
Data Persistence in Large-scale Sensor Networks
with Decentralized Fountain Codes

Yunfeng Lin, Ben Liang, Baochun Li

Abstract—It may not be feasible for sensor networks moni-
toring nature and inaccessible geographical regions to include
powered sinks with Internet connections. We consider the sce-
nario where sinks are not present in large-scale sensor networks,
and unreliable sensors have to collectively resort to storing
sensed data over time on themselves. At a time of convenience,
such cached data from a small subset of live sensors may be
collected by a centralized (possibly mobile) collector. In this
paper, we propose a decentralized algorithm using fountain codes
to guarantee the persistence and reliability of cached data on
unreliable sensors. With fountain codes, the collector is able to
recover all data as long as a sufficient number of sensors are
alive.

We use random walks to disseminate data from a sensor to a
random subset of sensors in the network. Our algorithms take
advantage of the low decoding complexity of fountain codes, as
well as the scalability of the dissemination process via random
walks. We have proposed two algorithms based on random walks.
Our theoretical analysis and simulation-based studies have shown
that, the first algorithm maintains the same level of fault tolerance
as the original centralized fountain code, while introducing lower
overhead than naive random-walk based implementation in the
dissemination process. Our second algorithm has lower level of
fault tolerance than the original centralized fountain code, but
consumes much lower dissemination cost.

I. INTRODUCTION

Wireless sensor networks consist of unreliable and energy-
constrained sensors communicating with one another wire-
lessly. It has been a conventional assumption that, in wireless
sensor networks, measured data in individual sensors are gath-
ered (via data aggregation) and processed en masse at powered
sinks with Internet connections. There are, however, at least
two cases in which this assumption may not realistically
hold. First, if sensor networks consist of a large number
of sensors (in the order of tens of thousands or higher), it
may not be energy efficient to gather measured data from
sensors to sinks using data aggregation. Second, if sensors
are randomly deployed in inaccessible geographical regions
or environments, it may not be feasible to deploy powered
sinks as well.

As we challenge the assumption that powered sinks with
Internet connections exist in wireless sensor networks, our
proposed vision is to ask the sensors to collaboratively store
measured data over a historical period of time on themselves.
At a later time of convenience, a (possibly mobile) collector
(e.g., a motor vehicle) collects such historical measured data
directly from the sensors. In other words, rather than a “push”
model in which sensors proactively send data periodically
to the sink, we employ a “pull” model, where sensors are
passively polled by the collector.

The authors are affiliated with the Department of Electrical and Com-
puter Engineering, University of Toronto. Their email addresses are
{ylin,bli}@eecg.toronto.edu and liang@comm.utoronto.ca.

Considering that all sensors are inherently unreliable and
vulnerable to failures, the following question naturally arises:
How do we reliably retrieve historical data that the sensors
have gathered, even after a subset of them has failed? Intu-
itively, the sheer number of inexpensive sensors in the network
provides natural fault tolerance, and if used wisely, leads
to the desired persistence of measured data for a period of
time. However, what is the algorithm that provides the highest
degree of fault tolerance and data persistence?

In this paper, we propose a novel decentralized implementa-
tion of fountain codes in sensor networks, such that data can be
encoded in a completely distributed fashion. In our proposed
algorithms, a sensor disseminates its data to a random subset
of sensors in the network, while each sensor only encodes
data that it has received. As the collector collects a sufficient
number of encoded data blocks by visiting more and more
sensors, it is able to decode all original data with an efficient
decoding process designed for fountain codes. The salient and
original contribution of this paper is a solution to disseminate
data from one sensor to others in an efficient and scalable
fashion. As has been well known, conventional shortest-path
routing algorithms require each sensor to maintain a routing
table with a size proportional to the total number of sensors
in the network. Alternatively, geographic routing protocols [1]
are more scalable, with the assumption that sensors know their
respective locations. Be that as it may, we have observed that
our decentralized implementation of fountain codes does not
require the support of a generic layer of routing protocols.
Instead, we use random walks to disseminate data from one
sensor to a random subset of sensors in the network. The
salient advantage of random walks is that they only need
local information, and do not assume the knowledge of sensor
locations.

As far as we are aware, there is no existing study on
distributed implementation of fountain codes through state-
less random walks. Kamra et al. [2] have proposed Growth
codes, a variant of LT codes [3] to maximize the amount
of recovered data at the sink by increasing the code rate
over time. However, our work addresses the data persistence
problem when no sink is available. Furthermore, Growth codes
require approximate time synchronization in the network to
support identical speeds of code rate increases on all sensors,
whereas our work does not have such requirement. Dimakis et
al. [4] have shown a decentralized implementation of fountain
codes, which is, to the best of our knowledge, the closest
to our work. However, their implementation uses geographic
routing and requires every node to know its location, whereas
our algorithms do not have such assumption.

The remainder of this paper is organized as follows. Sec. II
reviews fountain codes and random walks. Sec. III introduces
our main algorithm towards using decentralized fountain codes

to improve data persistence in sensor networks without sinks.
Sec. IV discusses the optimality of encoding multiple source
blocks into one encoded block at each receiving node. The
performance of our algorithms is evaluated extensively in
Sec. V. We conclude the paper in Sec. VI.

II. PRELIMINARIES

Using an analogy to Redundant Array of Independent Disks
(RAID) in computer systems [5], we explain a number of
alternatives that motivate the credo of this paper.

A. Why Fountain Codes?

Similar to RAID 1 disk arrays (mirrored disks), the first
alternative is to utilize other sensors to “mirror” or “replicate”
data from a particular sensor. After such mirroring, when a
sensor fails, the data it has gathered before its failure can
be retrieved from other “backup” sensors, improving data
persistence and fault tolerance. As an example of existing
work, Hass et al. [6] have addressed the fault tolerance of
distributed location databases by using replication. It is easy
to see that a large number of replicas are required to maintain
a certain degree of fault tolerance, when the failure rate of
sensors increases.

Analogous to RAID 6 disk arrays (in which Reed-Solomon
codes are used), error-correcting codes may be used to al-
leviate the disadvantages of mirroring data. It has also been
proposed that Reed-Solomon and LDPC codes may be used
towards building reliable and distributed data storage systems
over wide-area networks [7], [8]. There is one catch, however,
in that the encoding and decoding processes of conventional
error-correcting codes have to be implemented in a centralized
fashion. To make good use of them in sensor networks, all
data have to be delivered to a centralized sensor node, which
encodes them and re-distributes the encoded data within the
network. This is obviously not realistic, in that (1) a single
sensor is not assumed to have sufficient energy or computa-
tional power to encode all the data received; (2) it suffers
from a single point of failure; and (3) the communication
cost of forwarding all data to a central node for encoding
is prohibitive.

In wireless sensor networks, where data are generated from
different sensors in a distributed way, it has been proposed
in existing work that random linear codes may be used to
improve the degree of fault tolerance [9], [10], [11] by decen-
tralized encoding. Random linear codes are also investigated
in distributed networked storage [12]. Unfortunately, similar
to Reed-Solomon codes, the decoding process of random
linear codes is computationally expensive, with a decoding
complexity of O(K3), where K is the number of data blocks1

to be encoded.
We believe that the superior decoding complexity of foun-

tain codes — O(K ln K) — may come to our rescue, even
though the encoding process of fountain codes is also central-
ized in coding literature. We briefly introduce LT codes [3],
the first fountain codes proposed in the coding literature. We
use LT codes in our subsequent discussions and performance

1A data block typically consists of one measurement sample on a sensor.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

Fig. 1. Robust Soliton distribution for the case K = 10000, c = 0.2, and
δ = 0.05. Note that a spike exists at K/R = 41. Such a spike is sufficient
replacement for all higher degrees. The encoded blocks with a degree higher
than K/R are not essential in decoding.

evaluation. Fountain codes are rateless in the sense that the
number of encoded data blocks that can be generated from the
original data blocks (referred to as source blocks hereafter) is
potentially unlimited, and the encoded blocks can be computed
on the fly. Therefore, fountain codes are especially suitable for
erasure channels where the erasure probabilities are unknown.
Fountain codes also enjoy excellent computational efficiency
for both encoding and decoding processes.

In LT codes, it has been shown that K source blocks can be
decoded from any subset of K + O(

√
K ln2(K/δ)) encoded

blocks with probability 1− δ. The encoding and the decoding
complexity are both K ln(K/δ). The number of source blocks
that are used to generate an encoded block is referred to
as the degree of the encoded block. The degree distribution
of encoded blocks in LT codes follows the Robust Soliton
distribution. We first define the Ideal Soliton distribution ρ(·):

ρ(i) =

{
1/K if i = 1,

1/i(i − 1) for i = 2, 3, . . . ,K.

Then we let R = c ln(K/δ)
√

K for some constant c > 0 and

τ(i) =

⎧⎪⎨
⎪⎩

R/iK for i = 1, . . . , K/R − 1
R ln(R/δ)/K for i = K/R

0 for i = K/R + 1, . . . ,K

.

The Robust Soliton distribution is defined as

μ(i) =
ρ(i) + τ(i)

β
, (1)

where β =
∑

i ρ(i) + τ(i). Fig. 1 shows an example.
The encoder of LT codes generates each encoded block

independently by first randomly choosing the degree d of an
encoded block from the Robust Soliton distribution, and then
choose d distinct blocks from K source blocks uniformly at
random. The encoded block is the bitwise exclusive-or (XOR)
of the d source blocks. The decoding process utilizes the
Belief Propagation (BP) algorithm, which intuitively is more
computationally efficient than the general matrix inversion
process, since degree-one encoded blocks are used to activate
a cascading backward cancellation process, producing more
degree-one encoded blocks.

B. Random Walks on Graphs

We describe random walks in the context of disseminating
a source block, with sensors as the nodes in the graph. Given
the source node n0 of the block, the next hop n1 is randomly
chosen from the neighbors of n0; when the block arrives at

n1, the next hop n2 is randomly chosen from the neighbors
of n1, and so on.

Since the choice of the next hop depends on only the
current node, a random walk corresponds to a time-reversible
Markov chain. The states of the Markov chain are the nodes
in the graph. If the graph is ergodic (which is almost certain
for the graph corresponds to the topology of a randomly
deployed sensor network), the Markov chain has a steady-state
distribution which equals to its limiting distribution. Therefore,
if the length of the random walk is sufficiently long, the
distribution (limiting distribution) of the random walk stopping
at a particular node converges to the steady-state distribution.

The length of the random walk is proportional to the
transmission cost of disseminating a source block, which
must be minimized. The minimal length of a random walk
to approximate the steady-state distribution within a certain
error is called the mixing time of the random walk. The
mixing time of random walks can be reduced by adjusting
the transition matrix of the Markov chain. Boyd et al. [13]
find the fastest mixing time of a random walk on a graph
by solving an optimization problem. If their algorithm can be
amenable to a distributed implementation, it is complementary
to our decentralized implementation of fountain codes to be
subsequently proposed. Boyd et al. [14] also show that natural
random walks have the same asymptotic order of mixing time
as the fastest random walk on Random Geometric Graphs [15],
a popular topological model for multi-hop wireless networks.
In this paper, we choose a variant of the Metropolis algorithm
[16], which is a generalization of the natural random walks for
the Markov chain with a non-uniform steady-state distribution.

The Metropolis algorithm computes the transition matrix,
P = [Pij], of a time-reversible Markov chain, given its steady-
state distribution π = (π1, π2, . . .) [16]:

Pij =

⎧⎪⎨
⎪⎩

min(1, πj/πi)/Dm if i �= j and j ∈ N(i),
0 if i �= j and j /∈ N(i),
1 − ∑

j �=i Pij if i = j.

, (2)

where N(i) denotes the neighbors of node i and Dm denotes
the maximal node degree in the graph. Clearly, the Metropolis
algorithm is distributed, since each node only needs the steady-
state probabilities of its neighbors to calculate the transition
matrix. The transition probability entries in the transition
matrix local to a node are referred to as the probabilistic
forwarding table since they are used to randomly selecting
the next hop in random walks.

III. PERSISTENT DATA ACCESS THROUGH

DECENTRALIZED FOUNTAIN CODES

We propose to use decentralized fountain codes to efficiently
maintain data persistence in large-scale sensor networks. In
this section, we first show how fountain codes can be used to
access sensed data in a decentralized fashion, then present two
data dissemination algorithms based on “one-way” random
walks.

A. Decentralized Fountain Codes

We model a sensor network as a graph G = (V,E), where
V represents the set of sensors and E represents the set of
links. Let N denote the total number of nodes in V . We assume
that a subset of K nodes, called sensing nodes, monitor the
environment and generate sensed data to be disseminated. The
sensing nodes are able to cache their data on all other nodes
(referred to as caching nodes), such that their data are available
even when they fail or otherwise become unavailable.

In fountain codes, each encoded block is the XOR combina-
tion of a number of source blocks, randomly selected based on
a special distribution, such as the Robust Soliton distribution
in LT codes. To take advantage of fountain codes in sensor
networks, one way to design a straightforward implementation
is based on “two-way” random walks as follows. A node
first generates the code-degree d from the Robust Soliton
distribution, where the code-degree of a node refers to the
degree of the encoded block cached on the node. This node
may then request the source blocks from d distinct sensing
nodes, uniformly distributed in the K sensing nodes, using
random walks to deliver these requests. All d random-walk
paths to the d sensing nodes are recorded in the network. Upon
receiving the requests, the d sensing nodes disseminate their
source blocks through the previous recorded d random-walk
paths to the node. Finally, this node encodes the d received
source blocks for later retrieval.

However, we believe that such “two-way” random-walk
paths are rigid, not realistic and undesirable. First, sending
data along the recorded random-walk paths makes the more
demanding assumptions of bi-directional wireless links, which
is sometimes not the case in reality. Second, to record random-
walk paths in the network, sensors have to maintain forwarding
tables with the size proportional to the number of random
walks in the network. Third, sensor networks are inherently
unreliable, and random-walk paths may be broken or lost if
any of the sensors on these paths fails during the transmission.
Finally, excessive overhead of transmitting control messages
is unavoidable when selecting random sensing nodes, and ad-
ditional random walks have to be activated if the selected node
is not a sensing node, or a duplicate of previous selections.

In this paper, we seek to construct decentralized fountain
codes with only one traversal of random walks, from sensing
nodes to the caching nodes that encode and store the source
blocks. Though nontrivial to design, such “one-way” random
walks are much more scalable, completely stateless, and have
avoided all the overhead and drawbacks of the aforementioned
“two-way” walks.

Our algorithms are intuitively justified based on the follow-
ing rationale. If the steady-state probabilities of two nodes are
different in the random-walk Markov chain, e.g., πi > πj ,
random walks guarantee that each source block has a higher
probability to stop on node i than on node j. Therefore, node
i will receive more distinct source blocks than node j, which
results in node i obtaining a higher code-degree than node j.

Henceforth, we propose two heuristic algorithms to guaran-
tee the Robust Soliton distribution of LT codes, in a completely
decentralized fashion, and using “one-way” random walks.

These two algorithms are called Exact Decentralized Foun-
tain Codes (EDFC) and Approximate Decentralized Foun-
tain Codes (ADFC), since EDFC achieves the same coding
performance of the original centralized LT codes, whereas
ADFC offers degraded performance with the tradeoff of lower
dissemination cost.

For both algorithms, we assume that, before execution,
every node has been pre-programmed with the number of
sensing nodes K, the total number of nodes N , and the Robust
Soliton distribution. All these information can be broadcast to
every node when the sensor network is initialized. However,
K and N may decrease with time when some sensors die. In
Section V, we will show that EDFC and ADFC do not require
each node to know the precise value of K and N .

B. Exact Decentralized Fountain Codes (EDFC)

Because of the randomization introduced by random walks,
the number of distinct source blocks received by a node
is uncertain and usually does not equal the code-degree of
this node. EDFC attempts to overcome such challenge and
guarantee the Robust Soliton degree distribution. It is based
on the observation that we may disseminate more than d
source blocks on each node, but encode only d of them,
where d is the code-degree of a node. Assume each node
receives xd ·d source blocks on average, where xd is called the
redundancy coefficient. By choosing a sufficiently large xd,
the probability that such number of source blocks comprise
less than d distinct source blocks can be made arbitrarily
small. Therefore, the distribution of the number of source
blocks used in encoding can be arbitrarily close to the Robust
Soliton degree distribution. Note that, through the arguments
of symmetry, xd should depend only on d.

1) Algorithm Description: EDFC proceeds as follows. Ini-
tially, each node generates its code-degree from the Robust
Soliton distribution. Next, each sensing node sends out its
source block by random walks. As long as a source block stops
at a node at the end of the random walk, this node will store
this source block. After all source blocks are disseminated,
each node generates its encoded block from a subset of
received source blocks with cardinality equal to its code-
degree.

Although the algorithm is simple, two critical elements need
to be computed and are derived in details in the following: the
number of random walks launched from each sensing node and
the probabilistic forwarding tables for random walks.

The number of random walks: It is clear that the expected
number of nodes with code-degree d in the network is Nμ(d),
where μ(d), the fraction of code-degree d nodes, is defined
in (1). Each code-degree d node receives xdd source blocks.
Therefore, the total number of source blocks received in
the network is

∑K
d=1 Nμ(d)xdd, which also equals bK, the

number of source blocks disseminated from the K sensing
nodes, where b denotes the number of random walks from
each sensing node. Hence, we have

b =
N

∑K
d=1 xddμ(d)

K
, (3)

where xd is solved later in (13) of this section.

Probabilistic forwarding tables: The probabilistic for-
warding tables for random walks are computed by the
Metropolis algorithm based on the required steady-state dis-
tribution of the random walks, which in turn is derived from
the initially assigned Robust Soliton degree distribution. In
the following, we present the derivation for the steady-state
distribution in details.

Let πd be the probability that a random walk stops at a given
node with code-degree d. Since the total number of source
blocks disseminated from all sensing nodes is bK, the total
expected number of source blocks stopping at this node is
bKπd. At the same time, the expected number of source blocks
stopping at this node also equals xdd. Therefore, the stopping
probability πd can be computed by

πd =
xdd

bK
. (4)

Substituting (3) into (4), we obtain the formula to compute
the steady state distribution πd for a node with code-degree d:

πd =
xdd

N
∑K

i=1 xiiμ(i)
. (5)

To summarize, the steps of EDFC are as follows:
Step 1: Degree generation. Each node independently

chooses its code-degree d from the Robust Soliton distribution.
Step 2: Compute steady-state distribution. Each node

computes its steady-state distribution πd from its chosen code-
degree d based on the Robust Soliton distribution and the
redundancy coefficients xd by (5).

Step 3: Compute probabilistic forwarding table. Each node
computes the probabilistic forwarding table by the Metropolis
algorithm (2) from the steady-state distribution computed in
Step 2.

Step 4: Compute the number of random walks. Each
sensing node computes b, the number of random walks from
itself, using (3).

Step 5: Block dissemination. Each sensing node dissemi-
nates b copies of its source block with its node ID by b random
walks based on the probabilistic forwarding table computed in
Step 3.

Step 6: Encoding. Each node generates an encoded block
by bitwise exclusive-or (XOR) of a subset of d source blocks,
uniformly distributed among all received source blocks. The
d source node IDs of the source blocks are attached in the
encoded block.

Note that if each node has more than one source blocks to
be encoded in the network. Step 1 to Step 4 are required to be
executed only once, whereas Step 5 and Step 6 are repeated
for each source block.

The collector uses the original decoding algorithm of foun-
tain codes to decode data. The source node IDs in each
encoded block are used to construct the graph in the BP
algorithm. Note that, since the average degree of an encoded
block is O(ln(K/δ)) [3], the average number of source node
IDs attached in each encoded block is also O(ln(K/δ)).
Hence, this overhead can be ignored if the size of each block
is much larger than the size of node IDs.

X: the chosen degree, the initial assigned code-degrees on nodes in
Step 1 of the algorithm

Y : the actual degree, the actual number of distinct source blocks
stopping at a node

Yi: the indicator variable: Yi = 1 if at least one source block is
received from the ith sensing node; Yi = 0, otherwise.

TABLE I
THE DEFINITION OF RANDOM VARIABLES.

2) Overhead of EDFC: In EDFC, each node receives
more source blocks on average than its code-degree, in order
to achieve the Robust Soliton degree distribution. In this
subsection, we estimate such overhead compared to the ideal
algorithm, where the number of source blocks received at each
node is exactly its code-degree.

Clearly, the transmission cost of EDFC and the ideal algo-
rithm is the product of the number of random walks and the
length of random walks, where the latter only depends on the
network topology and is the same for both cases. Hence, the
overhead ratio is defined as the ratio of the number of random
walks. More precisely, in the ideal case, if no redundancy
coefficient xd is introduced, the number of random walks b0

can be derived similarly as in (3):

b0 =
N

∑K
d=1 dμ(d)
K

. (6)

Therefore, the overhead ratio is

g1 =
b

b0
=

∑K
d=1 xddμ(d)∑K

d=1 dμ(d)
. (7)

From the definition of the overhead ratio and intuition, the
redundancy coefficient xd governs the overhead, and hence
should be minimized. In the following, we analyze, asymptot-
ically, the required redundancy coefficients, and compute their
minimal numerical values in practice, for EDFC.

Without loss of generality, we index the sensing nodes by
1, 2, . . . ,K. We define random variables X , Y , and Yi as
shown in Table I. The efficient decoding of fountain codes
requires that the degrees of the encoded blocks conform to the
Robust Soliton distribution. To approximate such distribution,
the probability Pr(Y < d|X = d), called violation probability,
should be sufficiently small for all degrees less than or equal
to the spike K/R as shown in Fig. 1.

Theorem 1: The violation probability Pr(Y < d|X = d) is
O(e−xdd).

Proof: Clearly, Y =
∑K

i=1 Yi. Since each source block
has probability πd to stop at a node with code-degree d, the
probability that none of the b copies of the source block from
the ith sensing node stops at a node with code-degree d is
Pr(Yi = 0|X = d) = (1 − πd)b. Let E =

∑K
i=1 xiiμ(i). We

have

Pr(Yi = 1|X = d) = 1 − (1 − πd)b

= 1 −
(

1 − xdd

NE

)NE/K

, (8)

where the second equality is obtained by substituting πd and
b with (5) and (3). When N → ∞, (8) becomes

Pr(Yi = 1|X = d) → 1 − e(−xdd/E)(E/K)

= 1 − e−xdd/K . (9)

Now, let p denote Pr(Yi = 1|X = d). Given X = d,
Y is a binomial random variable because Yi are identical
and independent Bernoulli random variables. Therefore, the
violation probability is

Pr(Y < d|X = d) =
d−1∑
j=0

(
K

j

)
pj(1 − p)K−j . (10)

Equation (10) can be simplified as follows:

Pr(Y < d|X = d) ≤ Pr(Y ≤ d|X = d)

≤
(

K

d

)
(1 − p)K−d

≤
(

eK

d

)d

e−
xdd

K (K−d)

�
(

K

d

)d

e−xdd, (11)

where the first inequality is obvious, the second inequality is
based on the tails of a binomial distribution [17], and the third
inequality is due to the binomial bounds [17] and substituting
p with (9).

Furthermore, since
(

K
d

)d
is an increasing function of d, its

maximum is achieved when d = K/R. Hence,

ln
(

K

d

)d

≤ K

R
ln(R)

=
√

K/(c ln(K/δ)) · ln(c ln(K/δ)
√

K). (12)

Equation (12) is O(
√

K), so
(

K
d

)d
grows slower than eO(

√
K).

Theorem 1 provides a general rule for the tradeoff between
coding performance and the communication overhead. Besides
the asymptotic result of this theorem, we are further interested
in practical values of the redundancy coefficient xd. We next
formulate an optimization problem to find the best xd.

Our objective is to minimize the dissemination cost, which
is governed by the number of random walks (3) from each
sensing node as discussed in the definition of overhead ratio
of this subsection. Therefore, the optimization objective is to
minimize

∑K
d=1 xddμ(d), subject to the constraints that the

violation probabilities should be sufficiently low for 1 ≤ d ≤
K/R. This optimization problem is expressed as follows:

minimize
K∑

d=1

xddμ(d)

subject to Pr(Y < d|X = d) ≤ δd

xd ≥ 1
for d = 1, . . . ,K/R, (13)

where δd is a small constant and Pr(Y < d|X = d) is given
in (10).

The above optimization problem can be solved off-line
before network deployment. Therefore, its complexity is not
a main concern. We may find a suitable local optimum by
searching with reasonable initial values. As an example, in
(13), we set the constraints of violation probabilities, δd, for

Redundancy Coefficient x1 x2 x3 x4 x5

Initial Search Point 3.0 2.3 2.0 2.0 1.5
Optimal Value 2.9956 2.3730 2.1005 1.9411 1.8341

TABLE II
OPTIMIZATION OF REDUNDANCY COEFFICIENTS.

1 ≤ d ≤ K/R, to 0.05, the number of nodes N and the num-
ber of sensing nodes K to 2000 and 1000, and the constants
c and δ for the Robust Soliton distribution in (1) to 0.01 and
0.05, respectively. We then solve the resulting optimization
problem by MATLAB, obtaining redundancy coefficients xd

as shown in Table II. Elements of the initial search point
are also shown. Due to space constraint, we present data for
only the first five code-degrees. Further numerical computation
show that the overhead ratio g1, as defined in (7), is 1.4508.
This implies that, in EDFC, the additional transmission cost
required in source-block dissemination can be less than half
of the cost of the ideal algorithm.

C. Approximate Decentralized Fountain Codes (ADFC)

In this subsection, we present the second algorithm, ADFC,
to approximate the Robust Soliton degree distribution in a
distributed way. ADFC proceeds in a similar way as EDFC,
but attempts to avoid its redundant random walks. ADFC is
based on the following observation. In EDFC, although the
initially assigned code-degree distribution on each node is the
Robust Soliton distribution, the actual code-degree distribution
is not exactly such distribution, due to the randomization
introduced from random walks. Based on this, we design a new
distribution ν(·) to be a hypothetical chosen degree distribution
such that the actual degree distribution are close to the Robust
Soliton distribution.

1) Algorithm Description: The algorithm elements of
ADFC, namely the number of random walks from each sensing
node and the probabilistic forwarding table, can be derived in
a similar way as in EDFC. We compute the number of random
walks b by the same arguments used in (3). Let ν(·) denote
the chosen degree distribution. Then

b =
N

∑K
d=1 dν(d)
K

. (14)

Furthermore, the steady-state distribution of the random walks
is calculated similarly to (5):

πd =
d

N
∑K

i=1 iν(i)
. (15)

Next, we derive the chosen degree distribution ν(·) initially
assigned to nodes. We employ the same random variables
as defined in Table I. Let E =

∑K
i=1 iν(i). The conditional

probability that at least one source block from the ith sensing
node stops at a node, given the node’s initially chosen code-
degree is d is similar to (8):

Pr(Yi = 1|X = d) = 1 −
(

1 − d

NE

)NE/K

. (16)

Let p denote Pr(Yi = 1|X = d). Since Y =
∑K

i=1 Yi, we
have the probability that a node with chosen code-degree d
ends up having code-degree d′ is

Pr(Y = d′|X = d) =
(

K

d′

)
pd′

(1 − p)K−d′
.

Thus, the actual degree distribution of a node is

Pr(Y = d′) =
K∑

d=1

Pr(X = d)Pr(Y = d′|X = d)

=
K∑

d=1

ν(d)
(

K

d′

)
pd′

(1 − p)K−d′
(17)

Let ν′(·) denote the actual degree distribution Pr(Y = d′).
Then, to approximate the Robust Soliton distribution μ(·), we
minimize the mean-square error between ν′(·) and μ(·) for the
degrees less than or equal to the spike K/R, as stated in the
following optimization problem:

minimize
K/R∑
i=1

(ν′(i) − μ(i))2

subject to
K∑

i=1

ν(i) = 1

ν(i) ≥ 0 for i = 1, . . . ,K . (18)

To summarize, the steps of the ADFC are as follows:
Step 1: Degree generation. Each node independently

chooses its code-degree d from the chosen degree distribution
ν(·), where ν(·) is the result of the optimization problem (18).

Step 2: Compute steady-state distribution. Each node
computes its steady-state distribution πd from its code-degree
d and the chosen degree distribution ν(·) by (15).

Step 3: Compute probabilistic forwarding table. Each node
computes the probabilistic forwarding table by the Metropolis
algorithm (2) from the steady-state distribution computed in
Step 2.

Step 4: Compute the number of random walks. Each
sensing node computes b, the number of random walks from
itself, using (14).

Step 5: Block dissemination. Each sensing node dissemi-
nates b copies of its source block with its node ID by b random
walks based on the probabilistic forwarding table computed in
Step 3.

Step 6: Encoding. Each node generates an encoded block
by bitwise exclusive-or (XOR) of all received source blocks.
The source node IDs of the source blocks are attached in the
encoded block.

2) Overhead of ADFC: Similar to the overhead ratio of
EDFC in (7), we define the overhead ratio of ADFC as

g2 =
b

b0
=

∑K
d=1 dν(d)∑K
d=1 dμ(d)

, (19)

where b and b0 is the number of random walks from each
sensing node in ADFC and the ideal algorithm as defined in
(14) and (6), respectively.

As an example, we present the numerical results from
the optimization problem (18), where the total number of
nodes N and the total number of sensing nodes K are set
to 2000 and 1000, respectively. The additional parameters for

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

(a)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

(b)

Fig. 2. (a) Chosen degree distribution. (b) Actual degree distribution.
Parameters for the Robust Soliton distribution are K = 1000, c = 0.01,
and δ = 0.05, and the total number of nodes is 2000.

the Robust Soliton distribution are c = 0.01 and δ = 0.05. The
chosen degree distribution ν(·) obtained from the optimization
problem (18) and the actual degree distribution ν′(·) are shown
in Fig. 2. The actual degree distribution has a shape similar
to the Robust Soliton distribution as shown in Fig. 1, though
not exactly the same. Because of this inaccuracy, we expect
that the collector needs to collect more encoded blocks than
in EDFC to successfully decode. However, further numerical
computation reveals that the overhead ratio g2 is only 0.2326.
This suggests that far less transmission cost is required to
disseminate source blocks than EDFC or the ideal algorithm.

IV. CAN MULTIPLE ENCODED BLOCKS DO BETTER?

In EDFC and ADFC, each node receives multiple distinct
source blocks and encode them into one single encoded block.
It may appear that using a single encoded block will lose
some information in the received source blocks. If a node has
ample storage space, does it improve the coding performance if
different encoded blocks, from different subsets of the received
source blocks, are maintained? The surprising answer is no.

Consider the extreme case where each node does not encode
the received source blocks at all. Since all source blocks
are kept, there is no information loss. Then, in the decoding
process, the collector recovers the source blocks incrementally
over a random subset of nodes. Theorem 2 shows that, even in
this case, the collector needs to visit Ω(K) nodes to collect all
K source blocks (among the collected blocks, many of them
are duplicate). Therefore, no matter how the source blocks
are encoded, Ω(K) surviving nodes are needed for all source
blocks to be collected.

Theorem 2: When the code-degree distribution conforms to
the Robust Soliton distribution, even if the source blocks on
each node are not encoded, the collector must visit Ω(K)
nodes in order to collect all source blocks with probability
1 − δ, where δ is a small positive number.

Proof: Let Yi,j be a random variable that assumes the
value 1 if the source block j is collected when the collector
visits the ith random node, and the value 0 otherwise. Let Xi

be the number of source blocks on node i. We have

Pr(Yi,j = 1) =
K∑

d=1

Pr(Xi = d)Pr(Yi,j = 1|Xi = d)

=
K∑

d=1

μ(d)
d

K
≤ c1 ln(K/δ)

K
, (20)

where c1 is a constant, and the last inequality is a result from
[3]: the average degree of an encoded block is O(ln(k/δ)).

Further define the random variable Zj , such that Zj has
value 1 if the source block j is collected after the collector
has visited M nodes, and has value 0 otherwise. We have

Pr(Zj = 0) ≈ ΠM
i=1Pr(Yi,j = 0)

= ΠM
i=1(1 − Pr(Yi,j = 1))

≥ (1 − c1 ln(K/δ)
K

)M . (21)

The approximation above is because the random variables Yi,j

are approximately independent when N is large.
Let E denote the event that all blocks are collected after

the collector visits M nodes. Then

Pr(E) = ΠK
j=1Pr(Zj = 1)

≤ (1 − (1 − c1 ln(K/δ)
K

)M)K . (22)

Hence, if we require that all blocks are collected with probabil-
ity 1−δ after the collector visits M nodes, i.e., Pr(E) ≥ 1−δ,
we must have

(1 − (1 − c1 ln(K/δ)
K

)M)K ≥ 1 − δ. (23)

Applying logarithm to both sides of (23), we obtain

K ln(1 − (1 − c1 ln(K/δ)
K

)M) ≥ ln(1 − δ) � −δ , (24)

where the approximation of ln(1− δ) � −δ is used since δ is
small. Similarly, we obtain

−(1 − c1 ln(K/δ)
K

)M ≥ −δ/K (25)

by using the fact that ln(1 − (1 − c1 ln(K/δ)
K)M) � −(1 −

c1 ln(K/δ)
K)M when M is large. By solving (25) using similar

approximation, we obtain

M ≥ K/c1 (26)

i.e., M = Ω(K).

V. PERFORMANCE EVALUATION

To evaluate the effectiveness and performance of the pro-
posed algorithms, we have implemented both the original
centralized and the decentralized implementations of fountain
codes. The centralized implementation of fountain codes (LT
codes in this case) consists of about 1000 lines of C++
code, with fully optimized implementation of the encoding
and decoding algorithms. The decentralized implementation of
fountain codes with random walks in wireless sensor networks
is also simulated with C++.

We use the two-dimensional Geometric Random Graph
[15], G2(N, r), as the topological model, where N sensors are
uniformly distributed on a unit disc. Besides the total number
of sensors N and the radio range r of each node, an additional
parameter special to our algorithms is the total number of sens-
ing nodes K. The K sensing nodes are uniformly distributed
among the N sensors. We set K = 10000, N = 20000,
and r = 0.033 in most experiments with exceptions explicitly
stated. The average number of neighbors for each node is 21

in such a setting. To mitigate randomness, we show, for each
data point in all figures, the average and the 95% confidence
interval from 10 independent experiments.

A. Communication Cost and Decoding Ratio

We examine two main performance metrics, the communi-
cation cost and the decoding ratio. The communication cost,
governed by the length of random walks and the number of
random walks from a sensing node, represents the system
efficiency. The decoding ratio denotes the number of nodes
that need to be visited by a collector for decoding, normalized
by the number of sensing nodes. It reflects the degree of fault
tolerance of the network, since the fewer nodes are required
for a collector to visit in order to decode all data, a higher
percentage of nodes are allowed to fail.

We compare the performance of EDFC and ADFC with
the two-way algorithm as described in Section III-A. First,
the impact of random-walk lengths on the decoding ratio is
studied. Fig. 3 plots the decoding ratio vs. the length of random
walks for the three algorithms. In general, the decoding ratio
decreases when the length of random walks increases, and
stay stationary on a certain value if the length exceeds a
threshold for all three algorithms. This is because the random
walks approach the steady-state distribution when their lengths
increase. In particular, for EDFC, Fig. 3 shows that when the
random-walk length is larger than 500, the decoding ratio stays
stationary around 1.05, which implies that EDFC achieves
the same decoding performance of the original centralized
fountain codes.

For ADFC, Fig. 3 shows that when the random-walk length
is larger than 50, the decoding ratio stays around 1.6, higher
than what is achievable by EDFC. This is because the actual
degree distribution of ADFC is slightly different from the
Robust Soliton distribution. However, ADFC requires much
lower cost in data dissemination as we will show later.

For the two-way algorithm, the length of random walks
shown in Fig. 3 is the one-way length. The decoding ratio
of the two-way algorithm is less than EDFC and ADFC when
the random-walk length is smaller than 500. This is because
the uniform steady-state distribution in the two-way algorithm
is easier to be achieved than the biased steady-state distribution
of EDFC and ADFC [13]. Yet, this does not imply that the
two-way algorithm has lower transmission cost than EDFC and
ADFC for a given decoding ratio, since its additional random-
walk overhead due to selecting a node that is not a sensing
node, or a duplicate of previous selections, is not reflected in
the length of random walks shown in the figure.

Next, we compare the communication costs of these three
algorithms. For EDFC and the two-way algorithm, we record
their minimal transmission costs when their decoding ratios are
similar to centralized fountain codes. For ADFC, we record its
minimal transmission cost when its decoding ratio is stabilized
on some value (e.g., 1.6 in Fig. 3). In addition, for the two-
way algorithm, the transmission cost of control messages in
selecting random nodes is considered the same as the cost in
data transmission. Fig. 4 shows that the dissemination cost of
ADFC is much lower than EDFC and the two-way algorithm.
This is due to two reasons. First, the required length of random

0 200 400 600 800 1000 1200
1

1.2

1.4

1.6

1.8

2

Length of random walks

D
ec

od
in

g
ra

tio

EDFC
ADFC
two−way

Fig. 3. The impact of the length of random walks on decoding ratio. The
two dashed lines represent the 95% confidence interval for the decoding ratio
of centralized fountain codes.

0.5 1 1.5 2

x 10
4

10
−3

10
−2

10
−1

10
0

Number of source blocks

R
at

io
 o

f t
ra

nm
is

si
on

 c
os

ts

EDFC/two−way
ADFC/two−way

Fig. 4. The ratio of dissemination costs of EDFC and ADFC to that of the
two-way algorithm.

walks of ADFC is shorter than both EDFC and the two-way
algorithm as shown in Fig. 3. Second, for ADFC, the number
of random walks from each sensing node is significantly
smaller than that of EDFC and the two-way algorithm. For
example, in the simulation setting of Fig. 3, we observe this
number is 6 and 50 for ADFC and EDFC, respectively.

Furthermore, Fig. 4 shows that the cost ratio of EDFC to
the two-way algorithm starts from 0.2 and increases slowly
to 0.8, as the number of source blocks increases from 1000
to 20000. This cost ratio increases sub-linearly with the
number of source blocks, since as shown in Theorem 1, the
redundancy coefficient for EDFC grows sub-linearly with the
number of source blocks. However, Fig. 4 shows that EDFC
significantly outperforms the two-way algorithm for practical
sensor networks with less than 20000 nodes. Furthermore, we
emphasize that, as explained in Section III-A, EDFC is easier
to implement and avoids the many disadvantages of the two-
way algorithm.

B. Multiple Encoded Blocks Cannot Do Better

Theorem 2 shows that keeping multiple encoded blocks
on each node does not offer any asymptotic performance
advantage over keeping a single encoded block. Here, we
further demonstrate that keeping multiple encoded blocks can-
not provide significant benefits in practice. For this purpose,
we simulate EDFC, except that the source blocks are not
encoded on each node. Table III shows the number of nodes
to be visited before the collector collects all source blocks,
comparing simulation and numerical analysis results based on
(26). We observe that the analytical lower bound K/c1 is
close to the actual mean number of required caching nodes
in simulation. More importantly, the collector needs to visit
close to K nodes even if the source blocks are not encoded.

C. Overestimation of K and N

In large-scale sensor networks, the failure of sensors are
common events. If some sensors fail, the total number of

K Sim. Mean 95% Conf. Interval Analysis K/c1

1000 938.80 [883.66, 993.94] 812.52
10000 7700.5 [6937.9, 8463.1] 7619.9

TABLE III
THE NUMBER OF NODES TO BE VISITED BEFORE THE COLLECTOR

COLLECTS ALL SOURCE BLOCKS: SIMULATION VERSUS ANALYSIS

2 2.2 2.4 2.6 2.8 3 3.2

x 10
4

1

1.2

1.4

1.6

1.8

2

Estimated total number of nodes

D
ec

od
in

g
ra

tio

EDFC
ADFC

Fig. 5. The decoding ratio when N is overestimated. Actual N = 20000.

sensing nodes K and the total number of nodes N decreases.
It is not feasible to update K and N to all nodes in the
network whenever they change. A more reasonable protocol is
to periodically update K and N with a sufficiently long time
interval between two successive updates. In such a protocol,
each node may overestimate K and N . In the following,
we study the performance of EDFC and ADFC under such
conditions.

First, we investigate the consequence of overestimating N .
We fix the actual value of N to be 20000, while increasing the
estimated N from 20000 to 32000. For EDFC, if N is overes-
timated, each sensing node disseminates more source blocks,
which decreases the violation probability in (10) and helps
decoding. This observation is validated by the experiment
results shown in Fig. 5. Here we observe that the decoding
ratio of EDFC stays close to 1.05 when the estimated N is
larger than the actual value of N . For ADFC, the fraction
of low-degree nodes decreases when more source blocks are
disseminated to each node. Therefore, the performance of
ADFC degrades, which is verified by the results shown in this
figure, showing that the decoding ratio of ADFC increases
when N is overestimated.

Next, we study the impact of overestimating K. We vary
the actual K value from 1000 to 10000, while each node use
a fixed estimated K value of 10000. Fig. 6 shows that the
decoding ratio increases as the actual K value decreases, but
successful decoding is achieved by both EDFC and ADFC.
Furthermore, both figures suggest that EDFC is more robust
than ADFC with overestimation of N or K.

VI. CONCLUSION

Wireless sensor networks may need to operate without
sinks in remote geographical regions. In this paper, we seek
to improve the fault tolerance and persistence of data in
sensor networks by proposing a decentralized implementation
of fountain codes, which efficiently disseminates original data
throughout the network with random walks. We are attracted
by the superior decoding performance and low decoding com-
plexity of fountain codes as the number of nodes in the sensor
network scales up, especially when compared to alternative
coding techniques such as random linear codes. We have
shown that asymptotically, as well as in actual experiments,

0 2000 4000 6000 8000 10000
0

2

4

6

8

Actual number of sensing nodes

D
ec

od
in

g
ra

tio

EDFC
ADFC

Fig. 6. The decoding ratio when K is overestimated. Estimated K = 10000.

the proposed algorithms are able to provide near-optimal fault
tolerance with minimal demand on local storage.

REFERENCES

[1] B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing
for Wireless Networks,” in Proc. of the Sixth Annual ACM/IEEE Inter-
national Conference on Mobile Computing and Networking (MobiCom),
2000.

[2] A. Kamra, J. Feldman, V. Misra, and D. Rubenstein, “Growth Codes:
Maximizing Sensor Network Data Persistence,” in Proc. of ACM SIG-
COMM, 2006.

[3] M. Luby, “LT Codes,” in Proc. of the 43th IEEE Symposium on
Foundations of Computer Science (FOCS), 2002.

[4] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Distributed
Fountain Codes for Networked Storage,” in Proc. of IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2006.

[5] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Pat-
terson, “RAID: High-Performance, Reliable Secondary Storage,” ACM
Computing Surveys (CSUR), vol. 26, no. 2, pp. 145–185, June 1994.

[6] Z. J. Hass and B. Liang, “Ad Hoc Mobility Management with Uniform
Quorum Systems,” IEEE/ACM Transactions on Networking, vol. 7,
no. 2, pp. 228–240, April 1999.

[7] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao, “OceanStore: An Architecture for Global-Scale Persistent
Storage,” in Proc. of ACM Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2000.

[8] J. S. Plank and M. G. Thomason, “A Practical Analysis of Low-Density
Parity-Check Erasure Codes for Wide-Area Storage Applications,” in
Proc. of the International Conference on Dependable Systems and
Networks (DSN), 2004.

[9] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Decentralized
Erasure Codes for Distributed Networked Storage,” IEEE Transactions
on Information Theory, vol. 52, no. 6, pp. 2809–2816, June 2006.

[10] D. Wang, Q. Zhang, and J. Liu, “Partial Network Coding for Continuous
Data Collection in Sensor Networks,” in Proc. of the Fourteenth IEEE
International Workshop on Quality of Service (IWQoS), 2006.

[11] M. Rabbat, J. Haupt, A. Singh, and R. Nowak, “Decentralized Com-
pression and Predistribution via Randomized Gossiping,” in Proc. of
the Fifth International Symposium on Information Processing in Sensor
Networks (IPSN), 2006.

[12] S. Acedanski, S. Deb, M. Medard, and R. Koetter, “How Good is
Random Linear Coding Based How Good is Random Linear Coding
Based Distributed Networked Storage?” in First Workshop on Network
Coding, Theory, and Applications (NetCod), 2005.

[13] S. Boyd, P. Diaconis, and L. Xiao, “Fastest Mixing Markov Chain on a
Graph,” SIAM Review, vol. 46, no. 4, pp. 667–689, December 2004.

[14] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Mixing Times for
Random Walk on Geometric Random Graphs,” in Proc. of SIAM
Workshop on Analytic Algorithmics & Combinatorics (ANALCO), 2005.

[15] P. Gupta and P. R. Kumar, “The Capacity of Wireless Networks,” IEEE
Transactions on Information Theory, vol. 46, no. 2, pp. 388–404, March
2000.

[16] M. Mitzenmacher and E. Upfal, Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University
Press, 2005.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. The MIT Press, 2001.

