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Abstract—Opportunistic wireless channel access by non-
licensed users has emerged as a promising solution for addressing
the bandwidth scarcity challenge. Auctions represent a natural
mechanism for allocating the spectrum, generating an economic
incentive for the licensed user to relinquish channels. A severe
limitation of existing spectrum auction designs lies in the over-
simplifying assumption that every non-licensed user is a single-
node or single-link secondary user. While such an assumption
makes the auction design easier, it does not capture practical
scenarios where users have multihop routing demands. For the
first time in the literature, we propose to model non-licensed
users as secondary networks (SNs), each of which comprises of
a multihop network with end-to-end routing demands. We aim
to design truthful auctions for allocating channels to SNs in a
coordinated fashion that maximizes social welfare of the system.
We use simple examples to show that such auctions among
SNs differ drastically from simple auctions among single-hop
users, and previous solutions suffer severely from local, per-hop
decision making. We first design a simple, heuristic auction that
takes inter-SN interference into consideration, and is truthful.
We then design a randomized auction based on primal-dual
linear optimization, with a proven performance guarantee for
approaching optimal social welfare. A key technique in our
solution is to decompose a linear program (LP) solution for
channel assignment into a set of integer program (IP) solutions,
then applying a pair of tailored primal and dual LPs for
computing probabilities of choosing each IP solution. We prove
the truthfulness and performance bound of our solution, and
verify its effectiveness through simulation studies.

I. INTRODUCTION

Recent years have witnessed substantial growth in wireless
technology and applications, which rely crucially on the avail-
ability of bandwidth spectrum. Traditional spectrum allocation
is static, and is prone to inefficient spectrum utilization in
both temporal and spatial domains: large spectrum chunks
remain idling while new users are unable to access them. Such
an observation has prompted research interest in designing a
secondary spectrum market, where new users can access a li-
censed channel when not in use by its owner, with appropriate
remuneration transferred to the latter.

In a secondary spectrum market, a spectrum owner or
primary user (PU) leases its idle spectrum chunks (channels)
to secondary users (SUs) through auctions [1], [2]. SUs submit
bids for channels, and pay the PU a price to access a channel
if their bids are successful. A natural goal of spectrum auction
design is truthfulness, under which an SU’s best strategy is to
bid its true valuation of a channel, with no incentive to lie. A
truthful auction simplifies decision making at SUs, and lays

a foundation for good decision making at the PU. Another
important goal in spectrum auction design is social welfare
maximization, i.e., maximizing the aggregated ‘happiness’ of
everyone in the system. Such an auction tends to allocate
channels to SUs who value them the most.

A unique feature of spectrum auction design is the need of
appropriate consideration for wireless interference and spatial
reuse of channels. A channel can be allocated to multiple SUs
provided that they are far apart, with no mutual interference.
Optimal channel assignment for social welfare maximization is
equivalent to the graph colouring problem, and is NP-hard [3],
even assuming truthful bids are given for free. Existing works
on spectrum auctions mostly focus on resolving such a chal-
lenge (e.g., [4], [5]) while assuming the simplest model of a
SU: a single node, or a single link, similar to a single hop
transmission in cellular networks [2], [4], [5].
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Fig. 1: A secondary spectrum market with 3 SNs and 2 channels.

After extensive research during the past five years, auction
design for single-hop users, each requesting a single channel,
has been relatively well understood. However, a practical SU
may very well comprise of multiple nodes forming a multi-
hop network, which we refer to as a secondary network (SN).
These include scenarios such as users with multihop access to
base stations, or users with their own mobile ad hoc networks.
SNs require coordinated end-to-end channel assignment, and
in general benefit from multi-channel diversity along its path.
The SN model subsumes the SU model as the simplest special
case.

Fig. 1 depicts three co-located SNs, SN1, SN2 and SN3,
which have interference with one another, because their net-
work regions overlap. The primary network (PN) has two
channels, Ch1 and Ch2, which have been allocated to SN1
and SN2, respectively. Now SN3 wishes to route along a
two-hop path 1 → 2 → 3. Under existing single-channel



auctions for SUs, SN3 cannot obtain a channel, because each
channel interferes with either SN1 or SN2. However, a solution
exists by relaxing the one channel per user assumption, and
assigning Ch1 to link 1 → 2 and Ch2 to the link 2 → 3. In
general, taking multichannel, multihop transmissions by SNs
into consideration can apparently improve channel utilization
and social welfare. Note here that the model in which an SN
bids for multiple channels is inapplicable, because due to the
unawareness of other SNs’ information, an SN cannot know
the number of channels to bid for, to form a feasible path.

Designing truthful auctions for SNs is an interesting prob-
lem, but by no means an easy one. We note that it is hard for an
SN to decide by itself an optimal or good path to bid for. Such
decision making requires global information on other SNs as
well, and is naturally best made by the auctioneer, i.e., the PN.
Consequently, a bid from an SN includes just a price it wishes
to pay, with two nodes it wishes to connect using a path.
Furthermore, SNs now interfere with each other in a more
complex manner. Not only that they transmit along multihop
paths, but each path can be assigned with distinct channels at
different links. The PN, after receiving bids, needs to make
judicious joint routing and channel assignment decisions.

In this work, we first design a simple heuristic auction for
spectrum allocation to SNs, which guarantees both truthfulness
and interference-free channel allocation, providing winning
SNs with end-to-end multihop paths, with a channel assigned
to each hop. The heuristic auction enables multi-channel
assignment along a path, thereby reducing the possibility that
a path is blocked due to interference. To achieve truthfulness,
we employ a greedy, monotonic allocation rule and design
an accompanying payment scheme, by referring to Myerson’s
characterization of truthful auctions [6].

The heuristic auction provides no hard guarantee on social
welfare. We next design a randomized auction, which is
truthful in expectation, and is provably approximate optimal
in social welfare. We note that absolute optimal social wel-
fare is impossible, since the joint routing-channel assignment
problem is already NP-hard with truthful bids given for free.
We relax an integer program (IP) formulation to the social
welfare maximization problem into a linear program (LP), and
prove an upper-bound on the integrality gap. We then employ
the decomposition technique due to Lavi and Swamy [7] to
decompose an LP solution into a set of feasible IP solutions
(allocations). A pair of primal-dual LPs are formulated, for
computing a probability distribution over the allocation set.
Based on the set and the probabilities, an approximation
algorithm is finally designed, for computing a feasible solution
to the original IP with a provable performance guarantee.
Such a solution assigns channels to paths constructed for
winning SNs. We then apply the classic VCG [8]–[10] pay-
ment scheme, to conclude the design of a truthful auction
that approximately maximizes social welfare for spectrum
allocation to SNs.

The remainder of the paper is organized as follows. We
discuss related work in Sec. II, and present preliminaries in
Sec. III. A heuristic truthful auction is designed in Sec. IV.

In Sec. V, we propose and analyze a randomized auction
with performance bound. Simulation studies are presented in
Sec. VI. Sec. VII concludes the paper.

II. RELATED WORK

Auctions serve as an efficient mechanism for distributing
scarce resources to competing participants in a market. To
simplify the strategical behaviour of agents and hence encour-
age participation, truthfulness is desired. A celebrated work
is the VCG mechanism due to Vickrey [10], Clarke [8], and
Groves [9]. However, the VCG mechanism is only suitable
when optimal solutions are computationally feasible, and is not
directly applicable for secondary spectrum auctions, because
interference-free channel allocation is NP-Hard.

Allocating spectrum using auctions has received consid-
erable research attention recently. Early solutions include
auctions that allocate power [11] and allocate a channel to
each winning user [12]. These auctions are unfortunately not
truthful. VERITAS [1] is the first truthful spectrum auction
based on the monotonic allocation rule. Zhou and Zheng
propose TRUST [13], which is a double auction with multiple
sellers (licensed users). Jia et al. [14] design a spectrum
auction mechanism that not only encourages truthful behaviour
but also computes approximately maximum revenue, which is
an alternative goal to maximum social welfare.

For spectrum auctions that take interference among sec-
ondary users into consideration, Wu et al. [2] develop a semi-
definite programming based mechanism, which is truthful and
resistant to bidder collusion. Gopinathan [5] et al. propose
auctions that incorporate fairness considerations into channel
allocation. Their goal is to maximize social welfare, while
ensuring a notion of fairness among bidders when the auction
is repeatedly held. A truthful and scalable spectrum auction
enabling both sharing and exclusive access is proposed by
Kash et al. [4]. This auction handles heterogeneous agent types
with different transmission powers and spectrum needs. We
note that, all the works mentioned above focus on single-hop
users bidding for a single channel only. Our work essentially
generalizes the problem to multi-hop users, who may enjoy
multi-channel paths.

III. PRELIMINARIES

In this section, we first introduce some background in
truthful auction design in Sec. III-A, then describe our system
model in Sec. III-B.

A. Truthful Auction Design

Auction theory is a branch of economics that studies how
people act in an auction and analyzes the properties of auction
markets. We first introduce some basic and most related
concepts, definitions and theorems from auction design.

An auction allocates items or goods (channels in our case)
to competitive agents with bids and private valuations. We
adopt wi as nonnegative valuations of each agent i, which
is often private information known only to the agent itself.
Besides determining an allocation, an auction also computes



payments/charges for winning bidders. We denote by p(i) and
bi the payment and bid of agent i, respectively. Then the utility
of i is a function of all the bids:

ui(bi,b−i) =

{
wi − p(i) if agent i with bid bi gets an item
0 otherwise

where b−i is the vector of all the bids except bi. We first
adopt some conventional assumptions in economics here. We
assume that each agent i is selfish and rational. A selfish agent
is one that acts strategically to maximize its utility. An agent
is said to be rational in that it always prefers the outcome that
brings itself a larger utility. Hence, an agent i may lie about its
valuation, and bid bi 6= wi if doing so yields a higher utility.

Truthfulness is a desirable property of an auction, where
reporting true valuation in the bid is optimal for each agent
i, regardless of other agents’ bids. If agents have incentives
to lie, other agents are forced to strategically respond to
these lies, making the auction and its analysis complex. A
key advantage of a truthful auction is that it simplifies agent
strategies. Formally, an auction is truthful if for any agent i
with any bi 6= wi, any b−i, we have

ui(wi,b−i) ≥ ui(bi,b−i) (1)
An auction is randomized if its allocation decision making

involves flipping a (biased) coin. The payment and utility of
an agent are then random variables. A randomized auction is
truthful in expectation if (1) holds in expectation. Besides, we
also prefer an auction to be individually rational, in which
agents pay no more than their gain (valuations).

As discussed, the classic VCG mechanism for truthful
auction design requires the optimal allocation to be efficiently
computable, and is not practical for spectrum auctions, since
optimal channel allocation is NP-hard. If we aim to design a
tailored, heuristic truthful auction, then we may rely on the
characterization of truthful auctions by Myerson [6].

Theorem 1. Let Pi(bi) be the probability of agent i with bid
bi winning an auction. An auction is truthful if and only if the
followings hold for a fixed b−i:
• Pi(bi) is monotonically non-decreasing in bi;
• Agent i bidding bi is charged biPi(bi)−

∫ bi
0
Pi(b)db.

Given Theorem 1, we see that once the allocation rule
P(·) = {Pi(bi)}i∈N is fixed (N is the set of bidders), the
payment rule is also fixed. For the case where the auction
is deterministic, there are two equivalent ways to interpret
Theorem 1: (i) there exists a minimum bid b∗i , such that i
will win only if agent i bids at least b∗i , i.e., the monotonicity
of Pi(bi) implies that, there is some critical bid b∗i , such that
Pi(bi) is 1 for all bi > b∗i and 0 for all bi < b∗i ; (ii) the payment
charged to agent i for a fixed b−i should be independent of
bi (formally, pi(bi) = bi −

∫ bi
b∗i

db = b∗i ).

B. System Model

We assume there is a set of SNs, N . Each SN has deployed
a set of nodes in a geographical region, and has a demand for
multihop transmission from a source to a destination. A PN

TABLE I: List of notations

wi valuation of agent i bi bid of agent i
b−i bid of all agents except bi φ(i) virtual bid of agent i
p(i) payment of agent i ui a node in SN i
liuv link from ui to vi f iuv flow rate on link liuv
O(w) objective function of IP (5) S(w) objective function of the

LPR
Is(i) the set of SNs that interfere with SN i along its path
x(c, liuv) binary var: whether channel c is allocated to link liuv
Gi(Ei,Vi) connectivity graph of SN i with link set Ei, node set Vi

H(EH ,VH) conflict graph of links of all the SNs with edge set EH and
vertex set VH

has a set of channels, C, available for auctioning in the region.
We refer to SNs as agents and the PN as the auctioneer. Each
node within an SN is equipped with a radio that is capable of
switching between different channels. SNs do not collaborate
with each other, and nodes from different SNs are not required
to forward traffic for each other.

We assume nodes from each SN i form a connected graph
Gi(E i,Vi), which also contains node locations. We use “node”
and “link” for the connectivity graphs and “vertex” and “edge”
for the conflict graph introduced later. To better formulate the
joint routing-channel assignment problem, we incorporate the
concept of network flows. Let ui be a node in SN i and si,
di be the source and the destination in SN i. We use liuv to
denote the link from node ui to node vi belonging to SN i,
and f iuv to denote the amount of flow on link liuv . Later we
connect di back to si with a virtual feedback link lids, for a
compact formulation of the joint optimization IP.

We define a conflict graph H(EH ,VH), whose vertices
correspond to links from all the connectivity graphs. We use
(liuv, l

j
pq) to denote an edge in EH , indicating that link liuv and

link ljpq interfere if allocated a common channel. Before the
auction starts, each SN i submits to the auctioneer a compound
bid, defined as Bi = (Gi(E i,Vi), si, di, bi). Then the conflict
graph can be centrally obtained by the auctioneer. We denote
by wi the private valuation of SN i for a feasible path between
si and di, and p(i) its payment. bi, wi and p(i) all represent
monetary amounts. Note that we assume agents only have
incentives to lie about their valuations.

We denote by RT (ui) and RI(u
i) the transmission range

and interference range of node ui, respectively. We assume
that RI(ui)

RT (ui) = ∆ and RT (ui) ≤ Rmax for any node ui where
∆ ≥ 1. Since no inter-SN collaboration is assumed, links from
different SNs do not participate in joint MAC scheduling, and
cannot be assigned the same channel if they interfere. As a
result, two links liuv and ljpq interfere if a node in {u, v} is
within the interference range of a node in {p, q}, and cannot
be assigned the same channel if i 6= j. Formally, let a binary
variable x(c, liuv) ∈ {0, 1} denote whether channel c ∈ C
is assigned to link liuv for user i. If for channel c ∈ C,
x(c, liuv) = x(c, ljpq), then (liuv, l

j
pq) /∈ EH . Hence, for the joint

routing-channel assignment problem we have the Channel
Interference Constraints:

x(c, liuv) + x(c, ljpq) ≤ 1, (liuv, l
j
pq) ∈ EH , ∀c ∈ C (2)

We also need Flow Conservation Constraints, i.e., at any



node in Vi, the total incoming and outgoing flows equal (recall
the virtual feedback link):∑

u∈Vi

f iuv =
∑
u∈Vi

f ivu, ∀v ∈ Vi (3)

Assuming each channel has the same unit capacity 1, we
have the Capacity Constraints:∑

u∈Vi\{di}

f iuv ≤
∑
c∈C

x(c, liuv) ≤ 1 (4)

which also ensures that a link can be assigned a single channel
only.

An agent needs an end-to-end path between its source and
destination. This corresponds to a network flow of rate 1. Note
that the link flow on the feedback link f ids equals the end-to-
end flow for SN i. We formulate the joint routing-channel
assignment problem for SNs into an IP:

maximize O(w) =
∑
i∈N

wif
i
ds (5)

subject to

x(c, liuv) + x(c, ljpq) ≤ 1, (liuv, l
j
pq) ∈ EH ,∀c ∈ C∑

u∈Vi

f iuv =
∑
u∈Vi

f ivu, ∀v ∈ Vi∑
u∈Vi\{di}

f iuv ≤
∑
c∈C

x(c, liuv) ≤ 1, ∀v ∈ Vi

f iuv, x(c, liuv) ∈ {0, 1}.

where O(w) denotes the objective function of the IP.
Solving this IP to optimal is an NP-hard problem. Therefore
we first introduce a heuristic auction in Sec. IV, which is based
on the technique of monotonic allocation and critical bids,
and is simple and truthful. However, it does not provide any
bound on the social welfare generated. A more sophisticated,
randomized auction with a proven bound is studied next, where
the LP relaxation of IP (5) is solved as a first step.

IV. A HEURISTIC TRUTHFUL AUCTION

In this section, we design an auction with a greedy style
allocation and a payment scheme to ensure truthfulness. The
auction consists of two phases: Algorithm 1 determines the
channel assignment and winning bidders, and Algorithm 2
computes the payments for winning agents.

A. Channel Allocation

As discussed in Sec. III, the key to designing a truthful
auction is to have a non-decreasing allocation rule. Prices can
then be calculated by the critical bids to make the auction
truthful. A greedy allocation is adopted in Algorithm 1.
Assume channels are indexed by 1, 2, ...|C|. For a simple
heuristic auction, we first compute the shortest path for each
agent as its end-to-end path. Let Is(i) be the set of SNs that
interfere with i along the path. We define the virtual bid of
SN i as

φ(i) =
bi
|Is(i)|

(6)

The rationale behind scaling the bid by |Is(i)| is to take i’s
interference with other agents into consideration, for heuris-
tically maximizing social welfare. Then we greedily assign
minimum indexed available channels along the paths to each
link, according to a non-increasing order of virtual bids φ(i).

Algorithm 1 A greedy truthful auction — channel allocation.

1. Input: Set of channels C, all the compound bids Bi =
(Gi(E i,Vi), si, di, bi), conflict graph H(EH ,VH)

2. for all i ∈ N do
3. Is(i)⇐ ∅;
4. Compute the shortest path P i from si to di;
5. for all i ∈ N do
6. for all liuv along path P i do
7. x(c, liuv)⇐ 0 ∀c ∈ C;
8. if (liuv, l

j
pq) ∈ EH then

9. Is(i)⇐ Is(i) ∪ {i};
10. φ(i)⇐ bi

|Is(i)| ;
11. Win(i)⇐ TRUE;
12. for i ∈ N in non-increasing order of φ(i) do
13. for all liuv along path P i do
14. Let T iuv ⇐ C;
15. for all c ∈ T iuv do
16. if x(c, ljpq) = 1 with (liuv, l

j
pq) ∈ EH ,∀p, q then

17. T iuv ⇐ T iuv\{c};
18. if T iuv = ∅ then
19. Win(i)⇐ FALSE;
20. if Win(i) = TRUE then
21. for all liuv along path P i do
22. Choose the minimum indexed channel cm in T iuv;
23. x(cm, l

i
uv)⇐ 1;

Fig. 2 shows an example to illustrate the channel assignment
procedure. There are four SNs, a, b, c and d, where φ(a) >
φ(b) > φ(c) > φ(d). Two channels are available for allocation.
In the figure, two intersecting links also interfere with each
other. If two links from two different SNs intersect, they cannot
be allocated with the same channel. The algorithm first assigns
Channel 1 to SN a. As a result, it cannot assign Channel 1
to the first link of SN b, which receives Channel 2 instead,
as shown in Fig. 2b, leaving SN c without a channel — it is
impossible to assign either channel to c’s first link. However,
SN d wins, and receives a channel assignment along its path
without introducing interference to a or b.

We now prove that the greedy auction is monotone.

Lemma 1. Algorithm 1 is monotone. That is, the probability
of bidder i with bid bi winning the auction is non-decreasing
in bi, and critical bids for winning agents exist.

Proof: Bidding higher can only increase an agent’s virtual
bid, and therefore increase its rank in Algorithm 1. Hence,
the probability of assigning a channel to the agent is non-
decreasing. Besides, Algorithm 1 is deterministic, so a critical
bid b∗i exists for a winning bidder i, such that agent i always
wins if it bids bi ≥ b∗i .
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Fig. 2: Procedure of channel assignment. Dots and squares represent source and destination nodes respectively.

B. Payment Calculation

Algorithm 2 computes payments for the winning agents. The
payment scheme design is where we ensure the truthfulness
of an auction. Algorithm 2 aims to find a critical bidder with
critical bid b∗i for a winning agent, such that i is guaranteed
to win as long as i’s virtual bid φ(i) ≥ φ∗(i). Here φ∗(i) =
b∗i
|Is(i)| is the critical virtual bid for i. If b∗i is independent
from bi, then charging agent i b∗i will ensure that the auction
is truthful, which we will argue formally later.

We now explain how Algorithm 2 works. It first clears a
winning agent i’s bid, and hence its virtual bid, to 0. Then
we run Algorithm 1 based on (0,b−i). In Algorithm 1, an
agent loses only if a link along its shortest path is unable
to receive any channel. If we are unable to accommodate
agent i, there must exist at least one link along its shortest
path whose neighbouring links (neighbouring vertices in the
conflict graph) have used all the channels. From all the agents
that block links of agent i, we find out an agent j with
the minimum virtual bid, set it as i’s critical bidder, and
compute i’s payment. We claim that φ(i) ≥ φ(j), because
otherwise agent i would not be a winning agent among agents
in Is(i)∪{i}. Agent i’s payment can be computed as follows:

p(i) = φ∗(i)|Is(i)| = φ(j)|Is(i)| (7)

For the example in Fig. 2, we first set SN a’s bid to 0, and
run Algorithm 1 based on the new bid vector. After assigning
channels to agent c, we find that there are no available channels
for the second link of agent a. Hence, agent c becomes the
critical bidder of agent a, which leads to a’s payment p(a) =
φ(c)|Is(a)|. The rule applies to the other two winning agents
b and d as well, where p(b) = φ(c)|Is(b)| and p(d) = 0.

We next show that the auction is individually rational and
truthful.

Lemma 2. The auction shown in Algorithms 1 and 2 is
individually rational.

Proof: Assume agent i wins by bidding bi, and let j be
the critical bidder of i. Then we have φ(i) ≥ φ(j), so p(i) =
φ(j)|Is(i)| ≤ φ(i)|Is(i)| = bi.

Theorem 2. The auction in Algorithms 1 and 2 is truthful.

Proof: Fix i, b−i. Let wi and w′i be agent i’s bid when
being truthful and not, respectively. We need to show that for
agent i with valuation wi, the utility of bidding wi is no less
than the utility of bidding w′i. We analyze the auction case by

Algorithm 2 A greedy truthful auction — payment calculation.

1. Input: Set of channels C, all the compound bids Bi =
(Gi(E i,Vi), si, di, bi), conflict graph H(EH ,VH), all the
routing paths P i and channel assignment from Algo-
rithm 1.

2. for i ∈ N in non-increasing order of φ(i) do
3. p(i)⇐ 0;
4. if Win(i) = 1 then
5. Set b′i ⇐ 0;
6. Run Algorithm 1 on (b′i,b−i);
7. if Win(i) = FALSE then
8. Let φ∗(i)⇐ +∞;
9. for all liuv along path P i do

10. Let T iuv ⇐ C;
11. for all c ∈ T iuv do
12. if x(c, ljpq) = 1 with (liuv, l

j
pq) ∈ EH then

13. T iuv ⇐ T iuv\{c};
14. if T iuv = ∅ then
15. A ⇐ {j|(liuv, ljpq) ∈ EH ,∀p, q; Win(j) =

TRUE};
16. φ∗(i)⇐ min(φ∗(i),minj∈A φ(j));
17. p(i)⇐ φ∗(i)× |Is(i)|;

case. Let

r(bi) =

{
1 if agent i with bid bi receives a channel;
0 if agent i with bid bi doesn’t receive a channel.

First, assume that w′i < wi. According to Lemma 1, it is
impossible for agent i to have r(wi) = 0 and r(w′i) = 1.
If r(wi) = 0 and r(w′i) = 0, there is no incentive to lie. If
r(wi) = 1 and r(w′i) = 0, because the auction is individually
rational, i also has no incentive to lie. If r(wi) = 1 and
r(w′i) = 1, then by observing that the critical bidder does
not change, the utility for agent i remains the same.

Next, assume that w′i > wi. Again it is impossible for agent
i to have r(wi) = 1 and r(w′i) = 0. If r(wi) = 1 and r(w′i) =
1, the critical bidder does not change, so the utility remains the
same. If r(wi) = 0 and r(w′i) = 0, then i has no incentive to
lie. If r(wi) = 0 and r(w′i) = 1, then at least one link is unable
to receive a channel (blocked), when agent i bids wi. From
all the agents that block links of i, we find out the winning
agent j with minimum virtual bid. If i bids w′i > wi and get
assigned a channel, agent j would be the critical agent of i.
Then agent i’s payment would be p(i) = φ(j)|Is(i)| ≥ wi,
which implies a nonpositive utility of i.

This heuristic auction, aiming at achieving a monotonic



allocation rule and finding out a critical bidder for each
winning agent, is directly based on Theorem 1.

V. A TRUTHFUL AUCTION FOR APPROXIMATELY
MAXIMIZING SOCIAL WELFARE

The greedy auction just presented in Sec. IV, while simple
and truthful, attempts to maximize social welfare in a heuristic
manner, without providing any guarantee. In this section, we
set out to design a more sophisticated, randomized, linear
programming based truthful auction with proven bounds on
approximate social welfare maximization.

We first obtain the linear programming relaxation (LPR) of
IP (5), and solve the LPR optimally. We can turn the optimal
LPR solution, scaled down by Λ, to a convex combination of
integer solutions, through a primal-dual linear program. Here
Λ is the upper bound of the integrality gap of IP (5) and
the LPR. Viewing this convex combination as specifying a
probability distribution over the integer solutions, we arrive at
a randomized, truthful in expectation auction with the VCG
payment scheme. We prove that it approximately maximizes
social welfare.

A. Decomposing the Fractional Solution

Optimally and efficiently solving IP (5) is infeasible, so
we resort to an approximation approach. First, we obtain an
LPR by allowing the integer variables f iuv, x(c, liuv) to take
fractional values in [0, 1]. We use S(w) to denote the objective
function of the LPR.

Let f
(∗)
ds be the optimal flow vector from solving the

LPR, which also contains agents’ winning/losing information.
Assume the integrality gap between IP (5) and its LPR is at
most Λ ≥ 1, and there is a Λ-approximation algorithm that
“verifies” this gap, i.e., it achieves at least 1

ΛS(w), for any set
of w. We employ the technique due to Lavi and Swamy [7].
We utilize the Λ-approximation algorithm and compute in

polynomial time a convex decomposition of f
(∗)
ds

Λ into integer
solutions in polynomial size. That is, we will have ρ(l) values

such that f
(∗)
ds

Λ =
∑
l∈I ρ(l)f ids(l), where {fds(l)}l∈I is the

set of all integer solutions, I is its index set and ρ(l) ≥ 0,∑
l∈I ρ(l) = 1.
Now we can view this decomposition as specifying a

probability distribution over the integer solutions. A solution
fds(l) is selected with probability equal to ρ(l). If we set prices
in such a way that the expected prices are VCG prices scaled
down by Λ, that will make our randomized auction truthful
in expectation. Furthermore, the expected social welfare is
exactly the value of the LPR scaled by Λ. We next provide
details on the decomposition and then prove the upper bound
on the integrality gap.

Let f
(∗)
ds be an optimal solution to the LPR containing all

the f ids values. We use Z(F) = {fds(l)}l∈I to denote the
set of all integer solutions to the LPR, where F denotes the
feasible region of the LPR, I is an index set of the integer
solutions. The crux of the method is to decide ρ(l) values such

that f
(∗)
ds

Λ =
∑
l∈I ρ(l)fds(l), where ρ(l) ≥ 0,

∑
l∈I ρ(l) =

1. Now one can view this convex combination as specifying
a probability distribution over the integer solutions, where a
solution fds(l) is selected with probability equal to ρ(l). We
solve the LP below to obtain the convex decomposition:

minimize
∑
l∈I

ρ(l) (8)

subject to ∑
l∈I

ρ(l)f ids(l) =
f
i(∗)
ds

Λ ∀i ∈ N∑
l∈I

ρ(l) ≥ 1

ρ(l) ≥ 0 ∀l ∈ I

The dual of LP (8) is:

maximize
1

Λ

∑
i∈N

ηif
i(∗)
ds + λ (9)

subject to ∑
i∈N

ηif ids(l) + λ ≤ 1 ∀l ∈ I

λ ≥ 0

ηi unconstrained ∀i ∈ N

To obtain the decomposition, an algorithm that approxi-
mately computes the maximum social welfare is needed. We
adapt a joint traffic routing and channel assignment solution
framework due to Alicherry et al. [15] into our setting, with
the objective function being the weighted sum of throughput
(social welfare in our problem) and with the number of radios
at each node being 1. Given that this algorithm may result in
fractional flows, we introduce the following modificaiton: for
an SN i whose flow is fractional, among SNs in {i} ∪ Is(i)
that also have fractional flows, find out the SN with maximum
wif

i
ds, set its flow to 1 and others to 0. We denote this modified

algorithm as A. We show later that Algorithm A “verifies” the
upper bound of the integrality gap between (5) and the LPR.

The primal LP (8) has an exponential number of variables,
which will take exponential time to solve with the simplex or
interior point method [16]. Hence we resort to its dual (9),
which has an exponential number of constraints. If we have a
separation oracle, we can apply the ellipsoid method to solve
the dual (9) and hence (8) in polynomial time [16]. We show a
separation oracle for the dual later, so we can efficiently solve
this pair of primal-dual LPs. One can view ηi as a valuation.
A potential problem is that the ηi values could be negative,
whereas A is only for non-negative valuations. However, one
can instead use A with the non-negative valuations η(+) given
by ηi(+) = max(ηi, 0), and this yields a separation oracle [7].

Claim 1. Let η = {ηi}i∈N be any weight vector. ηi(+) =
max(ηi, 0). Given any integer solution f̃ds ∈ Z(F), one
can obtain fds(l) ∈ Z(F) such that

∑
i∈N η

if ids(l) =∑
i∈N η

i(+)f̃ ids.

Proof: We first exploit the packing property. That is, if
a1 ∈ Z(F) and a2 ≤ a1 is integral then a2 ∈ Z(F). Now



we set f ids(l) = f̃ ids if ηi ≥ 0 and 0 otherwise. Clearly,∑
i∈N η

if ids(l) =
∑
i∈N η

i(+)f̃ ids. Since f ids(l) ≤ f̃ ids is
integral, by the packing property fds(l) ∈ Z(F).

Now we are ready to show the following lemma:

Lemma 3. If the optimal solution to (8) is ρ∗, then we have∑
l∈I ρ

∗(l) = 1.

Proof: We show that the optimal value of (9) is 1, and
hence the lemma follows by strong LP duality. If we simply
set λ = 1, ηi = 0 for all i ∈ N , it provides a feasible solution
with value 1. We then prove that the optimal value is at most
1 by way of contradiction. Let (η(∗), λ(∗)) denote the optimal
solution to (9). Suppose 1

Λ

∑
i∈N η

i(∗)f
i(∗)
ds +λ(∗) > 1. Using

Algorithm A and Claim 1, we can compute a social welfare
maximizing feasible solution fds(l), such that∑

i∈N
ηi(∗)f ids(l) ≥

1

Λ
S(η(∗)(+))

=
1

Λ

∑
i∈N

ηi(∗)(+)f
i(∗)
ds

≥ 1

Λ

∑
i∈N

ηi(∗)f
i(∗)
ds . (10)

Now we have
∑
i∈N η

i(∗)f ids(l)+λ(∗) ≥ 1
Λ

∑
i∈N η

i(∗)f
i(∗)
ds +

λ(∗) > 1, which contradicts the first set of inequalities of (9),
thereby contradicting the feasibility of (η(∗), λ(∗)).

The above lemma shows that without being more restrictive,
the inequality 1

Λ

∑
i∈N η

if
i(∗)
ds + λ ≥ 1 can be added to

the dual (9). We will run the ellipsoid method to solve
this dual LP. The first set of inequalities of (9) will be the
violated inequalities returned by the separation oracle during
the execution of the ellipsoid method. The separation oracle
is, at a point (η, λ), if 1

Λ

∑
i∈N η

if
i(∗)
ds + λ > 1, then we

can use Algorithm A and Claim 1 to find an fds(l) for which
the constraints of (9) is violated; otherwise, we use the half
space 1

Λ

∑
i∈N η

if
i(∗)
ds + λ ≥ 1 to cut the current ellipsoid.

Since the ellipsoid method is guaranteed to take at most a
polynomial number of steps, it will return a set of solutions
{fds(l)}l∈I that is polynomial in size. Then we can plug back
these solutions to (8), leading to a linear program with a
polynomial number of variables and constraints, which we can
solve to recover ρ(l)’s that sum to 1.

B. Studying the Integrality Gap

Now we investigate the integrality gap of the IP (5) and
the LPR. In the LPR, fractional channel allocation is directly
related to link flows, which can be viewed as the fraction of
time a specific link is active. Similarly, we can turn the con-
straint (2) into the following Link Scheduling Constraint [15]:

f iuv +
∑

ljpq:(ljpq,liuv)∈EH

f jpq ≤ 1. (11)

where we assume there is only one channel, for ease of
exposition. We will argue later that the upper bound of the
integrality gap between IP (5) and the LPR does not change
when considering multiple channels.

2Rmax

Rmax

Fig. 3: The circumstance
formed by interference regions
of one link

2Rmax

2Rmax

Fig. 4: The circumstance
formed by interference regions
of two links.

We first introduce the following lemma for a single link,
based on geometric arguments:

Lemma 4. For any channel c ∈ C,

x(c, liuv) +
∑

ljpq :(ljpq,liuv)∈EH

x(c, ljpq) ≤ α(∆) (12)

where α(∆) is a constant that depends only on ∆.

Proof: For a given link liuv , we need to find the maximum
number of links that interferes with liuv yet does not interfere
with one another. For simplicity, we prove the following for
∆ = 2; proofs for other values of ∆ can be derived similarly.
The worst case happens when RT (ui) = RT (vi) = Rmax

and d(ui, vi) = Rmax. We use U(ui, vi) to denote the region
formed by the union of two circles with radius 2Rmax and
centre ui and vi, respectively. Then the problem becomes
placing a max number of points on the circumference of
U(ui, vi) that are at least 2Rmax apart. The circumference is
composed of two major arcs with length 4π

3 , shown in Fig. 3.
Among these links, every “independent” set is of size at most
8. Hence in this case α(∆) = 9.

We then investigate the integrality gap based on the worst
case analysis of multihop transmissions.

Lemma 5. For any channel c ∈ C and an SN i with a path
that has L hops, there are at most g(L,∆) interference free
SNs among Is(i) if all of them are assigned channel c, where
g(L,∆) is a function that only depends on L and ∆.

Proof: Considering the ∆ = 2 case as well, for an end-to-
end path, the worst case happens when the path is formed as a
straight line, and all the interference-free links along the path
belong to different SNs. Adding one link into a path increases
the length of circumstance by 4 · arcsin 1

4 , which is due to the
bold arcs shown in Fig. 4, where a two-hop path is formed.
Then for an SN i with path length L, we have

g(L, 2) =

{
L+ 7 L is odd
L+ 6 L is even

(13)

We can loosen this bound to L + 7, for all L. Similar linear
functions of L can be derived with other values of ∆.

Theorem 3. Assume that a SN’s path is at most Lmax-hops.
Then the integrality gap between the IP (5) and the LPR is at
most Λ = g(Lmax,∆) + 1.

Proof: For an SN i and a single channel c, we know
from Lemma 5 that there are at most g(L,∆) interference free
SNs among Is(i), ensuring every hop obeys (12). In the worst



case, the integral solution picks only one SN from at most
g(L,∆) + 1 SNs. Since this is true for any SN and g(L,∆)
is an increasing function of L, the lemma follows for a single
channel case.

If there are |C| channels, for an SN i, we can imagine that
the maximum independent set of a link is duplicated into |C|−
1 copies, so that the integral solution will pick SNs from less
than (|C|−1)g(L,∆)L+(|C|−1)L+1 = (|C|−1)(g(L,∆)+
1)L SNs. Since the integral solution picks at least (|C−1|)L+1
SNs (picks i, and |C − 1| SNs per link along i’s path), the
integrality gap is at most

(|C| − 1)(g(Lmax,∆) + 1)Lmax + 1

(|C| − 1)Lmax + 1

≤ (|C| − 1)(g(Lmax,∆) + 1)Lmax

(|C| − 1)Lmax

≤g(Lmax,∆) + 1 (14)

Since Algorithm A modifies a fractional flow to 1 among
i ∪ Is(i), it apparently “verifies” Λ.

C. A Randomized Approximation Auction
We now present the design of our randomized auction, in

Algorithm 3. It first solves the LPR to obtain the optimal
f

(∗)
ds . Then a decomposition technique described previously

is employed to compute a feasible set of allocations and a
probability distribution. Next, a solution is chosen according
to its associated probability. Since the ellipsoid method and A
both run in polynomial time, our auction is computationally
efficient. For each bidder i that wins and achieves throughput
f ids(l) with probability ρ(l), the payment is calculated as
follows:

p(i) =
1

f
i(∗)
ds

(
∑
j 6=i

bjy(j)−
∑
j 6=i

bjf
i(∗)
ds ) (15)

where y is obtained by recomputing the LPR with bi = 0.

Algorithm 3 A truthful-in-expectation auction

1. Input: Set of channels C, all the compound bids Bi =
(Gi(E i,Vi), si, di, bi), conflict graph H(EH ,VH).

2. Solve the LPR, obtain optimal solution f
(∗)
ds ;

3. Use the ellipsoid method and Algorithm A on (9) with
f

(∗)
ds , obtain a polynomially sized set of {fds(l)};

4. Solve (8) with f
(∗)
ds and {fds(l)}, finding the ρ(l) values;

5. Pick some solution fds(l) with probability ρ(l);
6. Let p(i)⇐ 0, ∀i ∈ N ;
7. for all i such that f ids(l) = 1 do
8. Compute S(bi = 0,b−i) with the LPR. Let y be the

solution;
9. p(i)⇐ 1

f
i(∗)
ds

(
∑
j 6=i bjy(j)−

∑
j 6=i bjf

i(∗)
ds );

Theorem 4. The auction shown in Algorithm 3 is truthful in
expectation.

Proof: Fix i, b−i. Let wi and w′i be agent i’s bid when
being truthful and not truthful, respectively. Let a and a′ be

the solutions to the LPR for bids (wi,b−i) and (w′i,b−i),
respectively. The expected utility of i when bidding truthfully
is

E[ui(wi)] =
a(i)

Λ
[wi −

1

a(i)
(
∑
j 6=i

bjy(j)−
∑
j 6=i

bja(j))]

=
1

Λ
(wia(i) +

∑
j 6=i

bja(j)−
∑
j 6=i

bjy(j)) (16)

Since for every bidder i, a is optimal for (wi,w−i). Assuming
other bidders bid truthfully yields

E[ui(wi)] ≥
1

Λ
(wia

′(i) +
∑
j 6=i

bja
′(j)−

∑
j 6=i

bjy(j))

= E[ui(w
′
i)] (17)

We now arrive at the following theorem:

Theorem 5. The auction shown in Algorithm 3 achieves a
1
Λ -approximate maximum social welfare in expectation.

VI. SIMULATION RESULTS

Our auctions were evaluated through simulations. We first
focus on the heuristic auction. For each SN, we randomly
and uniformly distribute some nodes in a 1 × 1 region. Two
nodes are connected if their Euclidean distance is at most 0.05.
The largest connected component is used as the connected
graph for the corresponding SN. All bids are taken from a
uniform distribution in the range of [40, 100]. Since the auction
has already been proven to be truthful and the optimal social
welfare is hard to obtain, we evaluate its performance in terms
of auction efficiency, which is defined as

ϑ =

∑
i∈N wif

i
ds∑

i∈N wi
(18)

We then vary the number of channels in the simulations to
study the performance of the auction, where all data are
averaged over 100 experiments.

We observe that, in general, as the number of channels
increases, the auction efficiency increases as well, which
verifies the intuition that the more channels, the higher prob-
ability for a bidder to win. First we change the number of
bidders (SNs), while fixing ∆ = 4 and the number of nodes
for each SN at 300. From Fig. 5a, we can see that our
auction in general effectively exploits the increasing number
of channels available. Even in the extremely interfering case
where there are 100 SNs in the region, the efficiency increases
approximately linearly with the number of channels. Fig. 5b
(with 50 bidders and 300 nodes for each SN) and Fig. 5c
(with 50 bidders and ∆ = 4) also show the performance of our
auction in terms of the severity of interference, by changing ∆
and the size of SNs. We can see that the change of ∆’s does not
hurt the performance too much. However, large sizes of SNs
may increase interference significantly, thereby decreasing the
auction efficiency, where the connected graph for an SN with
500 nodes distributed can contain more than 150 nodes.
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Fig. 5: Performance evaluation of the heuristic auction.

We then compare the performance of our auction with two
other approaches. One is a greedy auction that only assigns
one channel to an SN, in which the same channel cannot be
assigned to SNs who interfere with one another. The other one
is simply a multi-item auction that greedily assigns channels to
links in each SN, without global vision of forming an end-to-
end path. We fix ∆ = 4, the number of potential nodes for each
SN is 450, and the number of bidders is 50. We can see from
Fig. 6 that our auction and the single-channel auction perform
much better than the multi-item auction. Another observation
is that the efficiency of our auction increases faster than the
single-channel one as the number of channels increases. This
justifies the use of multichannel assignment for each SN.
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Fig. 6: Comparison of three dif-
ferent auction settings.
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Fig. 7: A histogram of fractional
solutions of the LPR.

Fig. 7 shows the distribution of the fractional solution to the
LPR for one simulation instance (with 50 bidders, 300 nodes
for each SN, one channel and ∆ = 4), where the sum of all
flows equals 5.67. The agents with relatively large non-zero
flows in the solution are shown in Table II. We can see that
there is only one agent guaranteed to win and most of them
almost always lose (the amount of flows is approximately 0).
In the worst case, our randomized auction will select agents
with flow amount 1, 0.85, 0.54, and one of agents with flow
amount 0.5, and another agent with fractional flow. Note that
two agents with flow amount larger than 0.5 must not interfere
with each other. Hence, in this experiment, algorithm A can
actually achieve 1

1.13 of the solution to the LPR, hence raising
the social welfare with our randomized auction.

TABLE II: Agents with non-zero fractional flows

Agent 2 5 9 12 21 31 35 47
Flow 0.54 0.15 0.46 0.85 0.15 1 0.5 0.5

VII. CONCLUSION

Secondary spectrum auctions are emerging as a promising
approach to efficiently distributing and sharing scarce wireless

spectrum. For the first time in the literature, we propose the
concept of a secondary network, relaxing the over-simplifying
assumption on secondary users in existing research. We de-
signed two auctions for spectrum allocation among SNs.
The first is a simple, greedy style deterministic auction that
heuristically maximizes social welfare. The heuristic auction
is truthful due to its monotone allocation rule. The second
is a randomized, linear optimization based auction that is
not only truthful (in expectation), but also provides proven
guarantees on social welfare. In future work, we plan to further
improve the performance guarantee of the randomized auction,
by proving a tighter bound on social welfare approximation.
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