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ABSTRACT
Social applications represent a paradigm shift on how the
Internet is to be used, and have already changed the way we
work, live, and play. When it comes to deploying social ap-
plications, cloud computing platforms are used to meet the
Internet-scale, self-propagating, and fast-growing demands
from these applications. Yet, to deploy social media applica-
tions in the most effective and economic fashion, we need to
strategically design and follow a set of theoretical and prac-
tical principles. In this paper, we seek to design a set of new
principles to guide social application deployment. Learn-
ing from large-scale measurement-based observations using
a real-world social application, the gist of our principles is to
detach the typically integrated “collection → processing →
distribution” workflows in social applications into separate
local processing and global distribution procedures, which can
be effectively deployed using different cloud services. More-
over, based on a predictive model of regional propagation,
we formulate the resource allocation problems in the pro-
cesses of collecting/processing and distributing content as
two optimization problems, which can be solved by efficient
algorithms. Finally, based on our theoretical design, we have
implemented an example social application on Amazon EC2
and Google AppEngine, where IaaS-based computation in-
stances perform content collection and processing, and the
PaaS-based platform is employed to distribute the contents
that are widely propagating. Our PlanetLab-based trace-
driven experiments have further confirmed the superiority
of our design.

Categories and Subject Descriptors
C.2.4 [Distributed System]: Distributed Applications; H.4
[Information Retrieval]: Social Network
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1. INTRODUCTION
Applications deployed in online social networks [18] have

emerged as one of the most popular means for users to ac-
cess multimedia contents in today’s Internet [14]. This is
due to a new development scheme in online social networks:
by simply becoming developers1 of large social networks like
Facebook, social media companies can use user profiles and
social relationships via Open APIs2, and are able to develop
applications for millions of potential users, without build-
ing a new social network. At the end of March 2012, over
9 million apps integrated with Facebook are using such a
development paradigm3.

In this paper, we focus on the problem faced by social
media companies after new applications have been devel-
oped: how do we effectively and economically deploy these
applications? The deployment of a social application is chal-
lenging due to a number of unique evolution characteristics:
(1) It is potentially Internet-scale from the beginning, since
a social application depends on an online social network to
directly attract its global users, making the number of users
grow much faster than traditional multimedia applications;
(2) it is self-propagating, since the application can be rec-
ommended to users by their friends when they are using the
social application; and (3) it is fast-growing, since the num-
ber of users can increase rapidly due to propagation caused
by the social effects. As an example, the social application
WeChat depends on Tencent Inc.’s social network services,
and has hit a record of 200 million users in less than 14
months4.

Since highly scalable and elastic network resources are re-
quired to deploy new social applications, it is promising to
deploy social applications in the cloud for a number of rea-
sons: (1) Small social application companies, which develop

1http://developers.facebook.com/
2http://en.wikipedia.org/wiki/Open API
3http://newsroom.fb.com/content/default.aspx?NewsAreaId
=137
4http://www.wechatapp.com



social applications for large social networks, can build their
own global service by simply becoming customers of cloud
providers; (2) the system can easily scale when the number
of its users and the volume of its contents increase; and (3)
social applications can be easily implemented in the cloud
due to complete control of servers based on virtualization
(e.g., virtual machines (VMs) running different operating
systems).
Cloud computing has been widely used to handle various

traditional multimedia contents [15, 22], e.g., Netflix has
been delivering its movies to users based on the Amazon
cloud infrastructure since 2010 [3]. Due to its unique propa-
gation patterns, efforts have been devoted in the deployment
of social media. Wang et al. [30] observed that information
in an online social network can be used to predict content
access in a standalone content sharing system, which can
guide content deployment. Cheng et al. [9] have studied
the partitioning schemes for social contents to achieve a bal-
anced load at the servers and preserve social relationship.
Wu et al. [31] have studied cost-effective video distribution
in a social network by migrating videos in geo-distributed
clouds. However, existing studies only solve the content dis-
tribution problem in social media; in this paper, we study
the deployment of social application, which includes content
collection, processing and distribution.
In a typical social application, user-generated contents

(UGCs) are the dominant form of contents, i.e., they are
first generated by users, then collected and processed by the
system, and finally distributed to other users through the
social relationships. To deploy a social application, we take
the characteristics of social media into account as follows:
(1) Users are the sources of contents in social media. In-
stead of central content providers, users are the ones who
generate contents for social media [11]; (2) social media is
dynamically processed and aggregated, i.e., contents gener-
ated by users are uploaded to the social media system, which
performs various processing to these contents and distributes
the processed contents to users [19]; and (3) the distribution
of social media is severely affected by social propagation [29].
Propagation with social media is no longer random — it is
determined by the social network topology and user sharing
[8][27].
According to the properties of content collection, process-

ing and distribution, we allocate computation, storage and
network resources from the cloud to deploy a new social ap-
plication as follows. (1) Local processing — contents are
initially collected and processed by cloud servers that are
geographically close to the user generating them. Since con-
tent processing varies from one application to another, we
deploy the processing part using IaaS (Infrastructure as a
Service)-based instances, e.g., VM instances provided by
Amazon EC2 (Elastic Compute Cloud) [1], where the ap-
plication can be implemented in various programming lan-
guages. However, it is costly and difficult to build a highly
scalable and global distribution platform to serve users over
the world based on IaaS only. (2) Global distribution —
processed contents are finally distributed by servers that
are geographically close to users who receive such contents.
Fortunately, cloud computing provides another resource al-
location scheme, PaaS (Platform as a Service), e.g., Google
AppEngine [2], where resource is provided to users in an
auto-scaled manner. In our design, we build the distribution

platform using PaaS to distribute the contents processed by
IaaS-based computation instances.

In our cloud-based social application deployment, we are
presented with the following challenges: (1) How should we
allocate IaaS-based computation instances to process con-
tents generated by users located within different regions?
(2) How should we choose contents to be replicated to a
PaaS-based distribution platform to serve global users? and
(3) How should we design efficient protocols to connect local
content processing and global content distribution?

In this paper, we answer these questions by connecting the
characteristics in social media propagation with its deploy-
ment design. Our contributions can be summarized as fol-
lows: (1) We conduct extensive measurements to study the
propagation characteristics in social media and motivate our
design; (2) We provide theoretical guidelines for social ap-
plication deployment using local processing and global dis-
tribution; and (3) We implement an example social applica-
tion to evaluate the effectiveness and efficiency of our design
based on Amazon EC2, Google AppEngine and PlanetLab.

The remainder of this paper is organized as follows. We re-
view related work in Sec. 2. We conduct large-scale measure-
ments to study the characteristics of social media in Sec. 3.
We present our detailed design and analysis in Sec. 4. We
discuss our implementations in Sec. 5. We evaluate the per-
formance of our design in Sec. 6. Finally, we conclude the
paper in Sec. 7.

2. RELATED WORK
In this section, We discuss our work in light of the existing

literature on social media deployment and cloud computing,
respectively.

Online social applications. In a social media system, con-
tents spread among users by users sharing them. A number
of research efforts have been devoted to studying content
propagation in social media applications. Kwak et al. [20]
investigated the impact of users’ retweets on information dif-
fusion in Twitter. Social applications have greatly changed
our assumptions in traditional content service deployment,
e.g., content distribution is shifted from a central-edge man-
ner to an edge-edge manner, resulting in the massive volume
of user-generated contents and a dynamically skewed popu-
larity distribution [7]. In this paper, we not only focus on
the distribution of contents already in an online social net-
work, but also the collection and processing and contents
generated by users in a social application. In particular, we
explore the deployment of social applications based on cloud
computing.

Social application deployment based on cloud computing.
Cloud computing is a new computing paradigm in which
both hardware and software are provided to users over the
Internet as services, in the form of virtualized resources [12].
Different cloud providers provide different types of services
[26], including IaaS, PaaS, SaaS (Software as a Service), etc.,
based on different pricing schemes [6], e.g., by actual CPU
cycles in Google AppEngine [2] or by the number of VM in-
stances in Amazon EC2. Due to its elasticity, cloud comput-
ing has also been widely used by startup companies whose
demands of resources grow over time [15]. Traditional sys-
tems, such as the Web [22] and video streaming [3], have
been being successfully deployed in the cloud. Among mul-
tiple cloud providers, Li et al. [21] have proposed a service
comparison methodology to compare the performance with



different cloud providers. Rehman et al. [25] have proposed
a multi-criteria cloud service selection strategy, to determine
the service that best matches the users’ requirements from
amongst numerous available services. Chohan et al. [10]
have studied the extension of PaaS to facilitate the dis-
tributed execution of applications over virtualized cluster
resources.
In the context of social applications, cloud computing has

been explored for the social media distribution. Pujol et
al. [24] have investigated the difficulties of scaling online
social network, and designed a social partitioning and repli-
cation middleware in which users’ friends can be co-located
in the same server. Tran et al. [28] have studied the parti-
tion of contents in the online social network by taking social
relationships into consideration. Cheng et al. [9] have stud-
ied the partitioning schemes for social contents to achieve
a balanced load at the servers and preserve the social rela-
tionships. Wu et al. [31] have studied the problem of cost-
effective video distribution in a social network by migrating
videos in geo-distributed clouds.
Different from related works, in this paper, we study how

content processing and distribution are jointly performed
by the cloud. Particularly, we design deployment strategies
for social applications by taking the characteristics in social
media into account, based on measurement studies of real-
world online social networks.

3. BACKGROUND AND MEASUREMENT
STUDY

In this section, we explore the design principles of social
application deployment and present the benefit of the cloud-
based design using real-world measurements. We first show
an example that has the general features of social appli-
cations. Then, based on an extensive measurement study
of real-world online social networks and cloud systems, we
show that contents in a social application can be processed
locally and distributed globally.

3.1 Framework of a General Social Applica-
tion

Though different social applications are designed to pro-
vide users with different contents and experiences, they share
many common features: (1) Users contribute contents to
the applications; (2) contents are aggregated by various ap-
proaches and provided to different users; and (3) contents
propagate through social connections of the online social
network.
To study the cloud-based deployment of social applica-

tions with these features, we use an example social appli-
cation in our measurements and our system design. We
design our example application to be as general as possi-
ble to capture most of the features in social applications.
Our example social application is called SICS, a social and
interest-based content sharing system. In SICS, besides con-
tents shared by a user’s friends as in Twitter-like systems,
other contents are also recommended to the user, which is
based on content processing, where computation resources
are required to parse the contents and execute the process-
ing algorithms. After content processing, SICS provides the
user a set of enriched contents with the recommended ones.
Fig. 1 illustrates the paradigm of SICS. a and b are the
original contents generated by user A and user B; while a′
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Figure 1: Content generation, propagation and dis-
tribution in a social application.

and b′ are the enriched contents after content processing,
i.e., a′ = {a, a1, a2, . . .}, where ak is a recommended con-
tent based on the original content a, and b′ = {b, b1, b2, . . .},
where bk is a recommended content based on content b. a′

and b′ are then provided to users C, D and E according to
social propagation. As an example social application, SICS
contains the general content generation, processing and dis-
tribution procedures. We observe that a general social appli-
cation framework is similar to a microblogging system, e.g.,
users have social relationships between them, contents are
generated by users and processed by the system, and then
distributed to other users who are socially connected. We
next study how the social application can be effectively de-
ployed, using a measurement-driven approach based on the
traces from Tencent Weibo.

3.2 Regional Analysis for Social Application
Deployment

Our measurement study is based on traces collected from
the operation team of Tencent Weibo [4], which is a mi-
croblogging website, where users can broadcast a message
including at most 140 characters to their friends. Tencent
Weibo features several social activities in the system, e.g.,
online chatting with friends who mutually follow each other.
We obtained Weibo traces from the technical team of Ten-
cent, containing valuable runtime data of the system in 20
days (October 9 – October 29) in 2011. Each entry in the
traces corresponds to one microblog published (which will
be regarded as an item of user-generated content), includ-
ing the ID of the microblog, the IP address and geographic
region of the publisher, the timestamp when the microblog
was posted, the IDs of the parent and root microbloggers if
it is a re-post, and contents of the microblog.

Since we are focused on how multimedia contents should
be handled in a social application, in our measurement study,
we have targeted at video contents which are imported from
external websites. In particular, we have collected more than
300, 000 links from 5 popular video sharing sites. We then
retrieve the microblogs which are related to these links, i.e.,
the microblogs either include the links to these videos in
the contents or they are re-shares of the ones that include
the links. These links cover about 2 million microblogs in
the time span, which are posted or re-shared by over 1 mil-
lion users, from more than 100 regions in the propagation



(a) Social groups sharing the same
content.
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(b) Size of social group versus the
rank of user initiating the sharing.

Figure 2: Social groups sharing the same content
initialized by different users.

(a) Social groups initiated by the
same user.
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the rank of contents.

Figure 3: Social groups initialized by the same user
sharing different contents.

(each region is defined by Tencent as a city-level geograph-
ical area). In addition, we have also retrieved the social
connections of these users. In our study, how contents are
used by Weibo users will guide our design of social applica-
tion deployment.

3.2.1 Dynamics of Users
The most important characteristic of a social application

is that contents are propagated between users through their
social connections. As a result, user influence is critical in
social media application deployment. In Fig. 2(a), a circle
represents a user, a directed edge represents the propagation
between two users, and the connected components (trees)
are social groups initiated by different users sharing the same
content. We observe that while some users can attract a
large number of friends to join the group, many others have
much little influence. Particularly, in Fig. 2(b), each sample
represents the size of the sharing group versus the rank of the
user initiating the group. We observe that when the same
content is shared by different users, the size of the sharing
groups varies significantly.

3.2.2 Dynamics of Contents
Further, we also observe that social media sharing is highly

affected by the contents themselves. In Fig. 3(a), the trees
are social groups initialized by the same user sharing differ-
ent contents. We observe that different contents can attract
quite different numbers of friends. In particular, in Fig. 3(b),
each sample represents the size of the sharing group versus
the rank of the content shared in the group. We have ob-
served that when different contents are initially shared by
the same user, the size of the sharing groups varies signifi-
cantly as well.
The propagation of contents in social applications can be
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dynamically affected by both users and contents. To effec-
tively allocate cloud resources for deployment, in our study,
we analyze propagation within a regional level, in which
propagation statistics can be highly stable and predictable.
Next, we will present the efficiency of local processing and
global distribution, both of which are carried out using a
regional analysis approach.

3.3 Efficiency of Local Processing

3.3.1 Locality of Content Propagation
First, we show the propagation locality between content

generation and distribution. We define a normalized ge-
ographic distance to measure two regions in our study as

dij
max{dij}

, where dij is the real great-circle distance between

region i and region j. Fig. 4 illustrates the normalized geo-
graphic distances between the region where new content is
generated and the regions where the content is distributed
to according to the social connections. We observe that the
normalized geographic distances for most of the media con-
tent propagations are very small, e.g., more than 80% of the
propagations are within a normalized distance of 0.1. The
reason is that a dominant portion of the contents generated
by users within a region will be served to the users mainly
from the same region, according to social connections that
determine how information flows in an online social network
[8].

Furthermore, we also observe the locality in content distri-
bution. We define a region involved in the content’s genera-
tion (distribution) as a region where the content is generated
from (to be distributed to). Fig. 5 illustrates the number of
regions involved in the distribution of a specific content in
one day. Contents are ranked in a descending order with
respect to the number of regions involved in their distribu-
tion. Each sample represents the number of regions involved
in the distribution versus the rank of the content. We ob-
serve that for most of the contents, only a few regions are in-
volved in their distributions. The reason is that most of the
contents are distributed locally, i.e., many users are located
within the same region. The observations indicate that in
social application deployment, computation instances could
be allocated at multiple regions so as to collect, process and
distribute the contents locally, reducing inter-region traffic
to deliver the contents across regions.

3.3.2 Stability of Regions Involved Over Time
Due to the locality of propagation, the social application

system will allocate computation instances within different



regions to process the contents locally. However, how many
and which regions should be selected to deploy the compu-
tation instances is still a question. To answer this question,
we next study which regions are involved in content propa-
gation.
Fig. 6(a) illustrates the number of contents generated by

users from all the regions over time. Each sample represents
the number of contents generated by users in a time slot
(hour) versus the time. We observe obvious daily pattern
— much more contents are generated during the peak hours
(about 7000 per hour) than during the off-peak hours (about
500 per hour). We then study the regions involved in content
generation.
Comparing to the number of generated contents, no evi-

dent daily pattern is observed in the number of regions in-
volved in the generation, as illustrated in Fig. 6(b). Each
sample in Fig. 6(b) represents the number of regions involved
in content generation versus the time. We observe that the
number of regions involved in content generation remains at
a relatively high level over time (with the largest number 37
and the smallest number 33 per hour). Similar results are
also observed in content distribution. Fig. 6(c) illustrates
the number of regions involved in content distribution over
time. We observe that the number of regions involved in
content distribution also stays at a stable level.
These observations indicate that contents are always gen-

erated from and to be distributed to almost all the regions
(the total number of regions is 41 in our traces).

3.3.3 Predictability of Regional Propagation
According to the observations above, we need to allocate

computation instances at almost all the regions available to
collect and process the contents locally. We next investi-
gate how much network and computation resources within
each region we should allocate, by studying the number of
contents generated by users at each region.
Let the content generation rate of a region denote the

number of contents generated by users within the region in
a given time slot. In Fig. 7, regions are ranked according
to their content generation rates. Each sample in this fig-
ure represents the content generation rate of a region versus
the rank of the region. The popularity distribution of re-
gions is not even — some regions can generate much more
contents than other regions. Fig. 8 illustrates the distribu-
tion of the content generation rates at 4 different regions
randomly selected (in Fig. 8, the content generation rates at
level x are in [40x, 40(x+1))). We observe that the distribu-
tions of content generation rates at different regions are also
quite different. However, in Fig. 9 which illustrates content
generation rate of each region over time, we observe strong
evidences of daily patterns for all regions. This observa-
tion indicates that the content generation rate of a region is
highly predicable.
Based on the observations, we are able to design a predic-

tive model to estimate the regional content generation rate,
which will be utilized in local content processing. We will
discuss our detailed design in Sec. 4.

3.4 Efficiency of Global Distribution
To handle the social contents generated at different re-

gions locally, we allocate computation instances at different
regions to collect, process and distribute the contents lo-
cally. In social media, some contents can be very popular

with many requesting users. Such contents are referred to as
widely-propagating contents, which can attract users from a
large number of regions, as illustrated in Fig. 5. In the dis-
tribution of a widely-propagating content, a large fraction of
users will experience low download performance if they all
download the content from the computation instance where
the content is originally collected and processed, since these
users can be located at other regions far away from the orig-
inal region, resulting in a low download bandwidth. To ad-
dress this problem, a global distribution platform which can
effectively distribute widely-propagating contents to users
within many regions is needed. Due to dynamic social prop-
agation, it is not always easy to predict the popularity of
social media contents, which is affected by not only the so-
cial network topology but also the influence and preference
of users.

In our measurements, we will show that contents pro-
cessed by computation instances can be effectively replicated
to a global distribution platform, which is able to signifi-
cantly improve the distribution performance. We implement
the computation instances in C++ on Amazon EC2 micro
nodes and the distribution platform in Python on Google
AppEngine. We choose the following different sizes for con-
tents that can be generated by users: 1.1 MB, 160 KB and
50 KB. We allocate computation instances in the 7 regions
provided by EC2: Virginia (US East), Oregon (US West),
California (US West), Ireland (EU West), Singapore (Asia
Pacific), Tokyo (Asia Pacific) and Sao Paulo (South Amer-
ica). Meanwhile, 57 PlanetLab nodes are implemented to
upload and download contents as well, simulating the so-
cial application users. The detailed implementation is to be
discussed in Sec. 6.

3.4.1 Connectivity Between Local Processing and Global
Distribution

When using the distribution platform to deliver the widely-
propagating contents, these contents have to be first repli-
cated from the computation instances (EC2) to the distri-
bution platform (GAE). We measure the overhead for such
replication. As illustrated in Fig. 11, we compare the times
computation instances at different regions spend on upload-
ing the contents to the distribution platform, with the av-
erage time that the instances spend on directly uploading
them to the PlanetLab nodes at different locations, in the
case that the distribution platform is not employed.

We observe that the time computation instances spend on
uploading the processed contents to the distribution plat-
form is much smaller than the average time computation
instances spend on uploading the contents to the users di-
rectly. This observation indicates that the replication over-
head is small, compared to the time the instances spend on
uploading the contents to the users directly.

3.4.2 Benefits of a Global Distribution Platform
Next, we show that the GAE-based distribution platform

outperforms the EC2-based computation instances in dis-
tributing widely-propagating contents to users at multiple
regions. Fig. 12 compares the download times achieved by
the computation instances and by the distribution platform.
In this figure, each sample represents the average time that
a PlanetLab node takes to download the content from the
computation instance or the distribution platform. We ob-
serve that for most of the PlanetLab nodes, their download
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Figure 6: Social media generation and distribution.
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Figure 9: The content generation
rate over time at four regions.
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Figure 11: Delivery time comparison between the
computation instances to the distribution platform
and the computation instances to users.

times at EC2 are much larger than that at GAE. The reason
is that GAE has already automatically replicated the con-
tents to different locations, so that users can be redirected
to servers that can best serve them. Though it is not the
focus of this paper, interested readers are referred to the
related works devoted to the distribution of social media
contents [29][31]. The observation indicates that in social
media distribution, a global distribution platform is needed
when new content is supposed to attract users from many
different locations. Motivated by this observation, we de-
sign a hybrid replication strategy to distribute the contents
based on both local computation instances and the global
distribution platform, where contents attracting more users
from multiple regions will be replicated to the distribution
platform.

4. DETAILED DESIGN OF THE SOCIAL AP-
PLICATION DEPLOYMENT IN CLOUD

In our measurement study, we show that a social appli-
cation can be effectively deployed based on local processing
instances and a global distribution platform. In this section,

we first present a new framework for social application de-
ployment, and then describe our detailed design on how to
collect contents generated by users, process them and dis-
tribute the processed contents to the users.

4.1 Framework
In a social application, though users are globally distributed

within different regions when they generate contents for and
download the contents from the system, content propaga-
tion is highly localized. To effectively handle the contents
in a social application, we design a new framework as illus-
trated in Fig. 13: (1) IaaS-based computation instances are
allocated to collect the contents generated by users within
different regions and perform the content processing locally;
and (2) a PaaS-based distribution platform is allocated to
assist the distribution of widely-propagating contents. We
next demonstrate the advantages of our new framework.

Original contents

Contents generated by user 1

Contents generated by user 2

Contents generated by user 3

...

Computation instances in Cloud

Computation instance at region 1

Computation instance at region 2

Computation instance at region 3

IaaS

Distribution 

platform in 

Cloud

PaaS

Figure 13: Framework of the social application de-
ployment.

Local collection and processing. In content processing, al-
locating computation instances at multiple regions has the
following advantages: (1) Allocating computation instances
close to users can improve the performance for them to up-
load and download the contents; (2) we observe that the
propagation is highly localized in our measurements, i.e.,
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Figure 12: Comparison of download times users experience when downloading contents from the computation
instances and the distribution platform.

contents generated within one region are likely to be re-
quested by users within the same region. Deploying com-
putation instances close to users can reduce the inter-region
transmission cost [17]; and (3) the prices for computation
instances at different locations can be different [6] — it is
intriguing to investigate how to allocate cloud resource from
different locations so that the generated contents can be ef-
ficiently processed with minimum costs.
Global distribution. After being processed by computation

instances, users can directly download these contents from
the instances. In our measurements, we observe that the
PaaS-based distribution platform can achieve much smaller
download times for users to obtain some popular contents,
which are requested by the users at many regions. In our de-
ployment design, we strategically select a set of such widely-
propagating contents over time, and replicate these contents
from the local computation instances to the global distribu-
tion platform. The social application system can dramati-
cally improve the distribution performance when the distri-
bution platform upload to users that are far away from the
original computation instances. Due to the large number of
contents generated and the limited budget for distribution,
we need to strategically determine which contents should
be replicated to the distribution platform and which ones
are only served by the local computation instances. Table 1
summarizes important notations for ease of reference.

4.2 Computation Instance Allocation for Lo-
cal Processing

Given that computation instances allocated in multiple re-
gions can benefit social application deployment, the problem
is to determine the allocation strategy, i.e., the capacities of
computation instances at different regions.

4.2.1 Allocation Scheme and Cost
A social media company has to perform instance alloca-

tion according to its budgetary constraints. In IaaS, the
general pricing rules are as follows: (1) The more instances
the social application allocates, the more the cloud provider
will charge; (2) The prices vary with different regions, e.g.,
the unit price of a VM instance in US West is higher than
the price in US East in May 2012; and (3) The prices also
vary over time.
The cost is determined by instance allocation. In our de-

sign, we let vector µ⃗ = {µ1, µ2, . . .} denote the cloud in-
stance allocation scheme. Each entry µj , j ∈ RC in µ⃗ de-
termines the aggregate content processing rate of the cloud

Table 1: Important notations
RC Set of regions having computation instances

RU Set of regions where users are located in

PH Unit price for content processing rate of compu-
tation instance

PU Unit price for upload capacity of distribution
platform

PS Unit price for storage of distribution platform

λi Content generation rate from region i
λij Content generation rate redirected from region

i to j
Λj Content generation rate redirected to region j

µj Content processing rate allocated at region j
Mc(µ⃗) Processing cost under allocation scheme µ⃗

D(T ) Set of candidate contents for replication

S(T ) Set of processed contents served by the global
distribution platform

Md(S) Distribution cost for the contents in S

instances allocated at region j, and RC denotes the set of
regions where the computation instances can be allocated,
i.e., the cloud provider has deployed servers in data centers
within these regions. Larger µj indicates that more con-
tents can be processed in region j per time unit, resulting in
a higher cost. In our design, the cost of an allocation scheme
µ⃗ can be estimated as follows:

Mc(µ⃗) =
∑

j∈RC

PH
j µj ,

where PH
j is the unit price of processing rate at region j.

Note that we assume proportional upload and download
bandwidths are also allocated at region j according to µj , so
that the generated contents can be collected and distributed
by the computation instances. The prices for bandwidths are
included in PH

j .

4.2.2 Prediction of the Content Generation Rate in
Each Region

To efficiently allocate the computation instances within
a region, i.e., to determine the content processing rate, we
can refer to the content generation rate in that region. The
rationale is that it would be a waste if the content process-
ing rate is much larger than the content generation rate;



while it takes too long for content to be processed when the
content processing rate is much smaller than the content
generation rate. The efficient content processing rates de-
pend on the actual content generation rates. According to
our measurements, the regional content generation rate is
highly predictable.

Let λ
(T )
i , i ∈ RU denote the content generation rate at

region i in time slot T , where RU is the set of all regions
that users are located at (generally, RC ̸= RU ). In Sec. 3,
we observe that the content generation rate at each region
shows strong evidence of the daily pattern. It indicates that
the content generation rates can be predicted using autore-
gressive models [5].

In our design, we predict λ
(T )
i based on the historical con-

tent generation rates {λ(T−1)
i , λ

(T−2)
i , . . . , λ

(T−M)
i }, where

M is the number of previous generation rates to refer to
in the prediction. An ARIMA (AutoRegressive Integrated
Moving Average) [23] model is used, i.e.,

(1−
p∑

k=1

ΦkLk)Y
(T ) = (1 +

q∑
k=1

ΘkLk)ε
(T ),

where p is the order of autoregressive and q is the order
of moving average. Φk and Θk are the parameters of the
autoregressive and moving average parts, respectively. ε(T )

is the white noise for the stationary distribution. Y (T ) is
defined as follows,

Y (T ) = (1− L)dλ
(T )
i ,

where L is the lag operation, i.e., Ldλ
(T )
i = λ

(T−d)
i . In our

design, the content generation rate at each region (λ
(T )
i ) is

recorded hourly. To capture the daily pattern, we choose the
period of d = 24 hours, so that Y (T ) can be regarded as wide-
sense stationary. In our experiments, 48 hours of historical

records are utilized to predict λ
(T )
i , by training the predictive

parameters using a maximum likelihood estimation. Based
on the implementation of ARIMA in R with parameters p =
48 and q = 0, we present the prediction results of the four
randomly chosen regions used in our measurement in Fig. 10.
We observe that the predictive model only needs a small
learning window to give an relatively accurate estimate of
the content generation rate.

4.2.3 Computation Instance Allocation
In the computation instance allocation, we regard each

content generated from a region in RU as a task for the
computation instances to process. After a content is up-
loaded by a user to a computation instance, it is queued to
be processed at the computation instance. A content will
be available to users only after it has been processed. Our
objective is to allocate computation instances strategically
to minimize the average time for a content to be available
to users. Fig. 14 illustrates the procedure of the computa-
tion instance allocation: (1) Historical content generation
rates at different regions in RU are collected; (2) The cur-
rent content generation rates are estimated using the predic-
tive model; (3) The predicted content generation rates are
scheduled to different computation instances within regions
in RC ; and (4) According to the scheduled content gener-
ation rates, content processing rates are allocated. We will
provide more details next.
Prediction and schedule of generated contents. For sim-

Region 1

Region 2

Region M

...

R
C

Region 1

Region 2

Region N

...

R
U

λijλi

Predictive 
Model

Allocation

Allocation

Allocation

µ1

µ2

µN

...

Λj

Figure 14: The allocation of computation instances.

plicity, we use λi to denote the predicted content generation
rate from region i in time slot T , and λij to denote the rate
of contents generated at region i to be scheduled to the com-
putation instances at region j in time slot T . The schedule
is as follows:

λij =

{
λi, j = argmink dik,

0, j ̸= argmink dik,
, i ∈ RU , j ∈ RC .

The rationale is that we assign a user to the region that is
closest to him, so that he can spend the minimum amount
of time on uploading the generated contents to the sys-
tem. Let Λj denote the rate of contents from all regions
to be uploaded to instances allocated at region j, i.e., Λj =∑

i∈RU λij , j ∈ RC .
Allocation of processing rates. Let Wc(µ⃗) denote the av-

erage waiting time for the original contents to be processed
using the allocation scheme µ⃗. According to the queuing
model [13], we have the average waiting time for a content
to be processed by the social application system as follows:

Wc(µ⃗) =

∑
j∈RC

Λj

(µj−Λj)∑
j∈RC Λj

.

To make the processed contents available to users as soon
as possible, µ⃗ is regarded as an optimization variable to min-
imize Wc(µ⃗). We model the computation instance allocation
as the following optimization problem:

min
µ⃗

Wc(µ⃗), (1)

subject to:

µj ≥ Λj , j ∈ RC ,

Mc(µ⃗) ≤ BC ,

where BC is the budget for the allocation. We let µj ≥
Λj , j ∈ RC so that the waiting time for a content to be pro-
cessed is limited. µj ≥ Λj , j ∈ RC indicates that we always
allocate enough instances for the estimated volumes of con-
tents generated by users, i.e., Mc({Λ1,Λ2, . . .}) ≤ BC . The
optimization is a convex programming, which can be effi-
ciently solved by a general water-filling like algorithm: we
iteratively allocate a small amount of resources to the com-
putation instances within region k with the largest marginal
time deduction, as follows:

k = arg min
j∈RC

∂Wc

∂µj
= arg min

j∈RC

−Λj∑
j∈RC Λj(µj − Λj)2

,

until the budget is used up. In Sec. 5, we will present how
the algorithms are implemented to allocate computation in-
stances dynamically.



4.3 Replication for Global Distribution
In the PaaS-based distribution platform, since both stor-

age and upload capacity are charged according to the usage,
our design is to determine which contents to be replicated
to the distribution platform. When choosing processed con-
tents to be replicated to the distribution platform, we select
the widely-propagating contents that will be requested by
users from many external regions, and let the computation
instances serve other contents that are mostly requested by
local users. The selection is based on not only the popular-
ities of the contents, but also the social connections of the
users generating these contents.
Let S(T ) = {c1, c2, . . . , cS} denote the set of processed

contents served by the distribution platform in the time slot
T , i.e., users can download contents in S(T ) in time slot
T . The distribution replication is then to determine the
contents in S(T ).
In the content replication, there is also a budget BD for

the allocation of the distribution platform. Let Md(S(T ))

denote the cost when contents in S(T ) are served by the
distribution platform. The cost includes both the storage
and upload bandwidths, which can be formulated as follows:

Md(S(T )) = PS
∑

c∈S(T )

A(c) + PU
∑

c∈S(T )

N(c),

where PS is the unit storage price, PU is the unit upload
price, A(c) is the size of the content c, and N(c) is the
amount of bytes to be uploaded to the users that are down-
loading the content from the distribution platform. N(c)
can be estimated as follows:

N(c) = vc
∑

i∈RU−{R(c)}

|Fuc,i| ,

where uc is the user who generate content c, Fuc,i is the
set of user uc’s friends that are located at region i, R(c) is
the region where content c is originally processed and served,
and vc is the average number of bytes served for the content.
vc can be estimated by an empirical value αA(c), where α is
the average fraction of a video that users usually download
[16]. The rationale of N(c) is that the distribution platform
will be in charge of uploading the content to uc’s friends
that are located at external regions to reduce the download
times.
The cloud distribution platform automatically replicates

contents in S(T ) to different locations so that users can be
better served. We design a content replication index r(c) as
follows:

r(c) =
∑

i∈RU−{R(c)}

|Fuc,i| di,R(c),

where di,R(c) is the geographic distance between region i
and region R(c). Larger r(c) indicates that content c will
be requested by more users from more external regions, and
c should be replicated to the distribution platform for these
users to download.
In our distribution platform allocation, we determine which

contents to be replicated to the distribution platform by
solving the following problem:

max
S(T )

∑
c∈S(T )

r(c), (2)

subject to:

Md(S(T )) ≤ BD,

S(T ) ⊂ D(T ),

where D(T ) is the set of candidate contents that can be
downloaded by users in the future. In a social application,
since users mainly request the contents recently generated
by users, D(T ) can be formed from the contents recently
processed by the computation instances.

The rationale of Eq. (2) is that we select the contents that
can attract more users from more external regions. Such
contents cannot be well served by only local computation
instances. By replicating these contents to the distribution
platform, which automatically replicates them to servers
close to users, better download performance can be achieved
for users that are not located closely to the original computa-
tion instances. The optimization can be heuristically solved
by a dynamic programming algorithm in Sec. 5.

Next, we will discuss the implementation of the cloud-
based social application deployment.

5. DISCUSSION OF SYSTEM IMPLEMEN-
TATION

In this section, we discuss the details of our implemen-
tation. Our implementation is based on Amazon EC2 and
Google AppEngine.

5.1 Computation Instance Allocation
We allocate the computation instances on Amazon EC2.

The computation instance allocation algorithm is illustrated
in Algorithm 1. Due to the limited number of regions where
the computation instances can be allocated, the algorithm
is carried out in a centralized manner periodically.

First, we collect the recent content generation rates from
all the regions in RU , which are used to predict the current
content generation rates λi, i ∈ RU . We assume the unit
prices PH

j , j ∈ RC are also provided by the cloud provider.
By solving the convex optimization problem in Eq. (1), we
have the content processing rates µj , j ∈ RC . According
to the content processing rates, we allocate instances from
EC2 — the processing rates determine the number and the
model of the computation instances.

Second, the computation instances will receive and pro-
cess the contents generated by users. At each region, a prior-
ity queue is utilized to store the contents uploaded by users.
The contents are prioritized to be processed by the compu-
tation instances as follows: (1) Contents posted in the same
region with the computation instance will be prioritized, and
(2) contents are processed according to the timestamps they
are uploaded.

5.2 Content Replication
According to our design illustrated in Sec. 4.3, the op-

timization can be solved using the dynamic programming
algorithm, assuming that both the distribution price and
budget can be regarded as positive integers. The replica-
tion procedure is illustrated in Algorithm 2. Contents in
set D(T ) are the recently processed ones collected from all
the computation instances, Md(·) is the price function, and
r(·) is the replication index function. We assume contents

in D(T ) can be indexed from 1 to |D(T )|. Let r(i, j) denote



Algorithm 1 Allocation of computation instances.

1: procedure Allocation(λ
(t)
i , i ∈ RU , t = T − 1, T −

2, . . . , T −M , PH
j , j ∈ RC)

2: predict λi, i ∈ RU using the predictive model
3: µj ← Λj , j ∈ RC

4: while Mc(µ⃗) ≤ BC do
5: k ← argminj∈RC

∂Wc
∂µj

6: µk ← µk +∆
7: end while
8: allocate instances according to processing rates

µj , j ∈ RC

9: end procedure

Algorithm 2 Replication of processed contents.

1: procedure Replication(D(T ), Md(·), r(·))
2: for d from 0 to BD do
3: S(0, d)← Φ
4: r(0, d)← 0
5: end for
6: for i from 1 to |D(T )| do
7: for j from 0 to BD do
8: if j ≥Md({ci}) and r(i− 1, j) < r(i− 1, j −

Md({ci})) then
9: S(i, j)← S(i− 1, j)

∪
{ci}

10: r(i, j)← r(i− 1, j −Md({ci})) + r(ci)
11: else
12: S(i, j)← S(i− 1, j)
13: r(i, j)← r(i− 1, j)
14: end if
15: end for
16: end for
17: S(T ) = S(|D(T )|, BD)
18: end procedure

the optimized replication gain of deploying the candidate
contents indexed 1 to i under the budget j, S(i, j) denote
the contents selected for replication. Using the dynamical
programming algorithm, S(i, j) and r(i, j) are iteratively up-
dated, and the solution to our replication problem in (2) is

then S(T ) = S(|D(T )|, BD).

After replication, for a content in S(T ), users are able to
download it from either the computation instance where it is
processed, or the distribution platform, to achieve the best
download rate. Stale contents in the distribution platform
are removed to make room for new ones in an LFU manner.
After a content is removed from the distribution platform,
users can still download it from the computation instance.

6. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our de-

sign based on a prototype of the example social application
implemented on Amazon EC2 and Google AppEngine.

6.1 Experiment Setup
Social application system. Amazon EC2 provides com-

putation instances at 7 regions given in Sec. 3. We have
launched one micro VM instance5 at each region, where
we implement the content collection and processing mod-

5http://aws.amazon.com/ec2/instance-types/

ules using C++. Since we are using the free-tier micro VM
nodes which have low computation capacities, to evaluate
different content processing rates in Algorithm 1, the con-
tent processing in the prototype is simplified so that the
number of processed contents is directly determined by the
processing rates without actual computing load. The imple-
mentation can be easily replaced by other content process-
ing algorithms for different social applications. The prices
for Amazon EC2 micro instances are following the latest
prices provided on the website6. For the content distribu-
tion, we implemented a Python-based distribution platform
on Google AppEngine with 5GB storage capacity and 1GB
outbound bandwidth per hour. In our experiments, the dis-
tribution budget BD is determined by the storage and band-
width limitations, i.e., we replicate contents to the distribu-
tion platform under the storage and bandwidth capacities.
The distribution uses the data storage APIs provided by
Google AppEngine to accept contents uploaded from the
computation instances and serve users.

Users. We employ 57 PlanetLab nodes to upload and
download contents according the traces from Tencent Weibo
as follows: (1) In each round of the experiments, a set of
41 PlanetLab nodes are randomly selected and mapped to
the 41 regions in RU ; (2) The content generation rate of
each PlanetLab node is determined by the traces, as used in
our measurement in Sec. 3.3.3; and (3) After the contents
are processed by the social application system, the nodes
simulate to download the processed contents: followers of
the users who have generated the contents will download
the processed contents. The rationale is that it is highly
possible for these followers to download the contents, and
we use them to estimate the actual downloaders, though the
number of total followers can be larger than the number of
users who actually download the contents in real systems
(e.g., some users are never online to receive the contents).

Protocols. We present the practical protocols used to con-
nect the users and the social application system. Contents
are transferred as follows. (1) A user can upload a content to
one of his local computation instances over TCP using pri-
vate protocol; (2) If a processed content should be served by
the distribution platform, the computation instance requests
an uploading URL from the distribution platform, which is
generated by the data storage API provided by Google Ap-
pEngine; (3) Using the upload URL, the content instance
can upload the processed content by posting it to the given
URL over HTTP; and (4) When downloading contents, a
user is first provided with a XML file indicating where the
contents can be downloaded, i.e., either from a computation
instance or the distribution platform. The user then down-
loads these contents from the computation instances or the
distribution platform.

Records. In our experiments, we simulate two different
content sizes for users to upload and download: 1.1 MB and
160 KB. Each PlanetLab node will record the time spent
on uploading and downloading the contents. At each Ama-
zon EC2 instance, we also implement the instance to record
the time spent on processing each content. Based on these
records, we evaluate the performance of content collection,
processing and distribution in terms of the time spent on
each task.

6May, 2012: http://aws.amazon.com/ec2/pricing/. Califor-
nia 0.025, Virginia 0.02, Oregon 0.02, Singapore 0.025, Ire-
land 0.025, Tokyo 0.027 and Sao Paulo 0.027 (USD per hour)
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Figure 15: Comparison of upload time in content
collection.

6.2 Performance Evaluation
Content collection. First, we evaluate the performance for

users to upload the generated contents to the social appli-
cation system. We compare our instance allocation with a
random instance allocation scheme, where processing rates
at the instances are allocated randomly. The budget for
both strategies is the same, 1.2

∑
j∈RC PH

j Λj . The ratio-

nale is that the social media company spends 20% more
than the estimated demand on the allocation. We collect
the average time each PlanetLab node spends on uploading
the contents to the computation instances. Fig. 15 com-
pares the upload times in the two allocation schemes. Each
sample represents the average upload time at a node versus
the rank of the node. We observe that it is much faster for
users to upload contents in our design than in the random
scheme — in our design, about 2/3 of the nodes can upload
the contents with size 1 MB in less than 1 second, while
most of the nodes have to spend more than 5 seconds to up-
load the same contents in the random scheme. The reason
is that by taking the regional content generation rates into
consideration, bandwidths can be allocated efficiently at the
computation instances to satisfy users’ uploading requests.
Content processing. Next, we evaluate the performance

of content processing, in terms of the average processing
time, which is defined as the average delay for a content
to be available to users after it has been uploaded to the
system. Fig. 16(a) compares our instance allocation with
the random scheme over time, under the same budget of
1.2

∑
j∈RC PH

j Λj . The contents to be processed at a com-
putation instance are the contents uploaded by users. We
observe that the processing time in the random scheme is
about 10 times larger than that in our design. The reason
is that many contents have to wait a long time to be pro-
cessed when being queued at a computation instance with a
small processing rate in the random scheme. We also observe
that in our design, the processing time is correlated with the
content generation rate, i.e., it takes longer for a content to
be processed during the peak hours; while in the random
scheme, the processing times are randomly distributed.
We next investigate the content processing performance

under different budgets. Fig. 16(b) illustrates the process-
ing time versus the budget x

∑
j∈RC PH

j Λj . We observe that
the processing time decreases when the budget is increased
in both algorithms, since more computation resource is al-
located for the generated contents; however, the process-
ing time is much smaller in our design than in the random
scheme when the budget is small (e.g., x < 1.5), indicating
that our design can benefit the social media companies when
they have a limited budget. Both algorithms can achieve
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(a) Processing time over time.
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(b) Processing time versus bud-
get.

Figure 16: Comparison of processing time in content
processing.
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Figure 17: Comparison of download time in content
distribution.

a small processing time when enough resource is allocated
(e.g., x > 1.8).

Content distribution. We also evaluate the performance
for the distribution of the processed contents. Similarly, the
PlanetLab nodes record the times spent on downloading the
contents from both the computation instances and the dis-
tribution platform. We compare our design with two simple
schemes: (1) No GAE strategy in which users only download
the contents from the original computation instances; and
(2) Popularity-based distribution where contents in D(T ) are
replicated from the computation instances to the distribu-
tion platform according to only the popularities of the users
who generate the contents, i.e., a content is more likely to
be replicated to the distribution platform if the user has
more friends. Fig. 17 illustrates the download time versus
the rank of the PlanetLab node. Again, we observe that
our distribution replication achieves the lowest download
times for almost all the PlanetLab nodes. We also observe
that popularity-based replication achieves better distribu-
tion performance than the no-GAE scheme.

The experimental results indicate that by only allocating
limited storage and outbound bandwidth (e.g., the free-tier
GAE platform in our experiments) at the distribution plat-
form, widely-propagating social contents can be well served
to global users.

7. CONCLUDING REMARKS
Large online social networks are providing Open APIs for

developers to implement different social applications. It is
promising for small social media companies to obtain user
relationships and social actions without building a new social
network. In this paper, we explore an efficient and econom-
ical cloud-based social application deployment after a social
media company has developed their application. With mea-
surement studies, we show that even if the social application



is attracting users globally, the propagation can be quite lo-
calized; and even if the propagation is highly dynamical for
users and contents, the regional propagation patterns can
be highly predictable. A local processing and global dis-
tribution design principle can be effectively used in cloud-
based social application deployment. We developed a theo-
retical framework to design our algorithms for computation
instance allocation and content replication, which are im-
plemented in our prototype of an example social application
on Amazon EC2 and Google AppEngine. The superiority of
our design is confirmed by trace-driven experiments.
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