
Strategyproof Mechanisms for Dynamic Multicast
Tree Formation in Overlay Networks

Selwyn Yuen, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
{swsyuen,bli}@eecg.toronto.edu

Abstract— In overlay multicast, every end host forwards mul-
ticast data to other end hosts in order to disseminate data.
However, this cooperative behavior cannot be taken for granted,
since each overlay node is now a strategic end host. Ideally, a
strategyproof mechanism should be provided to motivate coopera-
tions among overlay nodes so that a mutually beneficial multicast
tree topology results. In this paper, we applymechanism design
to the overlay multicast problem. We model the overlay network
using the two scenarios of variable and single rate sessions, and
further design distributed algorithms that motivate each node
towards a better multicast tree. Since network parameters and
constraints change dynamically in reality, our protocol dynam-
ically adapts to form a better multicast tree. The correctness
and performance of each distributed algorithm are verified by
extensive implementation results on PlanetLab.

Index Terms— Economics, Experimentation with real net-
works/testbeds.

I. I NTRODUCTION

Overlay multicastrefers to the construction of a multicast
tree at the application layer from a data source to multiple
receivers, and it enjoys the attractive advantage that the
application layer offers unprecedented flexibility and freedom
to design new algorithms. Unfortunately, such freedom does
not come without challenges: each overlay node is now a
selfishand strategicend host, rather than an obedient router,
and cooperative behavior between nodes can no longer be
assumed. This means that each node will choose its actions
that maximizes itsprivate utility, and may be reluctant to
replicate and forward messages to downstream children, since
forwarding messages to downstream nodes incurs costs.

In this paper, our most important contribution is to apply the
theory ofmechanism designto the overlay multicast problem,
and to design a strategyproof mechanism (to be precisely
defined in Sec. II) for all multicastsubscribersto forward
messages downstream, while achieving a globally optimal
overlay topology in terms of maximum system throughput
and minimum forwarding costs. Our solution is based on
the celebrated Vickrey-Clarke-Groves (VCG) mechanism [1]
from microeconomics. In essence, our solution quantifies the
(positive or negative) effects of each node’s actionto the rest of
the network. This effect, termedexternality, must be calculated
by the truthful revelation of private information by each node
to the public. Once the externality is quantified, each node can
take the optimal action and join to the node on the existing
multicast tree that will result in the maximum system-wide
valuation.

Our objective in this paper is to designpractical and
distributed algorithms based on insights from the theory of
mechanism design. In practice, an overlay multicast ses-
sion may support applications with diverse Quality-of-Service
(QoS) requirements. Fordelay-sensitiveapplications such as
multimedia streaming, it is not permitted to buffer data on
intermediate relay nodes in the overlay multicast tree, which
has been the implicit assumptions of most of the tree con-
struction algorithms. On the other hand, fordelay-insensitive
applications, the intermediate nodes may take advantage of
its secondary storage to implement aggressive buffering, even
to cache the entire data stream. Such extensive buffering
significantly improves throughput at the costs of delay, since
peers may exchange missing elements of data at their con-
venience. This has been the assumption of mesh construction
algorithms such as Digital Fountain [2] or Bullet [3]. We seek
to design strategyproof algorithms for overlay multicast tree
construction in both of these cases, referred to as the scenario
of single rate sessionsandvariable rate sessions, respectively.

We have successfully applied our theoretical results to
the design of a set of distributed algorithms and a working
protocol implementation. Through careful and extensive ex-
periments on PlanetLab [4], we have evaluated the correctness,
performance, and efficiency of our protocol. Results have
shown that our distributed protocol not only converges to the
correct solution, but also significantly increases the system
throughput in both the variable and single rate scenarios. The
message overhead of our protocol is also explored in our
experimental studies.

The remainder of this paper is organized as follows. Sec. II
first introduces some background information on the VCG
mechanism. Sec. III defines our notations and network model,
and formalizes our problem statement. In Sec. IV, we present
our theoretical solution, distributed algorithms and protocol
implementation of the variable rate scenario, followed by a
discussion on the experimental results. Sec. V runs in parallel
to Sec. IV, except that we shift our attention to the single rate
scenario. We discuss related work in Sec. VI, and conclude in
Sec. VII.

II. M ECHANISM DESIGN AND THE VCG MECHANISM

Mechanism designtakes the inverse approach when com-
pared to traditional game theory. Instead of finding the equilib-
ria from the model of the game, we have the freedom to choose
what outcome we wish the game to stabilize at. Based on the

desired outcome, wemanipulatethe utility function so that
the desired outcome is achieved. We give a brief introduction
to the concepts and terminologies of mechanism design; for a
more in-depth treatment of the subject, the readers are referred
to [1], [5].

Consider a game ofn nodes. Each node can decide on a
strategysi ∈ Si based on their utility functionui(si, s−i). Si

is called the strategy space ofi, and s−i simply means the
set of strategies chosen by all nodes excepti. The following
definition formally defines the dominant strategy equilibrium.

Definition 1: A dominant strategy equilibriums∗ satisfies
the condition ui(s

∗
i , s−i) ≥ ui(si, s−i) for all i and all

strategies(si, s−i).
When some private information of a node is announced to

the public, it is possible that the node is lying about this infor-
mation in order to obtain a higher utility. Fortunately, a well-
studied class of mechanisms calledstrategyproof mechanisms
states that each node can be motivated to become honest, or at
least does not have any incentive to lie. In economics, private
information is usually calledtype, denoted byθi ∈ Θi (the
type space). We define strategyproofness as follows.
Definition 2: A mechanism isstrategyproofif for every node
i: (1) the strategy space is to declare their types,Si = Θi; and
(2) declaring the true type is a dominant strategy,s∗i = θi.

In essence, a solution to the mechanism design problem
should: (1) define the desired outcomeo∗(·) of the game; and
(2) manipulate the utilityui(·) of each node through payment
pi(·) to achieve the desired outcome. In most mechanism
design literature, the utility function is assumed to bequasi-
linear [1], [5], [6], [7]. This means that the utility function
ui(·) is the sum of the valuation functionvi(·) and the payment
function pi(·), i.e., ui = vi + pi. We make the simple, but
important, distinction between the utility ofi (ui) and the
valuation of i (vi). The valuationvi is the intrinsic value of
a certain system state to nodei. This value cannot be altered
externally. However, the utilityui experienced by nodei can
be altered by controlling the paymentpi.

The celebratedVCG mechanismhas been shown to be
strategyproof, defined as follows.
Definition 3: A Vickrey-Clarke-Groves (VCG) mechanismis
the family of mechanismsM(θ) = (o(θ), p(θ)) such that:

o∗(θ) ∈ arg max
o

n
∑

j=1

vj(θj , o(θ)) (1)

pi(θ) =
∑

j 6=i

vj(θj , o
∗(θ)) −

∑

j 6=i

vj(θj , o
∗
−i(θ−i)) (2)

=
∑

j 6=i

(vj − v−i
j) (3)

Eq. (1) is the VCG outcome function, and it states that the
VCG outcome is found by optimizing the total valuation of
a network. Eq. (2) is the VCG payment function, which can
be interpreted intuitively. The first term in the VCG payment
function is the total valuation of the system excluding nodei’s
valuation, given that the optimal outcomeo∗(θ) is achieved.
The second term is similar to the first, except we assume
that node i were to withdraw from the game when finding

the optimal outcomeo∗−i(θ−i). Eq. (3) combines the two
summations into one, and simplifies the notations.v−i

j can
be interpreted as the valuation of nodej given that nodei
is not participating in the game. Note that the summation is
over all nodej except nodei, to whom we wish to calculate
payment. Thus, the VCG paymentpi is independent ofvi.
This is one way to see that nodei does not have any incentive
to lie about its private information, since doing so does not
increase its received paymentpi.

If we substitute Eq. (3) to the quasi-linear utility function,
we have:

ui = vi +

∑

j 6=i

vj −
∑

j 6=i

v−i
j

 (4)

=
∑

j

vj −
∑

j 6=i

v−i
j (5)

Eq. (5) simply combines the first two terms in Eq. (4).
Intuitively, Eq. (5) implies that the VCG payment function
pays a node to the point that its utilityui is equal to the
added value it brought to the system as a whole.

III. N OTATIONS AND NETWORK MODEL

Consider an overlay network modeled as a directed graph
(N,E), whereN represents the set of overlay network nodes
and E defines the set of directed virtual links. Letn = |N |
be the number of overlay nodes in the network.

Let bij ≥ 0 represent the throughput of linkij. Consider the
benefitm to each node of receiving one fixed-length multicast
data message. It is reasonable to assume that the amount of
benefit experienced by nodei depends on the data throughput
of the incoming connection. We capture this dependency by
modelingm(bPii) as a function of the incoming throughput
bPii ≥ 0, wherePi is the parent ofi. When there is no risk of
ambiguity, we sometimes drop the first subscript ofbPii and
simply write bi. So m(bPii) is usually written asm(bi).

We assume that the benefit function is always non-negative,
i.e., m(bi) ≥ 0 for all bi ≥ 0. m(bi) must also be a non-
decreasing function, since the benefit to a node cannot possibly
decrease for a higher throughput rate.

Associated with each overlay nodei is a forwarding cost
ci, which represents the cost to forward one message to a
downstream node. In our overlay multicast problem,m(bi)
and ci are both private information to individual nodes. Let
Ai be the set of neighbor nodes that nodei is aware of,i.e.,
nodei has the IP addresses of all nodes inAi. We defineCi

to be the set of children of nodei, and definePi to be the
parent of nodei. Therefore,Ci ⊆ Ai andPi ∈ Ai. We also
defineGPi to be the set of all ancestors (parent, grandparents,
etc.) of i, andGCi to be the set of all descendants (children,
grandchildren,etc.) of i. In other words,GCi includes all nodes
in the subtree rooted ati, excepti itself. Therefore,Pi ∈ GPi

and Ci ⊆ GCi. In addition, we also use the notationTi to
represent the set of all nodes in the subtree rooted ati, i.e.,
Ti = {GCi ∪ i}. If r is the root of the multicast tree,i.e., the
source of multicast data,Tr would represent all nodes in a
multicast tree.

Finally, we model the finite capacity of the network as per-
node throughput limits. This means that the total incoming

throughput must not exceed the limitLin, whereas the total
outgoing throughput must not exceed the limitLout. There-
fore, for every nodei, the inflow constraintis bPii ≤ Lin,i,
and theoutflow constraintis

∑

j∈Ci
bij ≤ Lout,i. Since a node

cannot forward messages faster than the speed at which it
receives them, we have thedata constraintbPii ≥ bij for
each nodei, j ∈ Ci.

Table. I summarizes the general notations introduced so far.
Context-specific notations will be introduced as necessaryin
Sec. IV and Sec. V.

Parameter Meaning of Parameter
n = |N |, n ≥ 0 Number of nodes

Ai Set of nodes adjacent toi
Pi Current parent ofi
Ci Current set of children ofi
GPi Set of all ancestors ofi
GCi Set of all descendants ofi
r Root node of a multicast tree
Ti The set of nodes in the subtree rooted ati
Tr The set of all nodes in a multicast tree

bij , bij ≥ 0 Throughput of linkij
m(bi), m(bi) ≥ 0 Benefit (per-message) to each node

ci, ci ≥ 0 Relay cost of nodei
Lin,i, Lin,i ≥ 0 Incoming throughput limit of nodei

Lout,i, Lout,i ≥ 0 Outgoing throughput limit of nodei

TABLE I

SUMMARY OF NOTATIONS IN THE OVERLAY MULTICAST PROBLEM

As mentioned, we consider both delay-sensitive and delay-
insensitive applications by modeling the network session as
either single or variable rate sessions. This corresponds to
network nodes with afilled or anunfilled buffer, respectively.
Specifically, in single rate sessions, a node with afilled buffer
must receive and send messages at the same throughput,i.e.,
bPii = bij , thus messages received from upstream will be
sent downstream in the most expeditious fashion. On the other
hand, in variable rate sessions, a node with its bufferunfilled
may queue up messages, thereby sending messages to various
downstream nodes (potentially) at different throughputs.

We explore the scenarios of variable and single rate sessions
in Fig. 1. The white nodes in Fig. 1(a) represent unfilled buffer
nodes, whereas the black nodes in Fig. 1(b) represent filled
buffer nodes. We will follow this convention in all subsequent
figures in this paper. In both figures, nodep is receiving data
at a rate of100 KBps from noder through a live data session.
p will then make three copies of each message, and send it to
the three downstream childrena, b, and c respectively. Each
node is also labeled with two numbers in square brackets.
The number on top represents the incoming throughput limit
of i, i.e., Lin,i, and the bottom number represents the outgoing
throughput limit ofi, i.e., Lout,i.

The Scenario of Variable Rate Sessions

In Fig. 1(a),Lout,p takes an outgoing throughput limit of
230 KBps. Link pb is constrained by the inflow constraint,
and will experience50 KBps. Then, the remaining180 KBps
should be evenly distributed betweenpa and pc, i.e., bpa =
90 KBps andbpc = 90 KBps. The resulting throughputs are
(bpa, bpb, bpc) = (90, 50, 90).

In fact, this corresponds to the classic max-min fairness
allocation of network resources.Max-min fairnessrequires

r Root

p

cba

[120]

[150] [100][50]

[230]

[180] [180] [180]

100

90 50 90

(a) a variable rate session.

r Root

p

cba

[120]

[150] [100][50]

[120]

[180] [180] [180]

40

40 40 40

(b) a single rate session.

Fig. 1. Illustration of variable and single rate sessions

that: (1) No childj will get a throughputbij larger than its
demand; and (2) All childrenj with unsatisfied demand will
get equal shares of the outgoing throughput ati. We denote the
max-min fair allocation of throughput by nodei to nodej as
Lfair,ij , and usemax-min() as a function that will allocate
the resourceLout,i to all demandsDij . In Fig. 1(a), each
downstream child ofp has a resource demandDpj that equals
to min(brp, Lin,j) for j ∈ {a, b, c}. In general notations,

Lfair,ij = max-min(Lout,i, {Di1,Di2, . . . ,Di|Ci|})

whereDij = min(bPii, Lin,j) ∀ i, j ∈ Ci

The Scenario of Single Rate Sessions

In Fig. 1(b), the outgoing throughput limitLout,p is set
to 120 KBps and nodep is assumed to have a filled buffer.
Suppose all links have throughputs50 KBps, then the outflow
constraintbpa + bpb + bpc ≤ Lout,p will be violated. In this
case, max-min fairness requires that the outgoing throughput
of 120 KBps at p to be evenly distributed amonga, b,
and c. Therefore,(bpa, bpb, bpc) = (40, 40, 40). These slow
downstream throughputs will throttle the upstream throughput,
resulting inbrp = 40. We see that filled buffer nodes tend to
decrease the total network throughput.

IV. T HE SCENARIO OFVARIABLE RATE SESSIONS

Before we apply the VCG mechanism to our scenario, we
need to first quantify the notion of each node’s valuation. In
this paper, we capture the valuationvi of each message to each
nodei intuitively in the form of benefit minus cost. If|Ci| is
the number of children ofi, andci is the unit forwarding cost,
the valuation is simply the benefitm(bi) minus the total cost
|Ci|ci:

vi = m(bi) − |Ci|ci (6)

The valuesm(bi) andci are both private information to node
i, and are not known to any other node in the overlay network.
However, strategyproofness of our solution will ensure that
each node honestly reports the true value of these information.

A. The VCG Payment

All previous mechanism design literatures that we are aware
of have either explicitly or implicitly assumed existence of a
trusted third party who is responsible for transferring payments
[6], [7], [8], [9]. We have the same assumption here, and adopt
the convention that a paymentpi > 0 is a payment made from
a trusted third party to nodei, whereaspi < 0 means that node
i must pay the trusted third party. In the context of overlay
multicast, the trusted third party is assumed to be the root of

r

a Pi

b i c d

e f j

k g

r

a Pi

b i c d

e f j

k g

(a) Variable rate (b) Single rate

Fig. 2. Derivation of VCG solution at nodei

the multicast tree, but can be any third party bank in reality.
We will next derive the correct VCG payment according to
Eq. (3).

Eq. (3) suggests that in order to calculatepi correctly, we
need to know the difference betweenvj and v−i

j for all j 6=
i. In other words, we need to quantify the net effect of the
entrance ofi on the rest of the system,i.e., the externalityof
its entrance.

To derivepi, we use Fig. 2(a) as a visual aid, which depicts
the scenario where nodei is an internal node with descendants
GCi. Again, the white nodes represent unfilled buffer nodes,
and the black nodes represent filled buffer nodes. There are
three disjoint sets of nodes to consider, namely the parentPi,
the descendantsGCi, and nodes in other subtrees{TPi

\ Ti}.
Eq. (3) can be expanded as follows:
pi = (vPi

− v−i
Pi

) +
∑

j∈{GCi∩P−i

j
∃}

(vj − v−i
j)

+
∑

j∈{GCi∩P−i

j
∄}

(vj − v−i
j) +

∑

j∈{Tr\Ti}

(vj − v−i
j)

(7)

= −cPi
+

∑

j∈{GCi∩P−i

j
∃}

(m(bj) − m(b−i
j))

+
∑

j∈{GCi∩P−i

j
∄}

(m(bj) − |Cj |cj)

+
∑

j∈{TPi
\Ti}

(m(bj) − m(b−i
j)) (8)

= P1 + P2 + P3 + P4

The first term in Eq. (7) simply indicates that the entrance of
i costs its parentPi exactlycPi

to forward each message. The
second term in Eq. (7) refers to the descendant ofi that has
a second-best parentP−i

j , i.e., an alternate parent other than
the optimal parent. In this case,j still needs to forward to the
same set of childrenCj with the same forwarding costcj , i.e.,
c−i
j = cj and |Cj | = |C−i

j |. Therefore, the cost component of
the valuation function cancels out, and only the differencein
benefits(m(bj)−m(b−i

j)) is left. The same argument applies
for the fourth term as well. On the other hand, the third term in
Eq. (7) refers to the descendant that has no alternate parent.
In this case,j has no way of receiving the multicast data
except fromi, so wheni is not participating, the benefit toj
becomes zero, and no forwarding can be done,i.e., m(b−i

j) =

0, c−i
j = 0, and |Cj | = 0. Therefore, we are left withvj =

m(bj) − |Cj |cj . Eq. (8) is our final derived VCG payment
equation, and we have renamed the terms toP1, P2, P3, and
P4 respectively for convenience.

B. The VCG Outcome

In the context of our overlay multicast problem, an outcome
is the set of independent decisions made by each node to join
a parent. More formally, an outcomeo = (o1, . . . , on) is a set
of choices made by each nodei (except the root) on which
parent to join such thatoi ∈ Ai. Back to our example in Fig. 1,
the outcome vector is(op, oa, ob, oc) = (r, p, p, p).

According to Eq. (1), the VCG outcome should maximize
the system valuation. This means that any node who is
interested in subscribing to a service should join the multicast
tree only when its entrance will increase the overall system
valuation:

∑

j

vj −
∑

j 6=i

v−i
j > 0 (9)

This is called theparticipation constraint. If there are more
than one outcome decisionoi that satisfies the participation
constraint, the VCG outcomeo∗i is the one that maximizes
the left-hand expression of this constraint. We call the VCG
outcomeo∗i the best parentof i, and call the best alternate
parent thesecond-best parentof i. Compared with Eq. (5),
however, we notice that the left-hand expression in Eq. (9)
is simply the utility ui. Therefore, maximizing the left-hand
expression in Eq. (9) is the same as maximizingu+

i , where
u+

i = max(ui, 0).
In summary, if a nodei can calculatepi, it can simply add its

valuation and payment to obtain its utility. Under thestrategic
node assumption, a node will join to the parent that maximizes
u+

i . It is possible that none of the potential parents ofi satisfies
the participation constraint. In this case, nodei will choose
not to subscribe to the multicast service. This is reasonable
because strategic nodes have no incentive to subscribe if the
utility is not positive.

C. Distributed Algorithm

Our objective is to design a practical and distributed
application-layer algorithm that converges to the VCG out-
come and VCG payment previously derived. Information
regarding a node at one end of the overlay network takes
time to propagate through the network to reach the other end.
Therefore, there is an unavoidable, but finite, delay in receiving
any information from a node who is at the far end of the
network. However, as long as the overlay network parameters
areslowly varying, i.e., the network dynamics are sufficiently
slow, our distributed algorithms should dynamically reconfig-
ure the multicast topology. In other words, our distributed
algorithms should ensure that the optimal multicast tree be
formedeventuallyin a finite number of steps. In the following,
we wish to find a distributed algorithm that will converge to
the correct VCG payment in Eq. (8).

Suppose nodei wants to calculate the paymentpi that it
should receive. To do so, we must find a way to obtain each
term in Eq. (8) in a distributed manner. The first termP1 is
the forwarding cost of the parent ofi, and can be obtained
easily with one simple message exchange withPi.

L15 = min (Lfair,12, Lin, 25)
b5

-0 = max (b5
-1, min (b1

-0, L15))
Lin,15 = min (Lin,1, L15)

r

16

27

38

49

0

5

L25 = min (Lfair,23, Lin, 35)
b5

-1 = max (b5
-2, min (b2

-1, L25))
Lin,25 = min (Lin,2, L25)

L35 = min (Lfair,34, Lin, 45)
b5

-2 = max (b5
-3, min (b3

-2, L35))
Lin,35 = min (Lin,3, L35)

L45 = min (Lfair,45, Lin, 55)
b5

-3 = max (b5
-4, min (b4

-3, L45))
Lin,45 = min (Lin,4, L45)

b5
-4

Lin,55 = Lin,5

Fig. 3. Variable rate sessions: Distributed computation of updates

Calculating the second termP2 in Eq. (8) is more challeng-
ing. Essentially, we needbj and b−i

j from every descendant
j ∈ GCi. This can be achieved if every node periodically sends
an update message to its corresponding parent regarding its
private informationbj andb−i

j . This implies that the message
length is upper-bounded byO(n), wheren is the number of
nodes in the network.

In the multicast tree shown in Fig. 3, node5 should send
node 4 the message{b5, b

−4

5 , Lin,5}, all of which are local
information at node5. Note thatb5 and b−4

5 are both used at
node4 to calculatep4. Node4 is then responsible for sending
{b4, b

−3

4 , Lin,4, b5, b
−3

5 , Lin,45} to node3. b4, b−3

4 , andLin,4

are readily available at node4, whereasb5 is passed on from
node5. Lin,45 is a new notation used to denote the overall
throughput constraint of the path from4 to 5, and will be
discussed in greater detail below. Finally,b−3

5 andLin,45 needs
to be computed, so we now proceed to find a way to derive
each of them, purely from the local information at node4.

How to calculate b−3

5 at node 4?

b−3

5 refers to the best throughput at which node5 can
receive provided that node3 does not participate. From Fig. 3,
it is clear that there are two alternate paths to consider.
The first path goes through node9 to reach node5. The
second path goes through node8 and 4 to reach node5. By
inspection, we observe that the former path will deliver data
to node5 at the throughput of exactlyb−4

5 . The second path
will deliver data to node5 at the throughput ofb−3

4 , with
additional constraints that link45 may impose, which we call
L45 for convenience.L45 is constrained by two factors: (1)
the incoming throughput limit at node5; and (2) the outgoing
throughput limit (according to max-min fair allocation) atnode
4, i.e.,

L45 = min(Lfair,45, Lin,5) (10)

OnceL45 is found from Eq. (10), we take the minimum of
b−3

4 andL45 to obtain the throughput that node5 will receive
at if the path through node8 and4 is used to reach5. Finally,

we find the better throughput out of the two paths that we
have considered, as follows:

b−3

5 = max(b−4

5 ,min(b−3

4 , L45)) (11)

Eq. (11) is essentially a propagation equation that derives
b−3

5 from b−4

5 . At this point, we have successfully calculated
b−3

5 .

How to calculate Lin,45 at node 4?

Lin,45 is the overall throughput constraint of the path
from 4 to 5, and includes three constraints: (1) the incoming
throughput limit at node5; (2) the outgoing throughput limit
(according to max-min fair allocation) at node4; and (3) the
incoming throughput limit at node4. ComparingL45 with
Lin,45, we note that the only additional constraint ofLin,45 is
the third constraint. We have:

Lin,45 = min(Lin,4, Lfair,45, Lin,5)

= min(Lin,4, L45) (12)

The second line in Eq. (12) simplifies the definition of
Lin,45 using Eq. (10). We note that all calculations ofLin,45

can be done locally at node4. First, Lin,4 is just local
information readily available at node4. Second,Lout,45 is
found by max-min fair allocation algorithm performed at node
4. Third, Lin,5 is passed along from node5. In general, we
can defineLin,ik to denote the overall throughput constraints
of the path from nodei to k, wherej ∈ Ci is the child of i
that is along the path fromi to k. The general definition of
Lin,ik is therefore:

Lin,ik =

{

Lin,i if i = k

min(Lin,i, Lfair,ij , Lin,jk) if i 6= k
(13)

Eq. (13) is a recursive definition in the sense thatLin,ik is
defined in terms ofLin,jk, wherej is a child of i.

We illustrate the generalreceive update() and
send update() algorithms in Table II, wherej is a child
of i, and k is a descendant in the subtreeTj . Due to space
constraints, the interested reader is referred to our technical
report [10] for an extensive example of this algorithm. Note
that we have incorporated our propagation equations for find-
ing b−3

5 and Lin,45 from Eq. (10), Eq. (11) and Eq. (12) on
lines 13 − 15. It can be verified that, this algorithm, which is
used to calculate the second term ofpi from Eq. (8), isO(n)
as expected. Fig. 3 fills in the propagation steps all the way
from leaf node5 to node1.

Up to this point, our discussion has focused on the second
term P2 in Eq. (8). The calculation of the third termP3, as
we will see shortly, is based on the same algorithms used to
find the second termP2 from Table II. To see how this is
true, observe from Eq. (8) thatP2 differs from P3 in that the
former applies to the descendants ofi having an alternative
path for receiving multicast data, whereas the latter applies to
the descendants ofi without an alternative path for receiving
multicast data. In the latter case, the throughput isb−i

k = 0.
As a result, if a descendantk of node i has b−i

k = 0, it
belongs to the third termP3. Otherwise, it belongs to the
second termP2. Notice that in addition to passing upbk, b−i

k ,

1 void receive update()
2 msgIn← receiveMsg()
3 j ← msgIn.source
4 for eachk ∈ Tj

5 bk ← msgIn.bk

6 b−i
k
← msgIn.b−i

k
7 |Ck| ← msgIn.|Ck|
8 ck ← msgIn.ck

9 Lin,jk ← msgIn.Lin,jk

10 end for
11 L−l

fair,ij
← max-min(Lout,i, {Lin,j∈Ci

})

12 for eachk ∈ Tj

13 Lik ← min(Lfair,ij , Lin,jk)

14 b
−Pi

k
← max(b−i

k
, min(b

−Pi
i , Lik))

15 Lin,ik ← min(Lin,i, Lik)
16 end for
17
18 void send update()

19 msgOut← {bi, b
−Pi
i , |Ci|, ci, Lin,i}

20 for eachk ∈ Ti

21 msgOut← msgOut∪ {bk, b
−Pi

k
, |Ck|, ck, Lin,ik}

22 end for
23 sendMsg(msgOut,Pi)

TABLE II

VARIABLE RATE SCENARIO: DISTRIBUTED ALGORITHM TO RECEIVE AND

SEND PERIODIC UPDATES

(a) Before node i joins

i

l j

k

. . .

request P4

(b) After node i joins

i

l j

. . .

request P4

Fig. 4. Variable rate scenario: Nodel requestsP4 from nodei

andLin,ik, we also need to pass|Ck| andck for the calculation
of the third term, which are already included on line21 in
send update().

Finally, we proceed to find a distributed algorithm for the
fourth term in Eq. (8), which calculates the change in valuation
of nodes from other subtrees{TPi

\ Ti}. Suppose nodei
requests the assistance ofPi to calculate the fourth termP4.
This is presented with an example below.

In Fig. 4(a), consider the scenario where nodej is the
only child of node i, and nodek is the only child of
node j. Note that nodel is not a child of nodei yet, but
suppose nodel wishes to calculate the fourth termP4 if
it were to join nodei. From our previous solution for the
second and third terms, we should have already obtained the
data set {bj , b

i
j , |Cj |, cj , Lin,jj , bk, bi

k, |Ck|, ck, Lin,jk} from
the receive update() method. For the example in
Fig. 4(a), we assume these numeric values:

bj = 100 KBps, b−i
j = 50 KBps

bk = 90 KBps, b−i
k = 70 KBps

Note that all four throughputs above assume thatl has not
yet joined nodei. Now suppose the max-min fair allocation
algorithm determines that nodesj or k should each get a
throughput of60 KBps afterl has joined, then the throughput

to nodej becomesb+l
j = 60 KBps. The superscript+l is used

to distinguish betweenbj andb+l
j . While the former represents

the throughput ofj before l joins i, the latter represents the
throughput ofj after l joins i. The second-best throughput
b−i
j = 50 KBps is not good enough to motivate nodej to

leave nodei. The change in benefit is thus(m(b+l
j)− (bj)) =

60 − 100 = −40. On the other hand, the throughput to node
k after l has joined becomesb+l

k = 70 KBps. This is because
the joining ofl to i has decreased the throughput of nodek to
the point that it decides to leavej. The change in throughput
is thus(m(bk) − m(b−l

k)) = 70 − 90 = −20.
Consider a very similar scenario in Fig. 4(b), but this time,

node l is already a child of nodei. For consistency, nodek
should no longer be the child of nodej, since it has moved
to the alternate parent, who can provide a throughput of70
KBps. Again, nodel wants to calculateP4, and requests the
assistance of nodei. Nodej would have the following numeric
values:

bj = 60 KBps, b−i
j = 50 KBps

Now, we need to calculate the change in throughput at node
j if node l were to leave nodei, i.e., b−l

j . From Fig. 4(b),
we can see thatb−l

j = 100 KBps. Therefore, the change in
throughput to nodej is (m(bj)−m(b−l

j)) = 60−100 = −40.
We summarize the fourth-term calculations by an algorithm

that will be run on nodei when a child or potential childl
sends a request forP4. This algorithm, which is alsoO(n), is
presented in Table III. Lines7−15 correspond to the scenario
in Fig. 4(b), and lines16 − 24 correspond to Fig. 4(a). The
interested reader is referred to our technical report [10] for an
extensive example explaining this algorithm.

Including all four terms in calculating the payment to nodei

from Eq. (8), the final distributed VCG algorithm is presented
in Table IV.

D. Implementation

To show that our proposed algorithms are practical, we
implement the distributed algorithms iniOverlay [11], an
experimental testbed for implementing and evaluating overlay
protocols. The experiments are then deployed on PlanetLab
[4].

When a node is first started, each nodei is bootstrapped
with a random set of neighbors,i.e., Ai. These neighbors then
become the set of potential parents that a node can join. Recall
that each nodei must find the best parent to join. In our
protocol implementation, this is achieved by passing messages
between neighbors or adjacent nodes. Each message in our
protocol is identified by its message type. The mechanics of
the tree formation and evolution is based on the join and
rejoin process. The join process involves the InfoReq-InfoAck-
JoinReq-JoinAck message sequence. Fig. 5(a) illustrates the
message passing from a network view. When nodei sends out
an InfoReq message (labeled iR) to each of its five neighbors,
both nodesa and Pi respond with InfoAck (labeled iA).
However, nodesb, e, andj all respond with InfoNak (labeled
iN). Node a will then decide whether to stay with the parent

1 void request P4()
2 msgIn← receiveMsg()
3 l← msgIn.source
4 P4 ← 0
5 Lfair,ij ← max-min(Lout,i, {Lin,j∈{Ci}

})
6 Lik ← min(Lfair,ij , Lin,jk)
7 if l ∈ Ci // Existing child
8 for eachj ∈ {Ci \ l}

9 L−l
fair,ij

← max-min(Lout,i, {Lin,j∈{Ci\l}})

10 for eachk ∈ Tj

11 L−l
ik
← min(L−l

fair,ij
, Lin,jk)

12 P4 ← P4 + (m(Lik)−m(L−l
ik

))
13 end for
14 end for
15 msgOut← {ci, P4}
16 else if l /∈ Ci // Potential new child
17 for eachj ∈ Ci
18 L+l

fair,ij
← max-min(Lout,i, {Lin,j∈{Ci∪l}})

19 for eachk ∈ Tj

20 L+l
ik
← min(L+l

fair,ij
, Lin,jk)

21 P4 ← P4 + (m(L+l
ik

)−m(Lik))
22 end for
23 end for
24 msgOut← {ci, P4}
25 end if
26 sendMsg(msgOut,l)

TABLE III

VARIABLE RATE SCENARIO: DISTRIBUTED ALGORITHM TO CALCULATE

THE FOURTH PAYMENT TERM

1 void VCG payment()
2 pi ← P1 // First term
3 for eachk ∈ Ti

4 if b−i
k
6= 0 // P−i

k
∃, Second term

5 pi ← pi + (m(bk)−m(b−i
k

))

6 else if b−i
k

= 0 // P−i
k

∄, Third term
7 pi ← pi + (m(bk)− |Ck|ck)
8 end if
9 end for
10 pi ← pi + P4 // Fourth term

TABLE IV

VARIABLE RATE SESSIONS: DISTRIBUTED VCG PAYMENT ALGORITHM

Pi or rejoin to the new parenta, according to a maximization
of its private utility u+

i , as described in Sec. IV-B. Fig. 5(b)
illustrates the idea using a timing diagram. Nodei first sends
an InfoReq to its two neighbors,a and b. Nodea, who is a
valid potential parent ofi, responds with an InfoAck. Node
b, who is not a valid potential parent ofi, responds with an
InfoNak. Since only nodea replies with an InfoAck, nodei
will initiate a JoinReq message toa. A JoinAck message is
then replied by nodea upon a successful join.

At an early stage of the multicast topology formation
process, nodes that are topologically far away may not be
able to find any neighbor who is already a subscriber,i.e., all

Node a Node i Node b

Time
InfoReq

InfoAck

JoinReq

JoinAck

InfoReq

InfoNak

r

a Pi

b i c d

e j

iR

iA

iAiR

iN

iR iN
iR

iR

iN

Fig. 5. Distributed Protocol Message Passing

Fig. 6. 80 PlanetLab nodes distributed over North America

neighbors reply with an InfoNak. In contrast, nodes that are
adjacent to thedata source, or the root, will get an InfoAck
from the root immediately, and the tree formation will begin.
Every overlay node on the network who is interested in the
multicast service will keep trying to join the multicast group
by sending periodic InfoReq. Even after a node successfully
joins the multicast group, it still has to periodically probe its
neighbors to ensure that it is connecting to the best parent.
When a node detects that there is a better parent than its
current parent, it will initiate a rejoin process. The rejoin
process includes two basic steps: a leave from the existing
parent and a join to the new best parent.

We assume that every node is interested in the multicast
service. This assumption does not compromise the generality
of our experiment because a node who is not interested in a
particular multicast service will simply reply with InfoNak
whenever it receives an InfoReq, and therefore, will never
participate in the formation of the multicast tree anyway.

We define the benefit function and cost to be:

m(bi) = 5 · bi (14)

ci = 10

(

1 −
1

|Ci| + 1

)

(15)

bi in Eq. (14) is the inflow throughput of nodei in KBps.
Note that Eq. (14) satisfies both the non-negative and non-
decreasing criteria of our benefit function. Further, Eq. (15)
simulates a higher cost when the number of children increases.

Our experiments involve running80 PlanetLab nodes dis-
tributed over North America in parallel. Fig. 6 presents the
geographical distribution of these80 PlanetLab nodes. The
per-node inflow and outflow constraints are emulated by the
iOverlay engine [11], and are generated with a power-law
distribution over the range specified in Table V, which also
summarizes other experimental parameters.

Parameter Value or Range
of Parameter

Number of overlay nodes 80
Inflow throughput limitLin,i 10− 50 KBps

Outflow throughput limitLout,i 20− 100 KBps
Data message size 50 KB

Buffer size at each node 1000 messages
Number of initial random neighbors 3

Frequency of throughput measurements 8 seconds
Frequency of periodic updates 6 seconds
Frequency of rejoin process 46 seconds

TABLE V

VARIABLE RATE SCENARIO: EXPERIMENTAL PARAMETERS

Fig. 7(a) further plots the number of KB received by each
of the 80 nodes. Each line corresponds to the number of
KB received by one node over time. We can see that the
experienced data throughputs range from about5 KBps to
35 KBps. Fig. 7(b) quantifies the percentage gain in terms
of per-node throughput of our distributed algorithm (labeled
Variable rate VCG) over a simple benchmark (labeledVariable
rate Random). In every rejoin process of theRandomscheme,
instead of joining to the best neighbor, each node will choose
a random neighbor to join to. We observe that each node
generally experiences a higher throughput with our VCG-
based algorithm than with the Random scheme. We can sum
the throughputs of all nodes to obtain the total throughput
in KBps. The total throughputs of the VCG scheme is1054
KBps, comparing to a total throughput of only626 KBps
— a 68% throughput improvement. This result has confirmed
the fact that our distributed protocol is converging to a more
optimal multicast tree.

We further evaluate the correctness of our distributed algo-
rithms and protocol implementations in Fig. 7(c), where we
track both thesystem valuationand thesystem utilityover time.
Since the VCG outcome from Eq. (1) maximizes the system
valuation

∑

i vi, we expect the total valuation of all nodes
to monotonically increase over time. Indeed, the solid linein
Fig. 7(c) shows that the system valuation rises from an initial
value of 0, and converges at approximately6500, staying at
that level for the rest of the experiment. The minor fluctuations
is due to delayed or stale information that is inevitable in
any distributed protocol. Overall, this result indicates that
each node is indeed maximizing thesystem valuationwhen
making individual decisions based on private utility — a vivid
illustration of strategyproofness. In contrast, the system utility
demonstrates no observable trend of convergence. This obser-
vation clarifies a common misconception: when every node in
the network maximizes their private utility, the system utility
of a VCG-based mechanism is not necessarily maximized.

In Fig. 7(d), the balance of each node is plotted as a function
of time. We have left out the legend of the graph for brevity.
From the figure, most subscribers experience a budget surplus
(a positive balance) at the end of the experiment. The solid line
is drawn from the perspective of the system as a whole, who
experiences an overall deficit. This is an empirical illustration
of the well-knownbudget-balanceproblem of VCG, which
states that the system will run a budget deficit.

We end with an analysis on the overhead of our distributed
protocol. As mentioned in our protocol design, a message
can either be a control message or a data message. In our
experiments, we measure both the data and control messages
in KB, and graph the percentage overhead of each node in
Fig. 8. We observe that most nodes experience an overhead
of around0.1 − 1%. Furthermore, there are a few nodes who
have never joined the multicast tree, since they were unable
to find a neighbor who satisfies the participation constraint.
Consequently, these nodes have not received any data message,
and so they have been left out of Fig. 8. Overall, the overhead
of implementing our protocol in the entire overlay network is
a modest0.66%, as seen from the results summarized in Table
VI.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Variable rate: Percentage protocol overhead

Node number

P
ro

to
co

l o
ve

rh
ea

d
(%

)

Fig. 8. Variable rate scenario: Percentage overhead of eachnode
Message Type Number of KB

Control messages 685 KB
Data messages 103406 KB

Protocol Overhead 0.66%

TABLE VI

VARIABLE RATE SCENARIO: PROTOCOLOVERHEAD

V. THE SCENARIO OFSINGLE RATE SESSIONS

A. The VCG Payment

In the single rate scenario (Fig. 2(b)), we assume that
every node in the network has no more buffer to queue
messages. Messages that are received but not sent out to
downstream children will immediately be dropped. Another
way to interpret a filled buffer nodei is that all network links
incident at nodei will have the same throughput in operation.
If all nodes have a filled buffer, then the entire tree will operate
at one uniform throughput in steady-state. We introduce the
notationb(Ti) to represent the uniform operating throughput of
the entire subtreeTi. To calculateb(Ti), we take the minimum
throughput limit of every node in subtreeTi. In other words,
Lin or Lout of one of the nodes inTi will eventually become
the bottleneckthat determines the value ofb(Ti).

b(Ti) = min

(

min
j∈Ti

{Lin,j}, min
j∈Ti

{

Lout,j

|Cj |

})

(16)

Again, we derive our VCG payment from Eq. (3). Similar
to our derivations of payment in the variable rate scenario
in Sec. IV-A, we wish to account for theexternality of the
participation of nodei. Eq. (17) partitions the set of all
nodes (excepti) into four disjoint sets, namely the parent of
i, the descendants ofi who have a second-best parent, the
descendants ofi who do not have a second-best parent, and
the set of all nodes other than those inTi. Note that each term
in Eq. (17) corresponds to an effect of the entrance ofi.

pi = (vPi
− v−i

Pi
) +

∑

j∈{GCi∩P−i

j
∃}

(vj − v−i
j)

+
∑

j∈{GCi∩P−i

j
∄}

(vj − v−i
j) +

∑

j∈{Tr\Ti}

(vj − v−i
j)

(17)

= −cPi
+

∑

j∈{GCi∩P−i

j
∄}

(m(b(Tr)) − |Cj |cj)

+
∑

j∈{Tr\Ti}

(m(b(Tr)) − m(b(Tr \ Ti))) (18)

(a) Throughput of each node over time (b) Throughput comparison of VCG vs. Random case

(c) Maximization of system valuation (d) Balance of each node over time

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Variable rate: Throughput over time

Time in seconds

T
hr

ou
gh

pu
t o

f e
ac

h
no

de
 (

in
 K

B
)

0 10 20 30 40 50 60 70 80 90
-200

0

200

400

600

800

1000

1200

1400
Variable rate VCG: Total throughput = 1054 KB/sec

Variable rate Random: Total throughput = 626 KB/sec

Variable rate: Throughput Comparison

Node number

P
er

ce
nt

ag
e

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t (

in
 %

)

60 80 100 120 140 160 180 200 220 240
0

2000

4000

6000

8000

10000

12000
Variable rate: System Valuation and System Utility over time

S
ys

te
m

 V
al

ua
tio

n
an

d
S

ys
te

m
 U

til
ity

Time in seconds

System Valuation [sum(v
i
)]

System Utility [sum(u
i
)]

120 140 160 180 200 220 240
-6

-5

-4

-3

-2

-1

0

1

2

3
x 10

5 Variable rate: Balance of each node over time

Time in seconds

B
al

an
ce

 o
f e

ac
h

no
de

Fig. 7. Experimental results: the scenario of variable rate sessions

= P1 + P2 + P3

For the parent ofi, the participation ofi will incur an
extra forwarding costcPi

. This explains the first term in
Eq. (18). The second term in Eq. (17) is zero, because if
a descendant ofi can find a second-best parent, then the
only difference in valuation will be caused by a difference
in throughputs. However, we have already shown that there is
only one operating throughput for the entire tree. Thus, the
second term in Eq. (17) has been eliminated in Eq. (18).v−i

j

in the third term of Eq. (17) is zero because if a descendant
of i cannot find a second-best parent, then there is no value.
Therefore, we are left withvj = m(b(Tr))−|Cj |cj in Eq. (18).
Finally, for the fourth term in Eq. (17), the cost component of
the valuation function will be cancelled out in Eq. (17), leaving
only a difference in benefits(m(b(Tr)) − m(b(Tr \ Ti))) in
Eq. (18). Again, we have renamed the first, second, and third
terms of the payment equation toP1, P2, andP3 respectively
for convenience.

P3 in Eq. (18) merits some further discussion. In particular,
it suggests that the valuation of nodes in other subtrees will
be affected by the entrance ofi only when Ti throttles the
throughput of the existing tree{Tr \ Ti}. In summary, we
have:

b(Tr) = min (b(Tr \ Ti), b(Ti)) (19)

B. The VCG Outcome

Similar to the Sec. IV-B, after nodei has calculated its
paymentpi, it can easily choose the best parent by maximizing

its private utility ui = vi + pi, subject to the participation
constraint of Eq. (9).

C. Distributed Algorithm

We seek to find a distributed algorithm for the single rate
scenario. The first termP1 in Eq. (18) can be found by a
simple message exchange between nodei and its parentPi.
The second termP2 in Eq. (18) requires that we know the
operating throughputb(Tr), the number of children|Cj |, and
the forwarding costcj . The latter two pieces of data can simply
be passed up from every child to its parent periodically as in
our solution in the variable rate scenario, which requires a
message length ofO(n). We further wish to calculateb(Tr)
in a distributed manner. But before we proceed, we first
define a new notationLi that combines the inflow and outflow
constraints of nodei into one constraint:

Li =

Lin,i if i is leaf
Lout,i

|Ci|
if i is root

min
(

Lin,i,
Lout,i

|Ci|

)

otherwise
(20)

b(Tr) can be calculated in a distributed manner if all nodes
passb(Ti) to their respective parent, and each parent computes
the propagation equation as follows:

b(Ti) = min

(

Li,min
j∈Ci

{b(Tj)}

)

(21)

The above equation is recursive, and suggests that we should
find the minimum of the localLi as well as theb(Tj) for all
childrenj. Each node stores two throughput numbers, namely
b(Ti) and b(Tr). These two numbers are not necessarily the

1 void receive update()
2 msgIn← receiveMsg()
3 j ← msgIn.source
4 for eachk ∈ Tj

5 b(Tk)← msgIn.b(Tk)
6 |Ck| ← msgIn.|Ck|
7 ck ← msgIn.ck

8 end for
9 if Pi = null // Node i is the root

10 Li ←
“

Lout,i

|Ci|

”

11 else if |Ci| = 0 // Node i is a leaf
12 Li ← Lin,i

13 else

14 Li ← min
“

Lin,i,
Lout,i

|Ci|

”

15 end if
16 b(Ti)← min

`

Li, minj∈Ci
{b(Tj)}

´

17
18 void send update()
19 msgOut← {b(Ti), |Ci|, ci}
20 for eachk ∈ Ti

21 msgOut← msgOut∪ {b(Tk), |Ck|, ck}
22 end for
23 sendMsg(msgOut,Pi)

TABLE VII

SINGLE RATE SCENARIO: DISTRIBUTED ALGORITHM TO RECEIVE AND

SEND PERIODIC UPDATES

same, becauseb(Ti) considers only the descendants ofi, but
b(Tr) takes into account of the additional constraints from the
rest of the multicast tree. However, these two numbers can be
the same if the subtreeTi is the bottleneck of the throughput
of the entire tree. Table VII presents the exact algorithm. Note
that our propagation equation from Eq. (21) is found on line
16.

We also note thatb(Ti) at the root is identical tob(Tr), i.e.,
b(Tr) = b(Ti). In this way, the root can calculateb(Tr), and
can then pass this value down to all descendants, either piggy-
backing it on a multicast data message or using a separate
control message. Finally, to calculate the third term in Eq.(18),
node i can send a request to its parent. The exact algorithm
is presented in Table VIII.

The final payment calculation is simply a sum of the three
terms in Eq. (18), and is presented in Table IX. Note the
similarity between the distributed algorithms of the variable
and single rate scenarios. In fact, the structure of these two sets
of algorithms only differs in the specific propagation equations
used.

D. Implementation

Since the structure of the distributed solutions are similar
between the single and variable rate scenarios, we will use
the same protocol designed in Sec. IV-D in this subsection.
For ease of comparisons, we have kept most experimental
parameters the same as before. In the single rate experiments,
the buffer size of each node has been set to one message,
instead of 1000 messages. Apparently, this is to emulate
the single rate behavior. Further, the single rate distributed
algorithms require extra control messages to broadcast the
value of b(Tr) to all subscribers, and this broadcast message
is sent every2 seconds in the current experiment.

Fig. 9(a) further plots the number of KB received by each of
the80 nodes. We can see that the experienced data throughputs
range from about3 KBps to 25 KBps. Fig. 9(b) compares

1 void request P3()
2 msgIn← receiveMsg()
3 l← msgIn.source
4 P3 ← 0
5 if l ∈ Ci // Existing child
6 for eachj ∈ {Ci \ l}
7 for eachk ∈ Tj

8 L+l
i ← min

“

Lin,i,
Lout,i

|Ci|−1

”

9 b(Tr \ Tl)← min(b(Tr \ Ti), L
+l
i , minj∈{Ci\l} b(Tj))

10 P3 ← P3 + (m(b(Tr))−m(b(Tr \ Tl)))
11 end for
12 end for
13 msgOut← {ci, P3}
14 else if l /∈ Ci // Potential new child
15 for eachj ∈ Ci
16 for eachk ∈ Tj

17 L+l
i ← min

“

Lin,i,
Lout,i

|Ci|+1

”

18 b(Tr ∪ Tl)← min(b(Tr \ Ti), L
+l
i , minj∈{Ci∪l} b(Tj))

19 P3 ← P3 + (m(b(Tr ∪ Tl))−m(b(Tr)))
20 end for
21 end for
22 msgOut← {ci, P3}
23 end if
24 sendMsg(msgOut,l)

TABLE VIII

SINGLE RATE SCENARIO: DISTRIBUTED ALGORITHM TO CALCULATE THE

THIRD PAYMENT TERM

1 void VCG payment()
2 pi ← P1 // First term
3 for eachk ∈ Ti

4 if b−i
k

= 0 // P−i
k

∄, Second term
5 pi ← pi + (m(b(Tr))− |Ck|ck)
6 end if
7 end for
8 pi ← pi + P3 // Third term

TABLE IX

SINGLE RATE SCENARIO: DISTRIBUTED VCG PAYMENT ALGORITHM

the throughput performance of our VCG scheme with the
Random scheme. The total throughput of all nodes in the VCG
scheme is809 KBps, representing a47% improvement over
the Random case, which has a total throughput of only552
KBps. As in the variable rate experiments, this result indicates
that our protocol is converging to a more optimal multicast
tree.

In Fig. 9(c), we plot the system valuation and the system
utility as a function of time, where the monotonic increase
of system valuation over time can be readily observed, and
convergence occurs at around3000. On the other hand, the
system utility displays no observable trend of convergence, as
previously explained.

We next turn our attention to the balance of each node over
time in Fig. 9(d). Once again, almost all multicast subscribers
gain a positive balance over time, and the system experiences
a deficit. These results are quite similar to the variable rate
experiments, since both are VCG-based algorithms after all.

In a similar style as our results in the variable rate ex-
periments, Fig. 10 graphs the percentage overhead of each
PlanetLab node. We observe that most of the nodes experience
an overhead percentage of0.3 − 3%. Again, we have left
out the nodes who have not found a neighbor satisfying
the participation constraint, and thus have not joined to the
multicast tree during our experiment. Another observation

(a) Throughput of each node over time (b) Throughput comparison of VCG vs. Random case

(c) Maximization of system valuation (d) Balance of each node over time

0 50 100 150 200 250
0

500

1000

1500

2000

2500
Single rate: Throughput over time

Time in seconds

T
hr

ou
gh

pu
t o

f e
ac

h
no

de
 (

in
 K

B
)

0 10 20 30 40 50 60 70 80 90
-200

0

200

400

600

800

1000

Single rate VCG: Total throughput = 809 KB/sec
Single rate Random: Total throughput = 552 KB/sec

Single rate: Throughput Comparison

Node number

P
er

ce
nt

ag
e

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t (

in
 %

)

100 120 140 160 180 200 220 240
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Single rate: System Valuation and System Utility over time

S
ys

te
m

 V
al

ua
tio

n
an

d
S

ys
te

m
 U

til
ity

Time in seconds

System Valuation [sum(v
i
)]

System Utility [sum(u
i
)]

140 150 160 170 180 190 200 210 220 230 240
-12

-10

-8

-6

-4

-2

0

2

4

6
x 104 Single rate: Balance of each node over time

Time in seconds

B
al

an
ce

 o
f e

ac
h

no
de

Fig. 9. Experimental results: the scenario of single rate sessions

is that the message overhead of the single rate scenario is
generally larger than that of the variable rate scenario. This is
a reasonable result, as explained next.

Table X calculates the overhead of our distributed protocol
for the single rate scenario to be1.44%, which is higher than
the corresponding overhead of0.66% for the variable rate
scenario. This increase in overhead is contributed by: (1) an
increase in the number of control messages; and (2) a decrease
in the number of data messages. In the single rate scenario, the
root has to consistently broadcast the multicast tree throughput
b(Tr) to every subscriber. These periodic broadcast messages,
which are sent every2 seconds to all subscribers, account for
the increase in control messages. In addition, the system asa
whole receives only56635 KB of multicast data in the single
rate experiments, in contrast with103406 KB of multicast data
received in the variable rate experiments. Therefore, the whole
network is able to receive83% more multicast data in the
variable rate scenario than the single rate scenario — a result
that we already argued intuitively at the end of Sec. III. Fig. 11
graphs the percentage throughput improvement of the variable
rate scenario over the single rate scenario. From this figure, it
is clear that the nodes in the variable rate scenario generally
experience a higher throughput than the nodes in the single
rate scenario. In summary, although the message overhead is
higher than before, the resulting protocol still runs smoothly
in our 80-node experiments.

Overall, we believe that the results of our implementations
on PlanetLab have verified some of the important properties
of our VCG-based distributed protocol. Our protocol has also
been evaluated in terms of its convergence to optimality,

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3
Single rate: Percentage protocol overhead

Node number

P
ro

to
co

l o
ve

rh
ea

d
(%

)

Fig. 10. Single rate scenario: Percentage overhead of each node

0 10 20 30 40 50 60 70 80 90
-100

0

100

200

300

400

500 Variable rate: Total throughput = 1054 KB/sec
Single rate: Total throughput = 809 KB/sec

Throughput Comparison

Node number

P
er

ce
nt

ag
e

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t (

in
 %

)

Fig. 11. Throughput comparison of variable vs. single rate scenario

Message Type Number of KB
Control messages 830 KB

Data messages 56653 KB
Protocol Overhead 1.44%

TABLE X

SINGLE RATE SCENARIO: PROTOCOLOVERHEAD

throughput performance, as well as efficiency. Further, we have
not only derived a theoretical VCG-based strategyproof mech-
anism, but have also extended this theoretical solution to aset
of distributed algorithms that will converge to the correctVCG
payments in a finite number of steps. Most importantly, the
designed protocol that implements these distributed algorithms
have also been proven to converge to the overlay multicast tree
that maximizes system valuation.

VI. RELATED WORK

In their seminal work, Nisan and Ronen [6] first explored
the application of mechanism design to networking problems.
They applied the VCG mechanism to the shortest-path routing
problem, and subsequently raised a few issues on the com-
putational complexity of the problem. In [7], Feigenbaumet
al. further reshaped the research agenda and suggested the
need of finding a distributed solution to the mechanism design
problem, which is calledDistributed Algorithmic Mechanism
Design (DAMD). Parkeset al. [12], [13] have also applied
the theory of mechanism design to a different problem domain
on combinatorial auction. Overall, the theoretical basis of our
work is closest in spirit to [9], [14].

Feigenbaumet al. [9] applied mechanism design to solve
the IP multicast problem in a distributed manner, but with a
greater inclination towards theoretical complexity issues. In
contrast, we have a more concrete network model and a more
realistic problem formulation involving single and variable
rate sessions. At the same time, we successfully designed
distributed algorithms in each scenario that converge to the
VCG solution. Sufficient detail of our distributed algorithms
have also been provided that allows a direct implementation
on PlanetLab, comparing to the more abstract and theoretical
treatment from [9]. Overall, the extensive implementation
results presented here have justified the validity of our protocol
and mechanism design, which, to our knowledge, has not been
accomplished before.

Woodard et al. [14] also uses the VCG mechanism to
set up the problem of network formation, but with little
attention given to formulating areasonablevaluation function
for a specific scenario. Furthermore, the paper has made no
attempt in solving the VCG mechanism in a distributed manner
and has not performed any simulations or implementation.
Nonetheless, their work provides an interesting perspective of
dynamicand sequentialmechanisms, which will serve as a
good complement to our current work.

VII. C ONCLUDING REMARKS

In this paper, we have solved for astrategyproofmechanism
for overlay multicast tree formation in both the variable
and single rate scenarios. Distributed algorithms have been
presented and shown to converge to the global network opti-
mal of maximum system throughput and minimum message

forwarding costs. In both solutions, participation of eachnode
is voluntary, so that a node may leave the multicast tree
whenever its private utility becomes negative. Thus, every
node is entitled to a non-negative utility, and the right amount
of incentives will be given to reveal truthful private informa-
tion. More importantly, not only have we found distributed
algorithms to converge towards the VCG solution, but we
have also carefully designed a protocol verified by actual
implementation in PlanetLab. In summary, we believe that we
have narrowed the gap between theory and practice, and have
brought the research community one step closer to the actual
deployment and realization of these VCG-based strategyproof
mechanisms.

REFERENCES

[1] A. Mas-Colell, M. Whinston, and J. Green,Microeconomic Theory,
chapter 23, Oxford University Press, New York, 1995.

[2] J. Byers and J. Considine, “Informed Content Delivery Across Adaptive
Overlay Networks,” inProc. of ACM SIGCOMM, August 2002.

[3] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh,” inProc. of
ACM SOSP, 2003.

[4] L. Peterson, D. Culler, T. Anderson, and T. Roscoe, “A Blueprint
for Introducing Disruptive Technology into the Internet,”in Proc. of
HotNets-I, Princeton, NJ, October 2002.

[5] M.J. Osborne and A. Rubinstein,A Course in Game Theory, chapter
1-3,6,8,10, The MIT Press, Cambridge, Massachusetts, 2002.

[6] N. Nisan and A. Ronen, “Algorithmic Mechanism Design,”Games and
Economic Behavior, vol. 35, pp. 166–196, 2001.

[7] J. Feigenbaum and S. Shenker, “Distributed Algorithmic Mechanism
Design: Recent Results and Future Directions,” inProc. of ACM Dial-
M, Atlanta, Georgia, September 2002.

[8] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker, “ABGP-
based Mechanism for Lowest-Cost Routing,” inProc. of ACM PODC,
New York, 2002, pp. 173–182, ACM Press.

[9] J. Feigenbaum, C. Papadimitriou, and S. Shenker, “Sharingthe Cost of
Multicast Transmissions,”Journal of Computer and System Sciences,
vol. 63, no. 1, pp. 21–41, 2001.

[10] Selwyn Yuen and Baochun Li, “Strategyproof Mechanisms for Dynamic
Multicast Tree Formation in Overlay Networks,” Tech. Rep., University
of Toronto, http://iqua.ece.toronto.edu/papers/vcg-overlay.pdf, 2004.

[11] B. Li, J. Guo, and M. Wang, “iOverlay: A Lightweight Middleware
Infrastructure for Overlay Application Implementations,” in Proc. of
ACM/USENIX Middleware 2004, Toronto, Canada, 2004.

[12] J. Kalgnanam D.C. Parkes and M. Eso, “Achieving Budget-Balance
with VCG-Based Payment Schemes in Combinatorial Exchanges,” in
IBM Research Report RC 22218, March 2002.

[13] C. Ng, D.C. Parkes, and M. Seltzer, “Virtual Worlds: Fast and
Strategyproof Auctions for Dynamic Resource Allocation,” in ACM
Conference on Electronic Commerce, 2003.

[14] C. J. Woodard and D. C. Parkes, “Strategyproof Mechanisms for Ad
Hoc Network Formation,” in1st Workshop on the Economics of P2P
systems, 2003.

