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Abstract— Wireless spectrum is a scare resource, while media
streaming usually requires high end-to-end bandwidth. Media
streaming in wireless ad hoc networks is therefore a particularly
challenging problem, especially for the case of streaming to
multiple receivers. In this paper, we design linear optimization
models for computing a high-bandwidth routing strategy for
media multicast in wireless networks, which targets near-optimal
throughput, given constraints including network topology, radio
capacity, and link contention. We study both the directional
antenna and omni-directional antenna cases and point out their
connections. We also combine the classic forward error correction
techniques with the novel network coding techniques to provide
error control in a timely fashion. Simulation results show that
our solutions indeed achieve high streaming rates, and prompt
error recovery under a wide range of link failure patterns.

Keywords: Media streaming, Network coding, Multicast, Ad
hoc networks, Directional antenna.

I. I NTRODUCTION

Ad hoc networks are multi-hop wireless networks that may
self-organize into the functioning mode without the support
of a wireline infrastructure. Due to its flexibility and easeof
deployment, vast opportunities in both military and civilian
applications are expected [1], [2], [3]. Compared to wireline
networks, wireless networks provide relatively low bandwidth.
For example, Gupta and Kumar [4] show that the available
end-to-end bandwidth for a certain pair of nodes may approach
zero, as the network size grows. Peraki and Servetto [5]
further show that the introduction of directional antennasdoes
not change the pessimistic picture. On the other hand, the
transmission of live media streams often requires high data
rates. Therefore, media streaming in wireless ad hoc networks
becomes a particularly challenging research problem. The
situation is further exacerbated by the unreliable nature and
high error rates of wireless communication links.

In this paper, we study the problem of media multicast in ad
hoc networks with either directional or omnidirectional anten-
nas. Compared with omni-directional antennas, which intro-
duces a more complex interference model [6], [7], directional
antenna essentially eliminates local interference by having the
sender node forming a beam towards the intended receiver
only [8], [5]. Even without interference, the maximum-rate
multicast topology problem is still in general NP-hard, with
traditional multi-path routing and data replication techniques
considered only [9]. However, it has been recently realizedthat
the novel network coding techniques [10], [11] may dramati-

cally reduce the computational complexity of this problem,by
transforming it into linear network optimization [12], [9].

We propose to utilize network coding in our media stream-
ing scheme. The advantages of applying network coding
in wireless media multicast are three-fold. First, each node
in a wireless ad hoc network is usually a fully functional
computer, as opposed to routers and switches in the IP core
network. Therefore network coding support is naturally fea-
sible. Second, as just mentioned, considering coded multicast
leads to efficient algorithms for computing the maximum-rate
transmission scheme. Third, as we will show later in the pa-
per, combining network coding with forward error correction
(FEC) provides high robustness and prompt error-recovery,
which is of particular interests to multimedia applications.
Both network coding and FEC codes (e.g., Tornado codes
[13] and Reed-Solomon codes [14]) employ symbol-wise
linear coding operations over finite fields such asGF (28)
or GF (216), therefore they may co-exist in our solution in
harmony.

We consider three models of ad hoc networks: (M1) the
single directional antenna case, (M2) the multiple directional
antenna (antenna array) case, and (M3) the omni-directional
antenna case. (M1) and (M2) correspond tosimple directional
transmissions andcomplex directional transmissions in Peraki
and Servetto [5], respectively. In (M1), each node is equipped
with one directional antenna, shared among transmissions
to and from all of its neighbors. In (M2), each node is
equipped with multiple directional antennas, such that one
is dedicated to communication with each neighbor. In (M3),
each node is equipped with an omni-directional antenna, which
can broadcast to all neighbors within a radium ofr. In all
cases, we show how the maximum-rate routing topology can
be computed as a linear network optimization problem, with
a node-centric linear program provided for (M1) and (M3),
and a link-centric linear program provided for (M2). We
apply subgradient optimization methods to derive distributed
solutions for these linear programs. The solution we obtainis a
multicast topology with a flow rate specified between each pair
of nodes, which is ready to serve a coded multicast session.

Finally, we adopt the simple, light-overhead randomized
code assignment algorithm [15] to determine the content of in-
formation flows being transmitted between each pair of nodes.
We combine FEC coding at the source node and network
coding at each relay node in the multicast routing topology.
The result is a coded multicast strategy that achieves very
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high level of error-resilience, as verified by both theoretical
analysis [11] and our simulation results. Furthermore, error
recovery does not involve sender-receiver message exchanges,
and does not introduce extra overhead at the receiver beyond
regular decoding operations necessary in any network coding
scheme. Therefore, the entire multicast scheme achieves high
throughput, high robustness, as well as prompt error handling,
and constitutes an ideal solution for media multicast in ad hoc
networks, which are characterized by low link capacity and
high error rates.

The remainder of the paper is organized as follows. We
discuss related work in Sec. II, present optimization models for
computing the maximum-rate multicast topology in Sec. III.
We then provide details on randomized code assignment and
robust data transmission in Sec. IV. Sec. V concludes the
paper.

II. RELATED WORK

Recent research in information theory discovers that, routing
alone is not sufficient to achieve maximum information trans-
mission rate across a data network [10], [11]. Rather, applying
encoding and decoding operations at relay nodes in additionto
the sender and receivers is in general necessary in an optimal
transmission strategy. Coding at intermediate relay nodesis
referred to asnetwork coding. The coding process useslinear
codes in the Galois field, and includes two basic operations:
the + and · operations in the Galois field GF(2k). Since
elements in a Galois field have a fixed-length representation,
bytes in flows do not increase in length after being encoded.

The pioneering work of Ahlswedeet al. [10] and Koetter
et al. [11] proves that, in a directed network with network
coding support, a multicast rate is feasible if and only if
it is feasible for a unicast from the sender to each receiver
independently. Liet al. [16] prove that linear codes usually
suffice in achieving the maximum transmission rate. They also
provide the first code assignment algorithm, which performs
exponentially many linear independence tests. Sanderset al.
[17] improve their result by providing a polynomial time
algorithm for exact code assignment. Hoet al. [15] then point
out that randomized code assignment, in which each node gen-
erates outgoing flows by linearly combining its incoming flows
with random coefficients, actually constitutes another attractive
solution. The probability of conflict due to randomly chosen
code coefficients is negligibly small, with mild assumptions
on code length and network configurations.

Recent work [18], [19] study the problem of computing
maximum unicast transmission rates, in wireless ad hoc net-
works with known topologies. Both our work and [18], [19]
allow multi-path routing for higher transmission rates. The
focus in [18], [19] is on unicast transmission with omni-
directional antennas, where the main challenge is scheduling
of local wireless transmissions. We consider multicast trans-
mission with directional antennas, where the main challenge
is on computing the optimal multicast topology.

Traditionally, with only data replication and multi-path
routing considered, the maximum multicast rate problem is
known to be equivalent to the steiner tree packing problem,

and is therefore NP-hard to solve [20], [21], [9]. We showed
that [21], [12], taking the unique encodable property of infor-
mation flows into consideration can dramatically reduce the
complexity of the problem, which can now be solved as linear
network optimization. We provide [21] linear programming
formulations of the maximum transmission rate problem for
various wireline communication scenarios, and provide [12]
an efficient, distributed solution to the single multicast session
case where each link is undirected and each node has network
coding capability. In this paper, we show the results can be
extended into wireless networks.

Guo et al. [22] propose to apply network coding in overlay
media streaming. Their work is similar to ours in that both
abandon the traditional multicast tree approach for multicast
routing, and adopt network coding to improve transmission
rates. A major difference between their work and ours is
that, we take a fixed wireless network topology as input, and
target near-optimal multicast rate, while in Guoet al. [22] the
optimality of the achieved rate is not a design goal and is not
studied.

Directional antenna has recently attracted a considerable
amount of research interests in the wireless networking com-
munity [5], [8], [23], [24]. Compared with omni-directional
antennas, directional antennas may direct energy radiation
towards the intended receiver only. This leads to drastically
reduced local interference, as well as larger communication
ranges. In this paper, we design effective media multicast
strategies for ad hoc networks, based on the nice interference
model of directional antennas.

As a special case of multiple description codes that are used
for robust, adaptive multimedia streaming, FEC is a sender
based error recovery technique where encoded redundancy
is transmitted together with original data. The study of FEC
codes (a.k.a. source erasure codes) dates back to the seminal
work of Reed and Solomon [14], and has enjoyed ubiquitous
application in areas including bulk data storage, satellite
communication, reliable multicast, and wireless transmission.
The power of FEC codes can be summarized into the following
fact: an original data item withn equal-sized uncoded blocks
can be coded intom > n coded blocks, such that anyn of
the m coded blocks are sufficient to recover the original data
item.

III. C OMPUTING HIGH-BANDWIDTH STREAMING

TOPOLOGY: LP MODELS

In this section, we present linear programming (LP) models
that compute the maximum-rate multicast topology, which will
be used in Sec. IV to construct the coded multicast streaming
scheme. We also discuss how these LPs can be effectively
solved.

We assume that each node is equipped with one or mul-
tiple ideal antennas, which may be used for communication
between a pair of nodes within a certain distance from each
other; in the directional antenna cases, local transmissions
are subject to no interferences with each other. We model
the logical topology of the ad hoc network as an undirected
network G = (V,E). In the single antenna cases,C ∈ QV

+
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denotes the radio capacity available at each node, whereQ+ is
the set of non-negative rational numbers. In the antenna array
case,C ∈ QE

+ denotes the available capacity of each wireless
link, which is the smaller radio capacity at the two radios
forming the link. The setA = {

→
uv,

→
vu |uv ∈ E} denotes the

set of directed links that are possible to be utilized in a routing
topology. The media source is denoted asS, and destination
nodes are denoted asT1, . . ., Tk.

A. M1: The single directional antenna scenario

We first consider the case where each node has one direc-
tional antenna equipped only, which is shared among trans-
missions to and from each of its neighbors. In this scenario,
capacity allocation is node-centric. The linear program that
maximizes the multicast rate is given below, based on the fact
that, a coded multicast rate is feasible in a directed network,
if and only if it is feasible for a unicast from the sender to
each receiver independently [10], [11].

Maximize χ

Subject to:






















χ ≤ fi(
→

TiS) ∀i (1)
∑

v∈N(u)(f(
→
uv) + f(

→
vu)) ≤ C(u) ∀u (2)

∑

v∈N(u)(fi(
→
uv) − fi(

→
vu)) = 0 ∀i,∀u (3)

fi(
→
uv) ≤ f(

→
uv) ∀i,∀

→
uv 6=

→

TiS (4)

f(
→
uv), fi(

→
uv), χ ≥ 0 ∀i,∀

→
uv

In the above LP, variableχ is the achievable multicast rate,
and is also the objective function being maximized.N(u) =
{v|uv ∈ E} denotes the set of neighbor nodes ofu. Each
fi ∈ QA

+ is a network flow from senderS to receiverTi. We

have added virtual links
→

TiS with infinite capacity, in order
to ease the concise presentation of the linear program. We
now require flow balance at every node, including senderS

and receiversTi (3). Consequently, flow rate on each virtual

link, f(
→

TiS), represents the network flow rate fromS to Ti.
The overall throughput of the media streaming session,χ, is
upper-bounded by each of these individual network flow rates
(1). The total capacity required on a directed link

→
uv is the

maximum network flow through it (4), and total capacities of
links incident to a node should not exceed the radio capacity
at that node (2).

The dual of the above LP is given below, where we have
variables representing node prices (x) and the objective is to
minimize aggregated node capacity-price product. We discuss
an efficient and distributed solution algorithm based on the
dual LP in the Appendix.

Minimize
∑

u C(u)x(u)
Subject to:



















x(u) + x(v) ≥
∑

i yi(
→
uv) ∀

→
uv (5)

yi(
→
uv) + pi(v) ≥ pi(u) ∀i,∀

→
uv 6=

→

TiS (6)
pi(Ti) − pi(S) ≥ zi ∀i (7)
∑

i zi ≥ 1 (8)

x(uv), yi(
→
uv), zi ≥ 0 ∀i,∀

→
uv

B. M2: The antenna array scenario

Now assume each node is equipped with multiple di-
rectional antennas, such that one antenna is dedicated for
transmissions between each neighbor and itself. Local wireless
transmissions between directional antenna pairs do not inter-
fere with each other, therefore all links inG may be active
concurrently. We need only to guarantee that for each link
uv, data rate of the

→
uv transmission and data rate of the

→
vu

transmission together do not exceed the capacity of either
radio connectingu and v. Therefore the wireless network
may be modelled as an undirected, link-capacitied network.
Consequently, we can formulate the maximum streaming rate
problem as a linear optimization problem, given that network
coding is supported at each node:

Maximize χ

Subject to:






















χ ≤ fi(
→

TiS) ∀i (9)

fi(
→
uv) ≤ c(

→
uv) ∀i,∀

→
uv 6=

→

TiS (10)
∑

v∈N(u)(fi(
→
uv) − fi(

→
vu)) = 0 ∀i,∀u (11)

c(
→
uv) + c(

→
vu) ≤ C(uv) ∀uv 6= TiS (12)

c(
→
uv), fi(

→
uv), χ ≥ 0 ∀i,∀

→
uv

It is interesting to note that the LP above is essentially
the same as the cFlow LP for computing maximum multicast
throughput in an undirected network [21].C(uv) denotes the
total available bandwidth between nodesu and v, which is
the smaller capacity of the two radios dedicated for trans-
missions betweenu and v. This capacity is further allocated
for transmissions in both directions, and leads to directedlink
capacitiesc(

→
uv) and c(

→
vu). Similar to the LP for the single

antenna case,fi is a network flow from sourceS to receiverTi,

and each
→

TiS is a virtual link inserted for concise formulation
of the linear program.

While the LP for M1 is node-centric, with variables rep-
resenting node capacities and prices in the primal and dual
respectively, the LP for M2 is link-centric with variables for
link capacities and prices. The algorithm we present in the
Appendix finds the optimal multicast flowf∗ for M1 directly.
A subgradient algorithm for M2 [12] will yield an optimal
network routing instead, from which the optimal flow can be
further computed by solving network flow problems.

C. M3: The omni-directional antenna scenario

Optimizing throughput in multihop wireless networks is in
general hard due to the interference among nearby transmis-
sions, which are broadcast in nature. An optimal schedule of
node transmissions that avoids interference is equivalentto the
graph coloring problem and is NP-hard. In order to obtain
feasible solutions, we adopt here a simplified interference
model, which is called theprimary interference model or node-
exclusive spectrum sharing in the literature [25], [26], [27]: at
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any given time point, a node can communicate with at most
one neighbor only.

A unique feature of omni-directional antennas is their local
broadcast nature. The same packet can be transmitted from
a node to multiple neighbors in one broadcast. This feature
is especially beneficial in multicast routing, and is known
as the wireless multicast advantage. However, modelling the
multicast advantage in optimal multicast routing is by no
means straightforward [28]. Below we apply theshadow node
technique from [28], which models local broadcasts using
regular graph edges by inserting virtual broadcast nodes into
the network, and show how the node-centric LP in the directed
antenna case can be simply modified to optimize multicast
throughput with omni-directional antennas.

TABLE I

NETWORK TRANSFORMATION UNDERPRIMARY INTERFERENCE

Input: Original networkG = (V, E) andC ∈ QV

+

Output: New networkG′ = (V ′, E′) andC′ ∈ QE
′

+

Initialize: V ′ = φ, E′ = φ

∀u ∈ V :
V ′ ← V ′ ∪ {u, u′}
C′(u) = C(u), C′(u′) =∞

E′ ← E′ ∪ {
→

uu′}

∀
→

uv∈ E:

E′ ← E′ ∪ {
→

u′v}

As shown in Table I, for each nodeu in the original network,
we create itsshadow u′ with infinite capacity, and redirect all
edges emanating fromu to from u′. An example is illustrated
in Fig. 1.

r

uv

w

x

v

w

x

u

u’

Fig. 1. Constructing the network topology for the cFlow LP under the
primary interference model.

A local broadcast is achieved by a transmission fromu

to its shadowu′ and then to allu′s neighbors. The entire
procedure consumes only the amount of bandwidth required
for one transmission, which is in line with the wireless
multicast advantage. To further model the fact that a local
broadcast consumes bandwidth at a neighbor even if it is not
interested in receiving the packet, we require that the shadow
u′ relays exactly the same amount of flow to all neighbors as
the rate it receives fromu. The final linear program in the
omnidirectional antenna case is then:

Maximize χ

Subject to:


































χ ≤ fi(
→

TiS) ∀i (13)
∑

v∈N(u)(f(
→
uv) + f(

→
vu)) ≤ C ′(u) ∀u ∈ V ′ (14)

∑

v∈N(u)(fi(
→
uv) − fi(

→
vu)) = 0 ∀i,∀u ∈ V ′ (15)

fi(
→
uv) ≤ f(

→
uv) ∀i,∀

→
uv 6=

→

TiS (16)

f(
→

uu′) = f(
→

u′v) ∀u ∈ V,∀v ∈ N(u) (17)

f(
→
uv), fi(

→
uv), χ ≥ 0 ∀i,∀

→
uv

D. Discussions

The three LPs can be similarly solved using the subgradient
method; details for the LP for M1 is given in the Appendix.
Each step of the subgradient algorithm can be decomposed
into computations performed at individual nodes, based on
local information maintained. The main computation consists
of solving a series of max-flow/min-cut problems, for which
totally distributed algorithms exist, such as the push-relabel
algorithm [29] or theǫ-relaxation algorithm [30].

Fig 2 shows the convergence speed of the subgradient
algorithm on random networks generated by BRITE [31], in
with network sizes up to1000 nodes, and with2, 5, and10
receivers, respectively. As we can see, the optimal solution
is usually approached within10 iterations, regardless of the
network size or the multicast group size. However, the com-
putation time for large networks or for large multicast groups
are longer, due to the fact that the time taken by each single
max-flow/min-cut computation is roughly proportional to|V |3,
and that the number of max-flow/min-cut computations in each
iteration is proportional to the multicast group size.
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Fig. 2. Convergence speed in random networks.

In the antenna array scenario, the optimal solution of the lin-
ear program provides the exact maximum achievable multicast
streaming rate. In the single directional antenna case, however,
the optimal solution of the linear program may be slightly
higher than the real achievable rate, if the multicast topology
contains an odd cycle. This is introduced by difficulties in
wireless link scheduling. Detailed discussions on a similar
phenomenon aboutodd holes andodd anti-holes are provided
in the work of Jainet al. [18] on unicast rate maximization
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in ad hoc networks. A close, rather than exact, upper-bound
is attained in the single antenna case. The situation is similar
for the case of omni-directional antennas since we considered
primary interference only and ignored secondary interference.
This does not introduce a serious problem to our solution,
since in the coded multicast streaming, as will be discussedin
Sec IV, we utilize only a portion of the achievable bandwidth
for streaming original media flows, and target a near-optimal
rate rather than an absolutely optimal one. Given the high
network dynamics that are present in wireless ad hoc networks,
it is impractical to target absolutely optimal performance
anyway.

IV. CODED MEDIA STREAMING

The multicast topology computed by our LP models is in
the form of combined network flows, rather than a collec-
tion of multicast trees. Correspondingly, it is not feasible to
stream uncoded raw data along each network flow to the
receivers. Network coding is required to handle bottleneck
link sharing among different network flows, to make the
multicast transmission feasible. Beside network coding, we
also need to consider error correction codes, in order to achieve
robust media streaming in the highly dynamic wireless settings
with unreliable communication links. Below we compare FEC
codes with other error-recovery techniques for media stream-
ing, and conclude in favor of the former. We then describe in
more details how to combine network coding and FEC coding
into a unified coding framework.

There exist three categories of error recovery techniques for
multimedia streaming: (a) sender&receiver-based techniques,
(b) receiver-based techniques, and (c) sender-based techniques.
In (a), each receiver sends explicitACK and/or NACK mes-
sages back to the sender, which then re-transmits a missing
packet to a requesting receiver. This approach has two major
drawbacks. First, it does not scale well as the number of
receivers grows, since the numerousACK or NACK messages
eventually flood links around the sender. Second, the round
trip time introduced by theACK/NACK-retransmission round
is usually intolerable for multimedia applications. In (b), a
receiver applies heuristics such as linear interpolation to substi-
tute data not successfully received. Although it eliminates both
problems in (a), the result of recovery is usually sub-optimal,
and may lead to sensible distortion in the audio/visual output
at the receiver. In (c), a small amount of redundant information
is added by the sender, and then transmitted to the receivers
along with the original data. A receiver may then recover its
missed data from the redundant information received. Both
layered coding and multiple description coding belong to this
category.

We choose a special case of multiple description codes,
FEC code, to provide error-resiliency in our media streaming
solution. The reason is that FEC coding and network coding
can be based on coding operations over the same finite field,
and may consequently be unified into a common coding
framework. We partition the source data into a numbern of
data streams, from whichk FEC-coded redundancy streams
are generated. Then thesen+k data streams are sent out from

the senderS, and are further coded and relayed hop-by-hop
until arriving at the receivers.

The study of Koetteret al. [11] shows that, such a coded
transmission stream achieves the highest robustness possible.
Their original theorem says that, if a multicast rateχ is feasible
in a directed networkG, let F be the set of link failure patterns
such thatχ is still feasible inG-f, for all f ∈ F, then there
exists a common network coding scheme that achieves rate
χ, and is resilient to any link failure pattern inF. In other
words, there always exists a static coding scheme that may
handle every link failure scenario possible to handle. Our
inter-stream FEC coding, combined with randomized network
coding, constitutes precisely such a coding scheme.

More specifically, after computing the maximum multicast
rate χ∗ in Sec. III, we use(1 − α)χ∗ of the capacity to
transmit raw data streams, while reserveαχ∗ of the capacity
for coded redundancy. Hereα is a small fractional number,
and is adjustable depending on specific network conditions and
application requirements. We normalize ratesχ∗, (1 − α)χ∗,
and αχ∗ to n + k, n, and k number of information flows,
respectively, with a unit flow rate of our choice. Then sender
S sends outn original media flows, plusk coded flows, each
of which is encoded from then original flows using FEC
codes,i.e., is a linear combination of then original flows. The
effect is that anyn flows out of then + k source flows are
linearly independent, and can be used to recover then original
flows. Each relay node linearly combines its incoming streams
to construct its outgoing streams in a random fashion. Each
receiver may then recover then original streams by decoding
any n coded streams it receives.
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Fig. 3. Robustness of multicast streaming.

We tested the robustness of our coded transmission scheme
in a network with200 nodes, and19 receivers in the multicast
group. We randomly pick a certain percentage of links on
the multicast streaming routes to fail, and compute how many
flows can still arrive at each receiver. If the number is less than
n, then that receiver will not be able to successfully recoverthe
source data. In Fig. 3,x-axis corresponds to the percentage of
active links that fail, andy-axis corresponds to the percentage
of receivers that can still successfully recover all data streams.
We can see that with3% redundancy in source FEC coding,
even if5% of the currently utilized links fail,all receivers can
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still receive at leastn independent coded data streams, and
can successfully recover original data being multicast by the
sender.

In our coded streaming scheme, each node on the multicast
topology needs to perform encoding operations, and each
receiver needs to perform decoding operations. Note that
from the computation point of view, there is no essential
difference between encoding and decoding operations. In the
former, symbols from different incoming data streams form a
vector, which is multiplied with the encoding matrix. In the
latter, the original data streams are recovered by multiplying
symbols from incoming flows at the receiver with a decoding
matrix. Upon session setup, each node randomly generates
its encoding matrix, which remains unchanged during the
streaming session. The accumulated overall transformation
matrix at the receiver is inversed to obtain the decoding matrix,
which is also fixed throughout the streaming session.

TABLE II

CODING TIME OVER DIFFERENT PACKET SIZES.

packet size 1 5 10 15 20 25 30 35
(KB)
computation 18 90 177 263 353 440 532 619
time (µs)

In order to determine the latency introduced by the coding
process on each node, we have completed an implementation
of network coding over base field GF(28). To be more realistic,
we place six parallel instances of the coding implementation in
one AMD Opteron 2.4 GHz node, each coding two incoming
streams. We then measure the average coding time for data
packets of various sizes. The table above shows the results of
our measurements. It takes18 µs to code1 KB packets, and
around0.5 ms with 30 KB packets. Such a light overhead
should not be a serious issue in most scenarios. However,
considering the fact that coding delay accumulates along
each hop during the transmission, it may be desirable to
adopt relatively smaller packet sizes for interactive media
applications in networks with a large diameter.

V. CONCLUSIONS

In this paper, we propose solutions to overcome two dif-
ficulties for multicast media streaming in ad hoc networks,
low bandwidth and high error rate, with either directional or
omni-directional radio antennas. We design linear optimization
models and subgradient algorithms for computing and achiev-
ing high bandwidth multicast routing in such settings. The
algorithm is inspired by linear programming duality theory.
However, it consists of mostly combinatorial computations,
and is consequently very efficient, as verified by simulation
studies.

We utilize the optimal multicast topology computed to
stream coded data to the destinations, with a small number
of data streams reserved for redundancy. By results in net-
work coding research, such a coded transmission achieves the
highest possible resiliency against link failures. Furthermore,
data error at a receiver is handled by forward error correction,

therefore it is possible to meet the stringent delay requirements
of multimedia applications.
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APPENDIX

To design the subgradient algorithm for the LP in model
M1, We relax constraints in (5), and introduce “prices” in
vectorf accordingly. The objective function with the penalty
added, then becomes:

∑

u C(u)x(u) +
∑

→

uv
f(

→
uv)(

∑

i yi(
→
uv) − x(u) − x(v))

=
∑

u(C(u) −
∑

v∈N(u)(f(
→
uv) + f(

→
vu)))x(u)

+
∑

→

uv
f(

→
uv)

∑

i yi(
→
uv)

Note that primal feasibility requires
∑

v∈N(u)(f(
→
uv)+f(

→
vu

)) ≤ C(u), ∀u. Therefore we obtain the Lagrangian dual
problem:

Maximize L(f)
Subject to:

{

∑

v∈N(u)(f(
→
uv) + f(

→
vu)) ≤ C(u) ∀u

f(
→
uv) ≥ 0 ∀

→
uv

where

L(f) = MinP

∑

i

∑

→

uv

f(
→
uv)yi(

→
uv) (A.1)

with P being the polytope:

P :



















yi(
→
uv) + pi(v) ≥ pi(u) ∀i,∀

→
uv 6=

→

TiS

pi(Ti) − pi(S) ≥ zi ∀i
∑

i zi ≥ 1

yi(
→
uv), zi ≥ 0 ∀i,∀

→
uv

Lagrangian duality theory assures that, the objective func-
tion value in an optimal solution to the Lagrangian dual
problem is equal to that in an optimal solution to the primal
linear program, which models our maximum streaming rate
problem. Therefore we may solve the primal LP by solving
the above Lagrangian dual. We start by choosing a set of
initial values forf . Any legal vectors that satisfy node capacity
bounds are fine, although they may lead to different speeds of
convergence. One feasible choice is to try to distribute radio
capacity at each nodeu to all its incident links evenly,i.e., set
f [0](

→
uv) = min( C(u)

2|N(u)| ,
C(v)

2|N(v)| ), ∀
→
uv.

After initialization of f , the major part of the subgradient
algorithm iteratively updatesy and f , until f converges to

its optimal value. To updatey, we take current values inf
fixed, and solve sub-problem (A.1). Note that, in an optimal
solution of the original dual LP, we must have

∑

i zi = 1,
since complementary slackness conditions requireχ(

∑

i zi −
1) = 0. Consequently, (A.1) can be decomposed intok min-
cut computations. We can compute a min-cut fromS to each
Ti, taking f [k] as the link capacity vector:

L(c) = MinP

∑

i

∑

→

uv

f(
→
uv)yi(

→
uv) = Mini[MinP i

∑

→

uv

f(
→
uv)y(

→
uv)]

whereP i is the standard min-cut polytope for theS-Ti cut:

P i :











y(
→
uv) + p(v) ≥ p(u) ∀

→
uv 6=

→

TiS

p(Ti) − p(S) ≥ 1

y(
→
uv) ≥ 0 ∀

→
uv

Now let y∗
i = argminy∈P i

∑

→

uv
f [k](

→
uv)y(

→
uv), and let

j = argmini
∑

→

uv
f [k](

→
uv)y∗

i (
→
uv), we can updatey by setting

yj [k] = y∗
j , andyi[k] = 0, ∀i 6= j.

After new values iny are computed, vectorf is then updated
in two steps. We first compute a new vectorf ′ according to
a sequence of prescribed step sizesθ:

f ′ = f [k] + θ[k]
∑

i

yi[k],

f ′ may not be feasible, and is then projected into the
feasibility simplex,e.g., the nearest feasible point:

f [k + 1] = argmin
f≥0,

P

v∈N(u)(f(
→

uv)+f(
→

vu))≤C(u)
||f − f ′||.

After updating bothy andf , the next iteration starts. Since
the objective function and constraints in our original problem
are all linear, it is guaranteed that choosing step sizes satisfying
the following conditions will have the subgradient algorithm
converge to the optimal solution:

θ[k] ≥ 0, lim
k→∞

θ[k] = 0, and
∞
∑

k=1

θ[k] = ∞. (A.2)

Finally, we observe that the vectorf upon convergence,f∗,
provides exactly the desired optimal multicast routing strategy.


