several key

congestion signals, including packet loss, and delay, as the

key indicators of congestion, and then introduced a set of

pre-defined rules to adjust the congestion window. Loss-

based schemes such as TCP Taho [18], TCP Reno [19], TCP

NewReno [20], and TCP Cubic [12] halve the congestion

window when a given sender detects a packet loss. While loss-

based schemes can achieve high throughputs, they do not satisfy

latency-sensitive applications because they cannot guarantee

lower transmission times. Moreover, they may mislead the

protocols into making a decision, as it is difficult to determine

whether the loss of a given packet is due to network congestion

or a link error. Compared with loss-based schemes, delay-

based schemes (such as TCP Vegas and Copa) determine the

congestion window’s size according to the increase of round-

trip delays. Delay-based schemes control the congestion of links

without being affected by link error but still find it challenging

to accurately calculate accuracy.

B. Learning-based Protocols

Offline learning protocols. Offline learning protocols utilize

off-line training and make similar assumptions regarding the

network model. Winstein et al. proposed an offline optimization

framework for congestion control, called Remy [21]. This

approach attempts to iteratively build an offline mapping from

all events to suitable actions by using defined assumptions

about the network. Accordingly, Remy cannot achieve good

performance when the assumptions it makes differ considerably

from conditions in the real environment. Indigo [8], another

offline optimization algorithm, employs an offline-trained neural

network using a state-of-the-art imitation learning algorithm

called DAgger [22] to perform training, labeling the correct

action-state decisions via congestion-control oracle and LSTM

to determine the correct mappings between states and actions.

An obvious limitation for both Indigo and Remy is that they

cannot achieve good performance when their assumptions are

significantly different from the real environment.

Online learning protocols. Unlike the offline approach,

online learning protocols learn the relationship between rate

control behavior and observed performance in an online manner.

To avoid hardwired mapping between collected states and

actions in traditional TCP variants, Dong et al. proposed

PCC [6] and PCC Vivace [7], which select the best sending

rate by employing online learning techniques; these techniques

continuously attempt to modify sending rates on a small

scale to approach better performance on the utility function.

Despite PCC and PCC Vivace are capable of achieving

good performance, online learning congestion control protocol

requires an unacceptably long time to train an optimal policy.

RL-based protocols. RL-based protocols learn a congestion

control policy by interacting with the environment; this policy

can select appropriate actions to control the sending rate or con-

gestion window depending on the state of the network. QTCP

[23] combines Q-learning with TCP to design a novel learning

protocol that can automatically learn effective strategies for

adjusting the cwnd. Eagle [24] learns from an expert congestion

control algorithm, BBR, and further uses reinforcement learning

algorithms to train a generalized model by imitating expert

algorithms’ behavior rather than adopting a pure trial-and-error

approach. Orca [25] uses reinforcement learning techniques

combined with classical congestion control strategies to create

a hybrid congestion control protocol. However, the design of

the reward function for these methods is fixed, which results

in a trained model that cannot be tuned to meet performance

requirements.

VII. CONCLUSION

In this paper, we propose MOCC, a new congestion

control protocol powered by multi-objective reinforcement

learning to meet the performance requirements of different

applications. When encountering different network scenarios,

MOCC achieves fast convergence and high throughput by

designing an initializing congestion window method to improve

the convergence speed. Furthermore, we propose a dynamic

terminal episode mechanism that draws on the game theory

concepts of winning/losing/tying a game to end an episode

in the appropriate way. Our experimental results reveal that,

compared to a large number of recently proposed congestion

control algorithms.

ACKNOWLEDGMENT

This work was supported in part by National Natural Science

Foundation of China (Grant Nos. 61972296, U20B2049,

U20A20177, 61772377, 91746206), and the Fundamental

Research Funds for the Central Universities (2042020kf0217).

REFERENCES

[1] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and C. Görg, “Adaptive
congestion control for unpredictable cellular networks,” in Proc. ACM
SIGCOMM 2015 Conference, vol. 45, no. 4. ACM, 2015, pp. 509–522.

[2] S. W. Brakmo, Lawrence S and L. Peterson, “TCP Vegas : new techniques
for congestion detection and avoidance,” ACM SIGCOMM Computer
Communication Review, vol. 24, no. 4, pp. 24–35, 1994.

[3] S. Shalunov, G. Hazel, J. Iyengar, M. Kuehlewind et al., “Low extra
delay background transport (ledbat),” in RFC 6817, 2012.

[4] V. Arun and H. Balakrishnan, “Copa: Practical delay-based congestion
control for the internet,” in Proc. USENIX Symposium on Networked
Systems Design and Implementation, 2018, pp. 329–342.

[5] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” Communications of the
ACM, vol. 60, pp. 58–66, 2017.

[6] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “PCC: re-
architecting congestion control for consistent high performance,” in Proc.
USENIX Symposium on Networked Systems Design and Implementation,
2015, pp. 395–408.

[7] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and
M. Schapira, “PCC Vivace: Online-learning congestion control,” in Proc.
USENIX Symposium on Networked Systems Design and Implementation,
2018, pp. 343–356.

[8] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby, P. Levis, and
K. Winstein, “Pantheon: the training ground for Internet congestion-
control research,” in Proc. USENIX Annual Technical Conference, 2018.

[9] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A deep
reinforcement learning perspective on internet congestion control,” in
International Conference on Machine Learning, 2019, pp. 3050–3059.

[10] L. Wu, S. Cao, Y. Chen, J. Cui, and Y. Chang, “An adaptive multiple
spray-and-wait routing algorithm based on social circles in delay tolerant
networks,” Computer Networks, vol. 189, p. 107901, 2021.

[11] L. Wu, J. Yang, M. Zhou, Y. Chen, and Q. Wang, “LVID: A multimodal
biometrics authentication system on smartphones,” IEEE Transactions
on Information Forensics and Security, vol. 15, pp. 1572–1585, 2019.

[12] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5,
pp. 64–74, 2008.

[13] K. Winstein, A. Sivaraman, and H. Balakrishnan, “Stochastic forecasts
achieve high throughput and low delay over cellular networks,” in Proc.
USENIX Symposium on Networked Systems Design and Implementation,
2013, pp. 459–471.

[14] C. Liu, X. Xu, and D. Hu, “Multiobjective reinforcement learning: A
comprehensive overview,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 45, no. 3, pp. 385–398, 2014.

[15] M. Pirotta, S. Parisi, and M. Restelli, “Multi-objective reinforcement
learning with continuous pareto frontier approximation,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 29, no. 1, 2015.

[16] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm for multi-
objective reinforcement learning and policy adaptation,” arXiv preprint
arXiv:1908.08342, 2019.

[17] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens,
and H. Balakrishnan, “Mahimahi: Accurate record-and-replay for HTTP,”
in Proc. USENIX Annual Technical Conference, 2015, pp. 417–429.

[18] J. Andren, M. Hilding, and D. Veitch, “Understanding end-to-end internet
traffic dynamics,” in IEEE GLOBECOM, vol. 2, 1998, pp. 1118–1122.

[19] M. Allman and V. Paxson, “E. blanton,” tcp congestion control,” RFC
5681, September, Tech. Rep., 2009.

[20] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “The new reno
modification to tcp’s fast recovery algorithm,” RFC6582, 2012.

[21] K. Winstein and H. Balakrishnan, “Tcp ex machina: Computer-generated
congestion control,” ACM SIGCOMM Computer Communication Review,
vol. 43, no. 4, pp. 123–134, 2013.

[22] S. Ross, G. J. Gordon, and J. A. Bagnell, “No-regret reductions for
imitation learning and structured prediction,” in In AISTATS, 2011.

[23] W. Li, F. Zhou, K. R. Chowdhury, and W. Meleis, “Qtcp: Adaptive
congestion control with reinforcement learning,” IEEE Transactions on
Network Science and Engineering, vol. 6, no. 3, pp. 445–458, 2018.

[24] S. Emara, B. Li, and Y. Chen, “Eagle: Refining congestion control by
learning from the experts,” in Proceedings of the IEEE International
Conference on Computer Communications, 2020, pp. 676–685.

[25] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Classic meets modern:
A pragmatic learning-based congestion control for the internet,” in
Proceedings of the Annual conference of the ACM SIGCOMM, 2020, pp.
632–647.

