
1

Dynamic Multicast in Overlay Networks
with Linear Capacity Constraints

Ying Zhu, Baochun Li, Ken Q. Pu

✦

Abstract —In a peer-to-peer overlay network, the phenomonon of multi-
ple overlay links sharing bottleneck physical links leads to correlation of
overlay link capacities. We are able to more accurately model the overlay
by incorporating these linear capacity constraints (LCC). We formulate
the problem of maximizing bandwidth in overlay multicast using our LCC
model. We show that finding a maximum-bandwidth multicast tree in
an overlay network with LCC is NP-complete. Therefore, an efficient
heuristics algorithm is designed to solve the problem. Extensive simula-
tions show that our algorithm is able to construct multicast trees that are
optimal or extremely close to optimal, with significantly higher bandwidth
than trees formed in overlays with no LCC. Furthermore, we develop
a fully distributed algorithm for obtaining near-optimal multicast trees,
by means of gossip-based algorithms and a restricted but inherently
distributed class of LCC (node-based LCC). We demonstrate that the
distributed algorithm converges quickly to the centralized optimal and is
highly scalable.

Index Terms —Peer-to-peer overlay networks, multicast, algorithms,
network protocols.

1 INTRODUCTION

We consider the problem of maximizing the bandwidth
of application-layer multicast in overlay networks. Over-
lay links map to paths in the low-level network. When
overlay links map to paths that share a common physical
link, the sum of the capacities of the overlay links is
constrained by the capacity of the shared physical link.
We say these overlay links are correlated in capacity.
Some existing work, however, view the overlay as a
regular network graph where capacities of links are
simply scalars which are their unicast bandwidths. We
refer to this as the independent overlay model, as it mod-
els overlay link capacities as uncorrelated, independent
entities. Other related work considers location-aware or
topology-aware overlays (e.g., [1], [2]). They either focus
on end-to-end latencies, or assume that the underlying
IP-layer topology is known. In comparison, we seek
to focus on end-to-end bandwidth, and believe that it
is prohibitively expensive — and thus not feasible —
to discover the entire AS-level topology using overlay

Y. Zhu is with the Faculty of Business and Information Technology, Univer-
sity of Ontario Inst. of Tech. E-mail: ying.zhu@uoit.ca
B. Li is with the Department of Electrical and Computer Engineering,
University of Toronto. E-mail: bli@eecg.toronto.edu
K. Pu is with the Faculty of Science, University of Ontario Inst. of Tech.
E-mail: ken.pu@uoit.ca

probing techniques (such as traceroute), just for the
sake of improving overlay performance.
We introduced linear capacity constraints (LCC) as a

formulation of link correlations in overlays. Instead of
scalars, the overlay links are assigned capacity variables
and linear constraints of these variables express the hid-
den link correlations. For instance, suppose two overlay
links u and v map to paths that share the physical link e
with capacity c(e), this link correlation would give rise
to the linear capacity constraint xu + xv ≤ c(e), where
xu, xv are the respective capacity variables for u, v. The
LCC-overlay is simply an overlay graph with variables
for the link capacities together with a set of LCC.
We now use a simple example to illustrate how bet-

ter multicast trees can be obtained in an LCC-overlay
than in the traditional independent overlay. Consider
the simple overlay network in Fig. 1(a). There are two
planes: the upper plane is the overlay network; the lower
plane is the low-level IP network with paths that connect
the overlay nodes (r1, r2 are routers). A maximum-
bandwidth tree one obtains in the independent overlay
(i.e., upper plane) is shown in Fig. 1(b). The actual
achievable bandwidth of this tree is only 50, because
overlay links (u, v) and (u,w) share the low-level bot-
tleneck link (r1, r2). Now we consider the LCC-overlay.
We use the LCC’s c(u, v)+c(u,w) ≤ 100 and c(v, w) ≤ 99
(where c(u, v) is the capacity variable for link (u, v), etc.).
A maximum-bandwidth tree found this way is shown
in Fig. 1(c); it has the achievable bandwidth of 99. By
assigning variables instead of scalars to overlay links
and using LCC’s, we were able to find a tree with higher
bandwidth.
The above example is extremely simplified, it only

serves to motivate our endeavor in this paper. For the
remainder of the paper, we will study the problem of
optimizing bandwidth in constructing overlay multicast
trees. We define three metrics to measure the perfor-
mance and quality of an overlay multicast tree. We show
that the optimal multicast tree found in an independent
overlay cannot reliably achieve high bandwidth, due to
its fundamental weakness of being unable to accurately
represent the true network topology.
We formulate the new problem of overlay multicast in

the LCC-overlay: Given an overlay with a set of LCC,
how do we find a highest-bandwidth multicast tree?

2

(a) A simple example of a two-level network.

Fig. 1. Simple example illustrating the problems caused
by lower-level bottlenecks.

We show that this problem is NP-complete. We propose
a heuristics algorithm to solve this problem. Through
extensive simulations, we compare the performance of
multicast trees constructed in the independent overlay,
and those found by our algorithm using LCC-overlays.
Our algorithm always obtains near-optimal trees, con-
verges quickly, and is scalable for increasing network
sizes.
Furthermore, we designed a fully distributed algo-

rithm. The algorithm ensures the preservation of the
tree topology as nodes executes protocols in an entirely
distributed and asynchronous manner. The algorithm,
moreover, does not rely on the assumption of any
global information. Gossip-based algorithms are utilized
to efficiently estimate and gather global statistics. Then,
each node acts independently and asynchronously to
improve the tree bandwidth. Through simulations, we
demonstrate that the distributed algorithm consistently
performs as well as its centralized counterpart.
The remainder of the paper is organized as follows.

We discuss related work in Sec. 2. In Sec. 3, we present
definitions of LCC and the metrics. The problem of
finding high-bandwidth multicast trees is presented in
Sec. 4, as well as the (centralized) heuristics algorithm.
We evaluate this algorithm in Sec. 5. An overview of the
distributed algorithm is presented in Sec. 6; its formal
presentation is given in Sec. 7, Sec. 8, and it is evaluated
in Sec. 9. Sec. 10 concludes the paper.

2 RELATED WORK

Distributed algorithms for general-purpose overlay con-
struction were proposed by Young et al. in [3] and by
Shen in [4]. Application-specific proposals have been
made for various overlay services, including overlay
multicast [5], [6], content distribution [7], [8], [9] and
multimedia streaming [10], [11], [12], [13], [14]. In [7], a
distributed algorithm is proposed to find an optimal set
of content distribution trees; the technique of distribut-
ing different file pieces on multiple trees is used. A mesh-
based peer-to-peer streaming mechanism is proposed in

[10] for the delivery of live content that incorporates
swarming content delivery. An empirical investigation
of the Coolstreaming peer-to-peer live streaming system
is presented in [11] Also relevant is previous work by
Ratnasamy et al. [1]; a distributed binning scheme is
designed for forming unstructured overlay networks,
with the focus on latency.
All of the above proposals view and treat overlay

links as independent. However, we have studied the
new problem of high-bandwidth data dissemination in
a multicast tree within the framework of overlays with
linear capacity constraints. In our previous paper [15],
we only studied problem of overlay unicast (widest path
and maximum flow), and did not consider the problem
of overlay multicast. As well, in this paper (as opposed
to [15]), the metrics are defined differently with respect
to multicast trees, and the stress metric defined here is
new.
Recent work by Tsang et al. [16] identified a number of

data transfer patterns that cause suboptimal bandwidth
usage of bottleneck links. They proposed a solution
which involves topologically close receivers to request
data in a coordinated way. Another recent work by
Kim et al. [17] proposes a protocol to eliminate probed
bottlenecks in an overlay multicast tree. Our work is
distinct from theirs in formalizing link correlations using
linear capacity constraints and thus being able to find an
efficient and distributed algorithm based on node-based
LCC. We also rigorously define the metrics of accuracy,
efficiency and stress, which not only quantitatively mea-
sure performance, but also provide crucial insight into
the quality of overlay networks in general. By formal-
izing the LCC-overlay model, and by conceptually sep-
arating LCC-overlay construction and finding multicast
trees using LCC, we are able to (1) prove that finding the
optimal overlay multicast tree is NP-complete, and (2)
develop fully distributed algorithms which consistently
achieve performance that is remarkably close to the
optimal. Our evaluation of the performance is based on
comparing against a rigorously determined upper bound
of the optimal.

3 L INEAR CAPACITY CONSTRAINTS
IN OVERLAY NETWORKS

An overlay is a hierarchical network comprising two
levels: the lower level is the IP network of routers and
physical links, while the higher level is an application-
layer network of end-systems (overlay nodes) and vir-
tual links (overlay links). A virtual link is the unicast
connection between two overlay nodes; it maps to a
path of physical links in the low-level network, which
is determined by IP routing. It is possible that two
overlay links map to paths which share a bottleneck
physical link. Obviously, the sum of the capacities of
these overlay links is bounded by the capacity of the
underlying bottleneck link. We say these two overlay
links are correlated in capacity. Our proposal is to model

3

the overlay by explicitly expressing link correlations as
linear capacity constraints (LCC). We will show that
the LCC overlay model is necessary for ensuring overlay
quality, in particular, for yielding the highest bandwidth
in overlay data dissemination.
Many previous proposals of algorithms and proto-

cols for overlay networks have adopted, implicitly or
explicitly, a model of the overlay as a traditional flat
network rather than hierarchical. That is, they do not
specifically take into consideration overlay link correla-
tions; they assume that overlay links are all independent.
Henceforth we will refer to this as the independent overlay
model. In the independent model, an overlay network is
viewed as a weighted graph where the edges are overlay
links weighted by their unicast bandwidth and delay. A
representative generic scheme of constructing an overlay
with the aim of optimizing bandwidth is: each node
selects its neighbors by choosing k adjacent links with
the highest unicast bandwidth.
We use the example in Figure 2 to illustrate the dis-

advantage of the independent model, and to introduce
and show the advantage of the LCC model.

A

r1
r2 r3

r4

D

C

B

3

3

3

3

3

2

2

2

2 A C

B D

A C

B D

3

3 3

3

2 2

A C

B D

(a) A, B, C, D are overlay nodes
connected to each other by physical
links and 4 routers.

(b) Overlay graph (c) (d)

Fig. 2. A simple example illustrating the disadvantage
of the independent model and the advantage of linear
capacity constraints.

The example network in Figure 2(a) contains four
overlay nodes, A−D, and four low-level routers, r1−r4.
The overlay graph is given in Figure 2(b), in which the
overlay links are labeled by their independent unicast
bandwidths. Figure 2(b) is the case when k is 3 in the
above construction scheme based on the independent
model; it is not hard to see that the following reasoning
will also hold for k = 2 or 1.
In the independent model, the highest-bandwidth

multicast tree in this overlay graph1 is shown in Fig-
ure 2(c). Although the predicted bandwidth of the tree
is 3, it can be seen that the achievable bandwidth of the
tree is 1 because all three links in the tree share a single
bottleneck physical link (r2, r3) with capacity 3.
In the LCCmodel, instead of links labeled by numbers,

the capacity of each overlay link is represented by a
variable and a set of linear constraints are used to
formulate link correlations. For instance, the above link
correlation among the three overlay links can be easily
captured by the constraint xAC + xAD + xCB ≤ 3, where
xAC is the capacity variable for link (A,C) and so on.

1. The tree can be found by an all-widest paths algorithm that is a
variant of Dijkstra’s all-shortest paths.

The complete set of linear capacity constraints (LCC) is
given below in matrix form:

0

@

1 0 0 0 0 0

0 1 1 1 1 0

0 0 0 0 0 1

1

A

0

B

B

B

B

B

@

xAB

xAC

xAD

xBC

xBD

xCD

1

C

C

C

C

C

A

≤

0

@

2

3

2

1

A (1)

The LCC-overlay is the overlay graph with link ca-
pacity variables together with the set of LCC. To find
a highest-bandwidth multicast tree in this LCC-overlay,
one can devise a simple variant of the algorithm for
regular graphs. The difference is that every time a link is
considered for selection, its capacity (instead of a fixed
number) is computed as its fair share of the capacities
in the LCC with the set of already selected links. The
tree thus obtained is given in Figure 2(d). In this case,
the achievable bandwidth is 2, the same as the predicted
bandwidth.
The highest-bandwidth tree obtained in the LCC-

overlay has twice the bandwidth of that in the indepen-
dent overlay. Moreover, it is easy to see that the LCC tree
in fact achieves the optimum multicast tree bandwidth.
From this example, we can observe that the achievable
bandwidth of the independent overlay is low because it
lacks accuracy in representing the true network topology.
In the LCC-overlay, however, the incorporation of link
correlations results in an accurate representation of un-
derlying topology, and hence an optimal multicast tree
can be found.

3.1 Formal definitions of LCC and metrics

We now present formal definitions of LCC-overlay and
several metrics that measure the performance and qual-
ity of overlay multicast trees.
The two-level hierarchy of an overlay network can be

formulated as consisting of:

• A low-level (IP) graph G = (V,E); each low-level
link e ∈ E has a capacity of c(e) ≥ 0.

• A high-level overlay graph Ĝ = (V̂ , Ê), where V̂ ⊂
V ;

• A mapping P of every overlay edge (v̂1, v̂2) ∈ Ê to
a low-level path P (v̂1, v̂2) ⊂ G from v̂1 to v̂2.

The formulation of capacity constraints in the overlay
graph Ĝ is where LCC-overlay departs from indepen-
dent overlay. The independent overlay is defined as
follows.
Definition 1 (Independent overlay): The independent

overlay is a pair (Ĝ, ĉ), where ĉ is a capacity function such
that each link ê ∈ Ê has a nonnegative capacity ĉ(ê) ≥ 0.
The LCC-overlay is defined as follows.
Definition 2 (LCC-overlay): The LCC-overlay is a
triplet (Ĝ, C, b) where

• The capacity of each link ê in Ĝ is a variable xbe.
• (C, b) represent a set of m linear capacity constraints

Cx ≤ b:

– C is a 0-1 coefficient matrix of size m × |Ê|;

4

– x is the |Ê|×1 vector of link capacity variables;
– b ∈ Rm is the capacity vector.

Each row i in (C, b) is a constraint of the form∑
be:C(i,be)=1 xbe ≤ b(i).

3.1.1 Overlay (or predicted) bandwidth
Given any tree T in either the independent overlay or
the LCC-overlay, we observe that there exists the notion
of the overlay bandwidth of T . The overlay bandwidth of
a tree can be thought of as its predicted bandwidth in a
certain overlay model. Because tree construction algo-
rithms in overlays rely solely on predicted bandwidth
to optimize tree formation, this is an crucial concept to
clarify and study in these two distinct overlay models.
For a tree T in the independent overlay (Ĝ, ĉ), the

overlay bandwidth of T is the minimum bandwidth link
in T as given by ĉ, or formally, min{ĉ(ê) : ê ∈ T}.
As for a tree T in an LCC-overlay (Ĝ, C, b), the over-

lay bandwidth of T can be obtained by the following
procedure. For each constraint (Ci, bi) (i-th row in C, b),
compute the bandwidth allocated to every link j ∈ T for
which Ci,j = 1: γi(j) = bi/

∑
k∈T Ci,k. That is, γi(j) is the

bandwidth allocated to j in T by the i-th constraint. Con-
sidering all constraints together, the allocated bandwidth
of link j in T is γj = min{γi(j) : i = 1 . . . m}, where m
is number of rows in C. Finally, the overlay bandwidth
of T is σ(T) = min{γ(j) : j ∈ T}.

3.1.2 Achievable bandwidth σG(T)

Another notion of interest is: Given any overlay tree T
spanning all overlay nodes, what is the achievable band-
width of T ? Let σG(T) denote the achievable bandwidth
of T in overlay Ĝ residing on top of G. First, for each
low-level edge e, equal shares of its capacity are allocated
to overlay edges in T . It follows that an overlay edge ê
has a bandwidth allocation from every low-level edge
to which ê maps. The achievable bandwidth of ê is the
minimum of all these allocations. Finally, the minimum
of achievable bandwidths of all overlay edges in T is
the achievable bandwidth of T , σG(T). The procedure
for obtaining σG(T) is summarized in Figure 3. The
following verifies the correctness of the procedure.
Proposition: Given an overlay 〈Ĝ,G, P 〉 and any over-

lay tree T ⊆ Ĝ, the highest bandwidth that T can achieve
is σG(T) obtained by the procedure in Fig. 3.
Proof: For each overlay edge ê in T , its bandwidth

γT (ê) is assigned the minimum of its allocations from
low-level edges mapped from ê. Consequently, at each
low-level edge e, the γT of each mapped overlay edge
is no greater than its allocation, hence the sum of γT ’s
cannot exceed the capacity of e. Since σG(T) is the
minimum of the γT ’s, it is obvious that σG(T) does not
violate any low-level capacity and is hence feasible.
Because the bandwidth metric is concave and the

bandwidth of a tree is the minimum bandwidth of its
edges, the achievable bandwidth of T must be no greater
than the minimum of all allocations given out by low-
level edges. To maximize bandwidth of T , one is actually

maximizing the minimum of the allocations by low-level
edges. It is easy to see that to maximize the minimum,
a low-level edge should assign equal allocations. There-
fore, the σG(T) obtained by the procedure is the highest
bandwidth T can achieve. ⊓⊔

for each e ∈ E
Allocate c(e) equally among
{be : e ∈ P (be) and T (be) > 0},

let each allocation be denoted by γe
T (be)

for each be ∈ bE
if T (be) > 0 γT (be)← min{γe

T (be) : e ∈ P (be)}
else γT (be)← 0

σG(T)← min{γT (be) : γT (be) 6= 0 and be ∈ bE}

Fig. 3. The procedure for obtaining achievable bandwidth
of a tree T in G, σG(T).

We proceed now to present definitions of three met-
rics: accuracy, efficiency and stress. Accuracy is the
ratio of the overlay or predicted bandwidth of a tree
over its achievable bandwidth. Efficiency is the ratio
of achievable bandwidth of a tree over the optimum
tree bandwidth. Stress is defined for low-level links that
are mapped by overlay tree links; it is essentially the
load placed on a low-level link by the overlay tree,
normalized by the link capacity. The formal definitions
are given below.
Definition 3 (Accuracy): The accuracy of a multicast

tree T in an overlay network 〈G, Ĝ, P 〉, is

overlay bandwidth of T in Ĝ

σG(T)
. (2)

Definition 4 (Efficiency): The efficiency of a multicast
tree T in an overlay network 〈G, Ĝ, P 〉, is

σG(T)

σG(Topt)
, (3)

where Topt is an optimum multicast tree in 〈G, Ĝ, P 〉.

Definition 5 (Stress): The stress of a low-level edge
e ∈ E due to a multicast tree T in an overlay network
〈G, Ĝ, P 〉, is

|{ê : ê ∈ Ê and ê ∈ T}|

c(e)
, (4)

where c(e) is the capacity of e. Our definition of stress is
original; unlike the stress metric in [5], our stress metric
normalizes the number of overlay links by the capacity
of the physical link. The reasoning is that a physical link
with a huge capacity can provide high bandwidth to
each overlay link mapped to it, even if there are many.

4 MULTICAST TREE WITH L INEAR CAPACITY
CONSTRAINTS

4.1 MTC is NP-complete

We showed above that by using LCC, the bandwidth of
multicast trees can be significantly increased. Now we

5

are faced with the question of how to obtain the highest-
bandwidth multicast tree in an LCC-graph.
We state the problem of highest-bandwidth multicast

tree with LCC (MTC) as a decision problem as follows.
INSTANCE: An LCC-graph (G,C, b), where G =

(V,E) and (C, b) are LCC; a positive integer B.
QUESTION: Is there a multicast tree T for G such that

the bandwidth of T is ≥ B?
Theorem: MTC is NP-complete.
Proof:
MTC is in NP because given an LCC-graph (G,C, b),

a positive integer B and a multicast tree T for G, the
bandwidth T can be computed by the polynomial-time
procedure in Sec. 3.1 for obtaining the overlay band-
width of T in an LCC-overlay.
To show that MTC is NP-complete, we reduce the NP-

complete problem Degree-Constrained Spanning Tree
(DST) [18] to MTC; the problem DST is defined as:
INSTANCE: Graph G = (V,E), positive integer K ≤

|V |.
QUESTION: Is there a spanning tree for G in which
no vertex has degree larger than K?
Given an instance of DST, G = (V,E) and K, we trans-
form it to an instance of MTC. We let G remain the same
and add some LCC. For every node u ∈ V , a constraint
is formed:

∑
e∈inc(u) xe ≤ K · B, where inc(u) denotes

the set of edges incident to u. This transformation can
obviously be done in polynomial time.
Suppose a spanning tree T exists in G for which

no node has degree larger than K. That is, |inc(u)| ≤
K,∀u ∈ V . Then assigning B to each edge in T implies
that xe = B or 0. It follows that

∑
e∈inc(u) xe ≤ K ·

B,∀u ∈ V . Thus T is a multicast tree that satisfies all
the LCC and σ(T) = B.
In the other direction, suppose a multicast tree T has

bandwidth B′ ≥ B. If a node u ∈ T has degree greater
than K, i.e., |inc(u)| = d > K, then

∑
e∈inc(u) xe ≥

d · B′ > K · B, which violates the constraint imposed.
Therefore no node has degree greater than K. Clearly, T
is a solution of DST. ⊓⊔

4.2 Heuristics Algorithm

In Sec. 4.1 above, we showed that the problem of finding
the highest-bandwidth multicast tree with LCC is NP-
complete. Therefore, we propose a heuristics algorithm
to solve the problem in this section. The evaluation of
the algorithm will be deferred to Sec. 5.

The input is an LCC-graph (Ĝ, C, b). The goal is to find
a high-bandwidth multicast tree. The main idea of the
algorithm is to begin with an initial tree, and make incre-
mental improvements by replacing, at each iteration, the
lowest-bandwidth edge with a higher-bandwidth one,
thereby increasing bandwidth of the tree. For every edge
replacement, the algorithm preserves the topology of a
multicast tree, i.e., a tree spanning all receiver nodes.
The initial multicast tree is found by first forming a

regular graph G with edges weighted with independent

HMTC(bG, C, b)
1 obtain G with independent edge

capacities from bG and LCC (C, b)
2 T0 ← highest-bandwidth tree in G
3 (CT0

, b)← LCC of T0

4 R← edges in T0 in ascending order
of bandwidths allocated by (CT0

, b)
5 Thi ← T0

6 iter← 1
7 while iter ≤ max_num_iterations and R 6= ∅

8 r ← 1st edge in R
9 R← R− {r}
10 Tsub ← subtree under r
11 T ← Thi − {r}
12 for each edge e ∈ T − Tsub

13 T ′ ← T ∪ {e}
14 CT ′ ← LCC of T ′

15 if bandwidth(T ′) > bandwidth(Thi)
16 Thi ← T ′

17 R← edges in Thi in ascending
18 order of allocated bandwidths
19 break out of for-loop
20 iter← iter+ 1
21 return Thi

Fig. 4. Summary of heuristics algorithm HMTC.

edge capacities (numbers). This is easily done by set-
ting min{bi : C(i, e) = 1} to be the capacity for each
edge e ∈ Ĝ. Note that this corresponds exactly to an
independent overlay with unicast bandwidths for the
edges. A highest-bandwidth multicast tree is found in
G and set to be the initial tree, let it be denoted T0.
The algorithm then incrementally improves the tree by
always replacing the worst edge with a better edge, if
possible, while maintaining the spanning tree structure.
The algorithm, which we call HMTC (High-bandwidth
Multicast Tree with LCC), is summarized in Table 4.
We re-use the example overlay network in Figure 2

from Sec. 3 to illustrate the algorithm. The overlay
graph along with the LCC (C, b) are in Figure 5(a). For
simplicity of presentation, we let UV denote the capacity
variable of edge (U, V).
In the graph in Figure 5(a), the numbers labeling the

edges are the independent edge capacities. For the graph
with independent edge capacities, a highest-bandwidth
multicast tree is found: T0 in Figure 5(b). The LCC of T0

is listed on the right of T0 in the figure. The LCC of T0,
CT0
, is LCC (of the graph) (C, b) intersected with T0 so

that they only contain capacity variables of edges from
T0. In this instance, there is only one constraint in LCC of
T0: AC + AD + BC ≤ 3. Each T0 edge is thus allocated
an equal bandwidth of 1. The bandwidth of T0 is the
minimum of allocated bandwidths of its edges, in this
case, 1.
The worst edge, one with the lowest bandwidth allo-

cated by the LCC of T0, is selected to be replaced. Since
all three edges have lowest bandwidth, any one can be
selected, say edge AC. We want to find another edge XY
such that by removing AC and adding XY to form T1,
T1 is a multicast tree and the bandwidth of T1 (allocated
by the LCC of T1) is higher than the bandwidth of T0.
In other words, XY connects the subtree under AC, i.e.,

6

A

C

B

D

AC + AD + BC <= 3

AC: 1
AD: 1
BC: 1

A

C

B

D

A

D

AD + BC <= 3
CD <= 2

AD: 1.5
CD: 2
BC: 1.5

C

B

A

D
C

B

A

D
B

C

AB <= 2
AD <= 3
CD <= 2

AB = 2
CD = 2
AD = 3

(b) Initial tree T0 (c) Iteration 1:
 Remove edge AC

(d) Iteration 1:
 Add edge CD --> T1

(e) Iteration 2:
 Remove BC

(f) Iteration 2:
 Add AB --> T2

AB <= 2
AC + AD + BC + BD <= 3
CD <= 2

(a) LCC-overlay

A

B

C

D

3

3

3

3

2 2

Fig. 5. An example of the heuristics algorithm being executed.

subtree rooted at node C, with the rest of the tree. The
resulting new tree also has improved bandwidth.

Edge CD satisfies the above conditions; the removal
of AC and the new tree T1 formed by adding CD can
be seen in Figure 5(c) and (d), respectively. The LCC of
T1 and the bandwidths allocated to the edges are given
as well. The bandwidth of T1 is 1.5, an improvement on
T0.

Now the above edge replacement procedure is re-
peated for T1. The new tree T2 is shown in Figure 5(f);
its bandwidth is 2. At this point, none of the three edges
can be replaced by another edge to improve the tree
bandwidth and the algorithm terminates.

4.3 Effectiveness of HMTC algorithm in minimizing
stress

It is not hard to see that with our definition of stress
(Eq. 4), minimizing stress maximizes bandwidth. In a
multicast tree, the overlay link with the lowest band-
width determines the bandwidth of the tree, i.e., re-
ceiver bandwidth. Therefore, to maximize multicast
bandwidth, one should minimize the maximum stress
in the underlying network.

The HMTC algorithm attempts to accomplish exactly
this: minimizing maximum link stress of underlying
physical network. To analyze the ability of HMTC to
minimize stress, we visually examine low-level link
stress. For ease of visual representation, we find it con-
venient to slightly modify the definition of stress. Recall
that the stress of a low-level link e is (number of overlay
links mapped to e)/(the capacity of e). The modified
definition is essentially stress ratio: for e, it is the ratio of
stress of e over the minimum stress of all low-level links
with at least one overlay link mapped to them, rounded
to the nearest integer not greater than it. Stress ratio
measures stress levels, 1 being the lowest; for instance, 3
means the links has three times the stress of a link with
stress ratio 1. Henceforth we will refer to stress ratio as
stress, since the former is only a certain normalized form
of the latter.

Visual representation of link stress is accomplished by
stress graphs. A stress graph is a graph of low-level links
that have overlay links mapped to them, and for each
link between a pair of nodes (u, v), the number of edges

connecting u and v in the stress graph is the stress of
link (u, v).

Just to illustrate how HMTC incrementally minimizes
the maximum link stress after each iteration of the algo-
rithm, we revisit our example in Fig. 5 from Sec. 4.2. In
Fig. 6, we show the stress graphs of the trees constructed
at each iteration of HMTC. It can be seen that the
worst link stress progressively decreases as the algorithm
progresses.

We shall elaborate more on the relationship between
reducing stress and increasing efficiency (i.e., multicast
bandwidth) in Sec. 5, where we evaluate the perfor-
mance, convergence and scalability of the algorithm.

5 EVALUATION OF ALGORITHM PERFOR-
MANCE AND CONVERGENCE

In this section, we evaluate the performance and con-
vergence of our heuristics algorithm HMTC that finds a
high-bandwidth multicast tree in an LCC-overlay. Two
types of LCCs are considered: complete LCC — the
complete set of LCC that expresses all link correlations,
and node-based LCC — every constraint contains only
links incident to the same node. We also consider optimal
(i.e., highest-bandwidth) multicast trees in independent
overlays (i.e., without LCC), without using HMTC. We
compare these three cases: optimal independent tree,
HMTC with complete-LCC and HMTC with node-LCC.
To be succinct, we will refer to optimal independent tree
as Independent, HMTC with complete LCC as Complete-
LCC and HMTC with node-based LCC as Node-LCC. We
will moreover evaluate the convergence and scalability
of HMTC.

For the purpose of generating realistic network topolo-
gies, we use an Internet topology generator, BRITE [19],
which is based on power-law degree distributions2. Net-
works of various sizes are generated using BRITE and
a fraction of the nodes with the lowest degrees (mostly
1 or 2) are selected to be the overlay nodes. Random
distribution is used for assigning bandwidth to low-level
links.

2. A seminal paper [20] revealed that degree distribution in the
Internet is a power-law.

7

A

B

C

D

3
3 3

3 3
2 2

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

3

3

3

3

2 2

A

DC

B
C

B

A

D

A

DB

C

Low-level network Stress imposed
by initial tree

Stress imposed by
tree after Iteration 1

Stress imposed by
tree after Iteration 2

Overlay network Initial tree Tree after Iteration 1 Tree after Iteration 2

Fig. 6. Incremental improvement in stress throughout execution of HMTC on the example network. The top four graphs
are overlay and the bottom four are stress graphs of the underlying network.

5.1 Performance metrics

For measuring performance and quality, the metrics we
use are efficiency, accuracy and stress; their definitions
are given previously in Sec. 3.1. For stress, we continue
to use stress ratio (and stress graph) for evaluation pur-
poses, as in Sec. 4.3. Recall that the efficiency of a tree T
measures how close the bandwidth of T is to the optimal,
specifically, it is the ratio of achievable bandwidth of
T over optimal multicast tree bandwidth. However, as
shown in Sec. 4.1, finding optimal-bandwidth multicast
trees in graphs with link capacity correlations — i.e., in
overlay networks — is NP-complete. Thus to compute
the efficiency metric, instead of the exact optimal which
is hard to find, we use an upper bound of the optimal: the
optimal independent tree bandwidth.
To summarize, we evaluate the performance of HMTC

using the following calculations of the efficiency and
accuracy metrics:

• Efficiency of high-level tree T is its achievable
bandwidth over the optimal independent tree band-
width.

• Accuracy of T is its achievable bandwidth over its
predicted bandwidth.

• Stress ratio of low-level link e is its stress over the
minimum nonzero stress of low-level links.

Again, we will be using the terms ’stress’ and ’stress
ratio’ interchangeably.

5.2 Efficiency and Accuracy

We compare the efficiency and accuracy of three types
of multicast trees: optimal independent trees (Inde-
pendent), trees given by HMTC with complete LCC
(Complete-LCC) and with node-based LCC (Node-LCC).
First, we study the effect of different ratios of overlay

size to low-level size, by fixing low-level network size to
300 and varying the percentage of overlay nodes from
10% to 80%.
Efficiency for the three types of trees is plotted against

the ratio of overlay to low-level size, in Figure 7(a). The

efficiency of Complete-LCC is almost always optimal;
this can be attributed to the effectiveness of the heuristics
algorithm HMTC.

Node-LCC follows Complete-LCC remarkably closely
in efficiency for all overlay-to-network ratios of less
than 60%. In realistic scenarios, such as in the Internet,
overlay nodes are always greatly outnumbered by low-
level nodes. Therefore, we can say that for all realistic
overlay percentages, Node-LCC is near-optimal.

Efficiency of Independent trees is by far the lowest.
Its curve has a narrow peak at 40% overlay nodes
and sharply declines on both sides. The shape can be
explained. When overlay nodes are few, they have long
paths between them, containing more links, hence higher
likelihood of link sharing. Yet higher densities of overlay
nodes imply more overlay links, therefore more colli-
sions on the same physical links. Both scenarios result in
high link correlation and thus lower bandwidth allocated
to overlay links. Intuitively, there may exist a middle
ground where paths are not so long and overlay links
are not so dense, such that the overloading of bottleneck
links is minimized. This optimum point seems to be at
40% here.

The plot of accuracy versus overlay percentage can be
seen in Figure 7(b). Complete-LCC is always perfectly
accurate, due to its complete link correlation informa-
tion. An encouraging observation here is that Node-LCC
accuracy is greater than 80% for all networks with less
than 60% overlay nodes, i.e., for all realistic overlays.
For Independent trees, accuracy is exactly the same as
efficiency, with respect to the slightly modified definition
of efficiency above in Sec. 5.1.

The next parameter we vary is the total network size,
from 100 to 6000 nodes, while keeping the percentage
of overlay nodes at a constant 10%, a value which we
believe is realistic. Efficiency is shown in Figure 8(a) and
accuracy in Figure 8(b).

In this experiment, the efficiency and accuracy graphs
are almost indistinguishable. The efficiency of Complete-
LCC is again almost always optimal. Node-LCC effi-

8

20 40 60 80
0.2

0.4

0.6

0.8

1

1.2

Percentage of overlay nodes

E
ffi

ci
en

cy

Independent
Complete−LCC
Node−LCC

(a) Efficiency versus overlay ratio, low-level
size = 300.

20 40 60 80
0.2

0.4

0.6

0.8

1

1.2

Percentage of overlay nodes

A
cc

ur
ac

y

Independent
Complete−LCC
Node−LCC

(b) Accuracy versus overlay ratio, low-level
size = 300.

Fig. 7. Efficiency and accuracy versus overlay ratio, low-
level size = 300.

0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1

1.2

Network size

E
ffi

ci
en

cy

Independent
Complete−LCC
Node−LCC

(a) Efficiency versus network size, 10% over-
lay nodes.

0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1

1.2

A
cc

ur
ac

y

Network size

Independent
Complete−LCC
Node−LCC

(b) Accuracy versus network size, 10% overlay
nodes.

Fig. 8. Efficiency and accuracy versus network size, 10%
overlay nodes.

ciency is also optimal for a vast majority of network
sizes, and when it is not, it is within 20% of the
Complete-LCC efficiency. The Independent efficiency
generally demonstrates poor performance for most net-
work sizes.
It can be concluded from the good performance of

both Complete- and Node-LCC that, the heuristics al-
gorithm HMTC demonstrates effectiveness in exploiting
link correlation information (in the form of LCC) to
obtain optimal trees. In contrast, the Independent over-
lay rarely exhibits good performance because it ignores
link correlations, leading to inaccuracy of representing
the real network and hence cannot be consistent in
finding the optimal tree. The extreme similarity between
respective efficiency and accuracy curves implies that it
is crucial to strive for accuracy by explicitly taking into
consideration link correlations.

5.3 Stress

To further investigate the underlying cause of poor
performance of the Independent overlay and the good
performance of LCC-overlays, we visually examine low-
level link stress — its severity and distribution — im-
posed by the trees for Independent, Complete-LCC and
Node-LCC.

1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

10
Complete−LCC

1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

10

Stress

N
um

be
r

of
 e

dg
es

Node−LCC

Independent

Fig. 10. Distributions of link stress for Independent,
Complete-LCC and Node-LCC, network size = 100, 10%
overlay nodes.

With a fixed network size and overlay-to-low-level
ratio, for each of the three trees (Independent, Complete-
and Node-LCC), its constituent (overlay) links are
mapped to the low-level and the stress placed by them
on all the low-level edges are visually presented in
the stress graph. Recall that the stress graph contains
only low-level edges with at least one overlay tree
link mapped to it. For every low-level edge (u, v) with
stress s, in the stress graph, s multiple edges are drawn
between node u and node v. Recall that stress as defined
above in Sec. 5.1 takes on integer values greater than or
equal to 1. In this manner, we are able to visualize link
stress at a glance. Higher link stress easily shows in more
multiple edges or a thicker line between two nodes.
Consider the scenario of network size 100 and overlay

ratio 10%; it corresponds to the 100 point on the x-axis

9

94

100

78

72

90 75

66

48

79

42 3824

39

73

71

41

37

(a) Stress graph for Independent.

94

100

827872

90 75

68

66

48

79

42 38 24

3973

71

41

37

(b) Stress graph for Complete-LCC.

94

100

827872

90 75

68

66

48

79

42 38 24

3973

71

41

37

(c) Stress graph for Node-LCC.

Fig. 9. Stress graphs, network size = 100.

of the efficiency graph in Figure 8(a). The stress graphs
are shown in Fig. 9. The Independent stress graph of
Figure 9(a) clearly shows three thick trunks, indicating
heavy stress. This is confirmed by the distribution of
stress shown in the top graph of Figure 10: three links
have higher stress. The stress graphs of Complete-LCC
and Node-LCC are in Figure 9(b) and (c), respectively. In
this particular scenario, they look the same, containing
only relatively thin lines between nodes, i.e., links have
relatively low stress. Their distributions of stress, bottom
two graphs in Figure. 10, show that the maximum stress
is half of that for Independent.

Herein lies the reason for optimal efficiency of
Complete-LCC and Node-LCC and for poor efficiency
of Independent, as seen in Figure 8(a) at the value
of 100 on x-axis (the first point on the curves). The
maximum link stress placed by the Independent tree is
twice as high as the maximum link stress caused by the
two LCC trees. Incidentally, the fact that Independent
efficiency is roughly half of that of the two LCC is a
convincing indication that our definition of stress is good
in representing the load placed on a link relative to its
capacity.

We observe that the virtue of HMTC with LCC is its
success in choosing overlay links that spread load evenly
among the low-level links, minimizing stress placed on
any single link. The success is prominent even with the
much restricted Node-LCC.

0 5 10 15 20 25 30
0

10

20
Independent

0 5 10 15 20 25 30
0

10

20
Complete−LCC

0 5 10 15 20 25 30
0

10

20

Stress

N
um

be
r

of
 e

dg
es

Node−LCC

Fig. 12. Distributions of link stress in Independent,
Complete-LCC and Node-LCC, network size = 200, 10%
overlay nodes.

In a different scenario of 200 network nodes, 10% of
which are overlay nodes, the three stress graphs are
given in Figure 11. It is obvious that a low-level link

in the Independent stress graph, in Figure 11(a), has
much higher stress than all the rest — visually, it is
an extra thick trunk in the right part of the graph. The
distribution of stress in the top graph of Figure 12 shows
that there is a link with stress greater than 25, whereas
maximum stress for both LCC’s is 5. Correspondingly,
the Independent efficiency is less than 1/5 of the effi-
ciency of both Complete-LCC and Node-LCC, as given
by the second point on the curves in Figure 8(a).

0 5 10 15 20 25 30
0

50
Independent

0 5 10 15 20 25 30
0

50
Complete−LCC

0 5 10 15 20 25 30
0

50

Stress

N
um

be
r

of
 e

dg
es

Node−LCC

Fig. 14. Distributions of link stress for Independent,
Complete-LCC and Node-LCC, network size = 700, 10%
overlay nodes.

We examine a third scenario where the efficiency of
all three trees are different, where network size is 700
with 10% overlay nodes; it corresponds to the 7th point
on the efficiency curves in Figure 8(a). The stress graphs
in Figure 13 still show Node-LCC and Complete-LCC to
be similar, while stress for Independent is clearly higher
in a few links. Figure 14 informs that the highest stress
for Node-LCC is between those for Complete-LCC and
Independent, leaning more to Complete-LCC — this is
reflected in their respective efficiencies.

5.4 Convergence and Scalability

We analyze the convergence of our algorithm HMTC in
Figure 15(a) (for various overlay ratios) and Figure 15(b)
(for various network sizes). For a fixed network of 300
nodes and increasing overlay ratios, the (normalized)
tree bandwidth attained is plotted against the number of
rounds that has been executed in the algorithm. At each
round, a link is selected to be potentially replaced; it is
replaced only if another link can be found to improve
the bandwidth. This is why there are instances where

10

114

118 183 119 182

110

90

94

200

78

106143 104198

50

125

38

115

18

159126

161170190

194

127

123

107 95

122155

55

147

180

35 31

27 144

96

109

84

44

32

20

89175

57

(a) Stress graph for Independent.

110

122

161 90

94118

200

78

106 104 198114

183

50

125

42

143

18

159126

170190

194

127

123

115 10795

155

75

89

55

147

180

3531

27

144

84

44

32

20

109

175

57

(b) Stress graph for Complete-LCC.

110

122

161 90

94118

200

78

106 104 198114

183

50

125

42

143

18

159126

170190

194

127

123

115 10795

155

75

89

55

147

180

3531

27

144

84

44

32

20

109

175

57

(c) Stress graph for Node-LCC.

Fig. 11. Stress graphs, network size = 200.

1

2

310

1129
279

300

5

7 47

51

118

141

213

311 486

44

64

71

202

244

246

364

485

16

92 382

241

430

684 35

417

571586

685

20

50

378

460

6

1433

36 106

331

351

393

515

40

116

211
458

634

31
320

406

410

509

198

9

23

89

112

133
168

264

391

463

77

206

26

28

348

90

512

560

75

100

340

540

220

350

73

418

2269

102

186

62

132

164

201

665

367

181

203

234

107

17
431

193

145

251

343

208

324

517

578

34

286

131

138

453

569

153

226

176

190

218

58

194

420

72

233

675

695

580

437

445

388

325
128

662

275

559

41

523

285

57

283

318

389

595

667

443

432

637

482

95

627

454

594

653

281

451

158

478

686

25

495

237
572

548

(a) Stress graph for Independent.

1

2

3

10

11

29

279

300

5 7

47

51

118
141

311

486

22

44

64

71

202

244

246

364

485

16

92

382
67 241

430684

35

417

571

586

685

20

50

378

460

682

6

14

33
36

331

351
393

515
40

116

211

458

634

31

320

406

410

509

198

495

69

102

145186

9

23

89112

133

168

264391
463

77

206

26

28

348

90

512

560

75

100

340

540

220

350

73

418

62

132

164

201

665

367

57

283

181

203

234

107

17

431

193

251

343

324

517

79

125

578

34

286

131 138

453

569

153

226

176

190

218

58

194

420

72

675

695

580

437
445

388

325

41

523

285

318

389

595

559

443

432

637

662

482

95

627

454

594

653

281
451

158478
686

213

237

572

548

128

(b) Stress graph for Complete-LCC.

1

2

3

5

10

11

29

279

7

47

118

141

311

486

22

44
64

70

71

202

244 246

364

485

16

92

382

67

241

430

684

35
417

571 586

685

20

50

378

460

682

6

14

33

331
351

393

515

116

211

458

578

634

31

320

406

410

509 198

495

69
102186

9

23

55

89

112

133

168
264

391

463

77

206

26

28

348

90

512

560

75

100

340

540

220

350

418

62
132

164

176

367

57

283

201

181

234

107

17431

193

145

251

343

98

324

517

34

286

131

138

453

569

153

190

226

218

58

194

420

72

675

695

580

51

665

437

445

325

41

523

59

239

589

285

318

389

595

559

443

432

637

662

203

388

482

95

627

454

594

653

281

451

158

478

686

213

237572

548

128

(c) Stress graph for Node-LCC.

Fig. 13. Stress graphs, network size = 700.

even though the number of rounds has increased, the
tree bandwidth does not improve.
It can be seen from the convergence graph that the

final bandwidth is always reached in a small number of
rounds, for all overlay ratios. Although the number of
rounds required to converge increases slightly for higher
overlay ratios, it remains small. We do not show the cases
of higher overlay ratios to maintain clarity in the graph,
but for all ratios up to 80%, the algorithm converges
in less than 50 rounds. Scalability of the algorithm is
supported by the fact that similar convergence occurs
for network sizes up to the high thousands. Moreover, in
our simulations, we set the maximum number of rounds
to be 100. Hence, the algorithm never runs for more than
100 rounds and still yields the near-optimal efficiency for
all network sizes.

6 OVERVIEW OF DISTRIBUTED ALGORITHM

In this section, we present an overview of the completely
distributed algorithm we propose that is based on the
tree-improving algorithm. The formal treatment of the
distributed algorithm is deferred to Sec. 8. Several chal-
lenges arise when extending the centralized algorithm to
a distributed one to achieve the same objective:

1) Each node can no longer be assumed to possess
global knowledge of Complete-LCC.

0 10 20 30 40 50

0.4

0.6

0.8

1

Number of rounds

T
re

e
ba

nd
w

id
th

10% overlay
15% overlay
20% overlay
25% overlay
30% overlay

(a) Convergence of heuristics algorithm for
various overlay ratios, low-level size = 300.

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of rounds

T
re

e
ba

nd
w

id
th

network size 1000, 10% overlay
network size 2000, 10% overlay
network size 3000, 10% overlay
network size 4000, 10% overlay

(b) Convergence of heuristics algorithm for
various network sizes with 10% overlay nodes.

Fig. 15. Convergence of heuristics algorithm, low-level
size = 300.

11

2) Due to lack of global topology information, it is
not immediately obvious how to determine the
link with the worst bandwidth in the tree. More
generally, how does a node decide whether an
adjacent link has too low a bandwidth and thus
initiate a tree restructure by replacing it?

3) In the centralized algorithm, tree restructuring ac-
tions taken by different nodes are synchronized
so that no cycles are introduced and hence the
tree topology is preserved. However, in the dis-
tributed case, nodes initiate tree restructuring asyn-
chronously, which may result in the forming of
cycles and loss of the tree structure.

6.1 Constructing an LCC-overlay

The first difficulty is resolved by using (inherently decen-
tralized) node-based LCC instead. To be precise, every
node has only the LCC that contain links adjacent to
itself. We have previously proposed, in [15], a decen-
tralized scheme for constructing an LCC-overlay. In this
scheme, every overlay node strategically probes to ob-
tain its own set of node-based LCC. That is, for each
node, its set of LCC contains only capacity variables
of its incident links. Because this is out of the scope of
this paper and also due to space constraint, we do not
reproduce the details of our LCC-overlay construction
scheme. In brief, it is based on an existing efficient
technique for detecting shared bottlenecks, proposed by
Katabi et al. in [21], [22]. In our scheme, the node-based
LCC are obtained in iterations of increasing refinement.
Our simulation results showed that nearly complete
node-based LCC can be discovered in a small number
of refinement stages.
The second and third problems list above at the begin-

ning of this section are considerably more complicated
to solve. We elaborate on how to address them in the
remainder of this section as well as the next two sections.

6.2 Gossip-based Node Decision for Tree Restruc-
ture

Every node must decide, in a decentralized fashion,
whether it should initiate a tree restructuring. The de-
cision procedure should satisfy the following require-
ments:

• A node decides to restructure to replace an adjacent
link only if that link has one of the lowest band-
widths.

• The number of concurrent restructuring nodes
should be controlled to be less than a certain per-
centage, ρ, of the total number of peer nodes.

• Any global statistics used in the decision procedure
should be obtainable in a distributed, efficient and
scalable way.

• Every node should make the decision entirely on its
own, locally.

Now we proceed to present a distributed decision
procedure for restructuring which satisfies all of the

above requirements. The global statistics needed for
the decision are gathered using gossip-based algorithms
[23], [24], [25], [26] that estimate aggregate information
in large-scale peer-to-peer networks.
GATHERING GLOBAL STATISTICS
Kempe et al. proposed gossip-based algorithms [23]

for computation of global aggregate information. In
particular, the algorithms are able to estimate sums
and quantiles (through random sampling) of numerical
elements stored at the nodes. In a network of n nodes
with each node holding a value xi, the gossip-based
algorithm can find the sum and quantile of these values.
We use the sum estimation to obtain the total number
of peers. This can be trivially done by storing at each
node the integer 1. The completely decentralized, gossip-
based algorithm to compute the total number of nodes
is given in Fig. 16; it is a slightly modified version of the
algorithm proposed in [23] for computing averages. In
[23], it was shown that in at most O(log n+log 1

ǫ
+log 1

δ
),

with probability at least 1 − δ, the relative error in the
estimate is within ǫ.

Estimation of Number of Peers
Each node i maintains a sum st,i and a weight wt,i

At round 0: If node i is the root node,
initialize s0,i := 1, w0,i := 1. For every other
node i, initialize s0,i := 1, w0,i := 0.
Each node i sends the pair (s0,i, w0,i) to itself.

At subsequent rounds, each node i does as follows:
1: Let {(ŝr, ŵr)} be all pairs sent to i in rnd t− 1
2: Let st,i :=

P
r ŝr, wt,i :=

P
r ŵr

3: Choose a target node ut(i) uniformly at random
4: Send the pair (1

2
st,i,

1

2
wt,i) to ut(i) and i (itself)

5:
st,i

wt,i
is the estimate of the total number of

peers in round t

Fig. 16. Decentralized gossip-based algorithm for esti-
mating the total number of nodes.

We use the quantile computation to estimate the
lowest and highest link bandwidths in the tree. To do
this, each node holds a set Mi of values which are
the measured bandwidths of all its adjacent links. The
algorithm from [23] essentially finds a value that is close
to the largest, with high probability, in a decentralized
way. At the start, the entire set of values – i.e, the
union of all Mi’s – are considered. In each round, a
pivot value is chosen from among the remaining values
uniformly at random. Then the number of values larger
than the pivot is counted, and the algorithm recurses in
this subinterval. This estimates the highest link band-
width; the same algorithm can be used to estimate the
lowest link bandwidth. The number of rounds required
is O((log m + log 1

δ
) · (log n + log m + log log 1

δ
)), where

m is the size of the union of all Mi’s, and 1 − δ is the
probability of finding the desired value.
The lengths of all messages are bounded by the largest

number of bits to encode the values being held at each
node, which is O(log n + k log b), where n is the total
number of nodes, k is the highest number of neighbors
a node may have and b is the largest link bandwidth.

12

This should be multiplied by the number of rounds to
obtain the total message overhead, which is the sum of
the number of rounds for estimation of number of nodes
and estimation of the highest and lowest link bandwidth,
as given above.
RESTRUCTURING CANDIDATES
Let Bmin and Bmax denote, respectively, the lowest and

highest link bandwidth obtained by the gossip algo-
rithms. Each node decides whether it is a candidate for
restructuring, by comparing its adjacent link bandwidths
with Bmin and Bmax. At this stage, the node assumes
a uniform distribution of bandwidth bounded by Bmin

and Bmax. The node considers itself a restructuring
candidate if an adjacent link has bandwidth less than
Bmin+ρ·(Bmax−Bmin), i.e., within ρ percent of the lowest
bandwidth.
However, there may be too many candidate nodes, if

the bandwith distribution is too skewed from uniformity.
To control the number of concurrent restructuring nodes,
we must take additional measures.
CONTROLLING PERCENTAGE OF RESTRUCTURING
NODES
First, we estimate the number of restructuring can-

didates. Each node stores 1 if it is a candidate and 0
otherwise. Using the gossip-based algorithm for sums,
each node can obtain an estimate of the total number of
candidates, N0.
Let N be the estimated total number of peer nodes.

To keep the percentage of restructuring nodes less than
ρ, each candidate node simply computes a bias β =
min(ρ · N

N0

, 1). Then it tosses a β-biased coin, and only
proceeds with restructuring if the outcome is head. It is
easy to see that even for large N0, the maximum number
of restructuring nodes is β · N0 = ρ · N , as desired.

6.3 Preserving Tree Topology with Asynchronous
Tree Restructures

Once a node has determined that it should replace
an adjacent link and initiate a tree restructure, it still
needs to take measures to avoid introducing cycles, and
equivalently, disconnecting the multicast graph.
When a node u decides to initiate a tree restructure,

we call u a restructor and the subtree of which u is the
root u’s subtree.
After a node u decides to undertake a tree restructure

by replacing the link uv, where v is u’s current parent in
the tree, the procedure of a complete tree restructure is
broken down as follows. (i) u selects a neighbor w such
that link uw is better than uv. (ii) u disconnects itself and
hence its subtree from its old parent v. (iii) u reconnects
to the tree by adding the link uw and thus attaching its
subtree to its new parent w.
Some thought will reveal the possible causes of cycles

forming when different nodes asynchronously decide to
restructure the tree. A simple example of a scenario in
which cycles can form is illustrated in Fig. 17. Both node
B and node C decide to initiate a tree restructure. Node

B replaces edge AB with edge EB, i.e., disconnecting
from the old parent A and reconnecting to the tree by
attaching to the new parent E. Simultaneously (or nearly
simultaneously), C changes its parent in the tree from
A to D. Unfortunately, because B’s tree restructuring
makes it a descendant of C, when C’s tree restructuring
makes C a descendant of B, a cycle is formed (as well
as making the ”tree” disconnected).

A

C

A

B

D

C

B

D

(b) Initial tree T0 (c) Replace edge AB with EB (d) In parallel: replace AC with DC

E

E

A

B

D

C

E

Fig. 17. Example of possible scenario of cycle forming.

It is easy to see that the cycle (and disconnectivity)
is caused by B and C both attaching to each other’s
descendants. However, the (connected tree topology is
preserved if only B attaches to C’s subtree (or vice
versa), or if both attach to respective new parents not
in their subtrees.

Generalizing this reasoning leads to the observation
that during the tree restructure process of any node u,
as long as it does not allow another restructor to attach
to its (u’s) subtree, no cycle will be formed.

Thus, we enhance the tree restructure procedure with
mechanisms to protect against cycles. We give a high-
level overview below and defer the formal presentation
to the next section.

When a node u initiates a tree restructure (u is a
restructor) to replace its adjacent link uv (it is easier to
think of v as u’s parent, from now on):

(1) u locks its subtree.

⇒ Nodes in u’s subtree is in locked mode and
cannot accept any requests from other nodes
(restructors) to connect to them, i.e., a locked
node cannot be the new parent of any restructor.

(2) u selects a target t such that replacing uv with link
ut improves tree bandwidth.

(3) u sends a connect request to t, and waits for t’s reply.

– If t is locked, due to its ancestor being in the tree
restructure process, then t rejects u’s request.

(4) Repeat (2) and (3) until u finds a node w that accepts
the connect request, then u disconnects from v and
connects to its new parent w.

(5) u unlocks its subtree.

⇒ Nodes in u’s subtree can now accept requests
from restructors to connect to them.

To lock its subtree, u does the following:

• u multicasts a lock message to its subtree, i.e., by
sending the message to its children who forward it
to their children, etc.

13

• Each descendant (node in subtree) sends a ready
reply up the subtree, and goes into lock mode.

• Once u is notified (via the ready replies) that its
subtree is locked, it proceeds to select target nodes
for connecting to.

The message overhead for each tree restructure con-
sists of O(n) (including all lock, ready and unlock mes-
sages) messages transmitted, where n is the number of
nodes in the tree. However, only a few bits are needed
to encode these messages. The total message overhead
is hence O(n) messages times the number of tree re-
structures. The number of tree restructures required is
the number of simultaneously restructuring nodes times
the number of iterations for the distributed algorithm
to converge to a steady tree throughput. The former is
a parameter that can be varied (in the simulations, we
vary it from 1.5 to 15 percent); the latter is given in the
simulation results in Section 9 and is on the order of 10.

7 STATE TRANSITION DIAGRAMS

Before we formally present our distributed tree restruc-
turing algorithm (Sec. 8), we first give an explication
of state transition diagrams. In particular, concurrent
state diagrams are what we use to model the distributed
algorithm.

7.1 Single state diagram

The interpretation of state diagrams is completely event
based. Each state diagram consists of a finite number of
states representing serving as memory of the algorithm.
Directed transitional edges are labeled by events. Events
are classified into active and passive events. Active events
correspond to function calls and initiation of network
requests. Passive events correspond to network requests
received from remote peers and conditions resulted from
function calls. The semantics of the transitions is that
active events can be triggered by the state diagram
without delay, while passive events occur spontaneously
with nondeterministic delays. Each state can have at
most one active event and possible multiple passive
events. Mathematically, a state diagram is a unmarked
automata: A = (X,x0,Σact∪̇Σpas, δ), where x0 ∈ X is
the initial state, Σact and Σpas the active and passive
events, respectively. Define, Σ = Σact∪̇Σpas, the transition
function δ : X × Σ → X is a partial function 3 mapping
a state and a transition (x, e) to the next state δ(x, e). A
run is simply a string of events s ∈ Σ∗ belonging to the
language L(A) of the automata [27]. We say that an event
e ∈ Σ is admissible by A at state x if (x, e) ∈ dom(δ).

7.2 Concurrent state diagrams

[The Synchronous Approach to Designing Reactive Sys-
tems]

3. We assume that state diagrams are deterministic automata.

The interpretation of the execution of multiple state
diagrams is formalized by synchronous product of au-
tomata. A collection of state diagrams can synchronize
on shared events. For simplicity, suppose that we have
two state diagrams Ai = (Xi,Σi, δi), i = 1, 2, which
are synchronized on common events in Σ1 ∩ Σ2. The
execution of A1 is partially affected by A2. Suppose that
A1 is at state x1 ∈ X1 and A2 at state x2 ∈ X2. An event
e ∈ Σ1 can be triggered if and only if:

• e ∈ Σ1 − Σ2, i.e. it is not shared by A2, or
• e ∈ Σ1 ∩ Σ2, and e admissible by A2 at state x2.

In case e is a shared event and is triggered in one state
diagram (say A1), then the other state diagram (A2) must
also trigger the transition labelled by e.

8 TREE RESTRUCTURING ALGORITHM

We model the distributed tree restructuring using multi-
ple concurrent state diagrams. Each peer executes three
state diagrams: locking , mk-restruct and resp-restruct .
The state diagram, mk-restruct , describes the protocol
for initiating a connection to remote peers for tree re-
structuring. The state diagram, resp-restruct , describe
the protocol for accepting a restructuring request from
a peer. Finally, a third state diagram, locking , is used
to describe the locking mechanism used so that a peer
does not involve itself in two concurrent restructuring
sessions.

8.1 Making restructuring connections

The state diagram mk-restruct is shown in Fig. 18. Every
node u executes this state diagram concurrently. We now
trace, in detail, the states and transitions between them.
The initial state of u is the ready state, shown in the
diagram as the top leftmost circle with the entrance
arrow going into it. In this state, u is ready to initiate
a new tree restructuring.
When the recv-restruct event occurs, i.e., u decides

to do a tree restructure, u signals self-busy so that u
does not initiate another restructure before this one is
completed. Then u locks its subtree by first sending a
message to its subtree (snd-lock-st) and waiting for the
subtree to be locked (rcv-st-ready).
The next step is to select a target peer node w such that
for u to connect to w, the tree bandwidth will improve
as a result. Two events may occur to forbid u to connect
to w. (1) w is busy — in the process of restructuring
itself, or in a subtree locked by an ancestor. (2) w is a
descendant of u; u connecting to w would create a cycle.
After the event of connecting successfully to a target

peer, u unlocks its subtree (snd-unlock-st) and signals
itself to be ready (sig-self-ready) for potentially another
tree restructure.

8.2 Responding to restructuring connections

The state diagram resp-restruct is shown in Fig. 19(a).
It models the protocol that a node u follows when it

14

Fig. 18. Protocol for initiating restructuring connections

receives a connect request from a peer, i.e., u is the
target node that another node v selects to connect to
during v’s restructuring. The entry state is the bold circle
on the left in the diagram. Note that this entry state
could correspond to any state from the other two state
diagrams mk-restruct and locking .
At the event of receiving a connect request (rcv-

connect) from v, if u is in the self-busy state, then it will
reply to v that it is busy snd-target-busy). Otherwise, u
checks if it is a descendant of v. This is straightforward:
Since v must have previously sent a message to lock its
subtree (which includes u), v just piggybacks its node ID
on the lock message, and its descendants simply record
v’s ID. Therefore u can directly check whether it is a
descendant of v; if it is, reply accordingly to v (snd-
target-is-desc).
If u is neither busy nor in v’s subtree, then uwill accept

the connection from v and return to the entry state.

8.3 Node lock control

The state diagram locking is shown in Fig. 19(b). It
models the protocol for a node being locked by one of
its ancestors. At the receipt of a locking message, the
node signals itself to be self-busy. In this locked/busy
state, any subsequent event of receiving a connect re-
quest from a peer (rcv-connect) is rejected. Also, every
subsequent event of deciding to initiate a tree restruc-
ture (rcv-restruct) is also not implemented, while in the
locked/busy state.

9 SIMULATION RESULTS FOR DISTRIBUTED
ALGORITHM

We present here performance evaluation of our dis-
tributed tree restructuring algorithm. We implemented,
using Java, an event-based simulator to conduct simula-
tion experiments of the algorithm. The network topology
is again generated by the BRITE topology generator. The
overlay network is constructed by simply selecting a
subset of nodes with the smallest degrees.

(a) Responding to restructuring requests

(b) Locking node

Fig. 19. State transition diagrams for responding to
restructuring and locking node.

In Fig. 20, the convergence rate of the centralized
algorithm using Node-LCC is compared with the con-
vergence rate of the distributed algorithm using Node-
LCC. For the distributed algorithm, convergence rates
are shown for different values of the percentage of
restructuring nodes: 1.5%, 5%, 10% and 15%. It can be
seen from the graph that for the lowest percentage of
1.5% and the highest percentage of 15%, the distributed
algorithm does not converge to the steady throughput
of the centralized algorithm (but converges to a lower
throughput). However, the distributed algorithm does
converge to the centralized steady throughput for both
5% and 10%, values in the middle between the low

15

0 5 10 15 20 25
50

60

70

80

90

100

110

120

130

140

150

Iterations

M
ul

tic
as

t T
hr

ou
gh

pu
t

Convergence Rate for Decentralized Restructuring

CENTRALIZED
1.5%
5%
10%
15%

Fig. 20. Convergence rates of distributed restructuring,
compared with centralized restructuring.

0 5 10 15 20
50

100

150

Percentage of Restructuring Nodes

S
te

ad
y−

st
at

e
T

hr
ou

gh
pu

t

0 5 10 15 20
0

5

10

15

20

25

Percentage of Restructuring Nodes

N
um

be
r

of
 it

er
at

io
ns

 to
 7

0%

Fig. 21. Convergence rates versus percentage of restruc-
turing nodes.

(1.5%) and the high (15%). For 10%, the distributed
convergence is even faster than the centralized. This is
a result of the inherent parallelism in the distributed
algorithm: Multiple nodes can restructure at the same
time, thereby increasing the rate of converging to the
steady (highest) throughput.

The objective is clearly to achieve the highest possible
steady throughput, therefore it is of interest to investi-
gate further the effect of the percentage of restructuring
nodes on the steady throughput. We vary the percentage
from 1 to 20 and plot the steady throughput achieved
by the distributed algorithm, shown in the top graph
in Fig. 21. Clearly, the low and the relatively high
percentages do not do as well as those in the middle,
e.g., from 3% to 12%. The encouraging observation is
that the throughput performance is the best for all the
percentages between 3 and 12, that is, the best perfor-
mance can be consistently achieved for a relatively large
range of percentage values. Therefore, percentages can
be selected for the distributed algorithm from that range,
without concerns of the performance being sensitive to

100 700 2000 4000
0

0.5

1

1.5

2

Network Sizes

Ratio of steady throughput

100 700 2000 4000
0

0.5

1

1.5

2

2.5

Network Sizes

Ratio of convergence time to 70%

Fig. 22. Ratio of steady throughput versus network size.

small perturbations in the selected parameter value.
The lower graph of Fig. 21 plots the number of itera-

tions needed to reach 70% of the steady-state through-
put versus the percentage of restructuring nodes. It
demonstrates that for the range of percentages [3, 12],
the number of iterations needed is quite low, around 5.
Finally, we experimented with various network sizes,

setting the percentage of restructuring nodes to 10%. In
the top graph of Fig. 22, the network size is varied from
100 to 4000, and we plot the ratio of distributed steady-
state throughput over centralized steady throughput. For
all network sizes, the centralized steady throughput is
reached by the distributed algorithm. In a few cases (e.g.,
network size = 2000), the distributed steady throughput
even exceeds the centralized. This demonstrates that the
convergence and throughput performance of the dis-
tributed algorithm is consistently good for all network
sizes and is not affected by increasing network sizes.
We compare convergence times of the distributed and

centralized algorithms to achieve 70% of the steady-state
throughput. The ratio of distributed over centralized
convergence time is plotted against the network size.
For all but two network sizes, the distributed algorithm
converges faster than the centralized algorithm (to 70%
of steady-state throughput). The slower convergence at
network size of 2000 can probably be explained by the
higher distributed steady-state throughput for that size,
as seen in the top graph in Fig. 22.

10 CONCLUSIONS

In this paper, we have studied the problem of high-
bandwidth overlay multicast in overlay networks with
linear capacity constraints. We showed that the prob-
lem is NP-complete and proposed a heuristics algo-
rithm. Extensive simulations showed that our heuristics
algorithm is able to attain near-optimal performance
using LCC, even with the restricted node-based LCC.
The algorithm also demonstrated fast convergence and
scalability. Using node-based LCC, we also developed a

16

fully distributed, scalable, fast-converging algorithm for
obtaining multicast trees that have as high steady-state
throughput as for the centralized algorithm.

REFERENCES

[1] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker,
“Topologically-Aware Overlay Construction and Server
Selection,” in Proc. of the IEEE INFOCOM, 2002.

[2] M. Kwon and S. Fahmy, “Path-aware Overlay Multicast,” Com-
puter Networks, vol. 47, no. 1, pp. 23–45, January 2005.

[3] A. Young, J. Chen, Z. Ma, A. Krishnamurthy, L. Peterson, and
R. Wang, “Overlay Mesh Construction Using Interleaved Span-
ning Trees,” in Proc. of INFOCOM, 2004.

[4] K. Shen, “Structure Management for Scalable Overlay Service
Construction,” in Proc. of NSDI, 2004.

[5] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang, “A Case for End Sys-
tem Multicast,” IEEE Journal on Selected Areas in Communications,
pp. 1456–1471, October 2002.

[6] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable
Application Layer Multicast,” in Proc. of ACM SIGCOMM, August
2002.

[7] X. Zheng, C. Cho, and Y. Xia, “Optimal Peer-to-Peer Technique
for Massive Content Distribution,” in Proc. of INFOCOM 2008,
2008.

[8] J. Byers and J. Considine, “Informed Content Delivery Across
Adaptive Overlay Networks,” in Proc. of ACM SIGCOMM,
August 2002.

[9] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh,” in Proc.
of ACM SOSP, 2003.

[10] N. Magharei and R. Rejaie, “PRIME: Peer-to-Peer Receiver-drIven
MEsh-based Streaming,” in Proc. of INFOCOM 2007, 2007.

[11] B. Li et al., “Inside the New Coolstreaming: Principles, Measure-
ments and Performance Implications,” in Proc. of INFOCOM 2008,
2008.

[12] D. Ren, Y. H. Li, and S. G. Chan, “On Reducing Mesh Delay for
Peer-to-Peer Live Streaming,” in Proc. of INFOCOM 2008, 2008.

[13] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai,
“Distributing Streaming Media Content Using Cooperative Net-
working,” in Proc. of the 12th International Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV
2002), Miami Beach, Florida, May 2002.

[14] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: High-Bandwidth Multicast in Coop-
erative Environments,” in Proc. of the 19th ACM Symposium on
Operating Systems Principles (SOSP 2003), October 2003.

[15] Y. Zhu and B. Li, “Overlay Networks with Linear Capacity
Constraints,” in Proceedings of the Thirteenth IEEE International
Workshop on Quality of Service (IWQoS 2005), 2005.

[16] M. Tsang, C. Wang, K. Tsang, and F. Lau, “A Receiver-coordinated
Approach for Throughput Aggregation in High Bandwidth Mul-
ticast,” in Proc. of INFOCOM 2007, 2007.

[17] M.S. Kim, Y. Li, and S.S. Lam, “Eliminating Bottlenecks in Overlay
Multicast,” in Networking 2005, 2005.

[18] M.S. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman, New York, 1979.

[19] A. Medina, A. Lakhina, I. Matta, and J. Byers, BRITE:
Boston University Representative Internet Topology Generator,
http://www.cs.bu.edu/brite.

[20] C. Faloutsos, M. Faloutsos, and P. Faloutsos, “On Power-Law Re-
lationships of the Internet Topology,” in Proc. of ACM SIGCOMM,
August 1999.

[21] D. Katabi and C. Blake, “Inferring Congestion Sharing and
Path Characteristics from Packet Interarrival Times,” Tech. Rep.,
Laboratory of Computer Science, Massachusetts Institute of Tech-
nology, 2001.

[22] D. Katabi, I. Bazzi, and X. Yang, “A passive approach for detecting
shared bottlenecks,” in Proc. of ICCCN ’01, 2001.

[23] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-Based Computation
of Aggregate Information,” in Proc. IEEE FOCS, 2003.

[24] M. Zaharia and S. Keshav, “Gossip-Based Search Selection in
Hybrid Peer-to-Peer Networks,” J. Concurrency and Computation:
Practice and Experience, 2007.

[25] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip Algo-
rithms: Design, Analysis and Applications,” in Proc. IEEE Infocom,
2005.

[26] Dimitrios Psaltoulis, Dionysios Kostoulas, Indranil
Gupta, and et al., “Practical algorithms for Size
estimation in Large and Dynamic groups,” in
http://www.cs.cornell.edu/Info/Projects/Spinglass/public pdfs/
size estimation.PDF.

[27] J.E. Hopcroft, R. Motwani, and J.D. Ullman, Introduction to Au-
tomata Theory, Languages, and Computation (2nd Edition), Addison
Wesley, 2000.

Ying Zhu Ying Zhu is an Assistant Profes-
sor in the Faculty of Business and Information
Technology at the University of Ontario Institute
of Technology, Canada. She received her PhD
in Computer Engineering at the University of
Toronto. She has a MSc in Numerical Analysis
also from the University of Toronto and a BSc in
Computer Science and Mathematics from Dal-
housie University. Her main research interests
include performance optimization in distributed
systems such as peer-to-peer overlay networks

and wireless networks, and pervasive systems involving sensors and
RFID technology.

Baochun Li Baochun Li is a Professor in the
Department of Electrical and Computer Engi-
neering at the University of Toronto. He received
his M.S. and Ph.D. degree in Computer Sci-
ence from the University of Illinois at Urbana-
Champaign, and his B.E. degree in Computer
Science from Tsinghua University, China. His
research interests are in application-layer algo-
rithms in a wide variety of distributed systems,
including peer-to-peer and overlay networks,
wireless networks, and sensor networks.

Ken Q. Pu Ken Qian Pu is an Assistant Profes-
sor in the Faculty of Science at the University
of Ontario Institute of Technology, Canada. He
received his PhD in Computer Science at the
University of Toronto. He has a MSc in Electrical
Engineering and a BSc in Engineering Science
also from the University of Toronto. His main
research interests are in information manage-
ment and computer networks. His current focus
is on search algorithms in information systems,
and distributed processing and dissemination of

streamed data.

