
1

Presto: Towards Fair and Efficient HTTP Adaptive
Streaming from Multiple Servers

Shengkai Zhang1, Bo Li1, and Baochun Li2

1Department of Computer Science and Engineering, Hong Kong University of Science and Technology
2Department of Electrical and Computer Engineering, University of Toronto

Abstract—Though HTTP adaptive video streaming has been
widely adopted in the industry, it has been shown that it
suffers from lackluster performance with respect to a number of
desirable properties: fairness, efficiency, and stability, especially
when multiple players compete for a bottleneck link. Effective
algorithms have been proposed for single-server HTTP adaptive
streaming to mitigate these problems.

In this paper, we present an in-depth analysis on these
desirable properties in the context of using HTTP adaptive
streaming from multiple servers, which demonstrate that these
properties will no longer hold with the existing algorithms. To
address this challenge, we present Presto, a new protocol designed
to improve the user experience by providing better fairness,
efficiency and stability in the context of multi-server HTTP
adaptive streaming. Our real-world experimental results indicate
that Presto substantially outperforms existing protocols in the
multiple server scenario.

Index Terms—HTTP adaptive streaming, DASH, Fairness,
Efficiency, Stability.

I. INTRODUCTION

Demand for Internet bandwidth has been increasingly
dominated by video streaming traffic, fueled by a paradigm
shift from traditional connection-oriented protocols (e.g., RTMP,
RTSP) to stateless adaptive streaming protocols over HTTP
(e.g., [1]). With HTTP adaptive streaming, a source video is
encoded into chunks, each containing a few seconds of video,
independent from one another. These chunks are then hosted
on a typical web server, so that players on the client side
are able to send download requests with a standard HTTP. A
server stores multiple versions (with different resolutions) of
the same video, each with their own bitrates, and a player is
able to adapt to the varying availability of network bandwidth
by selecting a particular bitrate when requesting chunks to
download.

Unfortunately, it has been shown that the existing real-world
systems of Internet video streaming providers using HTTP
adaptive streaming suffered from lackluster performance when
multiple players on the client side share the same bottleneck
link. There are three desirable properties that existing systems
failed to deliver: (1) fairness, in that multiple players should
be able to fairly share the bandwidth at the same bottleneck
link; (2) efficiency, in that a player should be able to choose
the best possible bitrate to maximize user experience; and
(3) stability, in that a player should maintain a stable bitrate
to ensure a smooth playback and to minimize disruption.
Effective algorithms have recently been proposed to mitigate

these problems [2], [3] in the case of single-server HTTP
adaptive streaming, where each player requests video chunks
from a single web server.

Due to the insatiable appetite for bandwidth when playing
high-definition video streams with high bitrates, it is naturally
conceivable to extend single-server streaming to multi-server
streaming, where a player requests video chunks from multiple
web servers simultaneously. These web servers can be hosted
by either traditional content distribution networks (CDNs), or
multiple virtual machines in datacenters in the public cloud,
such as Amazon EC2. Fig. 1 illustrates an example of such a
multi-server streaming scenario, where player A retrieves video
streams simultaneously from three web servers over multiple
TCP flows, and all three servers host the same video content
from a particular content provider. Similar to the case of single-
server streaming, multiple players may compete for bandwidth
at a bottleneck link in the context of multi-server streaming. In
this example, players B and C may share the same bottleneck
link with A, even though each of them may receive its video
stream from only one server.

Video
Content
Provider

Server 1

Server 2

Server 3

User
B

User
A

User
C

bottleneck link

Fig. 1. HTTP adaptive streaming with multiple servers.

But how well do these properties — fairness, efficiency,
and stability hold when existing algorithms are used in the
context of multi-server HTTP adaptive streaming? To answer
this question, we start with an in-depth analysis in this paper,
and show that these properties no longer hold.

In this paper, we propose Presto1, a new array of client-driven
algorithms specifically designed to ensure fairness, efficiency,
and stability in multi-server HTTP adaptive streaming. With
Presto, the original contributions in this paper are two-fold.
First, we design a new bitrate adaptation algorithm that achieves
fairness across players, irrespective of the number of TCP
flows each player establishes to multiple servers. Second,

1In music composition, Presto suggests that a musician plays the musical
piece at a fast pace. The name is inspired by the acronym DASH, one of the
HTTP adaptive streaming protocols that we use in our evaluation.

IEEE ICC 2015 - Communications Software, Services and Multimedia Applications Symposium

978-1-4673-6432-4/15/$31.00 ©2015 IEEE 6849

2

we propose a flow rescheduling algorithm to improve both
efficiency and stability of multi-server HTTP adaptive streaming
at the same time, by suspending and resuming TCP flows.
Rather than using simulations, we evaluate Presto with its
real-world implementation, which is built upon an open-source
implementation of Dynamic Adaptive Streaming over HTTP
(DASH) [4], one of the modern HTTP adaptive streaming
protocols and an open MPEG standard, and demonstrate that
Presto outperforms its closest alternative with respect to all
the desirable properties — fairness, efficiency, and stability.

II. BACKGROUND

A. HTTP adaptive streaming
HTTP adaptive bitrate streaming (HAS) is a technique

used in streaming multimedia over computer networks. Early
Internet video streaming technologies utilized connection-
oriented streaming protocols (e.g., QuickTime, Adobe Flash).
These protocols maintain transmission session states between
client and server, and use stateful control protocol to deliver
data. The new generation of video streaming technologies
are designed to work efficiently over large distributed HTTP
networks such as the Internet. Adaptive bitrate streaming
provides users of streaming media with the best-possible
experience by automatic adaptation of media server to any
changes in each user’s network conditions.

A web server encodes a single source video at multiple
bitrates generating multiple resolution video copies. The
streaming protocol detects available bandwidth in real-time and
adjusts the quality of a video stream with respect to bitrates.
The client is served by switching automatically among the
different resolution copies. In detail, the protocol breaks each
bitrate stream into multiple chunks with typical 2 – 15 seconds
for each. Aligning the chunks from one bitrate stream to another
in the video time line enables a smooth switch to a different
bitrate at each chunk boundary. Since the rebuffering (video is
frozen due to empty playback buffer) impairs user experience
heavily [5], adaptive streaming player always tries to maintain
an adequate video playback buffer while providing highest-
possible streaming bitrates based on available bandwidth.

In a stable server-client connection, HAS does provide the
best-possible user experience. However, researchers do not stop
exploring more robust multimedia services to go beyond the
single connection. Some solutions [6] exploit data centres and
Content Delivery Networks (CDNs) for content distribution,
streaming from multiple servers (multi-server HAS). Thus,
when detecting a network congestion on a link that even HAS
cannot save the streaming, it is possible to choose a candidate
with better network condition to maintain user experience.

B. Multi-server HTTP adaptive streaming
The primary advantage of multi-server HAS is to possibly

rescue the multimedia streaming when the link is congested or
broken, by resorting to alternative links. Basically, multi-server
HAS has two modes: mode-1, dynamically switch the source
from one server to another; mode-2, concurrent download
contents from multiple servers. Apparently, there is always only
one stream in mode-1. However, we are specially interested

in model-2 which is even better for maintaining streaming
performance. Concurrent download prevents the estimation of
bandwidth of links with other alternative sources for the switch
so that it is more acute and straightforward to prevent the
playback buffer from exhaustion by simultaneously fetching
chunks from multiple sources.

Mode-2 multi-server streaming only occurs in poor network
conditions. In video streaming, ON-OFF cycle means the
bit stream is interrupted due to the limited size of playback
buffer. When the buffer is fully filled, video streaming protocol
suspends the download until the player decodes at least one
chunk so that the buffer has space. There are three video
streaming strategies: no ON-OFF cycle, short ON-OFF cycle
and long ON-OFF cycle. HAS protocols adopt the short ON-
OFF cycle since it can minimize the downloaded but left unused
bytes especially when many videos are quit early [2], [7].

ON-OFF cycle state indicates that the available bandwidth of
a link could support current bitrate. The player is periodically
waiting a chunk is consumed by decoder. In this case, there is no
model-2 multi-server streaming. Despite we linked to multiple
servers simultaneously, the ON-OFF cycle only allowed to
download one chunk from one server at a time. However,
when the network condition becomes very poor, or for high-
definition (HD) video streams, we will have continuous chunk
flows from multiple servers (model-2) for filling the playback
buffer to be full as fast as possible. In the following text, we
solve the problems arising from this scenario.

Recent works [2], [3] have identified three desired properties
for HAS protocols: fairness, efficiency and stability. They also
have proposed algorithms nicely holding these properties in the
case of single-server HAS. We are specifically interested in a
question: how well do the three properties hold in multi-server
streaming? We next conduct an in-depth analysis and show
that these properties no longer hold.

III. PROBLEM DESCRIPTION

In this section, we examine the problems in the context of
HTTP adaptive streaming from multiple servers.

A. Fairness

Link

User
A

User
B

Server
1Server

2Server
3Server

4

Server
5

(a) Unfairness

x y
flow 1

flow 3

flow 2 flow 1

500Kbps

500Kbps

500Kbps

1.5Mbps

(b) Inefficiency

Fig. 2. (a) The fairness problem in multi-server adaptive streaming. Player
A employs 4 TCP flows while player B has only one flow. The allocated
bandwidth of player B will be only 20% of the bottleneck link. (b) The
efficiency problem in multi-server streaming. Player x streams from 3 video
sources while player y has only one source. They fairly share the 3Mbps
bottleneck link.

The fairness problem only occurs when some users share a
bottleneck link. Within the bottleneck link, we would like to
know if each user could fairly be allocated available bandwidth.
Although the state-of-the-art protocol (FESTIVE) [2] converges

IEEE ICC 2015 - Communications Software, Services and Multimedia Applications Symposium

6850

3

to a fair bitrate allocation in the context of single-server
HTTP adaptive streaming, it does not work in the context
of multi-server HTTP adaptive streaming as shown in Fig. 2(a).
Player A employs 4 TCP flows from different servers. Player
B has only one flow competing with A at the bottleneck
link. FESTIVE will allocate player A 80% of the bottleneck
bandwidth, ensuring the fairness across different flows rather
than players. Thus, the fairness property no longer holds.

B. Efficiency
Efficiency requires that a player should be served with

the best possible service, i.e., streaming the highest possible
bitrate chunks that tries to saturate the available bandwidth. In
Fig. 2(b), player x and y fairly share the 3Mbps bandwidth.
Thus, the best possible bitrate should be close to 1.5Mbps
(available bandwidth) for x and y. However, player x was
served very inefficient since it evenly assigned the bandwidth
to three links of the simultaneous streaming, resulting 0.5Mbps
bitrate for each link. On the contrary, player y with single-
server enjoys streaming at the highest possible bitrate that
fully utilizes the available bandwidth. A natural idea to solve
this problem is that we simply either decrease the number of
links or assign different bitrates to links. The former turns
multi-server streaming into a single-server streaming, which
eliminates the benefit of simultaneous streaming while the latter
incurs stability problem that we elaborate in next subsection.

C. Stability
Stability ensures a smooth playback and minimizes dis-

ruption. To cope with the change of network environment,
a sensitive adaptation of bitrate will be more effective on
efficiency and fairness. However, this will ruin the stability
because of drastic changes on streaming bitrates. This is a
tradeoff between fairness/efficiency and stability. In the context
of single-server streaming, the delay-update strategy is proposed
[2] for balancing the tradeoff.

The stability problem in multi-server streaming is more
challenging since we have to additionally take care bitrates
difference of concurrent links. Table I shows an instance that
develops a big bitrate gap between two streams, causing video
quality fluctuation. The setup simulates a real-world case that
one link is heavily congested. Along with the concurrent
download, the streaming bitrate in the congested link is
suppressed while the other one keeps increasing because the
bandwidth estimation signifies a higher bitrate for next chunk.
At the 5th round, the gap reaches 500 kbps and tends to expand
further. This causes serious video quality fluctuation due to the
resolution difference among chunks in playback buffer, which
greatly impairs user engagement.

To solve the above problems, we propose a new protocol
Presto that aims to achieve the fairness across players; stream-
ing the best possible bitrate; guarantee a smooth playback. In
next section, we will describe the protocol design in detail.

IV. PROTOCOL DESIGN

In this section, we present the design of Presto, our new
suite of protocols addressing the problems discussed in the

Round Bitrates
(kbps) B/W estimation Adaptation

1 101.5 1085.5 "
101.5 229.7 "

2 201.4 1613.3 "
201.4 210.5 �

3 351.0 1254.6 "
201.4 227.0 �

4 501.1 1799.9 "
201.4 231.2 �

5 700.9 909.6 "
201.4 235.1 �

Note: “�” implies that the bitrate remains unchanged.
TABLE I

DEVELOPING A SUBSTANTIAL GAP OF BITRATES BETWEEN FLOWS: AN
EXAMPLE.

previous section. With an overview of multi-server HTTP
adaptive streaming system, we describe the two components of
Presto: (1) Fair bitrate adaptation that ensures the convergence
of bitrate allocation among players; (2) Flow rescheduling
that addresses the inefficiency and the instability. Presto is
client-driven and is designed with the practicality of real-world
implementations in mind, without the need to modify the
operating system kernel.

A. System overview

As Fig. 3(a) shows, a multi-server adaptive streaming
player involves four components: (1) Multi-stream management
coordinates the receiving order and the streaming chunk index
for each flow; (2) B/W estimation estimates the available
bandwidth; (3) Adaptation selects a suitable bitrate for next
chunk; (4) Flow scheduler determines which flows should be
suspended or resumed. The first two components are not the
main contributions. We briefly introduce them next.

Multi-stream management is designed to solve three prob-
lems: how many links can be established, which chunk should
be requested and how to guarantee the chunk order in playback
buffer. The number of links is determined by the Media
Presentation Description (MPD) file provided by servers. The
player will contact a video streaming server. The server sends
the MPD file first rather than video contents. By receiving
and parsing the file, the player knows the URLs of available
content resources. Apparently, requesting different chunks for
each link is more efficient. We set a counter recording the latest
requested chunk ID. The player will request chunk ID+1 as
long as a link is available. In addition, the player would receive
out of order chunks by simultaneous download. To solve this
problem, we set a swapping buffer with size 2 ⇤N , where N

denotes the number of links established. The swapping buffer
will hand over chunks when they are in order. Otherwise, the
buffer will keep storing the incoming chunks. It will signal
multi-stream management to stop requesting chunks when the
buffer stores over N chunks for avoiding buffer overflow. We
do not claim that 2 ⇤N is optimal, but it is sufficient in our
experiment.

B/W estimation takes advantage of the FESTIVE [2] method.
We now walk into the key design of Presto: bitrate adaptation
and flow rescheduling.

IEEE ICC 2015 - Communications Software, Services and Multimedia Applications Symposium

6851

4

...

Bitrate 1

Bitrate 2

Bitrate N
Server 1

...

Server N

...

......

Request 1

Chunk 1

Request NChunk N

Multi-stream
management

Flow scheduler

B/W estimation

Adaptation

(a) System overview

Flow bitrate
In

cr
ea

se
/d

ec
re

as
e

ra
te

X

Y An aggressive increase

A constant decrease

(b) Algorithm intuition

Fig. 3. (a) is the framework of multi-server HTTP adaptive streaming. (b) is
an intuition of our adaptation algorithm: an aggressive increase and a constant
decrease.

B. Bitrate adaptation

The key challenge is the convergence of a fair bitrate
allocation among players. The different number of flows among
users incurs the fairness problem. Players employing more flows
are more powerful to seize bandwidth. Since the adaptation
decision is mainly affected by the bandwidth estimation without
considering its effect on other users’ streaming quality, we
believe that there is a bias like first-come first-served, i.e.,
player using a higher aggregate bitrate of all flows observes a
higher bandwidth2. Here is an example of this bias. Suppose
user A has m

A

flows simultaneously streaming chunks. User
B has m

B

flows. b
Ai

(b
Bi

) denotes the current bitrate of user
A (B)’s flow i. If

P
m

A

i=1

b

Ai

>

P
m

B

i=1

b

Bi

, user A will always
seize higher bandwidth, which is completely unfair.

To solve the problem, we propose an aggressive increase for
the player employing fewer flows streaming at lower bitrates
and throttle the increase rate for the player activates more flows
streaming at higher bitrates. Considering user experience and
stability issues, recent work [8] suggests that drastic bitrate
increases do not annoy users, yet drastic bitrate decreases
definitely disappoint them. A constant decrease rate is more
reasonable. Therefore, our algorithm configures an aggressive
increase and a constant decrease as shown in Fig. 3(b).

In HTTP adaptive streaming, the video content is encoded
into several discrete bitrates. Suppose there are L types of
bitrate, b

1

< b

2

< ... < b

L

, b
i

denotes the bitrate of type i,
i is the type index. In the following text, if the bitrate type
index i < j, bitrate b

i

< b

j

. The adaptation approach decides
the bitrate for next chunk. We model the aggressive increase
by function Y =

K
b

mX

, where Y denotes the increase rate, m
denotes the number of flows for a player, X is the current bitrate
of a flow. K

b

is a constant provided by the server, typically
K

b

= bL

2
. We design a policy determining the increase rate as

follows:

lincrease =

8
><

>:

L

2

if K
b

mX

>

L

2

1 if K
b

mX

< 1

K
b

mX

otherwise
(1)

This equation heavily penalizes player employing more flows,
throttling the increase rate weighted with the number of flows
m

x

. For a player with few flows streaming low bitrates, mX

2Due to space constraints, we provide a technique report for the proofs
including the bias and the correctness of our bitrate fair adaptation algorithm.
https://www.cse.ust.hk/⇠szhangaj/techniqueReport/techniqueReportPresto.pdf

is small so that Y can be very large. If Y >

L

2

, the streaming
bitrate of a flow of the player will jump L

2

bitrate type indices,
which is very aggressive. If the player has reached a high
bitrate or employed many flows, mX can be very large so
that Y is small. Thus, the increase rate is suppressed to 1.
Regarding user experience [8], we adopt a gradual decrease
strategy that the player only decreases the bitrate to the next
lower bitrate type.

Besides the penalty of increase rate, we also penalize
update frequency for players employing more flows. Refer
to equation (1), lincrease � 1. If we allow a player with more
flows to freely update the bitrate as long as a flow finishes
transmitting a chunk, the player with fewer flows will never
get a chance to reach a higher bitrate than median. To this end,
we also determine the bitrate update frequency with respect to
the number of a player’s flows.

We maintain two vectors for a player with size m. One
stores the current bitrate and the other stores the observed
bandwidth. As long as a player completes a download, it adds
the current bitrate and the bandwidth estimation into the vectors
respectively. When the vectors are full, the stored data deduce
the average bitrate ¯

b =

1

m

mP
i=1

q

bi

and the average bandwidth

estimation !̄ =

1

m

mP
i=1

q

!i

, where q

bi

is the i

th element in

bitrate vector, q
!i

is the i

th element in bandwidth estimation
vector. Then we empty the two vectors and choose a flow to
update its bitrate by the following rule:

l

i+1

=

8
><

>:

l

i

+ lincrease if b
i

< p⇥ !

i

and ¯

b

i

< p⇥ !̄

i

l

i

� 1 if b
i

� p⇥ !

i

and ¯

b

i

� p⇥ !̄

i

l

i

otherwise
(2)

where l

i

denotes the bitrate type index for the i

th chunk. The
constant p(= 0.85) provides a tolerance of buffer fluctuation
due to the diversity of chunk sizes.

This strategy delays the update because it is triggered only
when the two vectors are full. The player with more links
takes longer time for filling the two vectors whose size is the
number of links. Concerning the stability issue, we simply
choose the link with the lowest bitrate for increase and the one
with the highest bitrate for decrease (randomly choose one link
if multiple links are ready to update with the same bitrate).
After achieving fairness2, we move forward to solve the rest
of problems: inefficiency and instability.

C. Flow rescheduling
We design a flow rescheduling algorithm that suspends and

resumes flows to achieve efficiency and stability. First, we need
to figure out when the inefficiency and the instability happen.
If we find some events indicating the problems, we may design
an algorithm to mitigate them. From our implementation and
the experiment (describe in detail in Sec. V), we find the local
optimum – the highest streaming bitrate cannot ramp up for a
certain time – will cause inefficiency and the large streaming
bitrate gap among flows will cause instability. Hence, we
design the flow rescheduling algorithm as follows:

IEEE ICC 2015 - Communications Software, Services and Multimedia Applications Symposium

6852

5

Algorithm 1 Flow Rescheduling Algorithm
1: For a player, at time t

2: for i = 1, ...,m do
3: Collect recent k samples of bitrate type index;
4: if G

i

 1 and M
i

< L then
5: Stable

i

= TRUE
6: else
7: Stable

i

= FALSE
8: end if
9: end for

10: if All Stable
i

== TRUE, i = 1, ...,m then
11: Suspend the flow currently transmitting with the lowest

bitrate
12: else
13: Gap = ComputeGap(m)
14: if Gap � H then
15: Suspend the flow currently transmitting with the

lowest bitrate
16: end if
17: end if

For a player with m flows, each flow collects recent k

samples of the bitrate type index (line 3), where k (typically
equals 4) is a constant representing the sensitivity of our
mechanism. G

i

denote the maximum gap of the bitrate type
index among the k samples of flow i. M

i

denote the maximum
bitrate type index in the samples. L is the highest bitrate type
index provided by server. The condition of line 4 indicates
flow i is stable in the past k chunks. When all flows are stable,
the player suspends the flow currently transmitting the lowest
bitrate (line 10-11). Fig. 4(a) shows an example of the stable
state.

If the multi-server streaming state is not local optimum,
the algorithm further investigates the large gap of streaming
bitrates. Line 13 calculates the largest gap of bitrate type index
among flows. When the gap reaches an empirical threshold
H(=

L

2

), the player suspends the flow currently transmitting
the lowest bitrate. Fig. 4(b) shows an example with L = 8.

b3 b3 b3 b4 b5 b5 b5

b2 b3 b4 b5 b5 b5 b4

Flow 1

Flow 2

! !

!!

X

suspending!past 4
chunks

(a) Stable state

b3 b3 b3 b3

b4 b5 b6 b7

Flow 1

Flow 2

bitrate gap 4

suspending!

b7 b8

(b) Large bitrate gap

Fig. 4. (a) illustrates the stable state suspension, where ”!” denotes the stable
signal and ”X” denotes the cancellation of a signal. (b) is an instance of large
bitrate gap triggering the suspension.

Resume is a complementary design to cope with the
changing Internet environment. It resumes flows if necessary.
The changing Internet environment may cause a remarkable
quality degradation. We record two variables to identify such
degradation: the highest bitrate type index before suspending
any flow, S

s

and the reached highest bitrate type index
eventually, S

e

. Let Lcurrent denote the current maximum bitrate
type index among active flows. Presto will resume all flows if

S
e

< L and Lcurrent <
S
s

+S
e

2

.

V. EVALUATION

In this section, we first describe the implementation and
experiment setup. After defining the metrics for evaluating the
fairness, efficiency and stability, we show the performance of
Presto.

System implementation: Our system consists of three com-
ponents: the player at client-side (Libdash [4]), the configurable
link simulator (Dummynet [9]), and the distributed dataset
(Distributed DASH [10]). The program runs on Visual Studio
2010.

Experiment setup: Players will download the media pre-
sentation description (MPD) file from Distributed DASH.
Meanwhile, Dummynet is running for configuring the link
capacity. We tweak the bottleneck link bandwidth as 6Mbps.
Three participators (with 1, 3, 5 flow(s) respectively) compete
the bottleneck link. The dataset targets 6 different sites at
different locations. The servers provide 17 bitrate types ranging
from 101Kbps to 5.94Mbps. The duration of each chunk is
2 seconds. The video consists of 2622 chunks in total. All
contents in servers are synchronized.

Evaluation metrics: We define 1 � IndexJain as a unfair-
ness index to quantitatively evaluate fairness property, where
IndexJain is Jain fairness index [11]. A lower value of the metric
implies better fairness.

We define a new inefficiency metric: |
P

x

max

i

{b
xi

}�
P

x

M

bx

|P
x

M

bx

,
where b

xi

denotes the bitrate of flow i of player x, M
bx

denotes
the highest bitrate of chunks provided by server for player x.
This metric highlights the maximum transmitting bitrate among
flows of a player, which better reflects the user experience. A
value close to zero implies that players on average choose to
stream the highest possible bitrate chunks.

The instability metric is formally defined asP
m�1
d=0 !(d)⇥max{0,b

k�d�1�b

k�d

}P
m

d=1 !(d)b

k�d

, where b

k�d

is the bitrate
of (k � d)

th chunk. It is a weighted sum of all the bitrate
changes, observed within the last m chunks, divided by
the weighted sum of bitrates up to the last m (typically
m = 10) chunks. The weight !(d) = m� d is linear penalty
to more recent bitrate changes. max{0, b

k�d�1

� b

k�d

}
indicates that we only take bitrate decreases into consideration,
max{0, b

k�d�1

� b

k�d

} = 0 when the player increases the
bitrate. A larger value for this metric implies a larger quality
fluctuation of video streaming.

We choose the state-of-the-art algorithm – FESTIVE [2] – as
a benchmark to examine Presto. FESTIVE also concludes that
most commercial players appear to employ a stateless bitrate
adaptation method (Baseline). This method simply chooses the
maximal bitrate type less than the estimated bandwidth without
remembering any previous bitrate information.

A. Bitrate adaptation performance

To validate the fairness, we consider three players with 1, 3,
and 5 flows sharing a bottleneck link of 6Mbps. We calculate
the unfairness index in the time interval of 1 second during

IEEE ICC 2015 - Communications Software, Services and Multimedia Applications Symposium

6853

6

the video streaming for Presto without flow rescheduling3,
FESTIVE and Baseline. The arithmetic mean of the statistical
data is outputted.

Fig. 5(a) demonstrates our algorithms converges to a fair
bitrate allocation that the arithmetic mean of our unfairness
index is only 25% of the value from Festive. In Fig. 5(b), the
unfairness index is lower than 0.15 in 90% of time while the
others show a very serious unfairness problem that only 30%
of time, the unfairness index of Festive is lower than 0.15. The
baseline algorithm is worse.

Presto w/o re−sche. Festive Baseline
0

0.05

0.1

0.15

0.2

0.25
Unfairness

(a) Unfairness index

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Unfairness index

C
D

F

Presto w/o flow re−sche.

Festive

Baseline

(b) CDF of unfairness

Fig. 5. Comparison between Presto without flow rescheduling, Festive, and
stateless bitrate selection (Baseline).

B. Flow rescheduling performance

Presto Presto w/o re−sche. Festive Baseline
0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Inefficiency index

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Inefficiency index

C
D

F

Presto
Presto w/o re−sche.
Festive
Baseline

(b) CDF of inefficiency

Fig. 6. Comparison between Presto, Presto without flow rescheduling, Festive,
and stateless bitrate selection (Baseline).

Fig. 6(a) shows that our bitrate adaptation algorithm (Presto
without flow rescheduling) and Festive are highly inefficient.
The players stream very low quality video chunks wasting their
large bandwidth. However, the inefficiency index of Presto is
close to zero, which implies the players stream the highest
possible bitrate of chunks in average. Note that the baseline
algorithm performs better than Festive and Presto without flow
rescheduling. This is because the baseline has no rate adaptation.
It trades the efficiency with the stability. Fig. 6(b) shows that
over 80% of the video streaming period, the inefficiency index
is lower than 0.3. It implies players stream bitrates higher than
the median level. The slope of Presto CDF curve illustrates
that the flow rescheduling needs some time to detect the stable
state.

Fig. 7(a) illustrates the effectiveness of our large gap
identification. When a player employs only one flow, Presto
has a similar performance to Festive. In multi-server streaming,
Presto keeps the instability index close to the single-server
streaming. The instability indexes of Presto are 0.1291, 0.1188,
and 0.1294.

3This is for evaluating the bitrate adaptation algorithm without the effect of
flow rescheduling.

One flow Three flows Five flows
0.0

0.1

0.2

0.3

0.4

In
st

ab
ilit

y
in

de
x

 Presto
 Presto w/o re-sche.
 Festive
 Baseline

(a) Instability index
Presto Presto w/o re−sche.0

0.02

0.04

0.06

0.08

0.1
Unfairness

(b) Unfairness index

Fig. 7. (a) is a comparison between Presto, Presto without flow rescheduling,
Festive, and stateless bitrate selection (Baseline) for players employing different
amounts of flows. (b) illustrates that the flow rescheduling has no adversely
effect to the fairness property.

Finally, we would like to know whether the flow rescheduling
adversely affects the fairness property. Fig. 7(b) shows that
the rescheduling slightly improves the fairness because the
algorithm suspends some flows, reducing the complexity of
bitrate adaptation, leading a fine-grained fair allocation.

VI. CONCLUSION

In this paper, we present an in-depth study on HTTP adaptive
video streaming from multiple servers, which is conceived to
be a natural extension from single-server HTTP streaming.
We closely examine the key desirable properties including
fairness, efficiency, and stability, and show that the existing
algorithms fail to achieve any of such properties in the context
of multi-server HTTP streaming. We then propose Presto,
an array of client-side algorithms that not only provide high
quality adaptive video streaming, but also hold the three desired
properties.

The bitrate adaptation algorithm in Presto achieves the
fairness by compensating the bias that player using a higher
aggregate bitrate observes a higher bandwidth. Then we design
a flow scheduling algorithm to overcome the inefficiency and
instability problems and validate the effectiveness of Presto
through real-world experiments.

REFERENCES

[1] I. Sodagar, “The MPEG-DASH standard for multimedia streaming over
the internet,” MultiMedia, IEEE, vol. 18, no. 4, pp. 62–67, 2011.

[2] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in HTTP-based adaptive video streaming with festive,” in
Proc. CoNext, 2012.

[3] G. Tian and Y. Liu, “Towards agile and smooth video adaptation in
dynamic HTTP streaming,” in Proc. CoNext, 2012.

[4] “Libdash 2.1,” http://www-itec.uni-klu.ac.at/dash/?p=1143.
[5] F. Dobrian, A. Awan, D. Joseph, A. Ganjam, J. Zhan, V. Sekar, I. Stoica,

and H. Zhang, “Understanding the impact of video quality on user
engagement,” in Proc. SIGCOMM, 2011.

[6] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and
Z.-L. Zhang, “Unreeling netflix: Understanding and improving multi-cdn
movie delivery,” in Proc. INFOCOM, 2012.

[7] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G. Rao,
“Youtube everywhere: Impact of device and infrastructure synergies on
user experience,” in Proc. IMC, 2011.

[8] R. K. Mok, E. W. Chan, X. Luo, and R. K. Chang, “Inferring the QoE
of HTTP video streaming from user-viewing activities,” in SIGCOMM
W-MUST, 2011.

[9] “Dummynet,” http://info.iet.unipi.it/⇠luigi/dummynet/.
[10] S. Lederer, C. Mueller, C. Timmerer, C. Concolato, J. Le Feuvre, and

K. Fliegel, “Distributed dash dataset,” in Proc. MMSys, 2013.
[11] R. Jain, D.-M. Chiu, and W. R. Hawe, A quantitative measure of fairness

and discrimination for resource allocation in shared computer system.
Eastern Research Laboratory, Digital Equipment Corporation, 1984.

IEEE ICC 2015 - Communications Software, Services and Multimedia Applications Symposium

6854

