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Abstract— In autonomous networks, cooperations among
nodes cannot be assumed, since each node is capable of making
independent decisions based on their personal preferences. In
particular, when a node needs the help of intermediate nodes
to relay messages to other nodes, these intermediaries may be
reluctant to contribute their network resource for the benefit
of others. Ideally, the right amount of incentives should be
provided to motivate cooperations among autonomous nodes so
that a mutually beneficial network results. In this paper, we
leverage the power of mechanism design in microeconomics to
design a distributed incentive mechanism that motivates each
node towards a more desirable network topology. Since network
parameters and constraints change dynamically in reality, the
desirable topology can evolve over time. Our solution presented
in this paper has successfully encompassed this evolutionary
nature of the network topology. In addition, we have transformed
our solution to an easy-to-implement distributed algorithm, that
converges towards the globally optimal topology. Although our
presentation is specific to the evolutionary topologies problem, we
believe that the design methodology employed here is sufficiently
general to solve other problems in autonomous networks.

I. INTRODUCTION

As communication networks become more distributed in
nature, network functionalities are pushed towards the edge of
these networks. Each end system has increased responsibilities
and computational burden. In return, these end systems have
the freedom to make decisions to their best interests. This leads
to the recently thriving research towards selfish behaviour in
various networks.

In this paper, we focus on the class of autonomous networks.
The two defining characteristics of an autonomous network are
that each network participant, termed node, has: (1) private
information not known to others, and (2) the freedom to
make individual decisions independent of others. Common
networks that fall under this category include application
overlay networks, wireless ad hoc networks, or peer-to-peer
networks. Specifically, we wish to find a distributed algorithm
to achieve a desirable topology in an autonomous network
given that only local decisions are made by each node.

The term network topology is used quite differently in this
paper from its traditional meaning in graph theory. In an
autonomous network, when one node exchanges data messages
with another node through several intermediate nodes, these
intermediaries can either choose to cooperate and relay the
message or refuse to cooperate. If the intermediate nodes do
not cooperate, the communication channel between the source

and destination nodes will be blocked. The set of source-
destination pairs in which every intermediary is willing to
relay messages forms a communication topology. Throughout
the entire paper, we seek to find the most desirable network
topology in this sense.

As in any real autonomous networks, the desirable topology
is dynamic and changing over time. In other words, it evolves
into a new topology once it discovers a better one. This can be
due to a variety of reasons. For example, network nodes may
join and leave a network dynamically over time. Further, mis-
cellaneous network parameters such as message relaying cost,
bandwidth, congestion level, individual node’s preferences and
communication pattern may all change and evolve dynamically
over time. The distributed algorithm presented in this paper
addresses this evolutionary nature of the topology. At any
instant in time, the distributed algorithm will continuously
converge towards the most desirable topology. We call this
problem the evolutionary topologies problem.

Another aspect of our solution focuses on creating an
incentive for autonomous nodes to cooperate to achieve the
best system state. A central concern with autonomous net-
works, however, is that each node will naturally choose their
own optimal decision based on their personal preferences.
In economic terminologies, every node is selfish, and seeks
to maximize its private utility. In the evolutionary topologies
problem, for example, a node may be reluctant to contribute
its resources such as bandwidth, energy, or processing cycles
to relay messages for others. In most cases, this selfish
behaviour results in an overall decision that may not be ideal
at the system level. As a result, each node requires additional
incentives to drive towards a globally optimal state.

An important objective of this paper is to employ a system-
atic approach to design a mechanism that provides the right
amount of incentive to each node so that the private-utility
optima of every node coincides with the global optimum. To
our knowledge, we are the first to consider this evolutionary
topologies problem in the context of mechanism design, and
successfully solving it in a distributed manner.

The theoretical background of our solution is based on an
important branch of game theory, called mechanism design,
also known as implementation theory, or inverse game theory.
In traditional game theory applications, a model is formulated
based on the problem scenario. Various equilibriums are
subsequently explored, according to the formulated model.
This is the forward approach to applying game theory. The
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disadvantage of the forward approach is that if the equilibriums
of the game are undesirable, nothing can be modified because
these equilibriums are merely consequences of our model.

The inverse approach of mechanism design, however, is
more appealing in light of our evolutionary topologies prob-
lem. Mechanism design requires us to first identify the globally
optimal point, i.e., the desirable topology in the context of our
problem. Then, if a node’s inherent preference is not sufficient
to motivate itself to achieve the globally desirable topology, we
alter its preference by paying it until it has the incentive to do
so. In an autonomous network, this payment is not restricted
to monetary payments, but can be interpreted as any virtual
currency, as suggested by Buttyan et al. [1].

As in most literature in mechanism design [2], [3], [4], we
assume that the utility function of each node is quasi-linear
throughout this paper. This means that each node’s utility func-
tion is the sum of: (1) the inherent valuation of a system state
from that node’s perspective, and (2) the payment received by
that node. Since the valuation is intrinsic to a node’s tastes
and cannot be altered, we can only control a node’s utility
function by adjusting the payments. A well-known solution to
the mechanism design problem is the Vickrey-Clarke-Groves
(VCG) mechanism. It has been proven to be the only general
solution to the mechanism design problem, and also possesses
an important property known as strategyproofness [5]. This
is useful in our evolutionary topologies problem because it
means that every node in an autonomous network will have no
reason to lie to the public about their private information, such
as their message relay cost and other individual preferences.

Although the distributed algorithm presented in this paper
is specific to achieving a desirable topology in an autonomous
network, we feel that the current algorithmic mechanism
design methodology is powerful enough to be applied to
other problem scenarios in autonomous networks as well. A
common theme in the solutions to these problems is that a
node’s private information will eventually be made public,
if given sufficient incentives to honestly reveal their private
information to their neighbours.

The remainder of this paper is organized as follows. Sec. II
formally defines the problem scenario and justifies the need
for an incentive mechanism. Sec. III introduces the idea of
mechanism design and explains the VCG solution. Sec. IV
presents how the VCG equations can be applied to our
problem at hand in a centralized manner. We also prove several
important properties regarding our solution. Sec. V logically
extends the centralized solution to a distributed algorithm that
is guaranteed to converge to the VCG solution. In Sec. VI, an
evaluation of the distributed algorithm is presented based on
whether it achieves the desirable topology and other conver-
gence properties. We discuss some related work in Sec. VII,
and conclude the paper in Sec. VIII.

II. PROBLEM FORMULATION

One of the most fundamental values in forming a communi-
cation network is that it enables the exchange of data between
two or more autonomous nodes. In conventional computer
networks, a node reaches another node by relying on the
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Fig. 1. Example: Data communications between nodes a and e require the
cooperation of nodes b and d to relay the message. The nodes represented by a
filled circle are intermediate nodes relaying messages. The nodes represented
by an empty circle are not required to relay messages. The number beside
each node is the relay cost.
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Fig. 2. Example: (a) The path from node a to e is broken if node d refuses to
relay messages. (b) An alternate path 〈a, c, d, e〉 exists even if node b refuses
to relay messages.
intermediate nodes to relay data packets. The intermediate
nodes are usually routing equipments maintained by network
service providers, who charge the network end users for
this service. These payments received by the network service
providers give them incentives to relay data for end users.

In autonomous networks, however, the intermediate nodes
are end users themselves, and therefore have no incentive
to relay messages for other end users. In order for the
intermediaries to cooperate and relay messages, a payment
schedule must be established. The difficulty lies in determining
the correct level of payment. If the payment is too large, it is
unfair to the sender of the message. On the other hand, too
small a payment may not sufficiently motivate cooperation
from intermediaries.

An example is shown in Fig. 1, where node a tries to
communicate with node e. This communication between nodes
a and e is made possible by the cooperation of nodes b and
d to relay other nodes’ messages. In Fig. 1, nodes that are
willing to relay messages for others are represented by a filled
circle, whereas nodes that are not relaying any message are
represented by an empty circle. Each node is also labeled with
a number, which represents the cost to relay one message over
that node. In this example, the minimum relay cost from node
a to e is 2 + 3 = 5. Note that any node can trivially reach
itself or its one-hop neighbours without relay cost incurred.

Further, in Fig. 2a, if the intermediate node d refuses to relay
messages, this lack of cooperation will make it impossible
for node a and e to communicate. On the other hand, if the
intermediate node b refuses to relay the message from node
a to e, this message can still be relayed through the alternate
path 〈a, c, d, e〉, provided that node c is willing to cooperate, as
depicted in Fig. 2b. From this observation, we realize that the
cooperation from node d is more important than that of node
b. Therefore, a sensible payment scheme should pay more to
node d than to node b.

The above example resembles a minimum-cost routing
problem. However, our formulation of the problem is different
in at least three ways. First, traditional routing problems
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usually minimize link costs. In our formulation of the problem,
we are minimizing relay costs at each node. Second, an
autonomous node can freely choose to refuse to forward other
nodes’ messages, whereas a link has no choice but to carry
traffic. Third, and most importantly, we are trying to solve for
a global optimum that will result in network connectivity as
a whole. It is not our objective to minimize the cost of any
single path, although this could be an appealing side effect.
Throughout the entire paper, our focus is to maximize global
welfare, instead of local welfare. In the following, we define
several useful terminologies, which will eventually lead to our
precise definition of a desirable network topology. Notice how
one definition builds on top of the other.
Definition 1: A node is called a relay node in an autonomous
network if it has been given sufficient incentives to relay
messages for other nodes. A node that is not a relay node
is a non-relay node.

For example, in Fig. 1, nodes b and d are relay nodes,
whereas nodes a, c, and e are non-relay nodes.
Definition 2: A destination node k is reachable from a
source node j if there exists a path from j to k such that
every intermediate node is a relay node. Node k is called a
reachable node from node j. By definition, all adjacent nodes
are automatically reachable.

For example, in Fig. 2a, node e is not reachable from a.
Node d is reachable from a since node b is a relay node.
Finally, nodes b and c are also reachable from a since they
are adjacent to a. Note that a reachable node does not have to
be a relay node itself.
Definition 3: An autonomous network is connected if every
node is reachable from every other node. A network that is
not connected is disconnected.

Fig. 1 and Fig. 2b are both examples of connected au-
tonomous networks, whereas the network shown in Fig. 2a
is disconnected.
Definition 4: A node is called a bottleneck node if making it
a non-relay node causes a connected autonomous network to
become disconnected.

Note that node d is the only bottleneck node in Fig. 2a.
The above definitions are defined for the purpose of solving

our problem, and may differ slightly from graph theory ter-
minologies. Our goal in the remaining section is to present a
comprehensive model to capture the value of data commu-
nication such that in the ideal case, every node’s message
can reach every other node. One trivial solution is to provide
incentives for every single node to become relay nodes, so
that a connected network is instantly obtained. What makes
the problem challenging is that we would like to solve for the
minimum set of relay nodes while still guaranteeing network
connectedness.
Definition 5: A desirable topology of an autonomous network
has the following properties:

1) the network is connected; and
2) average message relay cost should be minimized.
Fig. 1 is an example of a desirable topology, whereas Fig. 2a

and Fig. 2b are both undesirable. This is because Fig. 2a
does not meet the first criterion of a desirable topology, and
Fig. 2b does not meet the second criterion. Note that the

Parameter Meaning of Parameter
n, n ≥ 0 Number of nodes

N The entire set of nodes
Rj Set of reachable nodes from j
Aj Set of nodes adjacent to j

[mjk], mjk ≥ 0 Benefits to j of reaching k
[πjk], πjk ≥ 0 Probability of j sending one message to k
[c∗jk], c∗jk ≥ 0 Minimum relay cost from j to k

cl, cl ≥ 0 Relay cost of node l
Pjk Minimum cost path from j to k

TABLE I

SUMMARY OF NOTATIONS IN NETWORK MODEL

desirable topology may dynamically change over time. This
happens when network nodes enter or leave the system over
time, or when other network parameters change. Regardless
of these changes, however, the mechanism should always
converge back to the correct desirable topology in a finite
number of steps. We now proceed to define the necessary
mathematical notations used in our network model as well
as our evolutionary topologies problem.

A. Network Model

Consider an autonomous network modeled as an undirected
graph (N,E), where N is the set of nodes and E is the set
of edges. Let n = |N | be the number of autonomous nodes
in this network. We wish to identify all important parameters
in our network model.

Consider a benefits matrix [mjk], where mjk ≥ 0 represents
the benefits enjoyed by node i for being able to reach node k.
Since any node can trivially reach itself, we set mjj = 0 for
convenience1. Note that the benefit mjk will only be realized
if k ∈ Rj , where Rj is the set of reachable nodes from j.

In addition, the communication between nodes j and k
incurs a relay cost. Let cl ≥ 0 be the cost incurred to node
l to relay one message. Also, let c∗jk be the minimum relay
cost from node j to k. Following our previous example in
Fig. 1, c∗ae = 2 + 3 = 5. Since a node does not have to
relay any message to itself, cjj = 0 for all j. Similarly, any
node can reach its one-hop neighbour without the help of any
intermediate nodes to relay messages, so we have cjk = 0 for
all k ∈ Aj , where Aj is the set of nodes adjacent to j. Let
Pjk be the minimum cost path from j to k. Then, in general:

c∗jk =
{

0 if k = j or k ∈ Aj∑
l∈Pjk

cl otherwise

Finally, consider the probability matrix [πjk], where 0 ≤
πjk ≤ 1 is the probability of node j sending one message
to node k in the next time period. For simplicity, we assume
that we are able to pick a sufficiently small time period so
that each source-destination pair (j, k) can at most initiate one
message during this time period. The mathematical notations
are summarized in Table I.

B. The Evolutionary Topologies Problem

Definition 6: The evolutionary topologies problem is to design
a mechanism that will provide an incentive for every node to
converge towards a desirable topology in a finite number of
steps.

1This simplification assumption will not affect the validity of our future
derivations presented in this paper.
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Fig. 3. The evolution of desirable topologies over time

Consider an example of an autonomous network in Fig. 3,
where the desirable topologies are evolving over time. The
three figures represent different snapshots of the network at
different times, each of which has already converged to a stable
desirable topology.

In Fig. 3a, nodes k1 and k2 are the only relay nodes. We
can verify that this network is connected, since every node
is reachable from every other node. For example, node i can
reach k3 via k1 and k2. Further, average relay cost has been
minimized in the sense that the minimum cost path of every
source-destination pair is achieved. For example, the minimum
cost path from i to k3 is through k1 and k2, and both of them
are relay nodes.

In Fig. 3b, node j has decreased its relay cost from 6 to 2.
All other relay costs remain unchanged. In order to maintain a
desirable topology, the set of relay nodes evolve to nodes j and
k2. We can verify that the network topology is still desirable
in this new solution.

Finally, in Fig. 3c, node k2 has increased its relay cost
from 2 to 7. All other relay costs remain unchanged. The
new desirable topology is to make i and j the relay nodes.
The network is once again connected. In fact, if we observe
the transitions in these figures, we see that the network has
shifted the relaying responsibilities from nodes {k1, k2} to
nodes {i, j} over time. Node k3, however, has never been a
relay node. Indeed, if the nodes are not mobile, node k3 will
never become a relay node. The reason is that node k3 will
only be needed to relay messages between nodes j and k2,
but nodes j and k2 are already adjacent to each other!

At this point, it would seem unfair to the relay nodes,
since they have to contribute their private resources to the
community. This is where mechanism design comes in and
motivates them with the right amount of payments. These
payments are transferred to the relay nodes from nodes who
benefit from these relay services.

III. MECHANISM DESIGN AND VCG MECHANISM

In any game theory application, we first construct a model
of the game and formulate the utility function of each node.
Based on the set of utility functions, we then solve for
certain equilibrium points, which represent the outcome of
the game when stability is reached. Mechanism design, on
the other hand, takes the inverse approach. Instead of finding
the equilibrium outcomes from the model of the game, we
have the freedom to choose what outcome we wish the game
to stabilize at. Based on the desired outcome, we manipulate
the utility function so that the desired outcome is achieved. In
the following, we introduce the concepts and terminologies of
mechanism design relevant to this paper. For a more in-depth
treatment of the subject, refer to the excellent resources [2],
[5].

Consider a game of n nodes. Each node can decide on a
strategy si ∈ Si based on their utility function ui(si, s−i). Si

is called the strategy space of i, and s−i simply means the
set of strategies chosen by all nodes except i. The following
definition formally defines dominant strategy equilibrium.
Definition 7: A dominant strategy equilibrium s∗ satisfies the
condition

ui(s∗i , s−i) ≥ ui(si, s−i) ∀i, (si, s−i) ∈ S

In other words, a dominant strategy is one that maximizes
the utility of each node, no matter what strategies other nodes
choose. Since each node’s decision is independent of other
nodes’ decisions, a node does not have to know others’ equi-
librium strategies. The only common knowledge known to all
nodes is the strategy space of each node. This is an important
advantage when designing distributed algorithms. When some
private information of a node is announced to the public, it
is possible that the node is lying about this information in
order to obtain a higher utility. Fortunately, a well-studied
class of mechanisms called strategyproof mechanism states
that each node can be motivated to become honest, or at
least does not have any incentive to lie. In economics, private
information is usually called type, denoted by θi ∈ Θi. In
our evolutionary topologies problem, [πjk], [mjk], and [c∗jk]
are all private information to individual nodes, and thus are
considered types. The following definition formally defines
strategyproof mechanism.
Definition 8: A mechanism is strategyproof if for all node i:
(1) the strategy space is to declare their types, Si = Θi;
(2) declaring the true type is a dominant strategy, s∗i = θi.

Not all mechanisms are strategyproof, but a theorem in
mechanism design called the Revelation Principle states that
we can focus on strategyproof mechanism without loss of
generality [5].

Up to this point, we have only discussed the importance
of strategyproof mechanisms, but have not mentioned how to
solve the mechanism design problem. In essence, a solution
to the mechanism design problem should manipulate: (1) the
outcome o(·) of the game; and (2) the utility ui(·) of each
node through payment pi(·).

The good news is that a general solution to the mechanism
design problem exists. It is known as the VCG mechanism.
It has been proven to be the only general solution for util-
itarian mechanism design problems [6]. Furthermore, it is a
well-known fact that all VCG mechanisms are strategyproof
mechanisms. This means that if we solve a mechanism design
problem with VCG, then there would be no incentive for any
node to lie about their private information.
Definition 9: A Vickrey-Clarke-Groves (VCG) mechanism is
the family of mechanisms M(θ) = (o(θ), p(θ)) such that:

o∗(θ) ∈ arg max
o

n∑
j=1

vj(θj , o(θ)) (1)

pi(θ) =
∑
j �=i

vj(θj , o
∗(θ)) + hi(θ−i)

hi(θ−i) is an arbitrary function of θ−i that is often defined
as hi(θ−i) = −∑

j �=i vj(θj , o
∗
−i(θ−i)). Therefore, the VCG

payment function becomes:
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pi(θ) =
∑
j �=i

vj(θj , o
∗(θ))−

∑
j �=i

vj(θj , o
∗
−i(θ−i)) (2)

Eq. (1) is the VCG outcome function, and it states that we
are optimizing the total valuation of a network. Eq. (2) is the
VCG payment function, which can be interpreted intuitively.
The first term in the VCG payment function is the total value
of the system excluding node i’s valuation, given that the
optimal outcome o∗(θ) is achieved. The second term is similar
to the first, except we assume that node i were to withdraw
from the game when finding the optimal outcome o∗−i(θ−i).
In all practical applications, the second term is always less
than or equal to the first term, because the withdrawal of node
i can only make the system worse off (or unchanged in the
best case). As a result, non-negative payments are guaranteed.
In summary, the VCG payment function claims that a node
should be paid as much as its best alternative.

IV. DERIVATIONS OF VCG SOLUTION IN THE

EVOLUTIONARY TOPOLOGIES PROBLEM

As previously mentioned, the utility function ui(·) is the
sum of the valuation function vi(·) and the payment function
pi(·):

ui(θi, o(θ)) = vi(θi, o(θ)) + pi(θi, o(θ))

For simplicity of notations, we sometimes drop the variables
in the brackets and simply write:

ui = vi + pi

In order to apply the VCG mechanism in the evolutionary
topologies problem, we first need a reasonable valuation
function vi(·). This function can then be used with Eq. (1) and
Eq. (2) to solve for the VCG mechanism. In the remaining
section, we are first going to derive the valuation function
vi(·) for our evolutionary topologies problem. This is followed
by a derivation of the VCG outcome function o(·) and the
VCG payment function pi(·). We end this section with an
interpretation of the results, and explore some of the desirable
properties of our solution.

A. The Valuation Function

Consider the net value Vjk of sending each message from
node j to k, expressed in the form of benefits minus cost, i.e.,
Vjk = mjk − cjk. Formally, the net value Vjk is a random
variable that is realized only if a message is being transmitted
in the next time period with probability πjk, i.e.,

Vjk =
{

mjk − cjk with probability πjk

0 with probability (1− πjk) (3)

The valuation function vj(·) can be expressed succinctly as
a summation of expected net values. The expected valuation
to node j is:

vj =
∑
k∈N

E{Vjk} (4)

=
∑

k∈N\Rj

E{Vjk}+
∑

k∈Rj\Aj

E{Vjk}

+
∑

k∈Aj

E{Vjk}+ E{Vjj} (5)

=
∑

k∈Aj

E{Vjk}+
∑

k∈Rj\Aj

E{Vjk} (6)

=
∑

k∈Aj

[πjk(mjk − 0) + (1− πjk)(0)] +

∑
k∈Rj\Aj

[πjk(mjk − cjk) + (1− πjk)(0)] (7)

=
∑

k∈Aj

πjkmjk +
∑

k∈Rj\Aj

πjk(mjk − cjk) (8)

Eq. (4) is the expected net value of a certain network
topology to node j. The summation is decomposed into four
terms in Eq. (5). Eq. (6) is obtained by realizing that Vjj =
mjj−cjj = 0 as well as Vjk = 0 for node k that is unreachable
from j. Applying Eq. (3) to expand the expectations, we obtain
Eq. (7). After simplifying, we end up with Eq. (8), which will
be used in our upcoming derivations of VCG outcome and
payment functions.

B. The VCG Outcome

In the context of our evolutionary topologies problem, an
outcome o = (o1, o2, . . . , on) is an indicator vector showing
whether node i is a relay node or not, i.e.,

oi =
{

1 if i is a relay node
0 otherwise

(9)

Applying the valuation function in Eq. (8) to the VCG
outcome function in Eq. (1), the VCG optimal outcome o∗

reduces to solving an optimization problem:

max
n∑

j=1


 ∑

k∈Aj

πjkmjk +
∑

k∈Rj\Aj

πjk(mjk − cjk)


 (10)

Recall that [mjk] is the benefits matrix, [cjk] is the cost
matrix, and [πjk] is the probability matrix. Note that all
these values are determined exogenously, for example, by the
application running on each node. Since πjk ≥ 0 and mjk ≥ 0,
the first term in Eq. (10) must be non-negative.

To maximize the second term, we should also find the
minimum relay cost cjk = c∗jk by solving for the minimum
cost path Pjk from j to k. Note that the second term can be
negative if mjk < c∗jk. In this case, to maximize Eq. (10),
we would rather not transmit the message from node j to k.
This consequence is reasonable because if the relay cost of a
message outweighs its benefits, then it is only rational not to
send the message. However, in most cases where mjk ≥ c∗jk,
node j not only prefers to send k the message, but also
specifically along the minimum cost path. In other words,
if a node is along any minimum cost path of any source-
destination pair, it must a relay node in order to guarantee
global optimality.
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VCG Outcome o∗ = (o∗1, o
∗
2, . . . , o

∗
n):

o∗i =




0 if node i is not on any
minimum cost path

1 if node i is on at least one
minimum cost path with mjk ≥ c∗jk

(11)

C. The VCG Payment

Previously, we have only identified which node should
become a relay node in order to achieve global optimality,
but have left out the issue of how we motivate each node to
become a relay node. In the following, we address this issue by
solving for the VCG payment in the evolutionary topologies
problem, which will provide the proper incentives to each
node to achieve global optimality. We make the simplifying
assumption that the flow of payments can only occur between
adjacent nodes. Payments made to nodes further than one hop
away are considered unrealistic, because we cannot be certain
that payments will be relayed faithfully, when our incentive
mechanism is not even in place yet.

Returning to the example in Fig. 1, suppose node a wants to
send a message to e through the minimum cost path 〈a, b, d, e〉.
In this case, node a pays b, b pays d, and d relays to e without
further payment. Only nodes b and d receive a payment, since
they are the only two relay nodes on this minimum cost
path. Restricting payments among adjacent nodes has another
advantage. In the previous example, instead of having one
large global game that involves all nodes {a, b, c, d, e}, the
problem has been reduced to several local games, as seen by
rearranging Eq. (2):

pi(θ) =
∑
j �=i

vj(θj , o
∗(θ))−

∑
j �=i

vj(θj , o
∗
−i(θ−i))

=
∑
j �=i

(vj − v−i
j ) (12)

=
∑
j∈Ai

(vj − v−i
j ) (13)

=
∑
j∈Ai

pji (14)

Eq. (12) is merely a simplification of notations. v−i
j can

be interpreted as the valuation of node j given that node i
is not a relay node. Eq. (13) is a consequence of the fact
that we only consider a local game involving adjacent nodes.
pji = (vj − v−i

j ) is the payment from node j to node i. From
Eq. (14), we observe that the total payment received by a
node is the sum of individual payments from each adjacent
node. Therefore, when calculating the payment pb to node b
in Fig. 1, we focus on a local game centered around node b,
involving only nodes {a, b, d}. Similarly, when calculating pd,
we consider the local game with nodes {b, c, d, e}.

We emphasize that the payments pji are not made on a
per-message basis, but rather, on an average basis per unit
time. This alleviates a node’s burden of having to make a
separate decision each time it receives a message, and will
increase the efficiency of our solution. For every constant time
period, each node calculates how much on average it has
to pay their one-hop neighbours. Their neighbours perform
the same calculations based on their own perspectives. As a

result, a node who pays less than the income they receive
will be gaining capital over time. Intuitively, we expect the
nodes located at the center of the network to have a net
inflow of payments, since they are relaying for many other
nodes. In contrast, nodes at the network edge do not need
to relay messages, and are expected to have a net outflow of
payments. Overall, the entire autonomous network functions
as one closed system in the sense that the net inflow or
outflow of virtual currency is zero. Virtual currencies are only
redistributed within the network.

To solve for the VCG payment for the evolutionary topolo-
gies problem, we apply Eq. (8) to pji:

pji = vj − v−i
j

=
∑

k∈Aj

πjkmjk +
∑

k∈Rj\Aj

πjk(mjk − c∗jk)−
∑

k∈Aj

πjkm−i
jk −

∑
k∈Rj\Aj

πjk(m−i
jk − c−i

jk ) (15)

There are four different types of destination node k to be
considered here, each of which yields a slightly different m−i

jk

and c−i
jk .

Case 1 [k ∈ Aj ]: Node k is adjacent to node j. In this case,
the benefit m−i

jk is guaranteed, since adjacent nodes must be
reachable. Also, as mentioned before, relay cost is zero for
adjacent node k.

m−i
jk = mjk, and

c−i
jk = 0

Case 2 [k ∈ Rj \ Aj and i /∈ Pjk]: The minimum cost
path from j to k does not pass through i. In this case,
both the benefit mjk and the minimum cost c∗jk are achieved
independent of whether i is a relay node.

m−i
jk = mjk, and

c−i
jk = c∗jk

Case 3 [k ∈ Rj \ Aj and i ∈ Pjk and P−i
jk ∃]: An alternate

path P−i
jk exists from node j to k without passing through i.

In this case,

m−i
jk = mjk, and (16)

c−i
jk =

∑
l∈P−i

jk

cl (17)

Eq. (16) simply states that the benefit to node j of reaching
node k is the same, regardless of what path is taken to get
there. Eq. (17) calculates the minimum cost of the path from
node j to k, without going through node i. P−i

jk is interpreted
as the best alternative to the minimum cost path Pjk.
Case 4 [k ∈ Rj \ Aj and i ∈ Pjk and P−i

jk �]: No alternate
path exists from node j to node k. In this case,

m−i
jk = 0, and (18)

c−i
jk = 0 (19)

Eq. (18) and (19) state that there is neither benefit or cost
to node j, if node i were to withdraw from the network. Note
that node i is a bottleneck node on the path from j to k.
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We apply the results of Case 1 to 4 to Eq. (15):

pji = vj − v−i
j

=
∑

k∈Aj

πjkmjk +
∑

k∈Rj\Aj

πjk(mjk − c∗jk)−
∑

k∈Aj

πjkm−i
jk −

∑
k∈Rj\Aj

πjk(m−i
jk − c−i

jk ) (20)

=
∑

k∈{Rj\Aj∩i∈Pjk∩P−i
jk ∃}

πjk(c−i
jk − c∗jk)

+
∑

k∈{Rj\Aj∩i∈Pjk∩P−i
jk �}

πjk(mjk − c∗jk) (21)

The first and third term of Eq. (20) is canceled according
to Case 1, whereas the second and fourth term is simplified
according to Case 2 to 4. Eq. (21) is the final VCG payment
function.
VCG Payment pji: In summary, in an autonomous network,
node k will contribute to the payment pji an amount equal to
πjk(c−i

jk − c∗jk), if:

1) k is a reachable node;
2) k is not adjacent to j;
3) i is on the minimum cost path from j to k;
4) i is not a bottleneck node from j to k.

On the other hand, node k will contribute to the payment
an amount equal to πjk(mjk − c∗jk), if:

1) k is a reachable node;
2) k is not adjacent to j;
3) i is on the minimum cost path from j to k;
4) i is a bottleneck node from j to k.

D. Properties of Our Solution

To intuitively understand our VCG outcome and payment,
several properties of our solution are given below. These
properties are valuable in two ways. First, they serve as
necessary conditions that every well-designed mechanism of
the evolutionary topologies problem should meet. Second, they
are good verifications against common sense.
Property 1: A non-relay node i receives no payment, pi = 0.
Proof: Eq. (11) demands that a non-relay node i must not be
on any minimum cost path, i.e., i /∈ Pjk, ∀ j ∈ Ai, k ∈ N .
If node i is not relaying messages for any adjacent node at
all, then from Eq. (21), pji = 0, ∀ j ∈ Ai. As a result, pi =∑

j∈Ai
pji = 0. �	

Property 2: A relay node i has non-negative utility, ui ≥ 0.
Proof: Since c∗jk is the minimum relay cost from j to k, we
have c−i

jk ≥ c∗jk. Furthermore, Eq. (11) demands that mjk ≥
c∗jk for relay nodes. Applying these inequalities in Eq. (8)
and Eq. (21) gives vi ≥ 0 and pi ≥ 0 respectively for all i.
Therefore, ui = vi + pi ≥ 0. �	
Property 3: (a) A node can obtain at most equal, but never
higher, utility than declaring the truthful private information.
(b) A node will derive strictly worse utility if it declares un-
truthful private information that results in sub-optimal global
outcome.
Proof: The proofs are almost identical to the general proof
of VCG being a strategyproof mechanism, and therefore are

j ← Id
msgIn← receiveMsg()
i← msgIn.Id
for each k ∈ N \ {msgIn.Ai}

challenger ← msgIn.c∗ik + msgIn.ci

challenger2 ← msgIn.c2ik + msgIn.ci

if challenger < c∗jk
hjk ← i

end if
c∗jk ← min(challenger, c∗jk)

tmp← {c∗jk, c2jk, challenger, challenger2}
c2jk ← secondMin(tmp) with next hop �= hjk

h2jk ← update next hop
end for

for each i ∈ Aj

pji ← 0
for each k ∈ {Rj |hjk = i, k �= i}

if c2jk =∞ and c∗jk �=∞
pji ← pji + πjk(mjk − c∗jk)

elseif c2jk �=∞ and c∗jk �=∞
pji ← pji + πjk(c2jk − c∗jk)

end if
end for

end for

TABLE II

THE DISTRIBUTED ALGORITHM RUNNING AT EACH NODE

omitted due to space constraints. The interested reader is
referred to page 877-880 in [5].
Property 4: Nodes with degree 1 does not receive any
payment, and will never be relay nodes.
Proof: For a node i that has only one adjacent node j, the
set of k ∈ {Rj \ Aj ∩ i ∈ Pjk} is empty, and so pji = 0.
This implies that pi = pji = 0. Finally, nodes that receive no
payments are not relay nodes. �	
Property 5: If mjk > c∗jk for all source-destination pairs
(j, k), the autonomous network will be connected.
Proof: For a message to be relayed all the way from any
node j to any other node k in an autonomous network,
every intermediate node must be a relay node. Consider the
minimum cost path Pjk = {i1, i2, . . . , iL} from j to k that
passes through L intermediate nodes. Given that mi1i2 > c∗i1i2

,
mi2i3 > c∗i2i3

, mi3i4 > c∗i3i4
, · · ·, we have:

oi = 1, ∀ i = i1, i2, · · · , iL
As a result, node k is reachable from j. Generalizing this

result for all source-destination pairs (j, k) in the network,
connectedness will be guaranteed. �	

V. THE DISTRIBUTED ALGORITHM

We have so far derived the VCG outcome and payment
functions, as applied to the evolutionary topologies problem.
We have also stated some observations and properties of our
solution. We will design the distributed algorithm based on
our centralized solution in the previous section. Convergence
and efficiency issues will also be discussed.

The first step towards solving for the correct optimal out-
come as well as calculating the accurate payment is to identify
all private information that has to be made public. In the
context of our evolutionary topologies problem, the private
information includes the probability matrix [πjk], the benefits
matrix [mjk], as well as the relay cost matrices [c∗jk] and [c−i

jk ].
From Eq. (21), payment pji is a function of πjk, mjk, c∗jk, and
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c−i
jk . Both πjk and mjk are private information to node j, and

therefore are known. The relay costs c∗jk and c−i
jk , however,

have to be passed to node j from other nodes. This can be
achieved by any distributed shortest-path routing algorithm
such as the distance-vector or the link-state algorithm. In
this paper, we have chosen the distance-vector algorithm to
demonstrate the distributed computation of VCG payments,
although there is no apparent constraint preventing us from
using any other algorithm.

Since our proposed algorithm is distributed, it runs on every
single node in the network. Similar to the distance-vector
algorithm, local information at each node such as relay cost
is disseminated throughout the network by message passing
between adjacent nodes. We assume that each node in the
network possesses a unique identifier, such as an IP address.
Suppose the algorithm is running on node j (the payer), and
has just received an incoming message from its adjacent node i
(the payee). For every node k that is reachable but not adjacent
to j, we would like to keep track of four pieces of information:

1) c∗jk = Minimum cost from node j to k;
2) hjk = Next hop on the minimum cost path Pjk;
3) c2jk = Second-minimum cost from node j to k, where

the first hop is not hjk;
4) h2jk = Next hop on P−i

jk .

The minimum cost from node i to k is easily obtained by
the well-known distance-vector equation:

c∗jk = min(c∗jk, c∗ik + ci) (22)

c∗jk is the minimum cost from j to k, as far as node j
is concerned. c∗ik + ci can be considered a challenger to the
current minimum cost. If c∗ik +ci < c∗jk, then a better path has
just been discovered. In this case, the minimum cost cjk will
be updated to the new minimum c∗ik + ci, and hjk will also
be updated to i. We adopt the convention that no path updates
are made when there is a tie, i.e., c∗ik +ci = c∗jk. Finally, when
c∗ik+ci > c∗jk, the challenger cannot beat the current minimum
cost, so no path updates are necessary. Note that even if the
challenger c∗ik + ci cannot beat the current minimum cost, it
can still be our best alternative to the current minimum cost
path, c2jk.

Calculating c2jk and h2jk are slightly more challeng-
ing. Finding c2jk can be interpreted as finding the second-
minimum. In addition to the previous challenger c∗ik + ci, we
also have a second challenger c2ik +ci. Our end goal is to find
the second-minimum from the set {c∗jk, c2jk, c∗ik + ci, c2ik +
ci}. Although detailed comparisons are not presented here, it
can be seen that the second-minimum out of 4 elements can
be found in constant time O(1).

The second part of our distributed algorithm calculates the
payments according to Eq. (21). For each node i (the payee)
that is adjacent to node j (the payer), we find all destination
node k such that:

1) k is a reachable node;
2) k is not adjacent to j;
3) i is on the minimum cost path from j to k.

And if c∗jk is finite but c2jk is infinite, then there is no
alternate path from node j to k, except going through i. Based

on Eq. (21), the payment is updated as follows:

pji ← pji + πjk(mjk − c∗jk) (23)

On the other hand, if c∗jk and c2jk are both finite, then there
is an alternate path from node j to k that does not pass by i.
Based on Eq. (21), the payment is updated as follows:

pji ← pji + πjk(c2jk − c∗jk) (24)

Table II summarizes the distributed algorithm that calculates
the VCG payments.
Correctness: The correctness of our distributed algorithm
depends on two parts: (1) whether this algorithm finds the
minimum cost and second-minimum cost correctly; and (2)
whether the payment equations are correct. The correctness
of the first part relies on the correctness of distance-vector
algorithms, the proof of which is readily available from
references such as [7]. The correctness of the second part relies
on our derivations of Eq. (21) in Sec. IV-C.
Convergence: If messages are exchanged on a periodic basis,
our distributed algorithm is guaranteed to converge in O(d)
time, where d is the diameter of the network graph. The
graph’s diameter is the largest number of nodes which must be
traversed from one node to another in a loop-free path. Note
that messages exchanged between adjacent nodes do not have
to be synchronous. Each time a node receives a new message,
the algorithm in Table II will be invoked once, and running the
algorithm will ensure that the minimum and second-minimum
costs are found, based on the available information so far.
Therefore, the only requirement for the algorithm to converge
is that if some private information is revealed by a destination
node k at a certain time, then it must eventually reach every
other node on the network in a finite amount of time. Finally,
we note that the number of control messages of this distributed
algorithm is O(n2), as in any distance-vector algorithm.

In addition to calculating the VCG payments, the algorithm
must also determine when to relay messages for another node.
According to our analysis in Sec. IV-B, a node j should relay
messages for another node only when it is part of at least one
minimum cost path Pjk. However, we have shown previously
that the next hop of any minimum cost path will receive a
payment pji. As a result, a node should set oj = 1 only when
it receives a payment from adjacent nodes. Since this payment
is derived from the VCG mechanism and has been accurately
calculated by our distributed algorithm, each node will have
just the right amount of incentive to relay messages.

VI. EVALUATIONS

In the following, we evaluate our distributed algorithm
through simulations in Matlab. These simulations explore
some of the intuitive results discussed in previous sections.

We begin by generating n = 50 nodes uniformly distributed
on a 10-by-10 grid. Two nodes are joined by a link if the
Euclidean distance between them is less than 2 units. The
resulting network is shown in Fig. 4. In the simulation,
we have assumed that messages are passed synchronously
between adjacent nodes at each time period, even though
our distributed algorithm does not rely on this assumption to
converge. We simulated a total of 170 time periods. During
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Fig. 4. Network topology in our simulation

each period, every node j receives and interprets messages
sent by its adjacent node i ∈ Aj .

The probability matrix [pjk] and the benefits matrix [mjk]
are generated randomly in this simulation. The relay cost
ci is modeled as a function of remaining energy (as in a
wireless ad hoc network) and bandwidth. For example, it is
reasonable to expect that the cost of relaying messages for
another node is larger when a node has less energy. Similarly,
a low residual bandwidth usually implies a higher cost. The
relay cost function is:

ci = 10− 5xe(i, t)− 5xbw(i) (25)

where:

Parameters Range of Parameters
pjk 0 ≤ πjk ≤ 1
mjk 0 ≤ mjk ≤ 50
ci 0 ≤ ci ≤ 10

E0(i) 0.5 ≤ E0(i) ≤ 1
xe(i, t) 0 ≤ xe(i, t) ≤ 1
xbw(i) 0 ≤ xbw(i) ≤ 1

TABLE III

SIMULATION PARAMETERS AND THEIR RANGES

xe(i, t) = max{E0(i)− 0.01t, 0}
xbw(i) =

{
1/|Ai| if |Ai| �= 0
1 if |Ai| = 0

E0(i) is the initial energy of node i, and is randomly
generated. We further define xe as the fraction of remaining
energy, so 0 ≤ xe ≤ 1, and define xbw as the fraction of
remaining bandwidth, so 0 ≤ xbw ≤ 1. Note that we have
assumed xbw(i) is simply inversely proportional to the number
of adjacent nodes. Therefore, it is not time-varying, whereas
xe(i, t) is decreasing linearly in time. Overall, cost ci(t) is
increasing in time. The range of values of each simulation
parameter is summarized in Table III.

The above relay cost, modeled as a function of energy and
bandwidth, is only chosen for the purpose of our simulation.
In general, our theoretical derivations in Sec. IV allow us to
use virtually any cost model, as long as the model reflects the
true preferences of each node. In this simulation, we wish to
have some dynamics in the relay costs of each node, so that
the evolution of desirable topologies becomes apparent in the
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simulation results.
Although the cost is continuously changing in time accord-

ing to our cost model in Eq. (25), we only update the new
relay costs to every node at t = 50, 100, and 150. This is
because our algorithm takes O(d) time periods to converge,
where d is the diameter of network graph. If the cost is
continuously changing for the entire duration of the simulation,
the convergence will always be delayed by O(d) time steps.
Using discrete cost updates, we should expect to observe clear
convergence behaviour shortly after t = 50, 100, and 150.

From Table III, note that the values of mjk is on average
larger than the values of cjk to ensure that the network
topology is at least mostly connected when our distributed
algorithm is executed. Strictly speaking, according to Property
5 in Sec. IV-D, connectedness is not guaranteed in our network
because we have not imposed the condition mjk < c∗jk for all
source-destination pairs (j, k). However, the current simulation
indicates that a looser condition on mjk and c∗jk can also result
in a connected network.

In Fig. 4, the relay nodes, as determined by our algorithm,
are marked with an asterisk �. Property 4 in Sec. IV-D stated
that a node with only one adjacent node is never a relay node.
This property is verified by observing that node 24 is not a
relay node in Fig. 4. We further plots the number of reachable
nodes from node 24 and 32 respectively in Fig. 5a. We observe
that our algorithm stabilizes at around t = 15 and t = 63, and
that both nodes 24 and 32 are able to reach 49 nodes upon
convergence. (The unreachable node is the singleton node 45
at the right-bottom corner of the Fig. 4.) Beyond t = 100,
we begin to observe a more random behaviour, and this is
due to the fact that some nodes started to go out of energy,
and therefore, the number of reachable nodes drop. In essence,
we have achieved a desirable network topology where every
node can reach every other node in the network during the
network’s lifetime.

Fig. 5b plots the minimum and second-minimum costs c∗jk

and c2jk from node 32 to 6 and from 24 to 14 as they evolve
over time. Node 24 at the network edge has no alternate path
to 14. Its second-minimum cost is therefore infinity, and has
been left out of the figure. Recall that we update the relay
costs only every other 50 time periods. The convergence of
minimum cost can thus be observed shortly after time t = 50,
100, and 150, where minimum costs are held constant before
the next update.

Fig. 5c is an excellent example of the evolutionary nature
of our problem. Consider the top graph, which plots the relay
cost of nodes 7 and 37 over time. Note the proximity of
these two nodes in the network. Node 7 starts at a lower
cost than node 37, and is therefore chosen to be the relay
node. After two cost updates according to Eq. (25), the relay
cost of node 7 has increased beyond the cost of node 37 at
t = 100. Consequently, the responsibility of relaying messages
has shifted from node 7 to node 37. This transfer of relay
responsibility is especially obvious from the bottom graph,
which plots the remaining energy of these nodes over time.
Note that energy decreases only when a node is a relay node.
After the third cost update at t = 150, the relay cost of node
37 is once again greater than the cost of node 7, so node 7

once again becomes a relay node. If the energy of these nodes
were unlimited, these two nodes will continue to switch their
roles at every subsequent cost update. This demonstrates an
interesting side-effect of our solution — an even distribution of
network resource consumption over time, thereby lengthening
network lifetime.

Finally, we would like to explore the flow of payments
between adjacent nodes. In Fig. 5d, the cumulative virtual
currency of node 22 and 27 are plotted as a function of time.
Node 22 experiences a net outflow of payments, which is to
be expected for non-relay nodes. In contrast, the bottleneck
node 27 has a net inflow of payments, which is also expected
for bottleneck nodes.

VII. RELATED WORK

Although many previous work applied game theory to
solve network problems [8], the application of mechanism
design to networking was pioneered by Nisan et al. [2] and
Feigenbaum et al. [3], [4], and have later been discussed in
other representative work such as Roughgarden [9]. A common
theme in their work is that VCG is applied to solve the
shortest-path routing problem.

Though our work also applies the VCG mechanism from
microeconomics to solve networking problems, our network
model and problem formulation are different. First, while
previous papers considers the computation at the message level
per sender-receiver pair, our work focuses on the handling
of computation at a time-interval level: given a traffic distri-
bution and benefit matrix, we attempt to form the network
that maximizes total utility of all the nodes. This adaptive
nature of our distributed algorithm would ensure that our
topology remains optimal, despite varying network capacity,
traffic patterns, and applications. Second, our formulation of
the problem introduces the notion of benefits to communicate
between two nodes. This addition not only promotes a more
accurate model of each node’s preferences and payments, but
also enables us to achieve desirable global properties. The
most important focus of this paper is network connectedness,
which was proven to be achievable in Sec. IV-D when benefits
are sufficiently large. Another desirable global property is that
our algorithm will spread out the consumption of network
resources, thus maximizing network utilization. Both of these
properties have been demonstrated to work in our evaluation
in Sec. VI. Finally, our derivations are probabilistic, rather
than deterministic. In microeconomic terminology, we have
designed a Baysian mechanism.

To our knowledge, Srinivasan et al. [10] is the only work
to have explored the selfish behaviour in a scenario similar
to our evolutionary topologies problem. Our work is different
from, and in some cases, improves upon their work in at least
three different ways. First, their work assumed the primary
goal of meeting a system lifetime constraint, whereas our main
objective here is to achieve a connected network. Moreover,
Nash equilibrium was used throughout their work. However,
since solving for the Nash equilibrium requires knowledge
of every other node’s Nash equilibrium strategy, we feel
that this is too strong an assumption for an autonomous
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network. In contrast, we implemented the dominant-strategy
equilibrium, which requires no knowledge of other nodes’
equilibrium strategies except the strategy space. Third, and
most importantly, their work has not considered a mechanism
design approach, which uses payments to motivate nodes to
cooperate. Therefore, if the Nash equilibrium found from their
analysis is undesirable, there is no way to modify the structure
of the game so that a more desirable state is reached.

VIII. CONCLUSION

In this paper, we have solved the evolutionary topologies
problem by applying the VCG mechanism. The resulting
topology is guaranteed to maximize the global valuation of
the network, provided that the right amount of incentives is
given to each relay node in the form of payments. Under
the designed payment scheme, we showed that a relay node
always receives a non-negative utility, and so truthful private
information will always be revealed. Finally, we transformed
our centralized solution to a fully distributed algorithm. This
algorithm, which has been evaluated by a direct implemen-
tation in Matlab, dynamically adapts to changes in network
parameters and conditions.
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