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Abstract
Federated learning has garnered substantial research atten-

tion as a privacy-preserving learning paradigm. Nonetheless,

its inherently distributed architecture, especially in asyn-

chronous settings, poses vulnerabilities to model poisoning

attacks. In such scenarios, malicious clients compromise the

integrity of the global model by transmitting manipulated

updates. To tackle this issue, previous research efforts like

AFLGuard and Zeno++ have made strides but often hinge

on the impractical assumption that the server has access to a

clean dataset. In this study, we delve into practical solutions

tailored for real-world scenarios, minimizing assumptions

about the server’s capabilities and accommodating varying

settings. Specifically, we propose AsyncFilter module, which

defends against poisoning attacks in asynchronous feder-

ated learning. Functioning as a plug-and-play module on the

server, AsyncFilter enhances the learning process by statisti-

cally identifying and filtering out poisoned updates during

training. On four real-world datasets, AsyncFilter effectively

enhances global model accuracy against model poisoning

attacks by up to 7%, 20%, 16% and 39% respectively. Through

extensive evaluation, AsyncFilter demonstrates robust capa-

bilities in detecting and mitigating model poisoning attacks

in various scenarios encompassing diverse data and system

heterogeneity, as well as varying attacker presence.
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1 Introduction
As one of the emerging distributed machine learning paradig-

ms, federated learning (FL) [14] has attracted widespread

research attention, thanks to its merits in preserving data

privacy. In federated learning, a central server coordinates

training among edge devices, referred to as clients, to build a

shared global model without directly accessing datasets. At

each communication round, clients train the model locally

and commit the model updates to the server. The server

then aggregates the received updates and updates the global

model. This repeats until the model converges. Due to its

potential promise of protecting privacy of client data, FL has

been deployed in a variety of real-world applications such

as Google’s next-word prediction Gboard, drug discovery

project Melloddy [16] and Apple’s Siri for automatic speech

recognition [17].

Yet, most existingmechanisms on federated learning failed

to scale efficiently beyond a few hundred clients with the

presence of extremely slow clients, called stragglers. This

is because they assumed fully synchronized aggregation of

client updates and the server always waits for stragglers

before aggregation. To alleviate the negative impact of strag-

glers on model convergence, asynchronous federated learn-

ing (AFL) was proposed [24]. In asynchronous design, the

server is enabled to perform aggregation as long as a portion

of the clients have reported, which helps reduce the time it

takes to complete each round of aggregation and accelerates

model convergence.

Owing to its inherently distributed framework, asynchro-

nous federated learning is susceptible to model poisoning

attacks. In these attacks, malicious attackers compromise

the integrity of the global model and reduce its accuracy

by transmitting manipulated model updates to the central

server throughout the federated learning cycle.

Two predominant strategies exist for executing such poi-

soning attacks in federated learning: targeted and untargeted

poisoning. Targeted attacks are aimed at achieving a specific

malicious objective. Untargeted attacks, on the other hand,

aim to generally degrade the performance of the federated

https://doi.org/10.1145/3652892.3700787
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learning model without any specific target in mind. Our em-

phasis is chiefly placed on untargeted poisoning, given its

threat to real-world implementations.

However, detecting poisoning attackers in asynchronous

federated learning presents a myriad of challenges. From one

viewpoint, data heterogeneity—stemming from the decen-

tralized nature of federated learning—introduces substantial

variability in model updates. This variability makes it hard

to differentiate malicious updates, crafted by poisoning at-

tackers, from genuine updates originating from data that are

not independently and identically distributed (non-IID). The

challenge is further accentuated by another inherent trait

of asynchronous mechanisms: staleness. Stale updates are

a common occurrence in asynchronous federated learning,

as clients are permitted to submit local updates based on

outdated versions of the global model. Moreover, the degree

of staleness varies across clients due to differences in their

local systems, further amplifying the heterogeneity of the

updates. Specifically, model updates are not just reflections

of diverse data, but also of different initial model states.

The combined challenges of data heterogeneity and stale-

ness significantly complicate the task of detecting poisoning

attempts, making it a particularly arduous endeavor. Propos-

ing an efficient detection methodology that can navigate

these complexities is essential to ensuring the security and

integrity of asynchronous federated learning.

Existing methodologies addressing poisoning attacks in

federated learning concentrate on synchronous Byzantine-

robust systems. Byzantine-robust aggregation method, such

as Krum [4], Trimmed-Mean and Median [26] and FLtrust

[5], targets at learning an accurate model despite the mali-

cious or Byzantine behaviors of some clients. Besides, some

studies, for instance FLDetector [27], have focused on the

preemptive detection of poisoned updates before their aggre-

gation. Although various defense methods have shown some

success in synchronous federated learning, there is a notable

scarcity of solutions explored in the realm of asynchronous

federated learning.

To date, only two studies, namelyAFLGuard [9] and Zeno++

[25], have delved into asynchronous federated learning. These

studies operate under the assumption that the server pos-

sesses a clean dataset, which it uses to evaluate local updates

against clean updates from this dataset. However, this as-

sumption is often unrealistic, as enabling the server to collect

sensitive client data prior to learning can infringe on client

privacy.

In this study, we explore the solution to model poison-

ing problems in asynchronous federated learning under a

real-world environment. Specifically, we bridge the research

gap by proposing an AsyncFilter module that actively de-

tects and filters out malicious updates before server aggre-

gation. Instead of completely relying on pre-collected clean

and IID distributed datasets as in prior studies, AsyncFilter

analyzes the received local model updates and identifies ab-

normal clients statistically. Specifically speaking, AsyncFilter

makes predictions for clients with different staleness levels

and calculates suspicious score based on the prediction. Fur-

thermore, the method uses a 3-means clustering method to

identify and reject potentially poisoned updates meanwhile

tolerating updates trained from non-IID clients. With Async-

Filter, the robustness of the asynchronous federated learning

process against such attacks has been improved, especially

in non-IID data scenarios.

To rigorously evaluate the effectiveness and robustness

of AsyncFilter, we conducted extensive empirical evalua-

tions using four real-world datasets: MNIST, FashionMNIST,

CIFAR-10 and CINIC-10. Demonstrated by the experimental

results, AsyncFilter effectively enhances global model accu-

racy against model poisoning attacks by up to 7%, 20%, 16%

and 39% on each dataset. Further, to validate the robustness

of AsyncFilter, we subjected it to various testing scenarios

encompassing diverse data and system heterogeneity, dif-

ferent server staleness limits, as well as varying numbers of

attackers, and achieved consistent accuracy improvement.

The results from all these experiments affirm the effective-

ness of AsyncFilter in different challenging contexts.

Our contributions are highlighted as follows. First,
we pioneer the study of defending against poisoning attacks

in asynchronous federated learning under the realistic con-

dition where the server has no access to any dataset. Second,

to address this challenge, we propose AsyncFilter, a novel

method designed to detect and filter out malicious model

updates, thereby enhancing system security. A distinct ad-

vantage of this method is its modularity, acting as a “plug

and play” component that can function seamlessly along-

side secure aggregation techniques. Additionally, through

extensive experiments, we demonstrate the efficacy and ro-

bustness of AsyncFilter in thwarting model poisoning under

a variety of settings.

This paper is organized as follows: The next section pro-

vides the background of our work, including examples of

related works and their limitations. Section 3 discusses the

problem formulation and outlines the assumptions for the

problem setting. Section 4 illustrates our approach with an

example and introduces the system design for AsyncFilter.

Section 5 details the experimental settings and presents com-

prehensive results. Finally, Section 6 concludes this paper.

2 Background
Federated learning is a distributed machine learning ap-

proach that allows multiple clients to train a shared machine

learning model, without the need for all clients to share their

raw data to a central server. Commonly, federated learning

works synchronously.

In synchronous federated learning, the clients iteratively

train a global model with the coordination of a cloud server.
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Figure 1. Synchronous federated learning workflow.

In each iteration, each client optimizes a local model on its

own data, and then periodically sends the model updates to

the central server. Synchronous server waits for reports from

multiple clients before using them to update the global model.

This iterative process continues until the global model con-

verges, as shown in Fig. 1. However, if some slow clients are

sampled in a round, both the server and the clients having

arrived must wait for these slow reports. This delay in ag-

gregation slows down the entire federated learning process.

As a solution, asynchronous federated learning has been

proposed.

2.1 Asynchronous Federated Learning
Compared to traditional synchronous federated learning’s

weakness in handling stragglers, this asynchronous approach

allows the server to perform aggregation as long as partial

clients’ reports arrive and therefore accelerates convergence

in a scalable setting.

Optimization objective. Consider an asynchronous fed-

erated learning system involving a set of N = 1, . . . ,N
clients, coordinated by a central server. Each client i has
ni local training data samples (xi ,1, . . . , xi ,ni ), and the to-

tal number of training data samples across N devices is

ntotal =
∑N

i=1
ni .

Define f (·) as the loss function where f (ω;xi , j ) indicates
how the machine learning model parameter ω performs on

the input xi , j , which is the j-th data sample of client i . Thus,
the local loss function Fi (ω) of client i can be defined as

Fi (ω) :=
1

ni

ni∑
j=1

f (ω;xi , j ). (1)

Same in synchronous FedAvg, denote pi as the aggrega-
tion weight of the i-th client such that

∑N
i=1

pi = 1. Then, by

denoting F (ω) as the global loss function, the goal of asyn-
chronous federated learning is to find the solution ω of the

following optimization problem

min

ω
F (ω) :=

N∑
i=1

piFi (ω). (2)
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Figure 2. Asynchronous federated learning workflow.

Here, denoting t as the index of an asynchronous feder-

ated learning round, we describe one round (e.g., the t-th)
proceeding as follows: The server uniformly samples a sub-

set of K clients at random (i.e., K = ∥K∥ and K ⊆ N ) and

broadcasts the latest model ωt
to the sampled clients. Each

sampled client i sets the local model as ωt ,0
i = ωt

and runs

E steps of local optimization on (1) to compute local update

model ωt ,E
i . After finishing local training, the sampled client

sends the updated model back to the server.

When the server receivesΩ reports from sampledK clients

(Ω ≤ K), it performs aggregation with weight pi and com-

pute a new global model by

ωt+1 =

Ω∑
i

piωi . (3)

Notably, ωi does not have to be local update based on the

latest round ωt ,E
i . It can be ωt−τi ,E

i that was optimized on a

global model in a much earlier round, as staleness τi < t is
allowed. The above process repeats for many rounds until

the global loss converges.

With such an asynchronous mode of operation as the es-

sential idea, FedBuff [15] is proposed. In FedBuff, the server

randomly samples clients at each round as FedAvg but intro-

duces a buffer to store local updates and only aggregates

when the buffer size reaches a certain aggregation goal.

Due to its simplicity, FedBuff and its variants with differ-

ent weighting methods are commonly used.

2.2 Poisoning Attacks to Federated Learning
Federated learning’s distributed nature makes it vulnera-

ble to poisoning attacks. Attackers can corrupt the global

model either by introducing fake clients or compromising

genuine ones, leading to a decline in the model’s testing ac-

curacy. Poisoning attacks in this context can be categorized

into targeted and untargeted types. Targeted attacks are de-

signed to manipulate the global model to incorrectly predict

specific labels for chosen inputs, while leaving its perfor-

mance on other inputs unaffected. Conversely, untargeted

attacks disrupt the global model more broadly, causing it to
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perform poorly across a wide range of indiscriminate test-

ing examples, thus rendering it largely dysfunctional. Our

paper primarily addresses untargeted attacks, given their

widespread and significant impact. Below, we review the

untargeted attacks.

Untargeted attacks. Untargeted poisoning attacks are

typically calibrated with a delicate balance: they are potent

enough to cause significant accuracy loss, yet subtle enough

to elude detection by the server. In line with this strategy, the

Little-Is-Enough (LIE) attack is proposed in [3] that subtly

introduces minor noise increments to each dimension of

the average benign gradients, thereby poisoning the global

model. In [18], Min-Sum and Min-Max attacks are designed.

In Min-Sum attack, the sum of squared distances of malicious

gradients from all benign gradients is upper bounded by

the sum of squared distances of any benign gradient from

the other benign gradients. In Min-Max attacks, malicious

gradients are generated such that its maximum distance

from any other gradient is upper bounded by the maximum

distance between any two benign gradients. The Gradient

Deviation (GD) attack, as detailed in [8], manipulates the

model updates from malicious clients in such a way that the

global model update is directed oppositely to the gradient’s

direction. In this study, we include these four poisoning

attacks to evaluate our defense method.

2.3 Secure Federated Learning
Secure synchronous federated learning. Secure feder-

ated learning that aims to counteract poisoning attacks pre-

dominantly focuses on synchronous FL environments. These

Byzantine-robust methods in synchronous FL are known for

their use of robust aggregation rules. The core idea behind

these rules is to accurately learn the model, even when some

clients exhibit malicious or Byzantine behaviors. For exam-

ple, the Krum aggregation rule [4] is designed to select the

model update that demonstrates the smallest cumulative dis-

tance to its n−m− 2 neighbors, where n andm represent the

total and malicious clients, respectively. Additionally, meth-

ods such as Trimmed-Mean and Median [26] aim to calculate

the mean or median value for each dimension from the gath-

ered model updates. To reduce heterogeneity, a Bucketing

scheme is proposed as a pre-aggregation module [11]. Simi-

larly, Byz-VR-MARINA is designed in combination with vari-

ance reduction and compression [10]. Meanwhile, FLtrust

[5] takes a different approach, enhancing trust through the

utilization of a clean dataset stored on the server, which

is then used to assess the trustworthiness of each client.

Additionally, instead of taking advantage of server dataset,

Nearest neighbor mixing (NNM) [2] averages each input

with a subset of their nearest neighbors.

Other defenses for synchronous Federated Learning in-

volve detecting malicious clients. To protect FL from poison-

ing attacks, various detection methods have been proposed.

These methods typically view poisoned model updates as

statistical outliers among benign model updates. In [13],

a spectral anomaly detection model is trained on a clean

dataset before initiating federated learning. The state-of-the-

art FLDetector [27] detects malicious clients by measuring

the consistency between the client’s model update and the

server’s predicted model update based on historical model

updates, all without needing a clean dataset.

However, these synchronous methods are not applicable

for an asynchronous context because they rely on the ho-

mogeneity of model updates, which is not the case with

asynchronous updates.

Secure asynchronous federated learning. To protect

asynchronous federated learning, Zeno++ [25] and AFL-

Guard [9] are proposed, assuming that the server holds a

clean dataset prior to learning. In Zeno++, the server uses

this trusted dataset to filter clients’ model updates. The server

computes a model update based on the trusted dataset, then

calculates the cosine similarity between each client’s model

update and the server’s. If the similarity is positive, the server

normalizes the client’s model update. AFLGuard employs a

similar technique, using a clean model update to compare

each local model update. However, a client’s model update

is considered benign only if it does not significantly devi-

ate from the server’s model update in both direction and

magnitude.

These studies operate under the assumption that the server

possesses a clean dataset, which it uses to evaluate local

updates against clean updates from this dataset. However,

this assumption is hard to be satisfied with in reality, as

enabling the server to collect sensitive client data prior to

learning can infringe on client privacy. Addressing a gap in

existing research, our innovative AsyncFilter demonstrates

robust defense against poisoning attacks, ensuring enhanced

security and reliability in diverse environments.

3 Problem Formulation
3.1 Threat Model
In this study, we adopt the attack model outlined in prior

research. This model involves an attacker exerting control

over several malicious clients. These clients may be either

attacker-fabricated or compromised legitimate ones, yet they

still possess data from the same distribution as benign clients.

It is important to note, however, that in this scenario, the

server remains uncompromised by the attacker. During each

iteration of the federated learning training process, these

malicious clients are capable of transmitting arbitrary local

model updates to the server. Generally, an attacker in such

a system possesses limited knowledge, which typically in-

cludes: the local training data and model updates from the

malicious clients, the loss function used, and the learning

rate.
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Figure 3. t-SNE diagram of local updates on MNIST (IID).

3.2 Defense Goal
Our objective is to develop an asynchronous federated learn-

ing approach that meets two key criteria: First, in non-advers-

arial environments, our method aims to match or exceed the

accuracy of FedBuff. This means that when operating with

all benign clients, our approach should facilitate the learning

of a global model with a level of accuracy comparable to that

achieved by FedBuff. Additionally, the method is designed to

be resilient against a range of poisoning attacks, including

both existing and adaptive strategies, in adversarial settings.

3.3 Server’s Capability and Knowledge
Contrasting with prior research, such as those outlined in

[25] and [9], which assume the availability of a clean dataset,

our approach operates under a different premise. In our

model, the server is unaware of the local data distribution

and consequently lacks access to any datasets. This approach

is both reasonable and practical, particularly in real-world

applications. Allowing a server to gather data samplesmirror-

ing the clients’ distribution often compromises client privacy

and can discourage participation. Our method acknowledges

and addresses these privacy concerns by eliminating the

need for server access to client-distributed data.

4 AsyncFilter: System Design
4.1 Challenges
Identifying poisoning attackers in asynchronous federated

learning is fraught with complexities. On one hand, the
inherent data heterogeneity of federated learning, due to

its decentralized structure, leads to significant variation in

model updates. This variation blurs the line between mali-

cious updates, intentionally altered by attackers, and legiti-

mate updates from clients with non-IID data. On the other
hand, the characteristic staleness of asynchronous systems

further complicates matters. Clients in such a system are

allowed to send updates based on outdated versions of the

global model, increasing the diversity of updates.

! = 0

! = 1

! = 2

Figure 4. t-SNE diagram of local updates on MNIST (Non-

IID).

Therefore, local updates reflect not only the heteroge-

neous data but also different states of the model at the start

of the local optimization process. The duality of these two

factors — data heterogeneity and staleness — turns the pro-

cess of detecting poisoning attacks into a highly challenging

endeavor.

4.2 Observation and Motivation
Experimental settings. To investigate the effects of stal-

eness and data heterogeneity on local updates, our study

delves into local updates reported from participating clients.

Specifically, we employed the LeNet-5 [1] model, training

it with PyTorch on the MNIST dataset, which comprises

60, 000 32×32 color images distributed across 10 classes. Our

asynchronous federated learning framework includes 500

clients, each operating on an individual thread in parallel. At

each communication round, when 150 model updates arrive,

the central server performs model aggregation and updates

the global model. To represent system speed heterogeneity,

the processing latency of clients is modeled to follow a Zipf

distribution with a parameter s of 1.2. This setup results in

a distribution where most devices exhibit high speed, a mi-

nority are significantly slower (stragglers), and a moderate

number have medium speed. Regarding data heterogeneity,

we arrange the local data partitions based on the Dirichlet

distribution with a concentration parameter of 0.01. This en-

sures that data samples are highly non-IID distributed across

local devices.

Impact of data heterogeneity and staleness. To ana-

lyze the statistical properties of received updates and the

influence of data distribution and staleness on them, we uti-

lize t-SNE visualizations [21] for the local updates at each

communication round. We label each update sample with its

staleness level and use consistent coloring for samples shar-

ing the same level of staleness τ . For clarity, we summarize

our observations on both IID and non-IID scenarios from the

t-SNE representations in Fig. 3 and Fig. 4 respectively, where
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each ball represents a local update sample and the pattern

represents its staleness level.

It reveals two key observations. Firstly, there is a notice-
able dispersion among balls of the same pattern, suggesting

that local updates from clients are statistically scattered. This

pattern reflects the extent to which data heterogeneity in-

fluences the spread of the distribution. Secondly, despite
the scattering, balls sharing the same pattern tend to cluster

around a common center. This observation highlights the sig-

nificant impact of the staleness level on the central tendency

of the distribution. In short, updates sharing a staleness level

tend to cluster around a common center, while the extent of

non-IID characteristics in local updates influences how far

these updates deviate from this central point.

4.3 System Design: AsyncFilter
Building upon these observations, we are ready to introduce

AsyncFilter, an innovative algorithm designed to safeguard

against model poisoning attacks in asynchronous federated

learning. Upfront, as we have been abundantly clear, Async-

Filter is crafted to operate effectively in real-world scenarios,

where data heterogeneity and staleness levels present chal-

lenges for the central server. Design details are as follows.

Staleness-based clustering. In asynchronous federated

learning, the system inherently allows for staleness, meaning

that received model updates might be based on outdated

global models. From our empirical observations, even within

an IID setting, the disparities between model updates derived

from varying global model versions eclipse the differences

between poisoned and genuinemodel updates. Consequently,

a necessary step is to categorize model updates according to

their respective staleness levels.

With AsyncFilter, the server actively monitors the stal-

eness τ (ωi ) of each client i and groups the received local

updates ωi accordingly:

C = {Ck : Ck = {ωi |τ (ωi ) = τk },k = 1, 2, . . . ,m}, (4)

where C is the set of all groups and Ck is a subset of C
containing model updates ωi that have the same staleness

τk , andm is the maximum staleness enabled by the server..

This ensures that, within each group, the variances intro-

duced by different staleness levels are neutralized.

Moving average estimation. In our methodology, we

incorporate a moving average approach to process the in-

coming model updates in each group. This technique is in-

strumental in mitigating the variability inherent in model

updates received from diverse clients. In asynchronous feder-

ated learning, where updates are asynchronously contributed

by a multitude of clients with varying data distributions,

the aggregation of model updates can introduce significant

variance, leading to instability in the learning process. By

applying a moving average to these updates, we effectively

smooth out abrupt fluctuations and ensure a more stable

estimation for each staleness group.

At the t-th round of asynchronous federated learning, the

server receives stale updates such as ωt−1

i , ωt−2

i+1
... which are

trained on earlier global models ωt−2

д , ωt−3

д ... Notably, in the

server’s previous aggregation round (i.e., the t − 1-th round),

we had already gathered local model updates corresponding

to the same group as these stale updates. Specifically, the

fresh model update ωt−1

k from the t − 1-th round originates

from the same training starting point as the stale update

ωt−1

i in the t-th round. To harness the full breadth of these

statistical data, we implement a moving average for each

staleness group and estimate model updates as follows.

MA(Ck ) =
t

t + 1

MA(Ck ) +
1

t + 1

ωi , (5)

where MA(Ck ) is the moving average estimation for stale-

ness group Ck .
This approach not only enhances the robustness of the

model against erratic or noisy updates but also aids in main-

taining a consistent learning trajectory across iterations. The

moving average operation, in this context, acts as a stabi-

lizing factor, averaging out the disparities among updates

and thus fostering a more reliable and gradual integration of

knowledge from distributed local data into the global model.

Distance-based suspicious scores. So far we have esti-

mated model updates for each group as an expectation. Intu-

itively, updates closer to the standard model tend to originate

from benign clients. Hence, we propose a distance-based sus-

picious score for each update to assess its likelihood of being

malicious. For each client i in its corresponding staleness

group Ck , we first compute the l2-norm distance between its

local update and group estimation as follows,

d(MAk ,ωi ) =
√
(MAk − ωi )2. (6)

The underlying intuition is that, even in the presence of

a non-IID data distribution, impactful poisoned model up-

dates tend to deviate more substantially from the group’s

estimation. If a subtle attacker makes only minimal modi-

fications to the model updates, and such alterations render

the model closer to the average than those trained from non-

IID datasets, then this is not regarded as a successful attack,

given its negligible impact on the global model.

Furthermore, we calculate the suspicious score for client i
by normalization as follows.

scorei =
d(MAk ,ωi )√∑m
k=1

d(MAk ,ωi )2
, (7)

where 0 ≤ scorei ≤ 1 and a higher scorei denotes a higher
probability of poisoned updates.

Attacker identification. In our approach, we employ a

3-means clustering method to process the suspicious scores,

specifically chosen over a 2-means method to allow a greater

degree of tolerance for model updates originating from non-

IID local data. Within the three identified groups, the one

with the highest average score is labeled as the attacker
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Figure 5. Asynchronous federated learning with AsyncFil-

ter.

group, and updates from this group are subsequently ex-

cluded from server aggregation. Conversely, the group with

the lowest average score is deemed to be honest and its

updates are accepted for aggregation. The middle group,

potentially comprising less effective attackers and honest

clients with non-IID data, is permitted to contribute to the

aggregation at a later stage. This is because our experimental

findings indicate that incorporating updates from a fewweak

attackers typically does not significantly harm the global

model. However, excluding updates from honest clients can

result in a noticeable loss of accuracy.

This tripartite clustering approach enables amore nuanced

filtering mechanism. It not only helps in identifying and ex-

cluding true outliers that could damage the model but also

ensures that updates reflecting legitimate, albeit diverse, data

characteristics are not unjustly discarded. Consequently, this

method strikes a balance between maintaining the integrity

of the global model and embracing the valuable diversity of

client data, ultimately leading to a more robust and repre-

sentative federated learning model.

4.4 Workflow of AsyncFilter
So far, we have introduced the technical details of AsyncFilter

step by step and now we propose the AsyncFilter module for

asynchronous federated learning. We summarize the Async-

Filter in Alg. 1. AsyncFilter works in three key steps: first,

it categorizes model updates based on their staleness levels;

second, for each staleness group, it employs a moving aver-

age and normalization for each staleness group to calculate

a suspicious score for each client; finally, the method uses a

Algorithm 1 AsyncFilter

1: Input: Received model updates ωi
2: Output: Genuine model updates ωclean
3: for model updates ωi , i = 1, . . . ,N with staleness τk

do
4: Update group estimation Ck with formula (4).

5: end for
6: for group Ck (k = 1, . . . ,m) do
7: Calculate suspicious score with formula (5) and (6).

8: Identify poisoned updates via 3-means method.

9: end for

3-means clustering approach to identify malicious updates

while tolerating non-IID clients.

Notably, the AsyncFilter can be seamlessly integrated into

all asynchronous federated learning systems as a pluggable

component without the need for additional sensitive informa-

tion, as shown in Fig. 5. For instance, integrated with Async-

Filter, asynchronous federated learning operates as follows:

in each communication round of asynchronous federated

learning, the server selects clients following the customized

rule and selected clients perform local optimization; once

the local training is complete, the client sends the updated

model back to the server; when the number of arrived clients

reaches the minimum aggregation bound, the server starts

to detect and filter out suspicious ones with the AsyncFilter

module; after removing abnormal updates, the server aggre-

gates the updates following its aggregation rule and moves

into the next round.

4.5 Theoretical Analysis on Suspicious Scores
Theoretically, we compare the suspicious scores of benign

and malicious clients. We first make the assumptions follow-

ing [15] and [22] and then achieve Theorem1.

Assumption 1. (Intra-cluster similarity): For all clients i ∈ S

with local dataset xi , and some constant A > 0,

∥∇fi (xi ) − ∇ ¯fi (xi )∥
2 ≤ A2∥∇ ¯fi (xi )∥

2
(8)

where ¯fi (xi ) =
1

N
∑

i ∈S fi (xi )

Assumption 2. (Bounded local and global variance): for all
clients i ∈ S,

σ 2

l ,min ≤ Eζi |i [∥дi (ω; ζi ) − ∇Fi (ω)∥
2] ≤ σ 2

l ,max (9)

1

N

N∑
i=1

∥∇Fi (ω) − ∇f (ω)∥2 ≤ σ 2

д,max (10)

With these assumptions, we have

Theorem 1. Suppose FedAvg is used as the aggregation rule,
the clients’ local training datasets are non-IID distributed. Sup-
pose the malicious clients perform an untargeted model poison-
ing attack, e.g. the GD attack, in each iteration by reversing the
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true model updates as the poisoning ones, i.e., each malicious
client j sends −δ tj to the server in iteration t . Then we have the
expected suspicious score of a benign client is smaller than that

of a malicious attacker. Formally, with A ≤

√
2 +

σ 2

l ,min
σд,max

, we

have the following inequality:

E(scoreti ) ≤ E(score
t
j ),∀i ∈ B,∀j ∈ M, (11)

where the expectationE is taken with respect to the randomness
in the local optimization, B is the set of honest clients, and M
is the set of malicious attackers.

Proof sketch:

E[scoretj ] − E[score
t
i ]

=Ej ∥ωt − ωj ∥
2 − Ei ∥ωt − ωi ∥

2

=Ej ∥ωt − (ωt−1 − δ j )∥
2 − Ei ∥ωt − (ωt−1 + δi )∥

2

=Ej ∥ωt − ωt−1 + δ j )∥
2 − Ei ∥ωt − ωt−1 − δi ∥

2

=Ej ∥δt + δ j )∥
2 − Ei ∥δt − δi ∥

2

=Ej ∥ ¯∇F (ωt ) + ∇F (ωj )∥
2 − Ei ∥ ¯∇F (ωt ) − ∇F (ωi )∥

2

≥Ej ∥ ¯∇F (ωt ) + ∇F (ωj )∥
2 −A2 ¯∇F (ωt )

≥Ej ∥ ¯∇F (ωt )
2∥ + Ei ∥ ¯∇F (ωj )

2∥ −A2 ¯∇F (ωt )

=2
¯∇F (ωt )

2 + σl ,min −A2 ¯∇F (ωt )

≥0 (12)

5 Experimental Results
In this section, we evaluate the effectiveness and robust-

ness of AsyncFilter through extensive empirical experiments.

Our goal is to confirm that AsyncFilter performs robustly

against various attacks, different numbers of attackers, dif-

ferent server staleness limits, as well as varying levels of

data and system heterogeneity.

5.1 Experimental Setup
Datasets and models. In order to provide a comprehensive

and fair evaluation, we ran experiments on four real-world

datasets:

MNIST [7]: MNIST is a 10-class digit image classifica-

tion dataset, which consists of 60, 000 training examples

and 10, 000 testing examples. For MNIST dataset, we train a

LeNet-5 model.

FashionMNIST [23]: FashionMNIST is a 10-class fashion

image classification dataset, which has a predefined training

set of 60, 000 fashion images and a testing set of 10, 000

fashion images. For FashionMNIST dataset, we train a LeNet-

5 model.

CIFAR-10 [12] : CIFAR-10 is a 10-class color image clas-

sification dataset consisting of predefined 50, 000 training

examples and 10, 000 testing examples. For CIFAR-10 dataset,

we train a VGG-16 [19] model.

Table 1. Configuration parameters.

Dataset MNIST FashionMNIST CINIC-10 CIFAR-10

Model Lenet-5 VGG-16 VGG-16 VGG-16

Partition size 10
3

2 ∗ 10
3

1 ∗ 10
4

1 ∗ 10
4

Local epochs 5 5 5 5

Batch size 32 32 128 128

Optimizer SGD SGD Adam Adam

Learning rate 0.01 0.01 0.01 0.01

Momentum 0.9 0.9 0 0

CINIC-10 [6]: CINIC-10 is an augmented extension of

CIFAR-10. It contains images from CIFAR-10 and a selection

of ImageNet database images. Its training and testing dataset

contain 90, 000 image samples each. For CINIC-10 dataset,

we train a VGG-16 model as well.

Parameters.We summarize all configuration parameters

at Table 1. For training tasks on MNIST and FashionMNIST,

we used SGD as the local optimizer. For training tasks on

CINIC-10 and CIFAR-10, we applied Adam optimizer. No-

tably, to guarantee model convergence, we assigned larger

partition sizes to clients for large image datasets such as

CIFAR-10 and CINIC-10.

Platform.We conducted all of our experiments on Plato

[20], an open-source framework designed for scalable feder-

ated learning research. The Plato framework uses object-

oriented subclassing, leveraging Python 3’s ABC library and

Data Classes. Additionally, the framework supports defining

callback classes and customizing trainers by providing a list

of custom callback classes. With its ability to scale to a large

number of clients and its extensibility to accommodate a

wide variety of datasets, models, and FL algorithms, Plato is

an ideal tool for federated learning research. The framework

abstracts away the underlying ML drivers using convenient

APIs, making it agnostic to deep learning frameworks such

as TensorFlow, PyTorch, and MindSpore.
Plato facilitates client-server communication via industry-

standard WebSockets. The server can either run on the same

GPU-enabled physical machine as its clients for emulation

research testbeds or be deployed in a cloud datacenter. Plato

supports heterogeneity in both client local time and local

data distribution during sampling. The framework allows

for specifying random seeds for random number generators

and protecting random number generation from third-party

frameworks using random.getstate() and random.setstate().

With these mechanisms in place, Plato enables fully repro-

ducible experiments through its reproducible mode, where

the same set of clients and data samples are selected across

runs.

AFL setting.We ran all experiments using plato frame-

work on a server, with 3 NVIDIA RTX A4500 GPUs with

20GB of CUDA memory. By default, in each run, 100 clients
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participate and all of them are selected by the server sampler

at each round. The minimum aggregation bound for asyn-

chronous federated learning is 40 so that when 40% of the

selected clients arrive, the server performs aggregation and

updates the global model. By default, the server tolerated

local updates with a staleness of less than 20.

For system heterogeneity, we configure clients’ processing

latency to follow the Zipf distribution with parameter s of 1.2.
Zipf distribution models a practical scenario with various

device speeds such that the majority of devices are fast and

a few devices are stragglers, while a medium number of

devices are with middle-of-the-road speed. With s > 1, it

satisfies convergence of the generalized harmonic series.

To additionally introduce data heterogeneity, we set up

the local data distribution for each client. As four datasets

such as MNIST, FashionMNIST, CIFAR-10 and CINIC-10 are

collected as a centralized dataset, we sample local data parti-

tion following the Dirichlet distribution with a concentration

parameter of 0.1. In Dirichlet distribution, with α ≤ 1, the

samples will be highly concentrated in a few labels, and all

the rest labels will have almost no samples, while with α > 1,

the samples will be dispersed almost equally among all the

labels.

Attack setting. By default, we randomly sample 20 out

of 100 of the clients as malicious ones and mix them with

benign clients. At each communication round, the server

selects clients from the whole clients pool. This means that

the number of attackers in each round is changing and un-

known to the server. For a fair evaluation of untargeted

model poisoning attacks, we have selected four prominent

attack methods for consideration: LIE, Min-Max, Min-Sum,

and GD attacks. For details on these attacks, please refer to

Section 2.2.

Baselines. So far, in the realm of asynchronous federated

learning, no specific countermeasures against attackers have

been proposed. We incorporated the baseline scheme Fed-

Buff, which does not actively counteract attackers. Addition-

ally, FedBuff serves as a crucial comparison point to ensure

that our approach safeguards the global model when operat-

ing solely with benign clients. We also included FLDetector

[27], a state-of-the-art detection method in synchronous

federated learning. FLDetector identifies malicious clients

by contrasting client model updates with server-predicted

updates, which are generated from historical data. By in-

cluding FLDetector in our empirical evaluation, we aim to

underscore the necessity of developing a detection method

specifically tailored to the asynchronous federated learning

environment.

Performance metrics. In our experiments, we used the

test accuracy of the final global model to evaluate the defense

methods. Typically, attacks compromise the global model by

reducing its test accuracy, as they misguide the model into

making incorrect predictions. An AFL defense method is

deemed more robust against such attacks if its global models

Table 2. AsyncFilter defends against attacks on MNIST.

The Achieved Accuracy

Attack GD LIE Min-Max Min-Sum No attack

FedBuff 86.6% 96.9% 89.0% 97.4% 97.0%

FLDetector 82.9% 93.6% 84.9% 95.7% 95.1%

AsyncFilter 93.0% 95.6% 93.9% 97.3% 97.2%

Table 3. AsyncFilter defends against attacks on FashionM-

NIST.

The Achieved Accuracy

Attack GD LIE Min-Max Min-Sum No attack

FedBuff 72.2% 86.2% 77.4% 65.9% 86.5%

FLDetector 69.1% 82.2% 71.1% 83.83% 82.5%

AsyncFilter 79.1% 83.1% 81.0% 86.12% 85.3%

Table 4. AsyncFilter defends against attacks on CIFAR-10.

The Achieved Accuracy

Attack GD LIE Min-Max Min-Sum No attack

FedBuff 70.3% 52.0% 84.7% 85.2% 83.9%

FLDetector 75.3% 48.5% 79.4% 85.6% 81.2%

AsyncFilter 76.2% 60.2% 83.8% 85.6% 84.8%

Table 5. AsyncFilter defends against attacks on CINIC-10.

The Achieved Accuracy(%)

Attack GD LIE Min-Max Min-Sum No attack

FedBuff 10% 26.3% 17.3% 51.3% 56.0%

FLDetector 46.3% 10.3% 42.0% 50.5% 53.4%

AsyncFilter 49.2% 53.2% 56.8% 52.3% 53.4%

manage to maintain higher test accuracy even when under

attack.

5.2 AsyncFilter Defends Attackers Effectively
We first evaluate the performance of AsyncFilter against

model poisoning attacks on four real-world datasets and

summarize the results in Table 2 - 5. The test accuracy of the

final global model with different methods under different at-

tacks are as shown. The “No attack” scenario depicts an ideal

setting where all participants are honest, and no malicious

attackers are present.
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Initially, it is important to note that AsyncFilter demon-
strates both efficacy and safety in non-adversarial en-
vironments. In scenarios devoid of malicious clients, Async-

Filter maintains a global model accuracy comparable to that

of FedBuff. On four real-world datasets such as MNIST, Fash-

ionMNIST, CIFAR-10 and CINIC-10, the final global model

accuracy without attacks are respectively 97.23%, 85.31%,

84.84% and 53.37% for AsyncFilter and 97.04%, 86.51%, 83.91%

and 56.02% for FedBuff, while the accuracy are degraded to

95.16%, 82.5%, 81.23% and 53.47% with FLDetector.

Additionally, in Table 2 - 5, our analysis reveals thatAsync-
Filter method effectively defends against model poi-
soning attacks on all four datasets, particularly against
strong poisoning attacks. Table 2 shows that on MNIST

dataset, GD and Min-Max attacks are two strong ones that

cause great model accuracy reduction of 10%. AsyncFilter

improves the model accuracy to 93.04% and 93.97% respec-

tively. For less effective attacks LIE and Min-Sum that incur

accuracy reduction around 1%, both AsyncFilter and FedBuff

preserve model accuracy. However, with FLDetector, due to

its unconsciousness of staleness, it incurs more accuracy loss

instead of compensation under all attacks. Table 3 shows

that on FashionMNIST dataset, GD, Min-Sum and Min-Max

attacks are strong and cause accuracy loss from 10% to 20%.

AsyncFilter defends against them and improves accuracy to

79.11%, 81.00% and 86.12%.

Moving to more advanced datasets such as the CIFAR-10

dataset and CINIC-10 dataset, results are as shown in Ta-

ble 4 and Table 5 respectively. For CIFAR-10, GD and LIE

attacks reduce accuracy from 83.91% to 70.36% and 52.08%.

AsyncFilter defends against them and improves accuracy by

6% and 8%, outperforming FLDetector. For less effective at-

tacks, AsyncFilter has similar performance with FedBuff. On

CINIC-10 dataset, all attacks incur great accuracy loss, and

FedBuff even diverges under GD attacks. AsyncFilter exhibits

superior defense capabilities against these attacks, including

GD, Min-Max, and Min-Sum attacks. This performance is

markedly better than that of the existing comparison meth-

ods.

In conclusion, the experimental results strongly support

the effectiveness of our AsyncFilter method in defending

against poisoning attacks in asynchronous federated learn-

ing contexts. This method not only successfully mitigates the

impact of highly effective attacks but also maintains robust

performance in the face of less effective ones, underscoring

its adaptability and efficiency as a defense mechanism in

diverse attack scenarios.

5.3 AsyncFilter Is Robust Against Data
Heterogeneity

In real-world scenarios, local data often exhibits a non-IID

distribution across remote clients, with the central server

lacking direct access to this local data distribution. There-

fore, robustness against unknown local data heterogeneity is

Table 6. AsyncFilter is robust against data heterogeneity on

CINIC-10.

The Achieved Accuracy(%)

Attack GD LIE Min-Max Min-Sum

FedBuff 30.7% 10.4% 44.2% 43.1%

FLDetector 46.3% 14.3% 40.3% 46.3%

AsyncFilter 41.0% 49.3% 47.2% 48.8%

Table 7. AsyncFilter is robust against data heterogeneity on

FashionMNIST.

The Achieved Accuracy(%)

Attack GD LIE Min-Max Min-Sum

FedBuff 10% 63.4% 31.8% 73.7%

FLDetector 24.2% 47.9% 37.8% 65.8%

AsyncFilter 30.7% 60.4% 41.6% 69.0%

crucial for any federated learning method. To assess Async-

Filter’s robustness against data heterogeneity, we formulated

a setting with varying data distribution for CINIC-10 and

FashionMNIST datasets. We adjusted the Dirichlet distribu-

tion parameters from 0.1 to 0.05, and 0.01 respectively and

therefore incurring more non-IID local data than previous

environment. The results are detailed in Tables 6 and 7.

The experimental findings affirm AsyncFilter’s effec-
tiveness and resilience in managing data heterogene-
ity within asynchronous federated learning environ-
ments. In experiments conducted on the CINIC-10 dataset

with a Dirichlet parameter of 0.05, all attacks resulted in

substantial accuracy degradation. Notably, the model fails to

converge under the LIE attack. While FLDetector effectively

counters the GD attack, AsyncFilter demonstrates superior

performance in mitigating the LIE, Min-Max, and Min-Sum

attacks. When tested on the FashionMNIST dataset with

a Dirichlet parameter set to 0.01, the extreme non-IID dis-

tribution inherently led to significant accuracy reduction.

The introduction of model poisoning further exacerbates the

issue. As illustrated in Table 7, the GD attack inflictes con-

siderable damage, to the extent that the model is unable to

achieve convergence. Both AsyncFilter and FLDetector are

effective in their defense against attacks. Specifically, Async-

Filter leads to a significant improvement in accuracy by 20%,

surpassing the 14% enhancement achieved by FLDetector. In

the case of the Min-Max attack, which notably diminishes

model accuracy, AsyncFilter successfully boosts accuracy by

10%. For other attacks like LIE and Min-Sum, AsyncFilter

maintains accuracy levels akin to the best existing strategy,

which involves no intervention.



AsyncFilter: Detecting Poisoning Attacks in Asynchronous Federated Learning MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

Table 8. AsyncFilter is robust against doubled attackers on

CINIC-10.

The Achieved Accuracy(%)

Attack GD LIE Min-Max Min-Sum

FedBuff 10% 10.0% 10.0% 51.7%

FLDetector 29.2% 10.3% 50.3% 50.0%

AsyncFilter 38.1% 34.5% 46.9% 46.9%

Table 9. AsyncFilter is robust against doubled attackers on

FashionMNIST.

The Achieved Accuracy(%)

Attack GD LIE Min-Max Min-Sum

FedBuff 10% 85.3% 72, 7% 73.1%

FLDetector 19.9% 81.3% 69.1% 82.7%

AsyncFilter 31.3% 83.1% 78.9% 85.0%

5.4 AsyncFilter Is Robust Against Different Number
of Attackers

In practical scenarios, attackers can control multiple clients

and integrate these controlled devices into a federated learn-

ing round. Therefore, it’s essential for federated learning

methods to be resilient against an unknown number of at-

tackers. To test AsyncFilter’s robustness in such conditions,

we altered the number of total attackers from 20 to 40, effec-

tively doubling their presence. The outcomes of this modifi-

cation on CINIC-10 and FashionMNIST are detailed in Table

8 and 9.

On the CINIC-10 dataset, as detailed in Table 8, the pres-

ence of GD, LIE, and Min-Max attackers, particularly when

their numbers are doubled, significantly disrupts the fed-

erated learning process, leading to model divergence. An-

alyzing the first two columns of the table, it’s evident that

FLDetector is unable to effectively counter GD and LIE at-

tacks, with the latter causing the model to fail to converge.

In contrast, AsyncFilter markedly enhances model accuracy,

elevating it from 10% to 38% and 34.53% for GD and LIE at-

tacks, respectively. In the case of the Min-Max and Min-Sum

attacks, AsyncFilter attains an accuracy level comparable

to the best ones there. On the FashionMNIST dataset, as

demonstrated in Table 9, the GD attack emerges as the most

significant threat, beating FLDetector. However, AsyncFilter

effectively counters this attack, achieving a model accuracy

of 31.3%. Furthermore, AsyncFilter exhibits superior perfor-

mance compared to its counterparts in defending against

Min-Max and Min-Sum attacks. In the case of the less po-

tent LIE attack on this dataset, AsyncFilter’s performance

Table 10. AsyncFilter is robust against speed heterogeneity

on FashionMNIST.

The Achieved Accuracy(%)

Methods GD LIE Min-Max Min-Sum

FedBuff 83.7% 85.5% 80.9% 84.5%

FLDetector 80.1% 83.9% 69.0% 81.7%

AsyncFilter 83.8% 85.5% 83.1% 85.1%

is on par with other methods. In short, AsyncFilter consis-
tently exhibits superior defensive capabilities against
varying numbers of attackers.

5.5 AsyncFilter Is Robust Against System Speed
Heterogeneity

In practical federated learning scenarios, remote client de-

vices often display a lack of uniformity, with notable vari-

ations in their training speeds and communication rates.

Consequently, it becomes imperative for federated learning

methods to exhibit robustness against such diverse system

speed heterogeneity. To evaluate AsyncFilter’s effectiveness

in addressing this heterogeneity, we implemented a varied

experimental setup for the FashionMNIST dataset. This in-

volved adjusting the Zipf distribution parameter s from 1.2 to
2.5. With 2.5, the speed distribution is more skewed, indicat-

ing a few devices vary fast, and the rest are much slower. This

change emphasizes the impact of speed divergence across

remote clients in federated learning. The results of this as-

sessment are presented in Tables 10.

Demonstrated by the results, AsyncFilter defends against

all four considered attacks and exhibits a superior perfor-

mance compared to its counterparts. Specifically, when coun-

tering Min-Max attacks, AsyncFilter enhances the final accu-

racy by 3%, whereas FLDetector experiences an accuracy de-

cline. These results underscore AsyncFilter’s proficiency
in effectively neutralizing poisoning attackswithin en-
vironments characterized by system heterogeneity in

asynchronous federated learning.

5.6 AsyncFilter Is Robust Against Varying Staleness
Limits

In realistic scenarios, the central server imposes different

staleness limits on updates; specifically, when the staleness

of an update exceeds this limit, the server rejects the up-

date instead of aggregating it. To evaluate the robustness of

AsyncFilter under varying staleness limits, we conducted a

parameter study.

We carried out experiments using the LeNet-5 model on

the FashionMNIST dataset under critical attacks, such as

the GD attack and the LIE attack. We varied the maximum

staleness limits across the values {5, 10, 15, 20}. To reduce

the impact of randomness, each experiment was repeated
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Figure 6. As the staleness limit increases, global model accu-

racy decreases, reflecting the negative impact of stale updates

on convergence. Despite this, AsyncFilter maintains a stable

accuracy under both attacks.

three times with different random seeds to ensure statistical

significance. The results are shown in Figure 6, with solid

markers representing the mean and error bars indicating the

standard deviation.

As shown in the line plot, the global model accuracy de-

creases as the staleness limit increases, which is expected

since stale updates hindermodel convergence. Notably, Async-

Filter demonstrates stable performance under both attacks,

maintaining a final global model accuracy over 84% and 80%,

respectively, even as the staleness limit ranges from 5 to 20.

This result highlights the effectiveness and robustness
of AsyncFilter against varying server staleness limits.

5.7 AsyncFilter Tolerates Updates Trained From
Non-IID Data

In AsyncFilter, we employ the k-means clustering method

to group clients. A key insight here is the use of a 3-means

approach rather than the traditional 2-means. This strategy

allows for a more nuanced classification, avoiding a strict

dichotomy between suspicious and genuine clients. Specifi-

cally, AsyncFilter outputs three groups, identifying the one

with the highest score as comprising malicious attackers.

To demonstrate the superiority of the 3-means over the

conventional 2-means in this context, we conducted an ex-

periment using the LeNet-5 model on the FashionMNIST

dataset. The experiment compares AsyncFilter with 3-means

as a grouping method (AsyncFilter-3means) and AsyncFilter

with 2-means (AsyncFilter-2means). To simulate data hetero-

geneity, we set the Dirichlet distribution parameter as 0.1,
reflecting a real-world-like, yet not excessively rare, non-IID

distribution.
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Figure 7.AsyncFilter-3means demonstrates advantages over

AsyncFilter-2means. It tolerates updates trained from non-

IID Data, unlike AsyncFilter-2means which often excessively

rejects such updates. This results in improved accuracy.

The outcomes of defending against Gradient Descent (GD),

LIE, Min-Max, and Min-Sum attacks are presented in Fig-

ure 7. The results clearly indicate that AsyncFilter-3means

outperforms AsyncFilter-2means in terms of global model ac-

curacy across all the mentioned attack types. This is because

AsyncFilter-2means tends to excessively reject legitimate

updates trained from non-IID data, consequently leading to

a decline in accuracy. This finding underscores the effec-
tiveness of the 3-means approach within AsyncFilter
in the presence of data heterogeneity.

6 Concluding Remarks
In this study, we explore the crucial issue of model poisoning

attacks in asynchronous federated learning, particularly in

practical, real-world scenarios where the server’s capabilities

are minimized due to privacy concerns. We introduce Async-

Filter, a robust solution to combat these threats. Designed as

a “plug-and-play” module for a federated server, AsyncFil-

ter protects the learning process by statistically identifying

and eliminating poisoned updates throughout the training.

Through comprehensive evaluations across four diverse real-

world datasets, AsyncFilter empirically demonstrates its effi-

cacy against various sophisticatedmodel poisoning scenarios

encompassing diverse data and system heterogeneity as well

as varying magnitudes of attacker presence.

AsyncFilter effectively mitigates a major vulnerability in

asynchronous federated learning, thereby contributing to

the development of safer and more reliable systems in this

domain. This study, we hope, will inspire ongoing innova-

tion and research in this crucial field of distributed machine

learning.
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