
1

Overlay Networks with Linear Capacity Constraints
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Abstract— Overlay networks are virtual networks residing over
the IP network, consequently, overlay links may share hidden
lower-level bottlenecks. Previous work have assumed an inde-
pendent overlay model: a graph with independent link capacities.
We introduce a model of overlays which incorporates correlated
link capacities and linear capacity constraints (LCC) to formulate
hidden shared bottlenecks; we refer to these asLCC-overlays. We
define metrics to qualitatively measure overlay quality in terms
of its accuracy (in representing the true network topology) and
efficiency (i.e., performance). Through analysis and simulations,
we show that LCC-overlay is perfectly accurate and hence enjoys
much higher efficiency than the inaccurate independent overlay.
We discover that even a highly restricted LCC class — node-
based LCC — yields near-optimal accuracy and significantly
higher efficiency. We study two network flow problems in the
context of LCC-graphs: Widest-Path and Maximum-Flow. We
prove that Widest-Path with LCC is NP-complete. We formulate
Maximum-Flow with LCC as a linear program, and propose
an efficient distributed algorithm to solve it. Based on the LCC
model, we further study the problem of optimizing delay while
still maintaining optimal or near-optimal bandwidth. We also
outline a distributed algorithm to efficiently construct an overlay
with node-based LCC.

Index Terms— Overlay networks, network protocols, algo-
rithm/protocol design and analysis, network topology.

I. I NTRODUCTION

The proliferation of research on overlay networks stems from
their versatility, ease of deployment, and applicability in useful
network services such as application-layer multicast [1],[2],
media streaming and content distribution [3]. Previous studies
have uniformly taken the view of an overlay network as merely
a weighted network graph; the nodes are end systems, the links
are unicast connections, and the links are weighted by unicast
delay and bandwidth. Overlay networks are therefore treated
exactly as a flat single-level network, in which the overlay links
are independent. In particular, link capacities are independent
of each other. This model is inaccurate as the overlay network
encompasses two levels: a virtual network of end systems residing
on top of an underlying IP network. An overlay link maps to
a path, determined by the routing protocols, in the underlying
network. When two or more overlay links map to paths that
share an underlying link, the sum of the capacities of the overlay
links are constrained by the capacity of the shared link, i.e., these
overlay links arecorrelatedin capacity. This obvious but crucial
observation leads us to conclude that an accurate model of overlay
networks must includelink correlations.

In this paper, we propose the model of overlay network with
linear capacity constraints (LCC). An LCC-overlay is a network
graph in which the capacities of overlay links are represented by
variables and link correlations are formulated as linear constraints
of link capacities (i.e., LCC). The LCC-overlay model is a
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succinct way to accurately represent the true network topology
with all its link correlations, requiring only the additionof a set
of linear capacity constraints to the simple overlay graph.

We address the following questions. How do we qualitatively
measure the quality of an overlay? Why do we prefer LCC-
overlays instead of a simple network graph with independent
links? Our analysis and simulations reveal the necessity ofLCC-
overlay in assuring the quality of overlay networks and we
introduce two qualitative metrics — accuracy and efficiency— to
measure overlay quality. We also study a restricted class ofLCC,
node-based LCC, that is more efficient and of a distributed nature.
Surprisingly, we find that even with such restricted and incomplete
LCC, the accuracy and efficiency are much better than overlays
with no LCC, and they are close to overlays with complete LCC.
We propose a distributed algorithm for constructing an LCC-
overlay based on node-based LCC.

We further study two network flow problems, widest-path
(i.e., maximum-bandwidth single-path unicast) and maximum-
flow (i.e., maximum-bandwidth multiple-path unicast), with the
addition of LCC. Traditional algorithms cannot be used to solve
them in a network graph with LCC. We show that widest-
path with LCC is NP-complete. We formulate the problem of
maximum-flow with LCC as a linear program and propose an
efficient algorithm for solving it.

Due to the importance of the end-to-end delay metric, we
study an interesting variant of the problem of maximum flow
with LCC by introducing the additional metric of delay: Instead
of optimizing only bandwidth, simultaneously optimize both
the bandwidth and the delay metric. However, the objective of
minimizing delay is frequently in conflict with the objective
of maximizing bandwidth. Therefore, we focus on solving the
problem of obtaining minimum or near-minimum delay while
achieving maximum or near-maximum bandwidth. We formulate
the problem as a linear program and propose an algorithm to solve
it.

The remainder of the paper is organized as follows. Sec. II
will introduce the concept of overlays with LCC; provide formal
definitions of the LCC-overlay and the quality metrics; and show
the necessity of LCC-overlay in ensuring high overlay quality,
through analysis and simulations. In Sec. III, we present the
problem of widest-path with LCC and show that it is NP-
complete. In Sec. IV, the problem of maximum-flow with LCC is
presented and formulated using linear programming; an efficient
algorithm for solving it is proposed. The problem of optimizing
both bandwidth and delay is studied and analyzed extensively
through simulations in Sec. V, VI and VII. Then, in Sec. VIII,
we outline an algorithm for constructing an LCC-overlay. Sec. IX
describes the related work and Sec. X concludes the paper.

II. OVERLAY WITH LINEAR CAPACITY CONSTRAINTS

In this section, we will define an overlay with linear capacity
constraints (LCC), and two metrics for measuring overlay quality
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— accuracy and efficiency. We will further demonstrate through
analysis and simulation that LCC are necessary for reliably
ensuring high quality of overlay networks.

As a result of the two-level hierarchical structure, overlay
links are not physical links; instead, they are virtual links that
correspond to paths in the lower-level network. We definelink
correlation as follows: Overlay links are correlated if they map
to underlying paths that share one or more physical links. Link
correlation is a fundamental property of overlay networks.Yet, in
the current prevailing overlay model of a graph in which eachlink
is weighted by its unicast capacity, the underlying assumption is
that overlay links are independent, with independent capacities
being the measured unicast bandwidths. Suppose two overlay
links both map to a bottleneck physical link of capacityc, hence
each has the unicast bandwidthc in the overlay graph; clearly,
when these links are simultaneously used for data transmission,
each one has a capacity of onlyc/2, rather thanc. Thus, the in-
dependent overlay may be egregiously inaccurate in representing
the network in reality.

We propose an overlay model that accurately represents the
real network topology, by using linear capacity constraints to
succinctly formulate link correlations. We refer to it as anLCC-
overlay. Essentially, it is a regular overlay graph, except the links
are not weighted by numbers; instead, the link capacities are
variables, and a set of linear capacity constraints (LCC) express
the constraints placed on overlay links by shared bottlenecks. The
formal definition of an overlay with linear capacity constraints
will be presented later in Sec. II-B.

A. Worst-case analysis of overlays with no LCC

For the purpose of illustration, we examine a simple example
of a two-level network, as seen in Fig. 1(a). The mapping of
overlay links to physical paths is the obvious one in the graph.
We adopt a simplified overlay construction algorithm, denoted
by OC, that is nevertheless representative of such algorithms
proposed previously under the independent overlay model. In
OC, every node selectsd neighbors to which it has links with
the highest bandwidth.1 With d = 3, the overlay graph for our
example network is shown in Fig. 1(b); it is not hard to see that
the results we reach below hold for all feasibled, i.e., d = 2

andd = 1. The highest-bandwidth multicast tree for this overlay
graph can be obtained, as presented in Fig. 1(c), let it be denoted
asTOC . Although thepredictedbandwidth ofTOC according to
the overlay graph is3, the actualachievablebandwidth ofTOC is
clearly only1 because all three links in the tree share the physical
link (r2, r3) with capacity3.

In contrast, under the LCC-overlay model, capacities of over-
lay links are variables and link correlations can be captured
by linear capacity constraints. For instance, the four links
(A, C), (A, D), (B, C), (B, D) are correlated, hence the sum of
their capacities is constrained by the capacity of the physical link
(r2, r3) shared by them, i.e.,xAC+xAD+xBC+xBD ≤ c(r2, r3).
The linear capacity constraints for the overlay graph in Fig. 1(b)

1Though fictitious, this is only a slightly simpler variation of the neighbor
selection rule in [4], whered/2 neighbors are selected from lowest latency
ones and the otherd/2 from highest bandwidth ones among randomly probed
nodes.
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The overlay graph together with the linear capacity constraints
(LCC) form an LCC-overlay. For the LCC-overlay in our exam-
ple, the highest-bandwidth multicast tree is shown in Fig. 1(d)
(obtained by a greedy algorithm that is a variation of the onefor
simple graphs, modified to take LCC into consideration). In this
case, the predicted tree bandwidth is the same as the achievable
bandwidth — both are2.

Taking a cue from the above simple example, we arrive at the
following.

Proposition: For any fixed number of overlay nodesn, there
exists a lower-level networkG such that the bandwidth of an
optimal multicast tree in any overlay graph (for any value ofd)
constructed byOC on top of G is asymptotically1/n of the
bandwidth of an optimal multicast tree obtained in the LCC-
overlay.

Proof: Consider a generalized graphG = (R ∪ S, E) of the
one in Fig. 1(a), withn overlay nodes, see Fig. 2(a). A single
physical link in the middle connectn/2 overlay nodes with the
othern/2 nodes. In case of oddn, nodes are partitioned(n+1)/2

and (n− 1)/2, and the succeeding reasoning still holds. Clearly,
any overlay graph constructed byOC will contain the(β+ǫ)-link
for every link between the partitions, see Fig. 2(b). An optimal
multicast tree in theOC graph must include only the(β+ǫ)-links,
because otherwise its predicted bandwidth would be suboptimal
(β < β + ǫ). However, the actual achievable bandwidth of the
tree mapped toG is only (β + ǫ)/n since alln links in the tree
traverse the same inter-router(β + ǫ)-link in the middle.

In the LCC-overlay, however, the optimal tree has bandwidth
β, as shown in Fig. 2(c). Withǫ approaching0, the OC tree
asymptotically achieves1/n of β. ⊓⊔

An interesting corollary follows:
Corollary: For any β > 0, a lower-level graphG can be

constructed such that: (1) An optimal multicast tree in LCC-
overlay has bandwidthβ. (2) As n → ∞, the achievable
bandwidth of an optimal multicast tree in the independent overlay
(constructed byOC) asymptotically approaches0 with decreasing
ǫ.

B. Formal definitions of LCC-overlay and quality of overlay

Our analysis above reveals that the worst case of an inde-
pendent overlay with no LCC (No-LCC overlay) is that the
optimal-bandwidth topology predicted in the overlay has only
the achievable bandwidth of close to zero. From this egregious
example, we observe that the extreme poor performance of
the independent overlay is a consequence of itsinaccuracy in
representing the true network topology. The LCC-overlay, on the
other hand, represents the network with perfect accuracy, and
hence achieves the optimal bandwidth.

Two questions now arise naturally. (1) How do we quantita-
tively measure the accuracy and the performance of achievable
bandwidth, or in short, the quality of overlay networks? (2)How
does the quality (i.e., accuracy, performance) of LCC-overlays
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Fig. 1. A simple example of the detrimental effect that the independent model of overlay has on the overlay quality.
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Fig. 2. A worst-case example of the poor quality of an overlay with no LCC.

compare with that of No-LCC overlays in realistic network
topologies?

Before we directly address these questions, we must first
formally define the LCC-overlay and the metrics to measure
overlay quality. We also will make more precise the notion of
an overlay flow with its predicted flow rate (i.e., bandwidth)and
its achievable bandwidth in the low-level network.

The two-level hierarchy of an overlay network can be formu-
lated as consisting of:

• A low-level (IP) graphG = (V, E); each low-level linke ∈
E has a capacity ofc(e) ≥ 0.

• A high-level (overlay) graphbG = (bV , bE), where bV ⊂ V ;
• A mappingP of every overlay edge(bv1, bv2) ∈ bE to a low-

level pathP (bv1, bv2) ⊂ G from bv1 to bv2.

The formulation of capacity constraints in the overlay graph
bG is where LCC-overlay departs from No-LCC overlay. The No-
LCC overlay is a pair( bG, bc), wherebc is a capacity function such
that each linkbe ∈ bE has a nonnegative capacitybc(be) ≥ 0. The
LCC-overlay is defined as follows.

Definition 1 (LCC-overlay): The LCC-overlay is a triplet
( bG, C, b) where

• The capacity of each linkbe in bG is a variablexbe.
• (C, b) represent a set ofm linear capacity constraintsCx ≤

b:

– C is a 0-1 coefficient matrix of sizem× | bE|;
– x is the | bE| × 1 vector of link capacity variables;
– b ∈ Rm is the capacity vector.

Each rowi in (C, b) is a constraint of the form
P

be:C(i,be)=1 xbe ≤

b(i).
A flow f from s to t in bG, is an assignment of bandwidth

to every link in bE subject to capacity constraints and flow
conservation (i.e., for every node excepts and t, total incoming
bandwidth is equal to total outgoing bandwidth). The value of the
flow, |f |, is the total outgoing bandwidth ofs.

In a No-LCC overlay( bG, bc), it is not always possible to achieve
the predicted bandwidth|f |, as illustrated in the examples above.

Links in bG may share bottlenecks inG which impose more
stringent constraints on their capacities thanbc which assumes no
correlation whatsoever.

We denote theactual achievable flowof f ⊂ bG in the low-level
graphG by σG(f) and theactual achievable bandwidthof f by
|σG(f)|. We now describe the procedure for obtaining these.

Let f be a flow from nodeA to node C in the No-LCC
overlay shown in Fig. 1(b), withf(A, C) = 3, f(A, B) =

2, f(B, C) = 2, hence |f | = 5. The low-level graphG =

(V, E) is shown in Fig. 1(a). Suppose low-level link(r2, r3) is
in P (A, C) ∩ P (B, C), then the true capacity of overlay links
(A, C) and(B, C) in f is a fair share of the bottleneck capacity,
denoted byγf (A, C) = γf (B, C) = c(r2, r3)/2. For link (A, B),
P (A, B) = {(A, r1), (r1, B)}, thus γf (A, B) = f(A, B). Using
the true capacities of these three links with respect tof , a
maximum flow fromA to C can be obtained. This is the actual
achievable flow off , σG(f), in which a flow of1.5 is assigned
to all three links, and|σG(f)| = 3 is the achievable bandwidth
of f .

In general, givenG and a flow f ⊂ bG, the procedure of
determiningσG(f) is shown in Fig. 3. Note that this procedure
only finds the achievable flow rate for a given overlay flowf (not
the maximal achievable flow rate for the given overlay network),
assuming that the overlay nodes try to send data at the flow rates
assigned to the respective links inf . In this context, it is assumed
that there is no knowledge of the underlying physical network.

We introduce two metrics for measuring the quality of an
overlay network:accuracyand efficiency. We first define accu-
racy and efficiency with respect to a maximum flowf in the
overlay. Accuracy is the predicted flow rate,|f |, divided by the
achievable bandwidth off , |σG(f)|. It essentially measures the
degree to which the overlay over-estimates a maximum flow; an
accuracy value of1 indicates perfect accuracy. Efficiency is the
achievable bandwidth off divided by the low-level maximum
flow bandwidth; it measures how good an overlay maximum flow
performs in comparison with the maximum flow in the low-level
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use max-min fairness to allocate c(e)

among {be : e ∈ P (be) and f(be) > 0},
let each allocation be denoted by γe

f (be)
for each be ∈ bE

if f(be) > 0
γf (be)← min{γe

f (be) : e ∈ P (be)}
else

γf (be)← 0

σG(f)← maximum-flow in ( bG, γf )
|σG(f)| ← bandwidth of σG(f)

Fig. 3. The procedure of determiningσG(f).

network where there are no path constraints. Note that the low-
level maximum flow is the absolute optimal and cannot be attained
on the overlay. The formal definitions are as follows.

Definition 2 (Accuracy): Accuracy of a maximum-flowf in
overlay networkbG residing overG, is

αf
bG

=
| maximum-flowf ⊂ bG |

|σG(f)|
. (2)

Definition 3 (Efficiency): Efficiency of a maximum-flowf in
overlay networkbG residing overG, is

εf
bG

=
|σG(f)|

| maximum-flow f̄ ⊂ G |
. (3)

It may be the case that somef have perfect accuracy and
efficiency because they avoid low-level bottlenecks by mere
chance. Therefore, the overall accuracy and efficiency of an
overlay are better measured by taking the average of accuracy
and efficiency over all possible maximum-flows.

Definition 4 (Accuracy and Efficiency of Overlay):
Accuracy of an overlay bG is the mean of {αf

bG
:

s-t maximum-flowf, ∀s, t}.
Efficiency of an overlay bG is the mean of {εf

bG
:

s-t maximum-flowf, ∀s, t}.

C. Comparing the quality of No-LCC overlay and LCC-overlay
in realistic Internet-like topologies

In practical terms, to discover a complete set of LCC will
incur high complexity and cost, and will also require centralized
operations. Motivated by this, we consider a restricted class of
LCC: node-based LCC. A node-based LCC contains only capacity
variables of links that are adjacent to a single node. In other
words, every node can independently and distributedly discover
its own set of node-based LCC by only probing its adjacent links.
Therefore, we simulate three types of overlays: No-LCC, All-
LCC, and Node-LCC.

Through simulations with realistic network topologies, we
compare the quality of all three types of overlays, using the
accuracy and efficiency metrics defined above. For this purpose,
we use an Internet topology generator, BRITE [5], which is based
on power-law degree distributions.2

First, we compare the accuracy and efficiency of the three
overlays with various overlay sizes relative to the low-level
network size. We fix the number of low-level nodes to100 and

2A seminal paper [6] by Faloutsos et al. revealed that degree distribution in
the Internet is a power-law. Another previous study in [7] provided evidence
that degree-based topology generators, BRITE and a few others, model the
Internet topology quite accurately.

vary the number of overlay nodes from10 to 90; the data for
accuracy and efficiency are averaged over numerous maximum
flows with randomly selected source and destination nodes. In
Figure 4(a), accuracy is plotted against ratio of overlay over low-
level size. The All-LCC overlay always achieves its predicted
maximum flows, because it has all the bottleneck informationin
its complete LCC. Thus All-LCC maintains a constant perfect
accuracy of1. As the number of overlay nodes increases in a
constant low-level network size, the accuracy of Node-LCC only
deviates negligibly from1, meaning its predicted maximum flows
can (almost) always be achieved. No-LCC fares much worse,
with much higher values for the accuracy metric, which indicate
that it is overly optimistic in predicting maximum flow values
that cannot actually be achieved, and what is achieved by these
maximum flows are substantially lower than predicted.

Figure 4(b) shows the efficiency versus overlay-to-low-level
ratio for the three overlays. The top curve is All-LCC, with the
highest efficiency of all three, as expected, since it possesses
all bottleneck information — also for this reason, All-LCC has
the optimal overlay efficiency, i.e., higher efficiency cannot be
achieved by only using overlay links. The surprise here is how
closely the Node-LCC efficiency curve follows that of All-LCC
for all overlay ratios less than65%. In reality, overlay networks in
the Internet are much smaller in size compared to the low-level IP
network, therefore Node-LCC has near-optimal overlay efficiency
for realistic overlays. For most of the overlay ratios, No-LCC
has significantly lower efficiency than both All-LCC and Node-
LCC. It should be noted that No-LCC efficiency is not as poor
as its accuracy, relatively to the two LCC. This can be explained
by the fact that No-LCC heavily over-estimates (as indicated by
its accuracy values) link capacities, and thus overloads the low-
level links, causing them to be used to full capacity and thereby
benefiting the efficiency. But overloading low-level links has the
disadvantage that other links are not utilized (or under-utilized)
because it was not foreseen that they were needed. This is why
No-LCC is still significantly less efficient than Node-LCC.

Next, we evaluate the accuracy and efficiency of maximum
flows with a fixed overlay-to-low-level ratio of30%. The distri-
butions of accuracy over100 maximum flows for No-LCC and
Node-LCC are given in Fig. 5(a) and (b), respectively. As already
mentioned above, effectively all Node-LCC maximum flows have
perfect accuracy, while well over a third of No-LCC maximum
flows have extremely poor accuracy (values greater than or equal
to 5).

The distributions of efficiency over maximum flows are more
interesting. In No-LCC, shown in Fig. 6(a), over half of the
maximum flows are less than60% efficient, and only15% of them
are100% efficient. The distribution is quite different for All-LCC,
seen in Fig. 6(c), in which a much higher number (almost25%)
of maximum flows has100% efficiency, and over half of them
have efficiencies higher than70%. The Node-LCC distribution
in Fig. 6(b) looks almost the same as All-LCC, with only slight
differences. It has the same number of maximum flows with100%

efficiency and just about half of them have efficiency higher than
70%.

The coinciding of Node-LCC efficiency with All-LCC effi-
ciency is confirmed in their cumulative distributions in Fig. 6(d),
where the two curves are almost the same. In this graph, it can
be seen more clearly the observations made above. Most of the
All-LCC and Node-LCC flows have higher efficiency, while most
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Fig. 4. Overlay quality versus ratio of overlay size to low-level size.

flows in No-LCC have lower efficiency.
We examine the impact of larger network sizes on accuracy

and efficiency, by increasing the network size to500 nodes and
keeping the ratio of overlay to network size at30%. Figure 7
shows the accuracy distributions of No-LCC and Node-LCC.
No-LCC accuracy is much worse than for the previous smaller
network size. However, the increased network size causes only a
tiny change in Node-LCC accuracy which stays near1.

Now we proceed to compare the efficiency distributions. The
efficiency distribution for All-LCC, given in Fig. 8(c), shows
extremely high efficiency for almost all the maximum flows
sampled. Most of them have very high efficiency, and a majority
of flows are100% efficient. All-LCC efficiency has significantly
improved for increased network size. The reason, we conjecture,
is that the low-level maximum flows have to travel longer paths
in the larger network, thus they are more similar to the pathsthat
overlay flows map to, which means that both overlay and low-
level maximum flows encounter much of the same bottlenecks.

The same reasoning explains the improved efficiency for Node-
LCC in this larger network; Fig. 8(b) shows its efficiency distri-
bution. It is still similar in shape to All-LCC, though with more
differences than in the smaller network. On the other hand, as
can be seen in Fig. 8(a), No-LCC efficiency is even more inferior
compared to Node-LCC (and of course All-LCC) than in the
smaller network case.

The cumulative distribution graph in Fig. 8(d) illustratesthat
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Fig. 5. Accuracy distributions for No-LCC (a) and Node-LCC (b), with the
fixed ratio30% of overlay to low-level size.

while Node-LCC efficiency is no longer almost the same as All-
LCC, its gap from All-LCC is still smaller than the gap between
itself and No-LCC. In Node-LCC, most of the maximum flows
have high efficiency. Moreover, it should be noted that Node-LCC
is, just like All-LCC, much more efficient for the larger network
size than for the smaller network size. We conclude that increasing
network size causes significant deterioration in quality ofNo-
LCC overlays, but actually improves significantly the quality of
All-LCC and Node-LCC overlays.

III. W IDEST-PATH WITH LCC IS NP-COMPLETE

The LCC-overlay is an entirely different type of network
graph than traditional network graphs. The algorithms for various
network flow problems do not work in the LCC-graph. In this
section, we consider the problem of widest-path with LCC, i.e.,
finding the highest-bandwidth unicast path from a sources to
a destinationt. Widest-path can be solved by a variation on
Dijkstra’s shortest-path algorithm, however, this algorithm does
not in general find a widest path in an LCC-graph. It is easy to
see why: when a widest path is found based on independent link
capacities, it may contain links that are constrained by an LCC,
therefore the path may not attain its predicted width (bandwidth)
and its actual width is smaller than some other path.

We begin by formulating the problem of widest-path with LCC.
We are given an LCC-graph{G = (V, E), C, b}, as defined above
in Sec. II-B.
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Fig. 6. Efficiency distributions of No-LCC (a), Node-LCC (b), and All-LCC
(c); and their cumulative distributions (d), for the fixed ratio 30% of overlay
to low-level size.
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(a) Accuracy distribution over maximum flows for No-
LCC overlay, for a network size of500.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

Accuracy

N
um

be
r 

of
 m

ax
im

um
 fl

ow
s

(b) Accuracy distribution over maximum flows for Node-
LCC overlay, for a network size of500.

Fig. 7. Accuracy distributions for No-LCC (a) and Node-LCC (b), for
network size500.

The width of a pathp = 〈e1, e2, . . . , ek〉 ⊂ G, w(p), is defined
as

maximize xe1

subject to xej = 0, ∀ej /∈ p,

Cx ≤ b,

and xe1
= xe2

= . . . = xek .

In the above, settingxei equal for allei ∈ p and minimizing
one of them, sayxe1

, is equivalent to maximizing the minimum
of xei subject to the other constraints. In practice, the above
maximization problem can be solved by first assigning1 to
xei , ∀ei ∈ p, and 0 to the remaining variables. MultiplyC by
the assignedx and multiply the product by a vector of1’s (to
sum the rows of the product) to obtainr. Divide b by r (if an
element ofr is 0, the division gives∞), and take the minimum
of these elements.

We define the widest-path weight fromu to v as ω(u, v) =

max{w(p) : u  p v} if there is a path, and otherwise it is0. A
widest path fromu to v is any pathp such thatw(p) = ω(u, v).

We define the widest-path with capacity constraints problemas
a decision problem:

Widest-Path with Linear Capacity Constraints (WPC)

• INSTANCE: An LCC-graph(G, C, b), where G = (V, E)

and (C, b) are a set of LCC, specifieds and t, a positive
integerK ≤ max{bi}.

• QUESTION: Is there a directed pathp from s to t whose
width is no less thanK?
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(a) Efficiency distribution over maximum flows for No-
LCC overlay, for network size of500.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

Efficiency

N
um

be
r 

of
 m

ax
im

um
 fl

ow
s

(b) Efficiency distribution over maximum flows for Node-
LCC overlay, for network size of500.
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(c) Efficiency distribution over maximum flows for All-
LCC overlay, for network size of500.
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flows for No-LCC, All-LCC and Node-LCC, for network
size of500.

Fig. 8. Efficiency distributions for No-LCC (a), Node-LCC (b), and All-LCC
(c); and their cumulative distributions (d), for network size 500.

Theorem: WPC is NP-complete.
Proof: WPC is in NP because a nondeterministic algorithm

need only guess a subset ofE and check in polynomial time
whether these edges form a pathp with w(p) ≥ K.

We transform the Path with Forbidden Pairs (PFP) [8] to WPC.
The PFP problem is defined as follows. INSTANCE: Directed
graph G = (V, E), specified verticess, t ∈ V , collection F =

{(a1, b1), . . . , (an, bn)} of pairs of vertices fromV . QUESTION:
Is there a directed path froms to t in G that contains at most
one vertex from each pair inF?

Let G, s, t, F be any instance of PFP. We must construct a
graphG′ = (V ′, E′), s, t ∈ V ′, a set of linear capacity constraints
Cx ≤ b for edges inE′, and an positive integerK ≤ maxi{bi}

such thatG′ has a directed path froms to t of width no less than
K if and only if there exists a directed path froms to t in G that
contains at most one vertex from each pair inF .

Any vertex v that is in V and not in any pair inF remains
unchanged inV ′. Any edgee ∈ E that is not incident to a vertex
in F is added toE′ without change. For every vertexu that
appears inF , we replace it with two verticesu′, u′′ and a directed
edgeeu from u′ to u′′, we call thisu’s replacement edge. For
every directed edgee = (v, u) ∈ E that entersu, an edgee′ =

(v, u′ is added toE′; similarly, for every edgee = (u, v) ∈ E

that exitsu, we adde′ = (u′′, v).
Now we form the linear capacity constraints. Each edgee ∈ E′,

except the edges that replaced vertices inF , gives rise to a one-
variable constraintxe ≤ 1. For each pair of vertices(a, b) ∈ F

that have two replacement edgesea and eb in G′, respectively,
we form a two-variable constraintxea + xeb ≤ 1.

Finally we set K = 1. Clearly the construction can be
accomplished in polynomial time.

Suppose there exists a directed pathp from s to t in G con-
taining at most one vertex from each pair inF . A corresponding
pathp′ can always be obtained inG′ by simply substituting allp’s
constituent vertices that appear inF by their replacement edges
in G′. If such a replacement edgeea corresponding to a pair
(a, b) ∈ F is in p′, then obviouslyeb /∈ p, i.e., settingxea = 1

and xeb = 0 gives ea width 1 while conforming to the capacity
constraintxea + xeb ≤ 1. If neither edges from a two-variable
constraint appear inp′, they can simply be set to have width 0.
Thus all two-variable constraints are satisfied. Any edge that is
not a replacement edge for a vertex inF can be assigned a width
of 1 without violating its corresponding one-variable constraint,
therefore all the one-variable constraints are satisfied. Since all
edges inp′ are assigned a width of 1,p′ is the desired path for
WPC in G′.

Conversely, letp′ be an s − t path in G′ satisfying all the
constraints and having width no less than 1. The width ofp′

being no smaller than 1 implies that in order to satisfy every
two-variable constraint, ifea ∈ p′, then xea = 1, xeb = 0,
otherwise, vice versa. In short, at most one edge from any two-
variable constraint appears inp′. Collapsingp′ to a pathp ∈ G by
shrinking the replacement edges into their corresponding vertices,
it is obvious thatp satisfies the PFP condition. ⊓⊔

Even though the WPC problem is NP-complete, we discovered
through simulations that widest paths obtained without consider-
ing LCC (but only using independent link capacities) are able to
achieve an actual bandwidth that is optimal or extremely close to
optimal. The reason, we believe, is that it is highly unlikely for
links in a single path to correlate heavily, which means thatactual
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Fig. 9. Shows the convergence of Lagrangian function values(or Lagrangian
subproblem solutions)L(µ) (in Problem 9) to a value near to the true optimal
valuez∗ (in Problem 4), after a relatively small number of iterations.

achievable bandwidth (width) is the same as or very close to the
predicted bandwidth. The lesson here is that the traditional widest-
path algorithm suffices for realistic LCC-overlays. In general,
however, the WPC problem — with considerations of all possible
pathological cases — is still NP-complete.

IV. M AXIMUM FLOW WITH LCC

In this section we study the problem of maximum flow in an
LCC graph. The traditional maximum flow algorithms such as
Ford-Fulkerson and Push-Relabel cannot solve the maximum flow
with LCC problem. We first formulate the problem as a linear
program and then propose an algorithm for it based on Lagrangian
relaxation and existing algorithms for minimum cost flow.

Maximum Flow with LCC Problem (MFC):

• Input : bG = (bV , bE), C, b

• Output: A flow f ⊂ bG satisfying LCC constraints(C, b)

• Goal : Maximize|f |

Like the maximum flow problem, the MFC problem can be
viewed naturally as a linear program. A variablev is used to
indicate the total flow out ofs and intot. In the flow conservation
constraint,A is the node-arc adjacency matrix forbG,3 andh is a
vector with a0 for every node, excepth(s) = −1 andh(t) = 1.

Maximize v

subject to
Af + hv = 0

Cf ≤ b

f ≥ 0

The MFC linear program can be solved by general linear
programming algorithms, such as the simplex method. However,
due to their general nature, they may lack flexibility and may
not be as efficient as algorithms that are more specific and
tailored to the problem. We propose an alternative solutionof
the MFC problem using Lagrangian relaxation and an existing
combinatorial algorithm for solving the subproblem of minimum
cost flow. With the characteristics of the MFC problem, the
minimum cost flow algorithm we chose has the lowest complexity.

3Rows are nodes; columns are edges; for each directed edgee = (i → j),
A(i, e) = 1, A(j, e) = −1, otherwise entries ofA are zero.

Our simulation result presented later also shows that Lagrangian
relaxation technique converges relatively quickly.

Note that the MFC linear program only differs from the generic
maximum flow linear program in having LCCCf ≤ b as the
inequality constraint instead off ≤ b. MFC can be seen as a
generalized maximum flow problem; maximum flow is a special
case of MFC with the identity matrix asC.

With that observation, we modify the linear program slightly to
reveal even more clearly the embedded maximum flow structure
in the MFC problem. We do this by sieving (uncorrelated) link
capacity constraints from(C, b): for each linke, add the constraint
f(e) ≤ bl(e), where bl(e) = min{b(j) : C(j, e) = 1}, that is,
minimize over all constraints inC involving f(e). It is easy to see
that the additionalf ≤ bl constraints do not change the feasible
flow region, therefore the new linear program is equivalent to the
original one. For convenience in subsequent manipulation,the
objective function and the equality constraint are expressed in a
different form.

z∗ = Minimize −v (4)

subject to

Af + hv = 0 (5)

f ≤ bl (6)

Cf ≤ b (7)

f ≥ 0. (8)

It is now evident that MFC is a maximum flow problem with
some additional constraints (i.e., the LCC) in (8), thus we can
adopt the decomposition solution strategy to exploit its underlying
network structures for which efficient algorithms have already
been developed.

We apply the solution method of Lagrangian relaxation [9] to
the MFC problem, by associating nonnegative Lagrange multipli-
ers µ = [µi]

m
1 with the LCC constraints in 8, and creating the

following Lagrangian subproblem:

L(µ) = min −v + µ(Cf − b) (9)

subject to

Af + hv = 0, f ≤ bl, f ≥ 0. (10)

For any given vectorµ of the Lagrangian multipliers, the value
L(µ) of the Lagrangian function is a lower bound on the optimal
objective function valuez∗ = min−v of the original problem (4).
Hence, to obtain the best possible lower bound, we need to solve
the Lagrangian multiplier problem

L∗ = max
µ≥0

L(µ). (11)

Note that for the our Lagrangian subproblem (9), for any fixed
value of Lagrangian multipliersµ, L(µ) can be found by solving
a minimum cost flow problem. A polynomial-time minimum cost
flow algorithm is the cost scaling algorithm, with a running time
of O(n3 log(n ·K)), wheren is the number of nodes andK is
the upper bound on all the coefficients in the objective function.
Since the objective coefficients are1 or−1, the time complexity in
this case isO(n3 log(n)). We choose the cost scaling algorithm
precisely because its running time depends neither onm (i.e.,
number of LCC or rows inC), nor onU (upper bound on values
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in bl).
4 The values ofm andU may be rather large, whereasC

is a constant, in this specific minimum cost flow problem.
Now that we can solve the Lagrangian subproblem for any

specificµ, we can solve the Lagrangian multiplier problem (11)
using the subgradient optimization technique (chosen because the
Lagrangian function may not be differentiable for some values of
µ). It is an iterative procedure: begin with an initial choiceµ0

of Lagrangian multipliers; the subsequent updated valuesµk are
determined byµk+1 = [µk + θk(Cxk − b)]+. Here, the notation
[.]+ means taking the maximum of0 and each component of
the vector;xk is a solution to the Lagrangian subproblem when
µ = µk; θk is the step length at thekth iteration. The step length
is selected to be a widely used heuristic,θ =

λk(UB−L(µk))
‖Cxk−b‖2

,
where0 < λk < 2 and UB is any upper bound on the optimal
value of (4).5

We show in Fig. 9 that for MFC in a simulated network
in which 30% of the nodes are overlay nodes, the Lagrangian
function values converge to near optimal value in around65

iterations.

V. TWO-METRIC OPTIMIZATION

Aside from sustainable flow rate, end-to-end delay is also
a critically important Quality-of-Service metric for multimedia
content distribution. Thus far, we have focused exclusively on the
optimization of a single metric: flow rate. However, end-to-end
delay is often a metric of interest, to be constrained or minimized;
for instance, real-time streaming of video or audio is delay-
sensitive. Even nonreal-time multimedia content distribution will
certainly prefer to minimize delay while maintaining optimal
rate. In this section, we take delay into consideration as an
additional metric to be optimized. More specifically, we tryto
simultaneously minimize end-to-end delay and maximize flow
rate, and to find a trade-off between the two possibly conflicting
objectives.

We must first clarify what exactly it is that we are trying to
minimize, that is, define the formula of end-to-end delay that
will be used in the optimization. The basic definition of end-
to-end delay is the time it takes for a packet to be transmitted
from source to destination. Note that given a flowf from s to
t, it can be decomposed intom single-path sub-flows{pi}

m
i=1,

such thatf is a disjoint union of them and eachpi traverses
only a single path froms to t. Since quality of service is best
measured by receiver perception, delay off should be defined as
the maximum or the average of the delays ofpi’s. Given only
f , it is not easy to decompose it and find or even estimate the
maximum of single-path sub-flow delays. Fortunately, itis easy
to obtain the total delay, and by minimizing the total delay,it is
equivalent to minimizing the average single-path sub-flow delay.
Hence, we study the problem of simultaneously maximizing the
flow rate and minimizing the average path delay.

Since the goal is to find flows with high rates and low delays,
we call themWide-Shortflows. We give the linear programming
formulation for finding Wide-Short flows:

4All the other polynomial-time minimum cost flow algorithms described in
[9] include eitherm or U or both.

5It should be noted that sometimes there may be a gap between the optimal
Lagrangian multiplier objective function value and the optimal value for the
original problem, the branch and bound method can be used to overcome the
gap. We do not go into the details here.

Maximize v − α ·
P

i:Ê
d(i)f(i)

subject to
Af + hv = 0

Cf ≤ b

f ≥ 0

As in the case of maximizing only the flow rate,A is incidence
matrix, C is the matrix for linear capacity constraints,b is
the capacity vector,f is the vector of link flow variables. The
difference is in the objective function. In addition to maximizing
the total flow variablev, we also minimizeα · (total delay). We
refer to the parameterα as the delay penalty weight (DPW). Note
that in the objective function, a solution with higher flow rate is
preferred, while the solution is also penalized for higher delay,
and α is the weight the penalty based on how much the total
delay is permitted to affect the objective function value.

VI. D ELAY PENALTY WEIGHT (DPW) IN WIDE-SHORT

FLOWS

To evaluate the flow rates and delays of wide-short flows,
we conduct experiments by simulations withC and Matlab, on
realistic topologies generated by, again, the power-law degree-
based topology generator, BRITE.

We selected three reasonable strategies for constructing overlay
meshes and implemented them in our simulations. In the simu-
lations, the mesh construction algorithms differ mainly intheir
neighbor selection protocols:

1. k-widest (KW): k neighbors with which the node has the
highest-capacity adjacent links.

2. Short-long (SL):k/2 lowest-delay adjacent links andk/2

randomly selected links. This was proposed in [10].
3. Short-wide (SW):k/2 lowest-delay adjacent links andk/2

highest-capacity links. This was proposed in [4].

Each of the above three overlay meshes is constructed with
linear capacity constraints. In our simulations, the Wide-Short
flows are obtained in all three types of LCC overlay meshes.

We first experimented with various values of the delay penalty
weight (DPW), α in the linear program. With network size
300 and 33% of the nodes being overlay nodes,α (DPW) is
varied from0.04 to 0.25. For eachα (DPW) value,100 pairs of
source and destination nodes are randomly chosen, and thus100

maxflows and wide-short flows are obtained. This is done for the
three types of LCC overlay meshes: KW, SL, and SW.

The maxflow and wide-short flow rates, averaged over the
100 runs, are plotted against the increasing DPW values in
Figure 10(a). The average maxflow rates obviously do not change
for different DPW values. For DPW values less than0.06, the
wide-short flow rates match maxflows. The three curves for wide-
short flow rates (on KW, SL and SW overlays) follow each
other closely as they decrease over increasing DPW values. This
indicates that despite differences in neighbor selection rules in
overlay mesh construction, the behavior of wide-short flow rates,
as DPW varies, is essentially the same.

In Figure 11(a), the delays of maxflows and wide-short flows
are shown. The delay of wide-short flows are far smaller than
that of maxflows, going from almost two orders smaller to three
orders smaller, as DPW increases.

To see more clearly the trade-off between maximizing flow
rate and minimizing delay, we show both wide-short flow rate
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Fig. 12.

and delay in the same graph. Since flow rate and delay have
different units, it is not possible to compare them directlywith
their absolute values. Rather we are interested in how much and
how fast is the decrease in flow rate compared to the decrease
in delay, as DPW increases. Therefore, for each of the three
overlays, both flow rate and delay values are normalized by means
of dividing each by their respective highest value,i.e., dividing by
the values when DPW is the smallest. A normalized flow rate is
the fraction of maxflow rate that is achieved by wide-short flow. A
normalized delay is the delay in proportion to the delay of wide-
short flow at the smallest DPW (i.e., α) value (in this experiment,
0.04). With the reference points of maxflow rate and delay at the
smallest DPW in this experiment, the relative improvementsin
flow rate and delay may be compared with each other.

The normalized flow rate and delay of wide-short flows on the
three overlays are shown in Figure 12(a). As usual, the results
are average values over100 runs with randomly selected source-
destination pairs. Looking at the SL overlay, the flow rate curve
is well above the delay curve, which is the promising sign that
flow rates do not degrade nearly as quickly as the improvement
in delay. At DPW value in the middle of roughly0.12, the wide-
short flow rate is around70% of the maximum while its delay
is already only50% of the starting point. Almost the exact same
trade-off relationship exists in KW and SW overlays. Once again,
different overlays appear to exhibit the same behavior.

The same graphs for flow rates, delay, and normalized rates
and delay, over increasing values of DPW, are plotted for a much
larger network size of3000, in Figure 10(b), 11(b), 12(b),
respectively. It can be seen that larger network size does not affect
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the performance and behavior of Maxflow and Wide-Short flow.

VII. W IDE-SHORT FLOWS IN NETWORKS OF VARIOUS

OVERLAY RATIOS

We also experimented with varying the ratio of overlay nodes
over total number of nodes including low-level nodes in the
network. In our simulation, the number of overlay nodes over
the total number of nodes in the network ranges between10%

and70%, in networks of size300 and3000.
Based on the effect of differentDPW values on Wide-Short

flows, we selected theDPW values with the aim of obtaining
Wide-Short flows that have maximum rates with low delays. We
wished to see if Wide-Short flows, with appropriately chosen
DPW, would be able to attain low delay while still maintaining
maximum flow rate, over a wide range of overlay percentages.
For network size300, the DPW is set to be0.05; for network
size 3000, the DPW is 0.03. As above, three different types of
overlays (KW, SLandSW) are constructed for each network size.

For each network topology and each type of flow (Maxflow,
Wide-Short, Shortest-Path),100 pairs of source and destination
nodes are randomly selected, the flow rates and delays shown in
the following are all averaged over100 runs.
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Fig. 13. Delay inefficiency of Maxflow and Wide-Short flows. In(b), only
one Wide-Short curve is shown because the delay results of all three overlay
types are too close together to be distinguished.

Figure 13 shows the average flow rates of Wide-Short flows
compared with those of maxflows. The results of only one type
of overlay are shown, because all three types of overlays yielded
the same results of the flow rates of Wide-Short flows matching

exactly those of maxflow for all overlay percentages, with only
the most negligible differences.

Now we proceed to examine the delay of Wide-Short flows,
compared with that of both maxflow and Shortest-Path. We
define a metric calleddelay inefficiencyfor comparison: the delay
inefficiency of a flow is simply its delay divided by the delay of
the Shortest-Path in the same overlay topology. It measure how
many times worse is the delay of this flow than the smallest
possible delay of a flow (one that has only a single path).

The delay inefficiency of Maxflow and Wide-Short flows for
the three types of overlays is plotted in Figure 14. The delay
inefficiency of Maxflow in all three types of overlays is so high
compared to Wide-Short flows that the latter appears to be0 when
plotted in the same graph with the former. This holds for the entire
range of overlay percentages. The delay inefficiency of Maxflow
increases linearly, with a large slope, as overlay nodes become
more dense.
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Fig. 14.

To see more plainly the delay inefficiency of Wide-Short flows,
it is shown by itself in Figure 15. Aside from the obvious factthat
Wide-Short flows have low delay inefficiency that remains well
below30 in all the simulated scenarios, two more things are worth
noting based on differences observed between Figure 14 and
Figure 15. (1) For both the smaller and the larger network size,
shown in Figure 15(a) and (b), respectively, the delay inefficiency
increases only very slightly as overlay percentage increases. (2)
As the network size is increased ten-fold (from300 to 3000), the
delay inefficiency of Wide-Short flows remains roughly the same.
In contrast, for Maxflow, delay inefficiency increases by almost
an order of magnitude as the network size is increased.
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Fig. 15.

VIII. C ONSTRUCTING ANLCC OVERLAY

In this section, we present a distributed scheme for constructing
an LCC overlay. In Sec. II, we showed that node-based LCC
exhibits high accuracy and efficiency that are, in most cases,
closer to the quality of a complete set of LCC than to that of no
LCC. The advantage of node-based LCC is that they are naturally
distributed. In our scheme, an overlay node first determinesa
conservative set of node-based LCC, i.e., coarse LCC; it then
successively refinesthe LCC.

As with all overlay construction methods, the input is a set of
overlay nodes, each possessing a list of other known nodes — the
list may not be complete at the beginning, but it is periodically
disseminated and updated as new information from other nodes
arrives. The existing methods make use of unicast probes to esti-
mate link bandwidth. The independent unicast probes cannotyield
information on shared bottlenecks of overlay links. Therefore, the
probing tool we use in our scheme is an efficient and accurate
technique for detecting shared bottlenecks (DSB), proposed by
Katabi et al. in [11], [12]. This technique is based on the entropy
of the inter-arrival times of packets from flows. A set of flows
are partitioned into groups of flows, each group of flows sharea
bottleneck, and the bottleneck capacities are also measured. We
refer to this probing tool for detecting shared bottlenecksas DSB.
Every time DSB is executed with the input of a set of flows, the
output is a collection of groups of flows with their corresponding
bottleneck capacities.

Prior to determining LCC, a node selects up tok neighbors
— any of the existing neighbor selection rules can be substituted
here, for our simulation, we used the rule of selecting thek highest
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Fig. 16. Illustrates the phenomenon of hidden bottlenecks.
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Fig. 17. The rapid convergence of the accuracy of discoverednode-based
LCC as compared to the complete node-based LCC.

bandwidth links.
The node-based LCC are obtained in stages of increasing

refinement. In the first stage, the least refined set of LCC is
determined. A node executes DSB once with the input of the
set of k flows to all its neighbors. Thek flows are partitioned
into n bottleneck-sharing groups of flows,g1, g2, . . . , gn, with
the corresponding bottleneck capacities,b1, b2, . . . , bn. The LCC
obtained are thusC1 = {

P
e∈gi

xe ≤ bi}
n
i=1. Since DSB

detects only the dominant bottlenecks, some bottlenecks cannot be
discovered in the first stage. We give an example of this in Fig. 16;
assume that nodeU is using DSB to probe for bottlenecks,
and assume that bottleneckB1 has a smaller capacity thanB3.
When nodeU executes DSB with all5 flows from its neighbors
(V 1, . . . , V 5), only the most dominant bottlenecksB1 and B2

can be discovered. Now the set of5 flows are partitioned into
two groups,g1 = {V 1, V 2, V 3} with bottleneck capacity ofB1

and g2 = {V 4, V 5} with capacity ofB2. The two LCC thus
obtained are perfectly accurate, but not complete; moreover, they
are conservative in bounding the two flows fromV 1 and V 2 to
the capacity ofB1. To further determine more refined LCC, node
U must execute DSB with the input of only the flows fromV 1

andV 2. This will be done in the second stage of LCC refinement.
In order to guarantee that all hidden bottlenecks behind the

dominant ones are found, all possible subsets of flows in each
group must be probed separately. However, the brute-force search
is exponential in computational complexity and hence infeasible.
We maintain a low complexity by randomly dividing each group
g into two subsets and execute DSB on each subset.

Although this procedure does not exhaustively search through
all possibilities, our simulation results show that it is not only
efficient but it is also able to find LCC that are negligibly close
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to the complete LCC, after a certain number of refinement stages.
The entire procedure of discovering node-based LCC is sum-

marized as follows:

1) Start with G containing one single group including allk

flows.
2) Execute DSB with each groupg from G separately.
3) Every groupg is partitioned inton sub-groups, from which

n LCC derive; add toC (the growing set of LCC) only
those LCC that are not redundant with the ones already in
C.

4) Each sub-group containing more than two flows is randomly
divided into two subsets andG now contains all such
subsets as its groups.

5) Repeat step 2 as long as more LCC can be found.

We use the simple example in Fig. 16 to illustrate the above
procedure for finding node-based LCC. NodeU executes the
procedure as follows. In step 1,G contains all 5 flows incident to
nodeU (with the overlay nodesV 1 . . . V 5). In the first stage, steps
2 finds two LCC (to add to the setC): fV 1 + fV 2 + fV 3 ≤ B1,
fV 4 + fV 5 ≤ B2. Now there are 2 sub-groups:{V 1, V 2, V 3}

and {V 4, V 5}. The first one contains more than two flows and
is hence further divided to two subsets:{V 1, V 2} and {V 3}.
Thus, at the start of the second stage,G has three groups:
{V 1, V 2}, {V 3}, {V 4, V 5}. Steps 2 to 4 will then find the new
LCC: fV 1 + fV 2 ≤ B3, which will be added toC. At the end,
the nodeU has three node-based LCC inC.

The simulation results for a network of100 nodes with30%

overlay nodes are given in Fig. 17. In our simulation, LCC
obtained at successive stages of refinement are used to compute
maximum flows, and maximum flows are also computed from
the complete node-based LCC. A high number of source and
destination node pairs are randomly chosen to compute maximum
flows and the maximum flow bandwidths are averaged over all
such pairs. In Fig. 17, the average maximum flow bandwidths for
successive stages of LCC refinement are plotted, and compared to
the average maximum flow bandwidth computed using complete
node-based LCC. After only5 refinement stages, the DSB LCC
are as good as complete node-based LCC. The number of stages
required for such accuracy may have something to do with the
node degree limit, which is set at6 in this simulation, because
the node degree limit determines the maximum size of the groups
given by DSB.

The complexity of the procedure depends on two factors: the
number of executions of DSB and the number of flows probed.
The number of packets per flow required for DSB depends on
the cross traffic condition and the bottleneck sharing complexity;
a reasonable estimate based on reported empirical results in [11]
is a few hundred packets. In our simulation, for obtaining LCC
that are98% accurate of complete node-based LCC, DSB is
executed an average of3.6 times and the average number of
flows probed is13.5. This translates to a total of a few thousands
of probes used. It is worth noting, though, that the probing
and discovery of node-based LCC can be done passively. The
overlay can begin data transmission with an initial topology
without knowledge of LCC. Then gradually through time, the
ongoing data transmission essentially acts as passive probing and
is used to determine more and more refined node-based LCC.
With increasingly complete LCC, the data dissemination topology
can be changed accordingly.

IX. RELATED WORK

Prior work in overlay networks have without exception assumed
an overlay model of independent link capacities, with no link
correlation. To alleviate the adverse effect of overloading the
underlying network from mapping too many overlay flows to
shared bottlenecks, the typical approach is to limit overlay node
degrees. Our proposed LCC-overlay is able to model the real
network topology more accurately, by explicitly incorporating link
correlation in the succinct form of linear capacity constraints.
We have shown that through accurate network representation,
LCC-overlay ensures a higher overlay quality. To the best ofour
knowledge, there has not been previous work on the two problems
we studied in the context of graphs with LCC: widest-path with
LCC and maximum flow with LCC.

Several projects based on Distributed Hash Tables — CAN
[13], Pastry [14] and Chord [15], etc. — designed structured
overlay networks in which neighbor mappings are dictated by
addresses from abstract coordinate spaces. Distributed algorithms
for general-purpose overlay construction were proposed byYoung
et al. in [16] and by Shen in [4]. The heuristics proposed by
Young et al. are to buildk interleaved minimum spanning trees.
Shen designed and implemented a software layer to build and
maintain an overlay using quality metrics of unicast latency and
bandwidth and various heuristics. Application-specific proposals
have been made for various overlay services, including overlay
multicast [1], [17], content distribution [3], [18] and multimedia
streaming [19], [2].

Also relevant is recent work by Ratnasamyet al. [10]. A dis-
tributed binning scheme is designed and applied to the formation
of unstructured overlay networks. The aim is to incorporatemore
topological awareness into overlay construction. This work differs
from ours in focusing exclusively on the latency metric. Proximity
of nodes in latency is the only topological information thatis
sought. In this work [10], it is assumed that the overlay links
can be viewed as essentially independent of each other in terms
of latency. In this paper, we focus on accurately aggregating
underlying bandwidth information into our overlay model, by
taking into consideration overlay link capacity correlation.

Common to all these proposals are heuristics that use unicast
probing to select overlay routes with low latency or high band-
width. They view and treat overlay links as independent. However,
we propose a new overlay model and hence work upon a premise
distinct from previous work.

Finally, the well-studied quality-of-service (QoS) literature
explores problems that are related to the subject of this paper.
Spurred by increasing demand for multimedia applications over
the Internet, the problem of finding routing paths that satisfy cer-
tain QoS constraints — i.e., the QoS routing problem — has been
extensively studied by the research community. Representative
examples of such QoS constraints are requirements in bandwidth,
delay, jitter and packet loss. Many QoS routing algorithms have
been proposed, e.g., [20], [21], [22], [23], [24]. In such cases, the
QoS constraints in question can be thought of as the minimum
performance objective (or worst-case performance guarantee) of
the algorithm. The problem we consider here is a different one:
We want to optimize bandwidth given that the capacity constraints
of the overlay linksalready existin the network as one of its
characteristics.
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X. CONCLUSIONS

We have introduced a new model of overlay networks, LCC-
overlay, that uses linear capacity constraints to succinctly, effi-
ciently and accurately represent the real network topologywith
its link correlations. We have defined the metrics of accuracy
and efficiency to qualitatively measure the quality of overlay
networks. Through analysis and simulations with realisticnetwork
topologies, we showed that LCC-overlay has perfect accuracy and
optimal efficiency, and even a restricted class of LCC — node-
based LCC — yields excellent accuracy and efficiency that are
close to complete LCC, while overlays with no LCC not only has
low quality but its quality deteriorates with increasing network
size.

Node-based LCC are more efficient than complete LCC and
can be obtained distributedly. We propose a distributed algorithm
to construct LCC-overlays with node-based LCC. Simulation
showed that the LCC obtained via a probing tool converge rapidly
to the complete node-based LCC.

We also studied the problems of widest-path with LCC and
maximum-flow with LCC. We proved that widest-path with LCC
is NP-complete, but in realistic overlay topologies, the solutions
of regular widest-path are almost always the same as the optimal
widest-path with LCC. We formulated maximum-flow with LCC
as a linear program and proposed an efficient algorithm to solve
it. We further studied the problem of optimizing delay while
maintaining near-optimal flow rate or bandwidth.
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