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Abstract—Opportunistic routing significantly increases unicast
throughput in wireless mesh networks by effectively utilizing the
wireless broadcast medium. With network coding, opportunistic
routing can be implemented in a simple and practical way with-
out resorting to a complicated scheduling protocol. Traditionally,
due to the constraints of computational complexity, a protocol
utilizing network coding needs to partition the data into multiple
segments and encode only packets in the same segment. However,
it is extremely challenging to decide the optimal time to move
to the transmissions of the next segment, and existing designs
all resort to different heuristic ideas that might harm network
throughput. To address this problem, we propose SlideOR, a
new protocol to encode source packets in overlapping sliding
windows such that coded packets from one window position may
be useful towards decoding the source packets inside another
window position. Through extensive simulations, we show that
SlideOR outperforms the existing solutions and is amenable to
much simpler implementation than solutions with complicated
scheduling among multiple segments.

I. INTRODUCTION

One of the fundamental challenges in wireless mesh net-
works is to maximize the throughput of unicast communication
sessions. The traditional wisdom in designing mesh unicast
routing protocols (e.g., [1]) treats a wireless link as a point-
to-point link, and utilizes a single path to transmit data packets
from the source to the destination. It has essentially neglected
the fact that a wireless communication channel is a broadcast
medium in nature.

In contrast, opportunistic routing [2], [3] is able to substan-
tially improve unicast throughput in wireless mesh networks,
by effectively utilizing the shared wireless broadcast medium.
In opportunistic routing protocols, all neighboring nodes of
a transmitter may overhear the data packet and may assist
forwarding the packet to its destination. With opportunistic
routing, however, a delicate balance of tradeoffs has to be
maintained. On the one hand, since multiple nodes in a
wireless broadcast region are able to overhear identical copies
of a packet, one needs to avoid unnecessary forwarding of
duplicates. On the other hand, if too few nodes help to
forward the packet, a forwarding path from the source to the
destination may not be found. Biswas et al. [2], for example,
have designed a complex packet scheduling algorithm, with a
large number of control messages, in order to achieve such a
balanced tradeoff.
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In [3], Chachulski et al. has shown that with the help of
random network coding, opportunistic routing can be achieved
without complex scheduling, while still taking full advantage
of the wireless broadcast medium. The fundamental insight is
that, with random mixing of coded packets, although multiple
receivers overhear the same packet in a wireless broadcast
neighborhood, they are able to generate linearly independent
coded packets with high probability, by combining the received
coded packet with existing packets in their buffers.

However, due to the constraints of computational com-
plexity involved in random linear codes, it is infeasible to
apply network coding to a large number of data packets [3].
The MORE protocol proposed in [3], for example, divides
the data stream into different segments, and performs coding
operations on packets within the same segment. This is usually
referred to as segmented network coding. Although segmented
network coding attempts to achieve a tradeoff between the
benefit of network coding and its complexity, it introduces an
open challenge that severely affects throughput: When shall
the source stop transmitting coded packets of one segment
and move on to the next one? Intuitively, if the source stops
prematurely, the destination may fail to receive a sufficient
number of coded packets to decode the entire segment. If
the source stops too late, however, a substantial waste of
bandwidth resources ensues, since coded packets that are no
longer useful to the destination are still being sent by the
source.

MORE uses a simple strategy as a stop-gap measure to
answer this question: the source simply continues to transmit
coded packets belonging to the same segment until an explicit
acknowledgment from the destination has been received. Such
a “stop-and-wait” protocol reflects one extreme of the tradeoff,
where the source stops its transmission too late, leading to
wasted wireless bandwidth. To partially address this problem,
we previously proposed CodeOR [4], which transmits multiple
segments in a pipelining fashion, utilizing more timely ACKs
from closer nodes in the network to reduce the penalty of
inaccurate timing in transmitting the next segment. However,
CodeOR uses segmented network coding and suffers from the
same fundamental difficulty as MORE.

In this work, inspired by online network coding [5], [6], we
propose SlideOR to fundamentally address this challenge. In
SlideOR, as opposed to segmented network coding, packets are
not encoded separately in segments. Instead, the source uses a
moving sliding window to determine the set of source packets
to be encoded. Hence, in contrast to segmented network
coding, where the coded packets in one segment is useless for
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the decoding of the next segment, the coded packets belonging
to different overlapping sliding windows can be helpful to
each other. In this way, the time for window sliding is much
less critical and may be optimized for other objectives of the
system.

We further discuss two critical challenges in implementing
SlideOR. First, it is important to decide how far to advance
the sliding window when ACKs arrive. If the sliding window
moves too slowly such that the source encodes too few new
source packet from the new window, there might not be enough
original data to send to the next node. On the other hand, if the
sliding window moves too fast, there might be too few data
packets in common between successive encoding operations,
leading to degradation toward segmented network coding.
Second, a forwarding node may re-encode coded packets from
different sliding window locations, such that the number of
source packets in the re-encoded packet can be significantly
larger than the sliding window size, which leads to increased
encoding and decoding complexity. We show that by removing
the coded packets with too many outdated source packets, we
can maintain low computational complexity while achieving
similar or higher throughput than otherwise.

Through extensive simulations, we show that SlideOR
achieves substantially higher throughput than existing solu-
tions under the same network setting. In particular, SlideOR
achieves two-fold performance gain over MORE [3] and 40%
gain over CodeOR [4]. Furthermore, we show that SlideOR
is as simple as MORE for implementation, and much simpler
than CodeOR since advancing sliding windows is much less
challenging than scheduling multiple segments in CodeOR.

The remainder of this paper is organized as follows. We
compare SlideOR with related work in Sec. II. In Sec. III,
we describe the network model and briefly review network
coding with its existing applications in opportunistic routing.
In Sec. IV, we describe the protocol design in SlideOR. We
use simulations to demonstrate the effectiveness of SlideOR
in Sec. V. Finally, Sec. VI concludes the paper.

II. RELATED WORK

ExOR [2] introduces opportunistic routing in wireless mesh
networks by utilizing the wireless broadcast medium to in-
crease network throughput, as compared to traditional single-
path routing protocols (e.g., [1]), which neglected the wireless
broadcast advantage. In order to realize the benefit of oppor-
tunistic routing, ExOR introduces a complex packet scheduling
algorithm. With random network coding, Chachulski et al. [3]
have proposed a more practical opportunistic routing protocol,
referred to as MORE, which is feasible to be implemented
in practice, and achieves a higher throughput than ExOR.
However, MORE uses a “stop-and-wait” protocol with a single
segment in its sending window, which is not efficient utilizing
the delay-bandwidth product in large-scale networks.

Similar to our previous work [4], Sundararajan et al. [6]
combines network coding with TCP Vegas. Our previous
work is based on segment based network coding with a
predetermined segment size. Such setting complicates protocol

design. On the other hand, [6] mainly proposes an end-to-
end coding scheme, i.e., the encoding is only operated on the
sender, but not on the intermediate nodes in the network. It is
easy to show that such an approach significantly degrades the
network throughput. Our work extends this idea to combine
online network coding with TCP Vegas in multi-hop wireless
networks with recoding on intermediate nodes. We also argue
the redundancy parameter R proposed in [6] may not be
necessary, where for every packet arrives from the application
level, R linear combinations are sent to the network on aver-
age. Instead, in our protocol, the sender keeps injecting more
“redundant” coded packets into the network until an ACK
arrives from the receiver and advances the sliding window.

III. NETWORK MODEL AND PRELIMINARIES

We consider a single unicast communication session in a
wireless mesh network, where the source has a stream of data
to be transmitted to the destination. We model the wireless
network as a directed hypergraph (V,E), where V is the sets
of nodes and E is the sets of links. A wireless broadcast link
is modeled as a hyper link (i, J) ∈ E, where J is a subset of
V . The packet loss events on multiple receivers of a wireless
broadcast link are assumed to be independent [3].

Segmented network coding is a special form of random
linear network coding. The stream of data to be transmitted
from the source is divided into multiple segments, each
with a predetermined number of packets. When an arbitrary
intermediate node a between the source and the destination
wishes to transmit coded packets within a segment, a produces
a coded packet xa by encoding all coded packets in its buffer
belonging to the segment, namely x1, . . . , xm, where m is the
total number of coded packets in the buffer that belong to
the segment: xa =

∑m
i=1 βixi, where all multiplication and

addition operations are defined on a Galois Field (such as
GF(28) when the operations are performed on each byte), and
βi is randomly chosen from the field. It is easy to see that
xa is also a linear combination of a subset of original packets
from the source, and the coefficients can be derived. Node a
then broadcasts xa along with its coding coefficients over the
original packets to all its neighbours. The destination collects
at least m coded packets for each segment and recovers all
m source packets in the segment by solving a set of linear
equations. Because the coding coefficients and the coded
packet are known, each coded packet represents one linear
equation with the m source packets as unknown variables.
Gaussian elimination is commonly used to solve this linear
system.

In MORE [3], segmented network coding is used with
opportunistic routing in the following fashion. The source
transmits the segments sequentially and independently, i.e, the
source only transmits the next segment if the current one is
recovered at the destination. Since MORE keeps one segment
in the network at any time and wastes network resource
when the source is waiting for an ACK for a segment, we
propose CodeOR in [4] to address this problem, by transmit-
ting multiple segments simultaneously in the network and by
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utilizing the network resource during ACK propagation. To
meet the design challenge on deciding how to move from
the transmission of one segment to the next, in CodeOR,
an intermediate node transmits the next segment when the
current segment has been received fully by at least one of
its downstream nodes1. We will compare MORE, CodeOR,
and SlideOR in Sec. IV-B and Sec. V-B.

IV. SLIDEOR: PROTOCOL DESIGN

In this section, we describe the implementation of SlideOR,
an opportunistic protocol utilizing online network coding.

A. Baseline Protocol Design

We can decouple SlideOR into three components. First, the
encoding and decoding algorithms. Second, the algorithm to
advance the sliding window on different nodes. Third, the
algorithm to determine when to allow node transmissions. For
the third component, we utilize the credit assignment algorithm
in [3].

1) Encoding and decoding: Assuming each source packet
from the data stream has a sequence number i. At any time,
when the MAC layer allows the source to transmit, the source
generates a coded packet by randomly encoding a subset of
consecutive source packets, referred to as a sliding window.
We use W to denote the size of the sliding window. Hence, the
encoding algorithm to produce a coded packet x at the source
is x =

∑s+W
j=s αjEj , where Ej is the jth source packet, αj

is a randomly chosen coefficient from a Galois field such as
GF(28), and s is the sequence number of the next expected
source packet to be received at the destination. We will provide
more details about s when we present the decoding algorithm
at the destination. The source broadcasts each coded packet x
with the associated coding coefficients αj .

For any forwarding node a between the source and the
destination, it accumulates and caches a set of coded packets
in its buffer. Upon receiving a coded packet c, node a first
checks whether c is linearly dependent with the coded packets
in its buffer. If not, node a inserts c into its buffer. Whenever
possible, node a generates a new coded packet according to
the following algorithm: xa =

∑m
i=1 βixi, where xi is the ith

coded packet in the buffer of node a, and βi is a coefficient
randomly chosen from the Galois field. It is easy to see that
xa is also a linear combination of a subset of original packets
from the source, and the coefficients can be derived. Node a
then broadcasts xa along with its coding coefficients over the
original packets to all its neighbors.

The destination attempts to decode the incoming coded
packets according to the following algorithm. Since each
coded packet represents a linear equation with the source
packets from which it is encoded as unknown variables,
decoding the original source packets is equivalent to solving
a linear system composed of all coded packets received so
far. The decoding matrix represents the coefficient matrix

1More precisely, the condition is that the current segment has been received
sufficiently by its downstream nodes. Interested readers are referred to [4] for
details.
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Fig. 1. Packet 1, 2 and 3 are decoded. The destination cannot decode packet
4 and 5 now, but can be seen [5].

of such a linear system. The destination uses Gauss-Jordan
elimination to convert the decoding matrix to a reduced row
echelon form and solve the linear system. Fig. 1 shows an
example of the processed decoding matrix. In particular, we
note that as the decoding proceeds, more and more source
packets are decoded such as packets 1, 2, and 3 in the figure.
Furthermore, although a fraction of source packets (packet
4 and 5 in the figure) cannot be decoded right away, they
can be decoded later as more coded packets encoded with
them are coming from the source. We refer to the maximum
sequence number of the source packet that can be decoded
in the future as the maximum seen packet [5], [6]. In other
words, the sequence number of the seen packet is essentially
the maximum rank of the decoding matrix. We use the notation
s to denote the sequence number of the next expected packet
at the destination: the sequence number of the packet next
to the maximum seen packet. We note that the oldest source
packet to be encoded at the source is s as described previously
in this section, since it is not necessary to encode any source
packets that can already be decoded at the destination.

2) Basic Sliding Window Algorithm: Upon receiving an
innovative coded packet, the destination sends an ACK to the
source via the shortest path from the destination to the source.
The ACK packet carries s, the sequence number of the next
expected packet at the destination. s is used to advance the
sliding window at the source and indicates the source packet
to be encoded with the lowest number at the source. Note that
the forwarding nodes do not participate in the sliding window
advancement. They only accept coded packets, re-encode, and
transmit them.

B. Comparison Among Protocols

We are now ready to compare the basic operation of
SlideOR with that of MORE and CodeOR. Fig. 2 illustrates
the packet transmission dynamics of these three protocols in
a chain network. As shown in Fig. 2(a), for MORE, when
the distance between the source and the destination is much
longer than the segment size, there might be only a fraction
of nodes transmitting the data in one segment. CodeOR, as
shown in Fig. 2(b), improves the protocol by allowing more
than one segment in transmission. However, it is easy to see
that there are challenges to schedule transmissions of multiple
segments. In contrast, SlideOR, as shown in Fig. 2(c), encodes
and decodes packets in sliding windows such that different
windows might overlap. Hence, although SlideOR encodes
only a fraction of packets together to achieve low computation
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create enough information difference for useful packet transmission between
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complexity, it might approach the performance of a protocol
with an infinite segment size. Furthermore, in SlideOR, there
is no complication in scheduling multiple segments, which has
been shown to be difficult to implement [4].

C. Advancing Sliding Windows

In this section, we describe the motivation and design of
our sliding window advancement algorithm. For simplicity
in illustration, we assume that ACK is reliably transmitted
from the destination to the source. Since the destination only
transmits an ACK when the rank of the decoding matrix is
increased by one from receiving an innovative coded packet,
when an ACK arrives, the source knows that the sequence
number s of the next expected source packet also is increased
by one. It would be straight forward for the source to advance
the sliding window by one from [s, s+W−1] to [s+1, s+W ],
where W is the sliding window size. However, such an
approach does not work well in reality. We illustrate the reason
in Fig. 3.

We first assume that the sliding window is sufficiently small
to keep the encoding and decoding complexity reasonably low.
Under such a condition, after sending W linearly independent
coded packets, the source S starts to transmit linearly depen-
dent coded packets. Note that 0.9 is the successful transmission
probability between node S and A. Hence, after an expected
number of W/0.9 source transmissions, node A receives W
coded packets and keeps them in its buffer. From this time on,
any coded packets transmitted from the source is redundant to
node A. When an ACK from the destination arrives at the
source S, if S advances its sliding window by one packet, S

then transmits W + 1 useful source packets, which is only
one more than the useful coded packets at node A. Therefore,
after one successful packet transmission from S to A, S has
no useful data for node A again, and transmits only useless
coded packets.

We address this problem by artificially creating information
difference between adjacent nodes. For instance, when the
sliding window advances, the difference between the source S
and node A is η, which may be larger than one as shown in
Fig. 3. The details of our algorithm is as follows. The source
defines l as the lower boundary of its sliding window, i.e., the
sliding window is from source packet l to l+W−1. When the
source receives an ACK indicating that the next expect source
packet is packet s. The source advances the sliding window
by η packets, such that it spans from the source packets l + η
to l + η + W − 1, only if l + η >= s, where η is a positive
integer larger than 0 as discussed previously. We refer to η as
the advancement step size thereafter. It is easy to see that such
an algorithm ensures that the information difference between
any adjacent nodes is η packets.

We are able to remove obsolete coded packets in buffers,
when these packets are no longer useful towards decoding
[7]. Similarly, we can remove useless rows and columns in
decoding matrix [7]. Furthermore, with the concept of sliding
window and ACKs for degree of freedom, it is not hard to
utilize TCP Vegas [8] with SlideOR. In particular, SlideOR
determines the proper window size similarly to TCP Vegas.

V. PERFORMANCE EVALUATION

We study SlideOR through simulations with a customized
discrete event simulator. For the physical layer, we use the
measurement-based model from [9] to capture the effect
of opportunistic reception in a lossy wireless environment,
which empirically maps link distances to transmission success
probabilities between two wireless nodes. In our simulations,
two nodes are regarded as neighbors only if the link quality
between them is sufficient to achieve a transmission success
probability higher than 0.05. We conduct experiments on a
line topology and a random topology with 100 nodes that are
deployed, uniformly at random, in a square of size 4000×4000
square meters.

A. Impact of Advancement Step Sizes

In this section, we investigate the effect of advancement
step size η described in Sec IV-C on the protocol performance
under different topologies. We set the sliding window size to
20, while varying η. We conduct experiments on the simple
line topology with 4 nodes shown in Fig. 3. In addition, in
order to study the relation between η and link transmission
probabilities, we set the transmission probabilities on all links
to 0.01, 0.2, 0.5, and 0.8 for different experiments.

From Fig. 4(a), we observe that the protocol has a larger
throughput if we set a larger η. Furthermore, we note that
the advantage of a larger η degrades when link transmission
probabilities decrease from 0.8 to 0.01. This is because with a
higher loss rate, a node needs a longer time to deliver a coded
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Fig. 4. Network throughputs under different advancement step sizes η on
(a) the line topology in Fig. 3 with link transmission probabilities 0.01, 0.2,
0.5, and 0.8 and (b) random topology with the source and the destination set
to nodes 51 and 91 or nodes 0 and 5.

packet to its neighbor. Hence, a smaller difference between
the number of coded packets on adjacent nodes is sufficient
to provide useful coded packet transmissions.

In the second set of experiments, we choose two pairs of
random nodes on the random topology, and conduct the same
experiments. Fig. 4(b) shows that the loss probabilities on the
random topology used in this simulation is sufficiently high
such that a small η is enough for a high network throughput.

B. Comparison Among Different Protocols

In this section, we compare the performance of MORE,
CodeOR, and SlideOR under different network settings. Simi-
larly to previous sections, we use node 51 and 91 as the source
and the destination, respectively. Fig. 5 shows the network
throughput of CodeOR under segment sizes 2, 5, 10, 25, and
50, with window sizes (the number of segments in a sending
window) 25, 10, 5, 2, and 1, respectively. Hence, the total
number of coded packets in one window is always 50. We
note that when the window size is 1, CodeOR is MORE,
since only one segment is in transmission in the network at
any time. Fig. 5 shows the throughput of CodeOR. We observe
that when the segment size is very small, e.g., 2, its throughput
suffers. This is because network coding is not effective with
a smaller segment size, which, in essence, means less packet
mixing and a larger amount of segment scheduling overhead.
On the other hand, when the segment size increases from 10
to 50, the number of segments decreases and the throughput
degrades since CodeOR is less flexible with transmissions
during ACK propagation. In the extreme case, the protocol
degrades to MORE when the segment size is 50, and there
are no useful transmissions at all when ACKs are propagated
as we discussed in [4].

We then conduct experiments for SlideOR with sliding
window sizes 2, 5, 10, 25, and 50, corresponding to the
experiment settings for CodeOR. The advancement step size
η is set as roughly half of the sliding window size: 1, 2,
5, 12, and 25, respectively. We observe from Fig. 5 that the
throughput of SlideOR increases when its sliding window size
increases. In particular, when the sliding window increases
to a size larger than 25, SlideOR outperforms CodeOR. We
emphasize that the total number of coded packets sent by
MORE and CodeOR is always 50, whereas the sliding window
size is under 50 most of the time for SlideOR. Hence, all these
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Fig. 5. Network throughputs under different segment/sliding-window sizes.

comparisons are unfair to SlideOR except for the last data
point. However, when the sliding window size is 50, SlideOR
significantly outperforms MORE, since it can transmit use-
ful coded packets simultaneously during ACK propagation,
whereas MORE cannot. SlideOR achieves almost the same
performance as CodeOR even when its sliding window, 25, is
half of the total number of packets in the sending window, 50,
of CodeOR because it eliminates imperfect node scheduling
between segments in CodeOR [4].

VI. CONCLUSION

In this paper, we propose SlideOR, an opportunistic routing
protocol utilizing online network coding. We describe the
challenges and solutions in implementing such a protocol.
In addition, we show that SlideOR significantly outperforms
existing opportunistic protocols based on network coding,
through extensive experiments. SlideOR can achieve much
higher throughput, because it transmits useful coded packets
during ACK propagation, while preventing the scheduling
overhead as in some of the existing solutions. At the same
time, SlideOR is substantially simpler and much easier to im-
plement, by reducing the complication of scheduling multiple
segments to simple sliding window advancements.
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