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Designing Truthful Spectrum Auctions

for Multi-hop Secondary Networks
Zongpeng Li, Senior Member, IEEE; Baochun Li, Senior Member, IEEE; Yuefei Zhu

Abstract—Opportunistic wireless channel access granted to
non-licensed users through auctions represents a promising
approach for effectively distributing and utilizing the scarce
wireless spectrum. A limitation of existing spectrum auction
designs lies in the over-simplifying assumption that every non-
licensed secondary user is a single node or single-hop network. For
the first time in the literature, we propose to model non-licensed
users as secondary networks (SNs), each of which comprises of
a multihop network with end-to-end routing demands. We use
simple examples to show that such auctions among SNs differ
drastically from simple auctions among single-hop users, and
previous solutions suffer from local, per-hop decision making.
We first design a simple, heuristic auction that takes inter-SN
interference into consideration and is truthful. We then design
a randomized auction framework based on primal-dual linear
optimization, which is automatically truthful and achieves a
social welfare approximation ratio that matches one achieved
by cooperative optimization assuming truthful bids for free. The
framework relieves a spectrum auction designer from worrying
about truthfulness of the auction, so that he or she can focus
on social welfare maximization while assuming truthful bids for
free.

Index Terms—Truthful Auctions, Secondary Spectrum Allo-
cation, Secondary Networks, Linear Programming, Primal-Dual
Algorithms

I. INTRODUCTION

RECENT years have witnessed substantial growth in wire-

less technology and applications, which rely crucially on

the availability of bandwidth spectrum. Traditional spectrum

allocation is static, and is prone to inefficient spectrum uti-

lization in both temporal and spatial domains: large spectrum

chunks remain idling while new users are unable to access

them. Such an observation has prompted research interest in

designing a secondary spectrum market, where new users can

access a licensed channel when not in use by its owner, with

appropriate remuneration transferred to the latter.

In a secondary spectrum market, a spectrum owner or

primary user (PU) leases its idle spectrum chunks (channels)

to secondary users (SUs) through auctions [1], [2]. SUs submit

bids for channels, and pay the PU a price to access a channel

if their bids are successful. A natural goal of spectrum auction

design is truthfulness, under which an SU’s best strategy is to

bid its true valuation of a channel, with no incentive to lie. A

truthful auction simplifies decision making at SUs, and lays

a foundation for good decision making at the PU. Another

important goal in spectrum auction design is social welfare
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maximization, i.e., maximizing the aggregated ‘happiness’ of

everyone in the system. Such an auction tends to allocate

channels to SUs who value them the most. The focus of this

work is to advance the studies of spectrum auction design from

serving single-hop secondary users to multi-hop secondary

networks.

A unique feature of spectrum auction design is the need of

appropriate consideration for wireless interference and spatial

reuse of channels. A channel can be allocated to multiple SUs

provided that they are far apart, with no mutual interference.

Optimal channel assignment for social welfare maximization

is equivalent to the graph colouring problem, and is NP-

hard [3], even assuming truthful bids are given for free.

Existing works on spectrum auctions often focus on resolving

such a challenge (e.g., [4], [5]) while assuming the simplest

model of a SU: a single node, or a single link, similar to a

single hop transmission in cellular networks [2], [4], [5].
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Fig. 1: A secondary spectrum market with 3 SNs and 2 channels.

After extensive research during the past five years, auction

design for single-hop users, each requesting a single channel,

has been relatively well understood. However, a practical SU

may very well comprise of multiple nodes forming a multi-

hop network, which we refer to as a secondary network (SN).

These include scenarios such as users with multihop access to

base stations, or users with their own mobile ad hoc networks.

SNs require coordinated end-to-end channel assignment, and

in general benefit from multi-channel diversity along its path.

The SN model subsumes the SU model as the simplest special

case.

Fig. 1 depicts three co-located SNs, SN1, SN2 and SN3,

which have interference with one another, because their net-

work regions overlap. The primary network (PN) has two

channels, Ch1 and Ch2, which have been allocated to SN1

and SN2, respectively. Now SN3 wishes to route along a

two-hop path 1 → 2 → 3. Under existing single-channel

auctions for SUs, SN3 cannot obtain a channel, because each

channel interferes with either SN1 or SN2. However, a solution
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exists by relaxing the one channel per user assumption, and

assigning Ch1 to link 1 → 2 and Ch2 to the link 2 → 3. In

general, taking multichannel, multihop transmissions by SNs

into consideration can apparently improve channel utilization

and social welfare. Note here that the model in which an SN

bids for multiple channels is inapplicable, because due to the

unawareness of other SNs’ information, an SN cannot know

the number of channels to bid for, to form a feasible path.

Designing truthful auctions for SNs is an interesting prob-

lem, but by no means an easy one. We note that it is hard for an

SN to decide by itself an optimal or good path to bid for. Such

decision making requires global information on other SNs as

well, and is naturally best made by the auctioneer, i.e., the PN.

Consequently, a bid from an SN includes just a price it wishes

to pay, with two nodes it wishes to connect using a path.

Furthermore, SNs now interfere with each other in a more

complex manner. Not only that they transmit along multihop

paths, but each path can be assigned with distinct channels at

different links. The PN, after receiving bids, needs to make

judicious joint routing and channel assignment decisions.

In this work, we first design a simple heuristic auction for

spectrum allocation to SNs, which guarantees both truthfulness

and interference-free channel allocation, providing winning

SNs with end-to-end multihop paths, with a channel assigned

to each hop. The heuristic auction enables multi-channel

assignment along a path, thereby reducing the possibility that

a path is blocked due to interference. To achieve truthfulness,

we employ a greedy, monotonic allocation rule and design

an accompanying payment scheme, by referring to Myerson’s

characterization of truthful auctions [6].

The heuristic auction provides no hard guarantee on social

welfare. Inspired from recent linear programming (LP)-based

techniques due to Lavi and Swamy [7] and Carr and Vempala

[8] that decompose LP solutions into integer solutions, our

main contribution is a randomized auction framework rooted

in primal-dual optimization, which is proved to be truthful (in

expectation), and can guarantee a social approximation ratio

that is achievable by a cooperative social welfare optimization

algorithm that assumes truthful bids for free. At a high level,

a spectrum auction designer faces two challenges at the same

time: that of carefully tailoring the allocation rules for eliciting

truthful bids, and that of handling the high computational

complexity of the social welfare maximization problem in-

troduced by wireless interference and spectrum reuse. Given

the randomized auction framework, the auction designer is

essentially relived from the former challenge and can focus

on the latter.

The remainder of the paper is organized as follows. We

discuss related work in Sec. II, and present preliminaries in

Sec. III. A heuristic truthful auction is designed in Sec. IV. In

Sec. V, we present and analyze a randomized auction frame-

work. Simulation studies are presented in Sec. VI. Sec. VII

concludes the paper.

II. RELATED WORK

Auctions serve as an efficient mechanism for distributing

scarce resources to competing participants in a market. To

simplify the strategical behaviour of agents and hence en-

courage participation, truthfulness is desired. A celebrated

work is the VCG mechanism due to Vickrey [9], Clarke [10],

and Groves [11]. However, the VCG mechanism is only

suitable when optimal solutions are computationally feasible,

and is not directly applicable for secondary spectrum auctions,

because interference-free channel allocation is NP-Hard. Our

randomized auction design in this work employs a fractional

VCG solution where we the computational complexity of the

VCG mechanism is circumvented by relaxing the integral re-

quirement in the joint routing and channel assignment solution.

The efficiency of auctions to distribute spectrum has re-

ceived considerable research attention recently. A main chal-

lenge here is that appropriate handling of wireless interference

and optimal spatial reuse of channel spectrum often require

solving computationally expensive problems. Early solutions

include auctions that allocate power [12] and allocate a chan-

nel to each winning user [13]. These auctions are unfortunately

not truthful. Truthfulness is first considered in VERITAS [1]

based on the monotonic allocation rule. Topaz [14] is an online

spectrum auction that is truthful in both agents’ bids and their

channel access time reports. Jia et al. [15] design a spectrum

auction mechanism that not only encourages truthful behaviour

but also computes approximately maximum revenue, which is

an alternative goal to maximum social welfare.

For spectrum auctions that take interference among sec-

ondary users into consideration, Wu et al. [2] develop a semi-

definite programming based mechanism, which is truthful and

resistant to bidder collusion. Gopinathan et al. [5] propose

auctions that incorporate fairness considerations into channel

allocation. Their goal is to maximize social welfare, while

ensuring a notion of fairness among bidders when the auction

is repeatedly held. Double auctions, where buyers and sellers

simultaneously submit bids and ask prices respectively to the

auctioneer, are adopted in TRUST [16] and District [17]. A

truthful and scalable spectrum auction enabling both shar-

ing and exclusive access is proposed by Kash et al. [4].

This auction handles heterogeneous agent types with dif-

ferent transmission powers and spectrum needs. Al-Ayyoub

and Gupta [18] design a truthful auction with approximate

revenue guarantee in the wireless cellular network setting. All

these works focus on single-hop users bidding, often for a

single channel, with the exception of the last work. Our work

essentially generalizes the problem to multi-hop users, which

are characterized by multi-channel paths. We note that existing

application of auctions in the multi-hop network setting are

for the purpose of routing instead of spectrum allocation [19],

[20]. We also note that while the majority of spectrum auctions

in the literature are deterministic, the main contribution of

this work is a randomized auction framework where the joint

routing and channel assignment solution computation involves

randomized decision making.

III. PRELIMINARIES

In this section, we first introduce some background in

truthful auction design in Sec. III-A, then describe our system

model in Sec. III-B.
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A. Truthful Auction Design

Auction theory is a branch of economics that studies how

people act in an auction and analyzes the properties of auction

markets. We first introduce some basic and most related

concepts, definitions and theorems from auction design.

An auction allocates items or goods (channels in our case)

to competitive agents with bids and private valuations. We

adopt wi as nonnegative valuations of each agent i, which

is often private information known only to the agent itself.

Besides determining an allocation, an auction also computes

payments/charges for winning bidders. We denote by p(i) and

bi the payment and bid of agent i, respectively. Then the utility

of i is a function of all the bids:

ui(bi,b−i) =

{

wi − p(i) if i wins with bid bi

0 otherwise

where b−i is the vector of all the bids except bi. We first

adopt some conventional assumptions in economics here. We

assume that each agent i is selfish and rational. A selfish agent

is one that acts strategically to maximize its utility. An agent

is said to be rational in that it always prefers the outcome that

brings itself a larger utility. Hence, an agent i may lie about its

valuation, and bid bi 6= wi if doing so yields a higher utility.

Truthfulness is a desirable property of an auction, where

reporting true valuation in the bid is optimal for each agent

i, regardless of other agents’ bids. If agents have incentives

to lie, other agents are forced to strategically respond to

these lies, making the auction and its analysis complex. A

key advantage of a truthful auction is that it simplifies agent

strategies. Formally, an auction is truthful if for any agent i
with any bi 6= wi, any b−i, we have

ui(wi,b−i) ≥ ui(bi,b−i) (1)

An auction is randomized if its allocation decision making

involves flipping a (biased) coin. The payment and utility of

an agent are then random variables. A randomized auction is

truthful in expectation if (1) holds in expectation. Besides, we

also prefer an auction to be individually rational, in which

agents pay no more than their gain (valuations).

As discussed, the classic VCG mechanism for truthful

auction design requires the optimal allocation to be efficiently

computable, and is not practical for spectrum auctions, since

optimal channel allocation is NP-hard. If we aim to design a

tailored, heuristic truthful auction, then we may rely on the

characterization of truthful auctions by Myerson [6].

Theorem 1. Let Pi(bi) be the probability of agent i with bid

bi winning an auction. An auction is truthful if and only if the

followings hold for a fixed b−i:

• Pi(bi) is monotonically non-decreasing in bi;

• Agent i bidding bi is charged biPi(bi)−
∫ bi

0 Pi(b)db.

Given Theorem 1, we see that once the allocation rule

P(·) = {Pi(bi)}i∈N is fixed (N is the set of bidders), the

payment rule is also fixed. For the case where the auction

is deterministic, there are two equivalent ways to interpret

Theorem 1: (i) there exists a minimum bid b∗i , such that i
will win only if agent i bids at least b∗i , i.e., the monotonicity

of Pi(bi) implies that, there is some critical bid b∗i , such that

Pi(bi) is 1 for all bi > b∗i and 0 for all bi < b∗i ; (ii) the payment

charged to agent i for a fixed b−i should be independent of

bi (formally, pi(bi) = bi −
∫ bi

b∗
i

db = b∗i ).

B. System Model

We assume there is a set of SNs, N . Each SN has deployed

a set of nodes in a geographical region, and has a demand for

multihop transmission from a source to a destination. A PN

has a set of channels, C, available for auctioning in the region.

We refer to SNs as agents and the PN as the auctioneer. Each

node within an SN is equipped with a radio that is capable of

switching between different channels. SNs do not collaborate

with each other, and nodes from different SNs are not required

to forward traffic for each other.

We assume nodes from each SN i form a connected graph

Gi(E i,V i), which also contains node locations. We use “node”

and “link” for the connectivity graphs and “vertex” and “edge”

for the conflict graph introduced later. To better formulate the

joint routing-channel assignment problem, we incorporate the

concept of network flows. Let ui be a node in SN i and si,
di be the source and the destination in SN i. We use liuv to

denote the link from node ui to node vi belonging to SN i,
and f i

uv to denote the amount of flow on link liuv . Later we

connect di back to si with a virtual feedback link lids, for a

compact formulation of the joint optimization integer program

(IP).

We define a conflict graph H(EH ,VH), whose vertices

correspond to links from all the connectivity graphs. We use

(liuv, l
j
pq) to denote an edge in EH , indicating that link liuv

and link ljpq interfere if allocated a common channel. Before

the auction starts, each SN i submits to the auctioneer a

compound bid, defined as Bi = (Gi(E i,V i), si, di, bi). The

auctioneer computes the conflict graph once all compound bids

are collected. We denote by wi the private valuation of SN i for

a feasible path between si and di, and p(i) its payment. bi, wi

and p(i) all represent monetary amounts. Note that we assume

agents only have incentives to lie about their valuations, and

assume topology information in a bid is truthful.

Let RT and RI be the transmission range and interference

range of every node ui, respectively, let ∆ = RI

RT
be the

interference-to-communication-ratio, where ∆ ≥ 1. Since no

inter-SN collaboration is assumed, links from different SNs

do not participate in joint MAC scheduling, and cannot be

assigned the same channel if they interfere. As a result, two

links liuv and ljpq interfere if a node in {u, v} is within the

interference range of a node in {p, q}, and cannot be assigned

the same channel if i 6= j. Formally, let a binary variable

x(c, liuv) ∈ {0, 1} denote whether channel c ∈ C is assigned

to link liuv for user i. For the joint routing-channel assignment

problem we have the Channel Interference Constraints:

x(c, liuv) + x(c, ljpq) ≤ 1, (liuv, l
j
pq) ∈ EH , ∀c ∈ C (2)

An agent needs an end-to-end path, which corresponds to an

end-to-end network flow of rate 1. Note that the flow rate on

the virtual feedback link f i
Pds equals the end-to-end flow rate

for SNi. We further have Flow Conservation Constraints: at



4

any node in V i, the total incoming and outgoing flows equal:

∑

u∈Vi

f i
uv =

∑

u∈Vi

f i
vu, ∀v ∈ V

i (3)

Assuming each channel has the same unit capacity 1, we

next have the Capacity Constraints:

∑

u∈Vi\{di}

f i
uv ≤

∑

c∈C

x(c, liuv) ≤ 1 (4)

which also ensures that a link can be assigned a single channel

only.

Finally, let a sub-linear function γi(f ,x) denote that valu-

ation of SNi on a solution (f ,x), which models the utility

of SNi on its end-to-end path specified in f with channel

assignment specified in x (a vector that contains all x(c, liuv)
values). The utility Ψi of SNi is:

Ψi ≤ γi(f ,x) (5)

We formulate the joint routing-channel assignment problem

for SNs into an IP:

maximize O(w) =
∑

i∈N

Ψi (6)

subject to

x(c, liuv) + x(c, ljpq) ≤ 1, (liuv, l
j
pq) ∈ EH , ∀c ∈ C

∑

u∈Vi

f i
uv =

∑

u∈Vi

f i
vu, ∀v ∈ V i

∑

u∈Vi\{di}

f i
uv ≤

∑

c∈C
x(c, liuv) ≤ 1, ∀v ∈ V i

Ψi ≤ γi(f
i, x) ∀i

f i
uv, x(c, liuv) ∈ {0, 1}.

where O(w) denotes the objective function of the IP.

Optimally solving IPs to optimal is NP-hard. In particular,

the optimization in (6) involves interference-free scheduling

that can be reduced into the NP-hard graph coloring problem.

We first introduce a heuristic auction in Sec. IV, which is

based on the technique of monotonic allocation and critical

bids, and is simple and truthful but does not provide any

performance bound. A more sophisticated, randomized auction

with a proven bound is studied next, where the LP relaxation

of IP (6) is solved as a first step.

IV. A HEURISTIC TRUTHFUL AUCTION

In this section, we design an auction with a greedy style

allocation and a payment scheme to ensure truthfulness. The

auction consists of two phases: Algorithm 1 determines the

channel assignment and winning bidders, and Algorithm 2

computes the payments for winning agents. The auction design

in this section is based on a well-known technique of truth-

ful auction design: combining a greedy allocation rule with

charging critical bids to the winners.

A. Channel Allocation

As discussed in Sec. III, the key to designing a truthful

auction is to have a non-decreasing allocation rule. Prices can

then be calculated by the critical bids to make the auction

truthful. A natural method is to sort all agent bids in a non-

decreasing order, and greedily assign channels to agents in

this order, subject to interference constraints [21]. However,

ranking agents only according to their bids is inefficient. An

agent with high bid may be subject to severe interference,

and assigning channels to it with higher priority is potentially

detrimental to social welfare.

Our solution improves upon such a naive greedy algorithm

by normalizing an SN ’s bid by its degree of interference with

other SNs, as shown in Algorithm 1. Such scaled virtual

bids were adopted in recent literature [1], [5], which shows

virtual bids can help achieve a good approximation ratio for

the weighted independent set problem. Assume channels are

indexed by 1, 2, ..., |C|. We first compute the shortest path for

each agent as its end-to-end path. Let Is(i) be the set of SNs

that interfere with i along the path, including i itself. We define

the virtual bid of SN i as

φ(i) =
bi
|Is(i)|

(7)

Then we greedily assign available channels along the paths to

each link that maximizes the path valuation, according to a

non-increasing order of virtual bids φ(i).

Algorithm 1 A greedy truthful auction — channel allocation.

1. Input: Set of channels C, all the compound bids Bi =
(Gi(E i,V i), si, di, bi), conflict graph H(EH ,VH)

2. for all i ∈ N do

3. Is(i)⇐ {i};
4. Compute the shortest path P i from si to di;
5. for all i ∈ N do

6. for all liuv along path P i do

7. x(c, liuv)⇐ 0 ∀c ∈ C;

8. if (liuv, l
j
pq) ∈ EH then

9. Is(i)⇐ Is(i) ∪ {j};
10. φ(i)⇐ bi

|Is(i)|
;

11. Win(i)⇐ TRUE;

12. for i ∈ N in non-increasing order of φ(i) do

13. for all liuv along path P i do

14. Let T i
uv ⇐ C;

15. for all c ∈ T i
uv do

16. if x(c, ljpq) = 1 with (liuv, l
j
pq) ∈ EH , ∀p, q then

17. T i
uv ⇐ T

i
uv\{c};

18. if T i
uv = ∅ then

19. Win(i)⇐ FALSE;

20. if Win(i) = TRUE then

21. for all liuv along path P i do

22. Assign channel cm in T i
uv that maximizes valuation

of P i so far under γi(·);
23. x(cm, liuv)⇐ 1;

Fig. 2 shows an example to illustrate the channel assign-

ment procedure. There are four SNs, a, b, c and d, where
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(a) Assign channels to SN a (b) Assign channels to SN b (c) Assign channels to SN d

Fig. 2: Procedure of channel assignment. Dots and squares represent source and destination nodes respectively.

φ(a) > φ(b) > φ(c) > φ(d). Two channels are available for

allocation. In the figure, two intersecting links also interfere

with each other, and cannot be allocated with the same channel

if they belong to different SNs. The algorithm first assigns

Channel 1 to SN a. As a result, it cannot assign Channel 1

to the first link of SN b, which receives Channel 2 instead,

as shown in Fig. 2b, leaving SN c without a channel — it is

impossible to assign either channel to c’s first link. However,

SN d wins, and receives a channel assignment along its path

without introducing interference to a or b.
We now prove that Algorithm 1 is monotonic:

Lemma 1. In Algorithm 1, the probability of bidder i with

bid bi winning the auction is non-decreasing in bi, and critical

bids for winning agents exist.

Proof: Bidding higher can only increase an agent’s virtual

bid, and therefore increase its rank in Algorithm 1. Hence,

the probability of assigning a channel to the agent is non-

decreasing. Besides, Algorithm 1 is deterministic, so a critical

bid b∗i exists for a winning bidder i, such that i always wins

if it bids bi ≥ b∗i .

B. Payment Calculation

Algorithm 2 computes payments for the winning agents. The

payment scheme design is where we ensure the truthfulness

of an auction. Algorithm 2 aims to find a critical bidder with

critical bid b∗i for a winning agent, such that i is guaranteed

to win as long as i’s virtual bid φ(i) ≥ φ∗(i). Here φ∗(i) =
b∗i

|Is(i)|
is the critical virtual bid for i. If b∗i is independent

from bi, then charging agent i b∗i will ensure that the auction

is truthful, which we will argue formally later.

Algorithm 2 first clears a winning agent i’s bid, and hence

its virtual bid, to 0. Then Algorithm 1 is run, based on

(0,b−i). In Algorithm 1, an agent i loses only if a link

along its shortest path is unable to receive any channel. In

that case there must exist at least one link along its shortest

path whose neighbouring links (neighbouring vertices in the

conflict graph) have used all the channels. From all the agents

that block links of agent i, we identify an agent j with

the minimum virtual bid, set it as i’s critical bidder, and

compute i’s payment. We claim that φ(i) ≥ φ(j), because

otherwise agent i would not be a winning agent among agents

in Is(i) ∪ {i}. Agent i’s payment can be computed as:

p(i) = φ∗(i)|Is(i)| = φ(j)|Is(i)| (8)

For the example in Fig. 2, we first set SN a’s bid to 0, and

run Algorithm 1 based on the new bid vector. After assigning

channels to agent c, we find that there are no available channels

for the second link of agent a. Hence, agent c becomes the

critical bidder of agent a, which leads to a’s payment p(a) =
φ(c)|Is(a)|. The rule applies to the other two winning agents

b and d as well, where p(b) = φ(c)|Is(b)| and p(d) = 0.

Algorithm 2 A greedy truthful auction — payment calculation.

1. Input: Set of channels C, all the compound bids Bi =
(Gi(E i,V i), si, di, bi), conflict graph H(EH ,VH), all the

routing paths P i and channel assignment from Algo-

rithm 1.

2. for i ∈ N in non-increasing order of φ(i) do

3. p(i)⇐ 0;

4. if Win(i) = 1 then

5. Set b′i ⇐ 0;

6. Run Algorithm 1 on (b′i,b−i);
7. if Win(i) = FALSE then

8. Let φ∗(i)⇐ +∞;

9. for all liuv along path P i do

10. Let T i
uv ⇐ C;

11. for all c ∈ T i
uv do

12. if x(c, ljpq) = 1 with (liuv, l
j
pq) ∈ EH then

13. T i
uv ⇐ T

i
uv\{c};

14. if T i
uv = ∅ then

15. A ⇐ {j|(liuv, l
j
pq) ∈ EH , ∀p, q;Win(j) =

TRUE};
16. φ∗(i)⇐ min(φ∗(i),minj∈A φ(j));
17. p(i)⇐ φ∗(i)× |Is(i)|;

Theorem 2. The auction in Algorithms 1 and 2 is individually

rational and truthful.

Proof: Assume agent i wins by bidding bi, and let j be

the critical bidder of i. Then we have φ(i) ≥ φ(j), so p(i) =
φ(j)|Is(i)| ≤ φ(i)|Is(i)| = bi.

Furthermore, Algorithms 1 is monotone, and the allocation

is binary (0 or 1). In this case, the critical-value based

payments computed by Algorithm 2 matches the payments

described in Theorem 1. Therefore, following Theorem 1, we

can claim that the greedy auction is truthful.

V. A RANDOMIZED AUCTION FRAMEWORK

The greedy auction in Sec. IV, while simple and truthful,

attempts to maximize social welfare in a heuristic manner,

without providing any guarantee. We next design a randomized

auction framework that translates any (cooperative) solution

to the social welfare maximization problem, where truthful

bids from SNs are given for free, to an randomized auction

that is truthful in expectation. A risk-neutral bidder who is

rational will bid truthfully under a randomized auction that
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is truthful in expectation. The most attractive property of

the framework is that the resulting auction can guarantee the

same approximation ratio on social welfare as the cooperative

solution does. We first present the framework and analyze its

properties in Sec. V-A, then present in Sec. V-B its main

enabling technique that is an LP-duality based solution de-

composition, and discuss necessary plug-in algorithm modules

utilized in Sec. V-C.

The randomized auction framework achieves truthfulness

by employing a fractional VCG auction mechanism. The

approximate social welfare guarantee is enabled by the LP-

based decomposition technique due to Lavi and Swamy [7]

and Carr and Vempala [8], which can help us decompose a

fractional routing-channel assignment solution into a convex

combination of integral solutions with guaranteed approximate

expected social welfare.

A. The Randomized Auction Framework

As shown in Algorithm 3, the randomized auction frame-

work contains the following key steps. First, we run the

fractional VCG mechanism, and obtain fractional VCG routing

and channel allocation solutions for each SN, as well as

their corresponding VCG payments. Second, we apply the

LP duality based decomposition technique to be detailed

in Sec. V-B for decomposing the fractional VCG solution

into a weighted combination of integral solutions, each with

its associated probability. Finally, we randomly choose an

integral solution from the combination, with weights taken as

probabilities, as the result of the auction, and scale down VCG

payments by a factor of Λ to be payments requested from

the SNs. Here Λ is the gap between an integral algorithm

A and the optimal fractional solution to the social welfare

maximization problem in (6).

Algorithm 3 A Randomized Auction Framework

1. Input: Set of channels C, all the compound bids Bi =
(Gi(E i,V i), si, di, bi), conflict graph H(EH ,VH).

2.

3. Run fractional VCG auction on input, obtain solution

(f∗, x∗) and payments pF ;

4. — apply plug-in algorithm A for solving LPR

5.

6. Decompose (f∗, x∗) into weighted integral solutions

{(f(l), x(l), ρ(l))};
7. — LP duality based decomposition

8. — employs plug-in algo B with integrality gap Λ
9. — guarantees:

∑

l(f(l), x(l))ρ(l) =
1
Λ(f

∗, x∗)
10.

11. Output: Routing and channel assignment, and pay-

ments/prices:

12. — select each (f(l), x(l)) with probability ρ(l);
13. — set prices p = 1

Λp
F ;

The Fractional VCG Auction. The VCG mechanism is well

known for providing truthfulness when the underlying social

welfare maximization problem can be solved to optimal. We

first assume the existence of a plug-in algorithm A, which can

solve the fractional version of (6) (the LPR) to optimal. Let

(f∗, x∗) denote the optimal solution computed by algorithm

A, which is the outcome of the fractional VCG auction and

contains a fractional routing and channel assignment solution

for the SNs. Let (f ′, x′) be the optimal fractional solution to

(6) when SNi bids zero. The the VCG payment for each SNi

is computed as the eternality exposed by SNi on other SNs’

aggregated utilities :

pF (i) =
∑

i′ 6=i

γ′
i(f

′, x′)−
∑

i′ 6=i

γ′
i(f

∗, x∗) (9)

Properties of the Auction Framework.

Theorem 3. The randomized auction framework defined in

Algorithm 3 is truthful in expectation, and achieves at least 1
Λ

of optimal social welfare.

Proof: The property that
∑

l(f(l), x(l))ρ(l) =
1
Λ(f

∗, x∗)
is indeed a strong one, which coupled with the framework

defined in Algorithm 3 guarantees the correctness of the

theorem. Essentially, Algorithm 3 successfully outputs an

integral solution, while scaling down both social welfare and

SN payments by a factor of Λ from those of the fractional

VCG auction. In particular, the expected utility of SNi in

Algorithm 3 is:

∑

l

γi(fi(l), x(l))ρ(l) ≥ γi(
∑

l

(fi(l), x(l))ρ(l))

≥ γi(f
∗
i , x

∗) (10)

In the above derivations, the first inequality is due to

the linear or sub-linear property of the utility function γi,
and the second inequality follows from

∑

l(f(l), x(l))ρ(l) =
1
Λ(f

∗, x∗) and the fact that γi is non-decreasing.

Now that we know Algorithm 3 scales down the fractional

VCG payment pF by exactly a factor of Λ, and at the same

time scales down each SN ’s utility by at most a factor of

Λ, we can derive the individual rationality, truthfulness in

expectation from the corresponding properties of the fractional

VCG mechanism. Given truthfulness, one may safely assume

that SNs will place truthful bids, and the 1
Λ -approximate social

welfare guarantee follows.

Limitations of the Framework. Applying the randomized

auction in Algorithm 3, one can successfully transfers a

cooperative algorithm that provides an approximate guarantee

on the social welfare into a mechanism that deals with selfish

SNs while still providing the same approximate guarantee.

This strong result does not come without assumptions and

limitations, which we outline here for the reader’s reference.

Three assumptions are critical for the framework in Algo-

rithm 3 to work properly. First, there is an efficient algorithm

A that solves the LPR of (6) to optimal. Second, the utility

function γi is linear or sub-linear, and is non-decreasing.

Third, there is an efficient algorithm that computes an integral

solution for (6), providing a guaranteed upper-bound on the

integrality gap. The first and the third requirements are further
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discussed in Sec. V-C. The approximation on social welfare

guaranteed by Algorithm 3 is limited by that of the cooperative

approximation algorithm B. The former is loose whenever

the latter is, e.g., in scenarios where a complicated wireless

interference model is adopted. However, this is inevitable since

an auction mechanism dealing with selfish agents can never

outperform a cooperative algorithm that assumes truthful bids

for free.

B. LP Duality Based Solution Decomposition

The LPR of (6) allows the integer variables f i
uv, x(c, l

i
uv) to

take fractional values in [0, 1]. Let S(γ) to denote the objective

function of the LPR under input valuation function vector γ,

and let (f∗, x∗) be the optimal solution of the LPR, which

also contains agents’ winning/losing information. Assume the

existence of an algorithm B that verifies an integrality gap of

Λ for (6) and the LPR, we now show how the LP duality

technique due to Carr and Vempala [8] and Lavi and Swamy

[7] from theoretical computer science for decomposing the

fractional solution (f∗, x∗) into a weighted combination of

integral solutions of polynomial size. That is, we will have ρ(l)
values such that 1

Λ(f
∗, x∗) =

∑

l∈I ρ(l)(f(l), x(l)), where

Z(FX ) = {(f(l), x(l))}l∈I is the set of all integer solutions,

I is its index set, ρ(l) ≥ 0,
∑

l∈I ρ(l) = 1, and FX denotes

the feasibility region of the LPR. The integrality gap is then:

IGFX = supγ
max(f,x)∈FX

∑

i γi(f, x)

maxl∈I
∑

i γi(f(l), x(l))
(11)

The crux of the decomposition technique is to compute ρ(l)
values that satisfies 1

Λ(f
∗, x∗) =

∑

l∈I ρ(l)(f(l), x(l)), where

ρ(l) ≥ 0,
∑

l∈I ρ(l) = 1. Then one can view this convex

combination as specifying a probability distribution over the

integer solutions, where a solution (f(l), x(l)) is selected with

probability ρ(l). Such a vector ρ can be computed through

solving the following pair of primal-dual LPs. For each

primal/dual constraint, we list its corresponding dual/primal

variable for ease of reference.

<Decomposition LP - primal:>

minimize
∑

l∈I

ρ(l) (12)

subject to:
∑

l∈I

ρ(l)Ψi(l) =
1
ΛΨ

∗
i ∀i ∈ N ←→ ηi

∑

l∈I

ρ(l) ≥ 1 ←→ z

ρ(l) ≥ 0 ∀l ∈ I

The primal decomposition LP (12) has an exponential

number of variables and takes exponential time to solve with

a simplex or interior-point algorithm. The way we get around

with this is to consider the dual LP (13), and apply the

Ellipsoid algorithm together with a separation oracle (the plug-

in algorithm A that verifies an integrality gap of Λ for any

input valuation function vector γ of (6)) for identifying a

polynomial sized set of dual constraints that is equivalent to

the original set. This indicates a corresponding polynomial

sized set of primal variables (candidate integral solutions

(f(l), x(l))) for consideration in the primal LP, which can

then be solved using standard LP solution methods such as

the simplex method or the interior point method.

<Decomposition LP - dual:>

maximize
1

Λ

∑

i∈N

ηiΨ∗
i + λ (13)

subject to:
∑

i∈N

ηiΨi(l) + λ ≤ 1 ∀l ∈ I ←→ ρ(l)

λ ≥ 0

ηi unconstrained ∀i ∈ N

The dual variable ηi can be viewed as a linear scaling factor

that scales a valuation function γi(·) into γ′
i(·) = ηiγi(·).

In particular, if γi(·) is linear or sub-linear as we assumed,

so is the linearly scaled function γ′
i(·). A potential problem

is that the ηi values could be negative, leading to negative

valuation functions γ′
i(·), whereas the plug-in algorithm A is

only for non-negative valuations. However, one can instead

use A with the non-negative valuations γ(·)(+) given by

γ(·)i(+) = max(γ(·)i, 0), and this yields a separation ora-

cle [7].

Claim 1. Let γ = {γi(·)}i∈N be any vector of valuation

functions. γ(·)i(+) = max(γ(·)i, 0). Given any integer solu-

tion (f̃ , x̃) ∈ Z(FX ), one can obtain (f(l),x(l)) ∈ Z(FX )
such that

∑

i∈N γi(f i(l), xi(l)) =
∑

i∈N γi(+)(f̃ i, x̃i).

Proof: We first exploit the packing property. That is, if

a1 ∈ Z(FX ) and a2 ≤ a1 is integral then a2 ∈ Z(FX ).
Now we set (f i(l), xi(l)) = (f̃ i, x̃) if γi(·) ≥ 0 and 0 other-

wise. Clearly,
∑

i∈N γi(f i(l), x(i(l)) =
∑

i∈N γi(+)(f̃ i, (̃x)).

Since (f i(l), xi(l)) ≤ (f̃ i, x̃i) is integral, by the packing

property (f(l),x(l)) ∈ Z(FX ).

Now we are ready to show the following lemma:

Lemma 2. An optimal solution ρ
∗ to LP (12) satisfies

∑

l∈I ρ∗(l) = 1.

Proof: We show that the optimal value of (13) is 1, and

hence the lemma follows by strong LP duality. If we simply

set λ = 1, ηi = 0 for all i ∈ N , it provides a feasible

solution with value 1. We then prove that the optimal value

is at most 1 by way of contradiction. Let (η(∗), λ(∗)) denote

the optimal solution to (13). Assume, by way of contradiction,

that 1
Λ

∑

i∈N ηi(∗)Ψi(∗) + λ(∗) > 1. Using Algorithm A and

Claim 1, we can compute a social welfare maximizing feasible

solution (f(l),x(l)), such that

∑

i∈N

γ′if i
ds(l) ≥

1

Λ

∑

i∈N

γ′
i(f

i(∗), xi(∗)) (14)

which leads to:

∑

i∈N

ηi(∗)Ψi(l) ≥
1

Λ

∑

i∈N

ηi(∗)Ψi(∗) (15)
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The inequality above further implies:
∑

i∈N

ηi(∗)Ψi(l) + λ > 1 (16)

which violates the first constraint in the dual decomposition

LP (13), and hence contradicts the feasibility of (η(∗), λ(∗))

The above lemma shows that without being more restrictive,

the inequality 1
Λ

∑

i∈N ηiΨi(∗) + λ ≥ 1 can be added to

the dual (13). We will run the ellipsoid method to solve

this dual LP. The first set of inequalities of (13) will be the

violated inequalities returned by the separation oracle during

the execution of the ellipsoid method. The separation oracle

is, at a point (η, λ), if 1
Λ

∑

i∈N ηiΨi(∗) + λ > 1, then we

can use Algorithm A and Claim 1 to find an (f(l),x(l)) for

which the constraints of (13) is violated; otherwise, we use

the half space 1
Λ

∑

i∈N ηiΨi(∗) + λ ≥ 1 to cut the current

ellipsoid. Since the ellipsoid method is guaranteed to take at

most a polynomial number of steps, it will return a set of

solutions {fds(l)}l∈I that is polynomial in size. Then we can

plug back these solutions to (12), leading to a linear program

with a polynomial number of variables and constraints, which

is solved to recover ρ(l)’s that sum to 1.

C. Plug-in Algorithms for The Auction Framework

The randomized auction framework we presented in Algo-

rithm 3 is intended to be a general framework where different

versions for algorithms A and B can be plugged in, for solving

the LPR and approximately solving (6), respectively. The

resulting randomized auction is always truthful in expectation,

regardless of detailed design choices within algorithms A

and B. The eventual social welfare guarantee matches the

approximation ratio of algorithm B. We next discuss the

possibilities of algorithms A and B under different network

settings, as well as their limitations in terms of handling

wireless interference from practice.

Plug-in Algorithm A: Solving the LPR

At the high level, Algorithm 3 essentially attempts to scale

down a fractional VCG mechanism. In order to obtain the

fractional VCG mechanism first, we need to solve the LPR of

(6) to optimal, using some plug-in algorithm A.

The valuation function γi(·) is assumed to be linear or sub-

linear. In the linear case, the LPR is a normal linear program,

which can be solved using any general LP solution technique,

including the simplex method and the interior-point method.

When γi(·) is sub-linear but not linear, then the problem

becomes maximizing a convex function over a convex set,

which unfortunately does not have general solution algorithms

that run in polynomial time. The best solution will be problem

specific, and may or may not run in polynomial time. When the

network connection desired by an SNi is not data-intensive,

the corresponding valuation function γi(·) does not depend on

intra-SN interference and can be modeled as the end-to-end

throughput of the path scaled linearly by a constant weight wi,

making γi(·) linear. When the connection is data-intensive,

SNi wishes to take intra-SN interference into consideration

when evaluation its end-to-end path. We point out that all

natural models for such interference should satisfy the sub-

linear property of γi(·), as defined below:






positive homogeneity: γi(c · (f, x)) = c · γi(f, x), ∀c ≥ 0

subadditivity: γi((f, x) + (f ′, x′)) ≤ γi(f, x) + γi(f
′, x′)

In particular, for the first requirement, the constant c can be

viewed as a scaling factor for the time fraction of (f, x). The

valuation should scale linearly with the time fraction a path

is active and hence the first requirement is satisfied. For the

second requirement, note that given two different solutions to

the LPR, (f, x) and (f ′, x′), γi((f, x)+(f ′, x′)) = γi(f, x)+
γi(f

′, x′) when (f, x) and (f ′, x′) are entirely interference

free under the interference model of choice, and γi((f, x) +
(f ′, x′)) < γi(f, x) + γi(f

′, x′) otherwise. Hence the second

requirement is also satisfied.

Plug-in Algorithm B: Approximately Solving (6)

The randomized auction framework in Algorithm 3 re-

quires an efficient algorithm that approximately solves the

optimization problem in (6), which is the classic multi-hop

multi-channel wireless routing problem that has witnessed a

plethora of studies during the past decade (e.g., [22]). The best

design of such a joint routing-channel assignment algorithm

is a research problem of its own right and is beyond the

scope of this paper. The framework in Algorithm 3 can work

with any such approximation algorithm plugged in. Essentially,

our framework allows an auction mechanism designer to be

worry-free on truthfulness and focus on the approximation

algorithm design (in the cooperative paradigm). For the sake of

completeness of the framework, below we assume the greedy

LP-rounding Algorithm B that successively picks interference-

free integral solutions from the LPR solution, and show its

performance bound .

In the LPR, fractional channel allocation is directly related

to link flows, which can be viewed as the fraction of time

a specific link is active. Similarly, we can turn constraint (2)

into the following Link Scheduling Constraint, for any given

channel

f i
uv +

∑

l
j
pq :(l

j
pq,liuv)∈EH

f j
pq ≤ 1. (17)

The following lemma exploits the intuitive result that for

a path, the number of neighboring paths that are pairwise

interference-free is upper-bounded by a linear function of L,

the number of hops of that path.

Lemma 3. For any channel c ∈ C and an SN i with a path

that has L hops, there are at most g(L) interference-free SNs

among Is(i), where g(L) is a linear function of L.

Proof: Consider the circumference area formed by the L-

hop path of SN i, by taking the union of the interference disk

of each node along the path. For an SN j that interfere with i,
the closest node uj in it is path lies in this area. Furthermore,

if we scale the circumference by a factor of 2, then the disk

centered at uj with radius equal to the interference range

lies entirely within the scaled circumference. Any pair of

interference-free SN neighbors must have their disks disjoint

from each other. The number of such disks we can “pack”
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in the scaled circumference is upper-bounded by the ratio of

the scaled circumference area and the interference disk area,

which in turn is upper-bounded by a linear function of L.

Theorem 4. Assume that a SN’s path is at most Lmax-hops.

Then the integrality gap between the IP (6) and the LPR is at

most Λ = g(Lmax) + 1.

Proof: For an SN i and a single channel c, we know

from Lemma 3 that there are at most g(L) interference free

SNs among Is(i). In the worst case, the integral solution picks

only one SN from at most g(L)+1 SNs. Since this is true for

any SN and g(L) is an increasing function of L, the lemma

follows for a single channel case.

If there are |C| channels, for an SN i, we can imagine that

the maximum independent set of a link is duplicated into |C|−
1 copies, so that the integral solution will pick SNs from less

than (|C| − 1)g(L)L+(|C| − 1)L+1 = (|C| − 1)(g(L) + 1)L
SNs. Since the integral solution picks at least (|C − 1|)L+ 1
SNs (picks i, and |C − 1| SNs per link along i’s path), the

integrality gap is at most

(|C| − 1)(g(Lmax) + 1)Lmax + 1

(|C| − 1)Lmax + 1

≤
(|C| − 1)(g(Lmax) + 1)Lmax

(|C| − 1)Lmax

≤g(Lmax,∆) + 1 (18)

The greedy Algorithm B modifies a fractional flow to 1
among i ∪ Is(i), and “verifies” an integrality gap of Λ of

(6), leading to a social welfare approximation factor of Λ
for the resulting randomized auction. If a more sophisticated

Algorithm B is designed, guaranteeing a better integrality

gap, the social welfare approximation ratio of the resulting

randomized auction improves accordingly.

VI. SIMULATION RESULTS

In this section, we present simulation results for evaluating

our auctions. Since our randomized auction is performance-

guaranteed, we will mainly focus on the heuristic auction. For

each SN, we randomly distribute a number of nodes in a 1×1
region. Two nodes are connected if their Euclidean distance is

at most 0.05. The largest connected component is used as the

connected graph for the corresponding SN. All bids are taken

from a uniform distribution over the range [40, 100]. All data

are averaged over 100 simulation.

A. Auction Efficiency

We assume the non-data intensive scenario and let the valu-

ation function γi(f, x) = wif
i
ds, i.e., end-to-end throughput

of SNi’s path scaled by a constant weight wi. Since the

auction has already been proven to be truthful and the optimal

social welfare is hard to obtain, we evaluate its performance in

terms of auction efficiency, which reflects the portion of SN
demands that are satisfied, weighted by w:

ϑ =

∑

i∈N wif
i
ds

∑

i∈N wi

(19)

We then vary the number of channels in the simulations to

study the performance of the auction.
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Fig. 3: Auction efficiency with different numbers of bidders enrolled.

We observe that, in general, as the number of channels

increases, the auction efficiency increases as well, which

verifies the intuition that the more channels, the higher prob-

ability for a bidder to win. First we change the number

of bidders (SNs), while fixing ∆ = 4 and the number of

nodes for each SN at 300. From Fig. 3, we can see that our

auction in general effectively exploits the increasing number

of channels available. Even in the extremely interfering case

where there are 100 SNs in the region, the efficiency increases

approximately linearly with the number of channels.
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Fig. 4: Auction efficiency under different interference situations.

Fig. 4 (with 50 bidders and 300 nodes for each SN) and

Fig. 5 (with 50 bidders and ∆ = 4) also show the performance

of our auction in terms of the severity of interference, by

changing ∆ and the size of SNs. We can see that the change of

∆’s does not hurt the performance too much. However, large

sizes of SNs may increase interference significantly, thereby

decreasing the auction efficiency, where the connected graph

for an SN with 500 nodes distributed can contain more than

150 nodes.

We then compare the performance of our auction with two

other approaches. One is a greedy auction that only assigns

one channel to an SN, in which the same channel cannot be
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(a) Social welfare.
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(b) Spectrum utilization.
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(c) User satisfaction.

Fig. 7: Comparing our heuristic auction with the NAIVE-b auction, under different evaluation metrics.
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Fig. 5: Auction efficiency with different sizes of networks.
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Fig. 6: Comparison of three different auction settings.

assigned to SNs who interfere with one another. The other one

is a multi-item auction that greedily assigns channels to links

in each SN, without global vision of forming an end-to-end

path. We fix ∆ = 4, the number of potential nodes for each

SN is 450, and the number of bidders is 50. We can see from

Fig. 6 that our auction and the single-channel auction perform

much better than the multi-item auction. Another observation

is that the efficiency of our auction increases faster than the

single-channel one as the number of channels increases. This

justifies the use of multichannel assignment for each SN.

B. Comparison with the Naive Greedy Auction

In Sec. VI-A, we have shown the performance of our

heuristic auction in terms of auction efficiency, under different

settings. Now we will compare our heuristic auction to the

naive greedy auction discussed in Sec. IV-A, where bidders

are allocated channels according to a simple ranking of their

bids. We denote this auction as NAIVE-b, and ours as b/|Is|.
We consider the following three performance metrics.

• Spectrum Utilization: The total number of channels suc-

cessfully allocated to winning agents.

• User Satisfaction: The ratio of wining agents.

• Social Welfare: The sum of utilities of the auction partic-

ipants.

We compare the two auctions under different deterministic,

random and clustered topologies.

Fig. 7a - Fig. 7c compare NAIVE-b and our heuristic auction

in terms of social welfare, spectrum utilization and user satis-

faction, in random topologies where one channel is auctioned.

The nodes of each SN are uniformly distributed in an 1 × 1
square. We can observe from the above results that, by taking

interference into consideration, our auction outperforms the

naive greedy one in all three metrics. However, the observed

performance differences here are not large, since given the

random nature in which we distributed the nodes and selected

the SN communication terminals, the degree of interference

are rather centered for different SNs. The normalized virtual

bid technique only makes a difference at a small selected set

of SNs.

C. The Effect of Intra-SN Interference

We now consider intra-SN interference, and evaluate two

versions of the heuristic auction, one selects end-to-end path

without considering intra-SN at all, one tailored for the end-

to-end path utility function that evaluates a path without

neighboring links sharing a common channel to 1.0, and to

0.5 otherwise. An SN without a path has utility 0. Efficiency

here is taken as the ratio of aggregated SN utility over the

number of SNs in the system.

As shown in Table I, the efficiency of auctions are generally

lower, as compared to those seen in Sec. VI-A, since some

paths that are evaluated to 1 in the previous simulations

are now evaluated to 0.5 due to intra-SN interference. The

degradation is more severe for the non-adapted version of the
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TABLE I: Efficiency of adapted, non-adapted heuristic auction, and
of NAIVE-b

|C| 2 4 6 8 10

adapted 0.138 0.225 0.306 0.412 0.497

non-adapted 0.124 0.195 0.254 0.309 0.348

NAIVE-b 0.131 0.191 0.242 0.298 0.335

heuristic auction, often more than half of whose selected paths

are subject to intra-SN interference.

D. Illustration for the Randomized Auction Performance

Fig. 8 shows the distribution of the fractional solution to the

LPR for one simulation instance (with 50 bidders, 300 nodes

for each SN, one channel and ∆ = 4), where the sum of all

flows equals 5.67. The agents with relatively large non-zero

flows in the solution are shown in Table II. We can see that

there is only one agent guaranteed to win and most of them

almost always lose (the amount of flows is approximately 0).

In the worst case, our randomized auction will select agents
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Fig. 8: A histogram of fractional solutions of the LPR.

with flow amount 1, 0.85, 0.54, and one of agents with flow

amount 0.5, and another agent with fractional flow. Note that

two agents with flow amount larger than 0.5 must not interfere

with each other. Hence, in this experiment, algorithm A can

actually achieve 1
1.13 of the solution to the LPR, hence raising

the social welfare with our randomized auction.

TABLE II: Agents with non-zero fractional flows

Agent 2 5 9 12 21 31 35 47

Flow 0.54 0.15 0.46 0.85 0.15 1 0.5 0.5

VII. CONCLUSION

Secondary spectrum auctions are emerging as a promising

approach to efficiently distributing and sharing scarce wireless

spectrum. For the first time in the literature, we propose the

concept of a secondary network, relaxing the over-simplifying

assumption on secondary users in existing research. We de-

signed two auctions for spectrum allocation among SNs.

The first is a simple, greedy style deterministic auction that

heuristically maximizes social welfare. The heuristic auction

is truthful due to its monotone allocation rule. The second

is a randomized, linear optimization based auction that is

not only truthful (in expectation), but also provides proven

guarantees on social welfare. For future work, one may further

improve the performance guarantee of the randomized auction,

by proving a tighter bound on social welfare approximation,

and extend it to handle intra-SN interference as well as inter-

SN interference.
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