
CodeOR: Opportunistic Routing in Wireless Mesh
Networks with Segmented Network Coding

Yunfeng Lin, Baochun Li, Ben Liang
Department of Electrical and Computer Engineering

University of Toronto
{ylin, bli}@eecg.toronto.edu, liang@comm.toronto.edu

Abstract—Opportunistic routing significantly increases unicast
throughput in wireless mesh networks by effectively utilizing the
wireless broadcast medium. With network coding, opportunistic
routing can be implemented in a simple and practical way
without resorting to a complicated scheduling protocol. Due
to constraints of computational complexity, a protocol utilizing
network coding needs to perform segmented network coding,
which partitions the data into multiple segments and encode
only packets in the same segment. However, existing designs
transmit only one segment at any given time while waiting for
its acknowledgment, which degrades performance as the size of
the network scales up. In this paper, we proposeCodeOR, a
new protocol that uses network coding in opportunistic routing
to improve throughput. By transmitting a window of multiple
segments concurrently, it improves the performance of existing
work by a factor of two on average (and a factor of four
in some cases).CodeOR is especially appropriate for real-time
multimedia applications through the use of a small segment
size to decrease decoding delay, and is able to further increase
network throughput with a smaller packet size and a larger
window size.

I. I NTRODUCTION

Due to variable link qualities and wireless interference, one
of the fundamental challenges is to maximize throughput of
unicast communication sessions in wireless mesh networks.
Gupta and Kumar [1] has shown that it may be infeasible to
increase the network throughput in a geographic region by
deploying more nodes, due to the effects of wireless inter-
ference. A traditional wisdom in designing routing protocols
(e.g., [2]) treats a wireless link as a point-to-point link, and
utilizes a single path to transmit data packets from the source
to the destination. It has essentially neglected the fact that
a wireless link with a shared communication channel is a
broadcast communication medium in nature.

The concept ofopportunistic routing[3], [4] is able to
substantially improve unicast throughput in wireless meshnet-
works, by effectively utilizing such a shared wireless broadcast
medium. In opportunistic routing protocols, all neighboring
nodes that are closer to the destination may overhear a data
packet, and may be able to assist forwarding the packet to its
destination.

With opportunistic routing, however, a delicate balance of
tradeoffs has to be maintained: Since multiple nodes in a
wireless broadcast region are able to overhear and obtain
identical copies of a packet, one needs to avoid unnecessary
forwarding of duplicates by multiple nodes. On the other hand,

if too few nodes help forwarding the packet, it degrades to
a single forwarding path from the source to the destination.
Biswas et al. [3], for example, have designed a complex
packet scheduling algorithm, with a large number of control
messages, just to achieve such a delicate balanced tradeoff.

In Chachulskiet al. [4], it has been realized that, with the
help of random network coding, opportunistic routing can be
achieved without complex scheduling, while still taking full
advantage of the wireless broadcast medium. The fundamental
insight is that, with random mixing of coded packets, although
multiple receivers overhear the same packet in a wireless
broadcast neighborhood, they are able to generate linearlyin-
dependent coded packets with high probability, by combining
the received coded packet with existing packets in their buffers.

However, due to the constraints of computational complex-
ity involved in random linear codes, it is infeasible to apply
network coding to a large number of data packets [4], [5].
Chachulskiet al. [4], for example, divide the data stream to
be transmitted into differentsegments, and perform coding
operations on packets within the same segment. This is usually
referred to assegmented network coding.Although segmented
network coding attempts to achieve a tradeoff between the
benefits of network coding and its complexity, it introducesan
open challenge that severely affects throughput:When shall
the source stop transmitting coded packets of one segment
and move on to the next one?Intuitively, if the source stops
prematurely, the destination may fail to receive a sufficient
number of coded packets to decode the entire segment. If
the source stops too late, however, a substantial waste of
bandwidth resources ensues, since coded packets that are no
longer useful to the destination are still being sent by the
source.

In Chachulskiet al. [4], a simple strategy is used as a
stop-gap measure to answer this question: the source simply
continues to transmit coded packets belonging to the same
segment until an explicit acknowledgment from the destination
has been received. It is our belief that such a “stop-and-
wait” protocol reflects the latter extreme of the tradeoff, where
the source stops its transmissiontoo late, leading to wasted
wireless bandwidth. In addition, if only a single segment is
“in flight” in the network, it may not be sufficient to saturate
its delay-bandwidth product, again leading to wasted network
capacity. It is well understood in the study of flow control
protocols that it is important to accurately estimate and saturate

the delay-bandwidth product of a network.
In this paper, with an objective of addressing this open

but important challenge, our original contributions are as
follows. First, with both mathematical analysis in tractable
network models and simulations, we are able to show that the
“stop-and-wait” protocol in [4] substantially affects network
throughput, especially as the network scales up.Second,we
presentCodeOR(“Coding in OpportunisticRouting”), a new
protocol to allow the source to transmit asliding window
of multiple segments using opportunistic routing, and with
segmented network coding. CodeOR introduces the concept of
flow control to the design of opportunistic routing protocols:
rather than performing flow control on bytes or packets,
it is performed on a sliding window ofsegments. In our
simulations, CodeOR is able to improve throughput by a factor
of two on average, as compared to previous work [4]. To our
knowledge, there has been no existing work that addresses the
problem of flow control with segmented network coding in
opportunistic routing.

CodeOR is especially appropriate for real-time multimedia
applications through the use of a small segment size to
decrease decoding delay. Since the destination needs to wait
to accumulate a sufficient number of coded packets before it is
able to decode the segment, a smaller segment size (in terms
of the number of coded packets in a segment) is beneficial
towards reducing such a delay, which is important to real-
time multimedia applications. With CodeOR, one may use a
smaller segment size, since the number of segments that are “in
flight” in the network adapts to its estimated delay-bandwidth
product. In addition, CodeOR is also amenable to the use of
smaller packet sizes to reduce the packet loss probability in
wireless channels with a particular bit error rate (BER), and
as such further improve throughput.

The remainder of this paper is organized as follows. We
compare CodeOR with related work in Sec. II. In Sec. III,
we describe the network model and briefly review network
coding with its existing applications in opportunistic routing.
In Sec. IV, we show that the network throughput of existing
protocols decreases as the network scales up. In Sec. V, we
describe the protocol design in CodeOR. In Sec. VI, we
present and analyze the idea of increasing the throughput
of CodeOR further by reducing the packet size. We use
simulations to demonstrate the effectiveness of CodeOR in
Sec. VII. Finally, Sec. VIII concludes the paper.

II. RELATED WORK

With the advent of network coding [6] and random network
coding [7] in information theory, it has been shown that
network coding is able to help improving unicast throughputin
wireless mesh networks. In particular, Kattiet al. [8] focuses
on the application of network coding on inter-session network
coding in wireless mesh networks, and has shown that unicast
throughout may be substantially increased if unicast paths
overlap and coding opportunities exist. Our focus in this paper
is on the use of intra-session network coding in wireless

mesh networks to improve network throughput, combined with
multi-path opportunistic routing.

ExOR [3] introduces opportunistic routing in wireless
mesh networks by effectively utilizing the wireless broad-
cast medium to increase network throughput, as compared
to traditional single-path routing protocols (e.g., [2]), which
neglected the wireless broadcast advantage. In order to realize
the benefit of opportunistic routing, ExOR introduces a special
complex packet scheduling algorithm. With random network
coding, however, Lunet al. [9] have noted that the wireless
broadcast medium can be utilized optimally if no interference
is considered. Inspired by this work, Chachulskiet al. [4] have
proposed a more practical opportunistic routing protocol based
on random network coding, referred to asMORE, which is
feasible to be implemented in practice, and achieves higher
throughput than ExOR. However, MORE uses a “stop-and-
wait” protocol with a single segment in its sending window,
which is not efficient utilizing the delay-bandwidth product in
large-scale networks.

With the observation that error probabilities of symbols are
much lower than that of packets on a wireless link, MIXIT [10]
improves the performance of MORE by operating network
coding on symbols rather than on packets as in MORE, where
a packet consists of multiple symbols and a symbol is the
smallest transmission unit over the wireless link. With such a
simple modification, MIXIT can utilize correct symbols in a
corrupted packet, and therefore attains higher throughputthan
MORE. However, as an extension to MORE, MIXIT adopts
the same “stop-and-wait” paradigm, and hence shares the same
drawback as MORE in large-scale networks.

A number of recent papers [11]–[13] have used different
variants of optimization frameworks to extend MORE to
scenarios involving multiple sessions. They require the trans-
mission of a large number of control messages in a timely and
reliable fashion, which may not be practical in lossy wireless
networks. The heuristic proposed in Gkantsidiset al. [14] has
also attempted to extend to multiple sessions, but suffers from
the drawback that the state of a node grows exponentially with
the number of its neighbors. More importantly, none of these
papers has raised the question on the constraints of the stop-
and-wait paradigm on session throughput. The objective of this
paper is to address this problem with minimal modifications
to maintain the simplicity and practicality of using network
coding in opportunistic routing.

III. N ETWORK MODEL AND PRELIMINARIES

We first present the network model used in this paper, briefly
review the concept of random network coding, and introduce
its application to wireless opportunistic routing.

In this paper, we consider a single unicast communication
session in a wireless mesh network, where the source has a
stream of data to be transmitted to the destination. We model
the wireless network as a directed hypergraph(V,E), where
V is the sets of nodes andE is the sets of links. A wireless
broadcast link is modeled as a hyper link(i, J) ∈ E, whereJ
is a subset ofV . The packet loss events on multiple receivers

of a wireless broadcast link are assumed to be independent,
as supported by a measurement study performed by Miuet
al. [15].

Between a pair of connected nodes, nodea andb, a coded
packetx in random network coding is a linear combination
of K source packetsE1, . . . , EK in a segmentwith the form
x =

∑K

i=1 αiEi, whereαi are coding coefficients chosen from
a Galois field. The stream of data to be transmitted from the
source is divided into multiple segments, each with a predeter-
mined number of packets. When an arbitrary intermediate node
a between the source and the destination wishes to transmit
coded packets within a segment,a produces a coded packet
xa by encoding all coded packets in its buffer belonging to
the segment, namelyx1, . . . , xm, wherem is the total number
of coded packets in the buffer that belong to the segment:

xa =

m∑

i=1

βixi, (1)

where all multiplication and addition operations are defined
on a Galois Field (such as GF(28) when the operations are
performed on each byte), andβi is randomlychosen from the
field. It is easy to see thatxa is also a linear combination of the
K original packets from the source, and the coefficients can
be derived. Nodea then broadcastsxa along with its coding
coefficients over the original packets to all its neighbors.

Suppose nodeb, one of the neighbors of nodea, successfully
receives the coded packetxa, it first check whetherxa is
linearly independent with all the buffered coded packets within
the same segment. If so, nodeb inserts xa into its buffer.
Otherwise,xa is discarded. If nodeb is the destination, it
recovers allK source packets in one segment by the following
algorithm. Because the coding coefficients and the coded
packet are known, each coded packet represents a linear
equation with theK source packets as unknown variables.
Decoding theK source packets is equivalent to solving a
linear system composed of all coded packets received so far.
The decoding matrixrepresents the coefficient matrix of such
a linear system. When the rank of the decoding matrix isK,
the linear system can be solved and theK source packets
are decoded. Otherwise, there exists linear dependence among
coded packets, and the destination continues to receive coded
packets from its neighbors until allK source packets are
decoded. Gaussian elimination is usually used to solve the
linear system, with complexity ofO(K3).

In MORE [4], network coding is used with opportunistic
routing in the following fashion. The source divides the data
stream to be transmitted to multiple segments and transmits
them sequentially and independently. For each segment, all
neighboring nodes are first ordered according to their shortest
distances to the destination in the metric ofETX [16], the
expected number of transmissions for a packet, with link
quality taken into account. A node is chosen as aforwarding
node only if it is closer to the destination than the pre-
vious sending node. Then, a low-complexity algorithm has
been proposed to compute the transmission rates for each
forwarding node, with the goal of minimizing the amount

s t

(a)

s

t

min cut

(b)

Fig. 1. TransmittingK packets from the source to the destination: (a) a line
topology; (b) a grid topology.

of redundant transmissions and reduce wireless interference.
All nodes produce and broadcast coded packets, using random
network coding as we previously described.

IV. T HROUGHPUTPENALTY OF MORE ON LARGE-SCALE

NETWORKS

With an analytical study on tractable network topologies,
we are able to show that the throughput of MORE degrades
if the network size scales up.

In this analysis, we assume that the segment size isK,
the number of nodes in the network isN , and the link
transmission probability on all wireless links isp. The segment
size K and p are independent of the total number of nodes
N . For the sake of analytical tractability, our analysis assumes
an ideal synchronized network model, where a time slot is
used to transmit either one data packet or one ACK packet.
We consider two tractable network topologies: the line and
the grid topology, shown in Fig. 1. With respect to wireless
interference, we assume the one-hop interference model [17],
where two nodes do not interfere with each other as long
as they are not neighbors. In topologies shown in Fig. 1,
black and white nodes transmit packets alternatively to avoid
interference. Analysis for the two-hop interference modelonly
differs on the node scheduling to avoid interference, and is
omitted due to space constraints.

A. Line Topology

We first discuss the line topology in Fig. 1(a).
Lemma 1:The throughput of aperfect protocol in a line

topology is

T =
p

2
. (2)

Proof: Each link is a binary erasure channel with capacity
p since the link transmission probability isp [18]. For any
graph, the capacity from a source to a destination is the min-
cut of the graph. The min-cut of the line graph is any link given
all links are identical. Hence, the capacity of the network is
p if there is no interference. With interference, at any time,
there are only half of the nodes transmitting data under the

one-hop interference model [17]. Therefore, the throughput of
a perfect protocol achieving the network capacity isp/2.

We assume that the source and destination are two nodes
randomly chosen from the line topology. It is easy to see that
their distance isΘ(N). We usec1N to denote their distance in
hop counts. We then have the following Lemma to characterize
the upper bound of the throughput of MORE.

Lemma 2:The throughput of MORE, denoted asT , in a
line topology is at most

T ≤ Kp

2K + (2c1N − 1)p
. (3)

Proof: Because the transmission of all segments are
identical, we focus on studying the transmissions of one
segment. The time to transmitK packets including the data
transmission timetdata from the source to the destination
and the ACK transmission timetack from the destination to
the source. Clearly, a protocol needs at leastc1N time slots
to transmit the ACK,i.e., tack = c1N . On the other hand,
given the link capacity isp/2 in the proof of Lemma 1, a
protocol requires at leastK/(p/2) = 2K/p time slots to
transmit K packets on the link adjacent to the destination,
and at leastc1N − 1 time slots to transmit them from the
source to the node before the destination. Hence, the trans-
mission time for theK data packets in a segment is at least
Tdata = c1N − 1 + 2K/p. Therefore, the protocol throughput
is at mostK/(tdata + tack) = Kp/(2K + (2c1N − 1)p).

Given K, p, and c1 are independent ofN , we have the
following proposition.

Proposition 1. The asymptotic throughput of MORE is
O(1

N
) on a line topology.

We remark that the network capacity in Lemma 1 is inde-
pendent of network sizeN . However, Proposition 1 indicates
the throughput of MORE degrades ifN becomes very large.

B. Grid Topology

We now study the throughput penalty of MORE in a grid
topology, as in Fig. 1(b). Without loss of generality, we assume
that the source and the destination are not in the same line,
since otherwise, the problem degrades to the case of a line
topology in Sec. IV-A.

Lemma 3:The throughput of aperfect protocol in a grid
topology is

T =
2p − p2

2
. (4)

Proof: Without consideration of interference, the capacity
between two pairs of nodes on a wireless broadcast network
is the min-cut between them. From Fig. 1(b), it is easy to
see that the min-cut can only be the two links at the source
s or the two links at the destinationt. The min-cut at the
source is1− (1− p)2 = 2p− p2 [19], whereas the min-cut at
the destination is2p. Therefore, the min-cut from the source
to the destination is2p − p2. Under the one-hop interference
model [17], only half of the nodes can be transmitting packets
at any time. Hence, the capacity between the source and the
destination is(2p − p2)/2.

We choose two nodes randomly as the source and the
destination on a grid topology. It is well known that their
distance isΘ(

√
N) on average. We usec2

√
N to denote the

distance between the source and destination.
Lemma 4:The throughput of MORE on a grid topology is

at most

T ≤ K(2p − p2)

2K + (2c2

√
N − 1)(2p − p2)

. (5)

Proof: Similar to the proof of Lemma 2, we compute
the transmission time of one segment. The ACK packet is
transmitted from the destination to the source withc2

√
N

time slots. Sending theK packets on the min-cut requires
K/((2p − p2)/2) time slots. Furthermore, any of theK data
packets requires an additionalc2

√
N − 1 time slots to travel

from the source to the destination. Therefore, the throughput is
K/(tdata+tack) = K(2p−p2)/(2K+(2c2

√
N−1)(2p−p2)).

From Lemma 4, we immediately have the following result
in a grid topology.

Proposition 2.The throughput of MORE isO(1√
N

) in a
grid topology.

Comparing the throughput of MORE in Proposition 2 and
the ideal throughput shown in Lemma 3, we conclude that
MORE incurs a substantial performance penalty in large-scale
networks with grid topologies.

V. CODEOR: PROTOCOLDESIGN

The analysis in Sec. IV offers the important insight that
MORE [4] may perform poorly on large-scale simple topolo-
gies. In this section, we introduce a new opportunistic protocol,
referred to asCodeOR, that substantially improves throughput
on practical networks with randomly deployed nodes.

A. Baseline Protocol

We first present the baseline protocol assuming a fixed
window size.

1) A Simple Motivating Example:CodeOR is inspired by
the following observation. When a node on the multiple paths
between the source and destination has sufficient data in
segmenti, it can represent the source to produce coded packets
for segmenti. Therefore, bandwidth resources allocated to
segmenti from the source to this node can be released and
used instead to transmit segmenti + 1. For the example in
Fig. 2, in CodeOR, if node 1 and 2 have received a sufficient
number of coded packets in segmenti, nodes may start to
transmit the next segment after receiving ACKs from node 1
and 2. In MORE, however,s continues to transmit segment
i even when node 1 and 2 has obtained all the required
coded packets in this segment, until the end-to-end ACK
from destinationt indicates that segmenti is decoded at the
destination. Hence, the source in MORE stops transmitting a
segment — and moves on to the next segment — much later
than CodeOR. Similarly, in CodeOR, node 2 and 3 can notify
node 1 to stop transmitting segmenti and start to transmit
segmenti + 1 as long as they obtain a sufficient number of
coded packets in segmenti.

�s

4
5

1 32

6

7
8

9

segment i-1

segment i

segment i+1

Fig. 2. CodeOR in a general topology, where segmenti − 1, i, and i + 1

are “in flight” in the network at the same time.

In a nutshell, MORE transmits one segment on the network
at any time and waits for the ACK before transmitting the next
segment. It is similar to a stop-and-wait protocol on segments.
On the other hand, CodeOR allows multiple segments to be
“in flight” simultaneously in the network. Therefore, CodeOR
is reminiscence of TCP flow control at the segment level. It
is intuitive to see that CodeOR outperforms MORE on large-
scale networks.

2) Sending Window:Next we describe the motivation and
the implementation of a sending window in CodeOR. We first
define the upstream and downstream nodes of a node, namely
node a. Similar to [4], a subset of neighbors of nodea is
referred to as its downstream nodes if they forward the data
broadcasted from nodea, i.e., their shortest-path distances in
terms of ETX to the destination are shorter than nodea. For
instance, in Fig. 2, node 3 and nodet are the downstream
nodes of node 2. In addition, the subset of neighbors of node
a is referred to as its upstream nodes if it is one of their
downstream nodes. Fig. 2 shows that nodes and node 1 are
the upstream nodes of node2.

We are now ready to motivate the introduction of sending
windows. For a forwarding nodei in the network, it is common
that the aggregated multi-path bandwidthBs,i from the source
s to node i, and the bandwidthBi,t from node i to the
destinationt is not identical. In particular, ifBs,i > Bi,t,
and with ACKs to trigger new segment transmissions as soon
as possible after nodei is able to obtain all required coded
packets in an old segment, the buffer of nodei may be
overwhelmed because it receives data faster from upstream
nodes than it is able to transmit data to downstream nodes. In
Fig. 2, if we assume that a wireless link between any two nodes
has a higher rate1 if their geographic distance is shorter, the
buffer on node 5 may be overflown since the link rate between
node 4 and 5 is higher than that between node 5 and 6.

In this paper, we use asending windowto limit the number
of outstanding segments that the source can transmit at any
time in the network. Hence, the maximal amount of data that
a forwarding node needs to hold is at most the number of
segments in the sending window on the source.

1We assume that all nodes use a constant transmission rate. Therate in
the remainder of the paper refers to the actual data throughput under packet
losses.

1 2 3 4 5 6

Fig. 3. Gray and white squares represent segments that are decoded or
not decoded at the destination, respectively. When segment 5 is decoded, the
destination does not transmit an E-ACK, but sends H-ACKs for segment 5
immediately.

With the additional need to implement sending windows,
we use two types of ACKs in CodeOR. First, the destination
transmits end-to-end ACKs (E-ACK) to the source via the
shortest path between them to indicate that a segment of data
packets have been received at the destination. Second, a node
uses hop-by-hop ACKs (H-ACK) to notify its upstream nodes
that a sufficient number of coded packets has been received
in a segment, so that the upstream nodes can start to transmit
new segments.

Since multiple segments are “in flight” in the network si-
multaneously, it is possible that segments may be received out
of order at the destination. For instance, in Fig. 3, segment5
is decoded before segment 3 and 4 at the destination. CodeOR
handles H-ACKs and E-ACKs differently in such a case. In
particular, H-ACKs are sent immediately as their purpose is
to stop redundant transmissions of segment 5 immediately.
On the other hand, similar to TCP ACKs, E-ACKs are used
in flow control and are hencecumulativesuch that they only
acknowledge segmenti until segmenti and all segmentsj,
where j < i, have been decoded at the destination. Finally,
we point out that the behavior of H-ACKs at the forwarding
nodes is identical to H-ACKs at the destination, as they serve
the same purpose. On the other hand, E-ACKs are forwarded at
the forwarding nodes on the shortest path between the source
and the destination.

3) Moving Towards The Next Segment:To simplify the
protocol design, a node transmits segments sequentially,i.e.,
CodeOR ensures that the downstream nodes of a node receive
a sufficientnumber of coded packets of segmenti before this
node dedicates its resource to segmenti+1, such that this node
never needs to transmit segmenti again. We then seek to solve
the critical challenge in CodeOR: how does a node determines
that it has received asufficientnumber of coded packets from
its upstream nodes on a general random topology?

In particular, the downstream nodes of a node receive pack-
ets with different rates because they have different distances
to the sender. Hence, they complete receiving coded packets
in a segment at different times. For example, in Fig. 2, node
1 completes receiving all coded packets in a segment from
nodes earlier than node 2, 4, and 7, since node 1 enjoys the
highest rate from nodes. In general, it may not be optimal to
request nodes to stop transmitting segmenti as long as node
1 receives all the packets in the segment, due to the following
reason. Under random losses, it may be possible that node 4
and 7 have received no packets, when node 1 has received all
the packets in segmenti. Therefore, the protocol may degrade
to a single-path protocol on paths → 1 → 2 → 3 → t.
However, on the other hand, nodes may wait too long for all

� b c

d

Fig. 4. The local neighborhood of nodea.

downstream nodes to complete receiving all the coded packets
in segmenti. Therefore, nodes may start transmitting segment
i + 1 too late and the session throughput degrades.

Hence, to combat random losses, we use a heuristic with
the objective that the number of coded packets on each
downstream node is in proportion to their receiving rates,
referred to as thereceiving threshold(RT). In the following,
we describe the algorithm to compute the receiving threshold
RT for a nodea that has multiple upstream nodes (illustrated
in Fig. 4). Let b be one of upstream nodes of nodea and
nodec be the node with the maximal downloading rate among
all downstream nodes of nodeb. Assuming nodec is able
to receiveRc linearly independent coded packets from its
upstream nodes (we will describe the details to estimateRc

later). We then set the receiving thresholdRTab of node a
corresponding to nodeb to be

RTab = Rc

∑
ua∈U(a) puaa∑
uc∈U(c) pucc

, (6)

wherepij denotes the transmission probability between node
i and j, andU(x) denotes the set of upstream nodes ofx.

We set the final receiving thresholdRTa of nodea as the
maximum of allRTab corresponding to each upstream node
b:

RTa = max
b∈U(a)

RTab. (7)

We note that the computation of RTs requires knowledge of the
transmission probabilities of wireless links in the local neigh-
borhood. We believe that such a requirement is reasonable and
practical, because MORE [4] needs them as well. In practice,
Rc can be piggy-backed in the packets generated from node
c to all its neighbors.

Next, we describe the algorithm for nodec to estimate the
maximum number of coded packetsRc it can receive from all
its upstream nodes. For most of the cases, a node is able to
receive allK linearly independent coded packets from all its
upstream nodes. However, because the receiving thresholds(7)
may be low on nodes that are far away from all other nodes and
have low transmission rates due to packet loss, these nodes and
their downstream nodes may not be able to receive all coded
packets in a segment. In such a case, nodec estimatesRc by
detecting whether there is new information from its upstream
nodes. Noded, an upstream node of nodec, does not have
the knowledge of any new information for nodec with high
probability [7], if more thanm coded packets transmitted from
node d are linearly dependent, wherem is a small positive
number. Similarly, nodec uses the same algorithm to detect
all of its upstream nodes and receives the value ofRc until
all of its upstream nodes have no new information.

TABLE I
THE PROCEDURES TO PROCESS INCOMING PACKETS FOR SEGMENTi.

Upon receiving a E-ACK at the source
obtain decoding information from the E-ACK
move the sending window to(i + 1, i + W)
if transmissions of segmenti + 1 to i + W − 1 stop

transmit segmenti + W

end if

Upon receiving a E-ACK at an intermediate node
forward this E-ACK on the shortest path

Upon receiving a H-ACK from nodeb
recordb in the downstream H-ACK table
If receive all H-ACKs from downstream nodes

stop transmitting segmenti
remove segmenti

end if
transmit segmenti + 1

Upon receiving a data packetP at a forwarding node
remove the segments older than the decoding information

piggybacked inP
if P is linearly dependent with existing packets

P is discarded
end if
the number of innovative packetsr increases by 1
cacheP in buffer
if r ≥ receiving threshold

send a H-ACK for segmenti
end if

Upon receiving a data packetP at the destination
if P is linearly dependent with existing packets

P is discarded
end if
the number of innovative packetsr increases by 1
storeP in the buffer
if r = K

send a H-ACK for segmenti
if all segments older thani are decoded

send an E-ACK for segmenti
end if

end if

Finally, a node stops transmitting segmenti, removing it
from node buffer, and starts to transmit segmenti + 1 after
collecting all H-ACKs for segmenti. We further present a
complement way to stop unnecessary transmissions in our
protocol. When a source receives an E-ACK, it obtains the
decoding informationthat the destination have decoded certain
amount of segments such as segmenti and the older segments
than segmenti. The source piggybacks this decoding informa-
tion on all data packets it produces. A forwarding node then
stops and removes all segments with a segment ID smaller
than or equal toi when receiving the decoded information.
All forwarding nodes also piggyback this information on the
data packets they generate. It is easy to see that all nodes
in the network obtain this information and stop unnecessary
transmissions in a timely fashion. We summarize the protocol
to process each incoming packet in Table I.

B. Estimating Proper Window Size

Similar to TCP, the size of the sending window should
approximately equals the delay-bandwidth product between
the source and the destination. Otherwise, if the window size is
too small, the protocol is unable to efficiently utilize bandwidth
resources, and its throughput suffers. On the other hand, ifthe
window size is too large, the forwarding nodes need to buffer
a large amount of data. Such a conjecture is verified with
simulations in Sec. VII-C. Therefore, we need an algorithm to
estimate the correct window size. With the analogy of CodeOR
with TCP, it is natural to apply the ideas of TCP flow control
to the design of CodeOR.

CodeOR operates as an end-to-end rateless code and does
not introduce segment losses in the network, since forwarding
nodes do not drop packets. Hence, we adopt a similar algo-
rithm to TCP Vegas [20], using increased queueing delay as
congestion signals. The major distinction between TCP Vegas
and CodeOR is the difference on the units of the sending
window size. Specifically, TCP window size is in terms of the
number of packets2, whereas the unit in CodeOR is segments.
Therefore, all quantities in TCP Vegas should be converted
from packets to segments. With a similar algorithm to TCP
Vegas, CodeOR seeks to estimate a window sizeW — the
optimal number of segments to saturate the delay-bandwidth
product. It also seeks to maintain a few more segments in the
network to prevent window size oscillation by providing some
damping effect.

We now describe the details of the window estimation
algorithm in CodeOR, which is similar to the congestion
avoidance algorithm in TCP Vegas. The slow start stage is
similarly adapted and is omitted due to space constraints. We
define thedecoding time(DT) of a segment as the interval
between the time that the source transmits the first coded
packet of a segment and the source receives its E-ACK.
Around once per DT, the algorithm performs the window
adjustment algorithm by comparing the actual sending rate
to the expected sending rate. First, it computes the expected
sending rateE. We useBaseDTto denote the decoding time
of a segment when the network is not congested.BaseDTis set
to the smallest DT observed so far. It is usually the decoding
time of the first segment, since the window size is initially 1
and the network is not congested initially. Then, we have the
expected sending rateE:

E = W/BaseDT, (8)

whereW is the current window size.
Next, we compute the actual sending rateA. We record

the numberNi of the segments that have been sent since the
source transmits the first coded packet of segmenti, where
segmenti is the latest segment that has been acknowledged
by an E-ACK. LetDTi denote the DT of segmenti. We then
have

A = Ni/DTi. (9)

2More precisely, TCP window size is in bytes. However, packets are
equivalent to bytes as units if all data packets have the same size.

Let D = E−A be the difference between the expected sending
rate and the actual sending rate. We define two thresholdsα
andβ, if D < α, the algorithm increases the window size by
1. If D > β, the algorithm decreases the window size by 1. If
α ≤ D ≤ β, the algorithm maintains the same window size.
The intuition of the algorithm is that if the actual rateA is
significantly lower than the expected rateE, the network is
congested such that the window size should be decreased. On
the other hand, if the actual rateA is too close to the expected
rateE, there is a risk that CodeOR does not fully utilize the
delay-bandwidth product, hence the window size should be
increased. In practice, we recommendα = 1/BaseDT and
β = 3/BaseDT , such that the additional number of segments
buffered in forwarding nodes is between 1 and 3, which is the
smallest feasible positive numbers.

VI. EFFECT OFOVERHEAD AND PACKET SIZE ON

NETWORK THROUGHPUT

In the above analysis, we assume the time to complete
delivering a packet consists of only the transmission time.
However, in reality extraoverhead timeis required, such as
the contention window in IEEE 802.11, software processing
overhead, and the time to switch a half-duplex device between
sending and receiving modes. In this section, we analyze the
effect of transmission overhead and different packet sizeson
the throughput of a network with lossy wireless links. Through
this analysis, we demonstrate the different effect of packet
size on MORE and CodeOR. We show that the throughput
of CodeOR can be further improved by using packets with a
moderate to small size.

To simplify the analysis, we assume that all bits in a packet
has the same probabilitye to be corrupted independently of
each other. Furthermore, a packet is successfully transmit-
ted when all bits are transmitted correctly3. Hence, for a
packet with sizem, its successful transmission probability is
p = (1 − e)m. Clearly, p increases if packet size is reduced.
However, a reduced packet size accentuates the negative effect
of transmission overhead, effectively decreasing the fraction of
network resource utilization.

To quantify the above tradeoff, letδ and r denote the
overhead time and the wireless link speed (e.g., 11Mbps in
IEEE 802.11b) respectively. Then we have link throughputT
as the expected amount of delivered datapm divided by the
delivery timem/r + δ for a packet:

T =
pm

m/r + δ

=
(1 − e)mmr

m + rδ
. (10)

Note that (10) can be applied also to network throughput if we
considerδ as the overall overhead time along a packet’s path.
We show a numerical illustration of (10) in Fig. 5. This figure

3This is equivalent to using no forward error control coding.It is easy to
see that when error control coding is used, the presented analysis remains
applicable to illustrate the general trends of network throughput. A simple
adjustment to the presented analysis to approximately account for the effect
of error control coding is to reduce the value ofe.

0 500 1000 1500
0

2

4

6

8

10

12
x 10

6

Packet Size (bytes)

T
hr

ou
gh

pu
t (

B
its

/s
)

δ=0ms
δ=0.5ms
δ=4ms

Fig. 5. Throughput under different overhead times, where thebit error
probability e is 0.0001, and the link speedr is 11Mbps.

quantifies the three different trends that match our intuitive
expectations.First, if there is no overhead time, reducing the
packet size can increase throughput since the probability that
a packet is successfully transmitted increases.Second, when
the overhead time is modest, the throughput increases first and
then decreases, as the packet size is reduced.Third, when the
overhead time is sufficiently large, decreasing the packet size
only reduces throughput.

The simple model of (10) provides some insights on the
difference between the impact of packet sizes on MORE and
CodeOR. If we consider the packet size in (10) as the amount
of data transferred in one sending window, the overhead time
then refers to any time that is not used to transmit data
packets in the sending window. Besides the usual overhead
time discussed previously, an additional overhead time in
MORE is the ACK transmission time. In contrast, CodeOR
does not have such overhead since it transmits new segments
concurrently with E-ACKs for old segments. Therefore, the
overhead time of MORE is significantly larger than CodeOR.
Henceforth, we expect that it is more beneficial to reduce
the packet size in CodeOR than in MORE. This conjecture
is consistent with the experimental results in Sec. VII-D.

VII. PERFORMANCEEVALUATION

We study the effectiveness and properties of CodeOR
through simulation. We have developed a customized discrete
event simulator, which implements randomized network cod-
ing, wireless opportunistic routing protocols, and basic MAC
functions. For the physical layer, we use the measurement-
based model from [21] to capture the effect of opportunistic
reception in a lossy wireless environment, which empirically
maps link distance to the transmission success probability
between two wireless nodes. In our simulation, two nodes are
regarded as neighbors only if the link quality between them is
sufficient to achieve a transmission success probability higher
than 0.05.

We conduct experiments on a random topology shown in
Fig. 6 with 100 nodes that are deployed, uniformly at random,
in a square of size4000 × 4000. By default, unless explicitly
stated otherwise, we set the data packet size to 1500 bytes and
ACK packets to 40 bytes in most experiments. In addition,
we set the segment size to 10 for the purpose of illustration.

0 1000 2000 3000 4000
0

500

1000

1500

2000

2500

3000

3500

4000

0

1

2

3

4

5

6

7
8

9

1011

12

13

14

15

16

17

18

19

20

21

22

23

24 25
26

27
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

4445

46

47

4849

50

51

52

53

54

55

56 57

58

59
60

61

62

63

64

65

66

67
68

69

70

71

72

73

74

75

76

77

78

79

8081

82

83

84

85

86

87

88

89

90

91

92

93 94 95

96

97

98

99

Fig. 6. The random graph with 100 nodes uniformly distributedin a square
with size 4000×4000.

Obviously, a larger ratio between the segment size and the
source-destination distance favors the stop-and-go scheme of
MORE. In this work, we use a fixed segment size, along with
different source-destination distance values, to illustrate the
general trends of the throughput gain of CodeOR. Finally, we
set the overhead time per link (discussed in Sec. VI) for each
packet to be 2 ms, which we obtained by excluding the packet
transmission time from the round-trip time measurements from
a laptop to its nearest access point. We note that this overhead
time cannot be ignored, compared with the transmission time
1.1 ms of a data packet on a wireless link with speed 11Mbps.

We assume that a node occupies the wireless channel in a
local neighborhood during the transmission time of a packet.
However, the wireless channel is released and can be used
by other nearby nodes during the overhead time for this
packet. We have implemented a simple MAC protocol, which
schedules a random node from all eligible nodes that have
data to transmit and do not interfere with other transmitting
nodes, provided that the wireless channel becomes idle in a
local neighborhood. Similar to MORE, we give higher priority
to control messages.

A. Behavior of a Single Flow

We first study the behavior of a single flow in a large-scale
network. We set the source and destination to nodes 51 and
91 in Fig. 6, respectively. The window size is static and is
set to 5 in CodeOR. The results are shown in Fig. 7. For
MORE, we observe that a time gap exists between different
segments where the destination does not receive any useful
coded packets. This time gap includes the ACK transmission
time of MORE, and results from the stop-and-wait paradigm
of MORE. On the other hand, because CodeOR can transmit
other segments in the network when ACKs are in transmission,
the destination is able to obtain useful coded packets almost
all the time. Hence, CodeOR increases the network throughput
significantly.

B. Throughput Gain of CodeOR

In this section, we compare the throughput of CodeOR
and MORE over a large number of flows. We randomly
choose 500 source-destination pairs and plot the Cumulative
Distribution Function (CDF) of the throughput over these 500
flows in Fig. 8(a). Here, the throughput of a flow is measured

0 1 2 3 4
0

10

20

30

40

50

time

N
um

be
r

of
 n

ov
el

 c
od

ed
 p

ac
ke

ts

MORE
CodeOR

Fig. 7. The number of received innovative coded packets at thedestination
over time. The throughput gain of CodeOR to MORE is 2.8276 in this flow.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Throughput (pkt/s)

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

MORE
CodeOR

(a)

0 5 10 15 20
0

1

2

3

4

5

6

Number of hops on the shortest path

T
hr

ou
gh

pu
t r

at
io

(b)

1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Number of data packet transmissions (pkt/s)

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

MORE
CodeOR

(c)

Fig. 8. (a) CDF of throughput. The median throughput gain of CodeOR
to MORE is 2.2325. About80% of the flows achieve throughput above 50
pkt/s in CodeOR, compared with less than20% of the flows in MORE. (b)
Throughput ratio of CodeOR to MORE vs. number of hops on the shortest
path. The median of throughput gain is shown in the figure. (c) CDF of the
number of data packet transmissions. The median of CodeOR is 1.1435 of
MORE.

as the average number of received innovative coded packets
per second, over 20 seconds at the destination. The window
size again is set to 5. We observe that CodeOR achieves
significantly higher throughput than MORE.

To further study the CodeOR performance gain, in Fig. 8(b),
we organize all flow throughputs by theirpath lengths, the
number of hops on the shortest path between their source
and destination. We observe that the throughput ratio between
CodeOR and MORE increases nearly linearly with the path
length, which is justified by the fact that the delay-bandwidth
product of a multi-path increases with the path length, so
the stop-and-wait paradigm of MORE becomes increasingly
inefficient. In contrast, CodeOR utilizes all network resource
as long as the window size is large enough to allow sufficient
data to be transmitted into the pipeline of the delay-bandwidth
product.

0 1000 2000 3000 4000
0

1000

2000

3000

4000

51 77
88

(a)

0 1000 2000 3000 4000
0

1000

2000

3000

4000

0

2

5

6

9

1011

12

13

14

15

16

17

19

20

21

23

25

27
28

32

33

34

35

36

39
43

46

47

4849

51

55

57

59

62

63

64 66

67
68

69

70

71

72
73

75

77

78

83

86

88

89

90

91

92

95

97

98

99

(b)

Fig. 9. Forwarding nodes and the multi-path sub-topologies in data
transmissions. The source and the destination are (a) nodes 51 and 88 (b)
nodes 51 and 91, where node 51 and 91 are in the southwest and northeast
corner, respectively.

Finally, Fig. 8(c) compares the number of data transmissions
by these two protocols. We observe that CodeOR induces only
slightly more data transmissions. Therefore, the throughput
gain of CodeOR comes relatively “free” without introducing
too many more transmissions.

C. Effect of Window Size

We first study the impact of a static window size on
throughput. We consider two typical cases: the short and long
paths, where the source and the destination are nodes 51 and
88, and nodes 51 and 91, respectively. The forwarding nodes
and the sub-topologies to transmit data are illustrated in Fig. 9
for these two cases. From Fig. 10(a), we observe that for the
long path, the network throughput increases significantly until
the window size reaches 5 or 6. Hence, CodeOR does not fully
utilize all multi-path network resource between the sourceand
destination when the window size is small. For the short path,
CodeOR starts to utilize all network resource when the window
size reaches 2. Then, the network throughput does not increase
further with a window size larger than 2 because the multi-path
topology between this pair of source and destination allows
only 2 segments in transmission, so that the extra data from a
larger sending window are merely buffered in the network.

In Fig. 10(b), we show the buffer usage with different
window sizes for the long path. We omit similar results
observed for the short path. This figure shows that the buffer
usage when the window size is 12 is significantly larger than
when the window size is 6. Such observation motivates the
integration of an algorithm to detect the proper window size
in CodeOR.

We next evaluate the adaptive window estimation algorithm
described in Sec. V-B. We trace the dynamics of the window
size in Fig. 10(c). We observe that in the slow-start stage,
the window size doubles every other segment decoding time
(defined in Sec. V-B). Afterwards, CodeOR enters the stage
of congestion avoidance, and maintains the same window size
or adjusts it only slightly. Overall, CodeOR reaches the stable
window size consistent with the value observed in Fig. 10(a),
and in a timely fashion. We note that the window sizes
are sampled whenever they change and for every segment
decoding time. Hence, the short path has more frequent
samples than the long path because its segment decoding time
is shorter. Finally, we remark that it is not necessary that the

2 4 6 8

0.5

1

1.5

x 10
5

Window size

T
hr

ou
gh

pu
t (

by
te

s/
s)

51−88
51−91

(a)

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3x 10
4

Time

T
ot

al
 n

um
be

r
of

 p
ac

ke
ts

 in
 n

et
w

or
k

Window size = 12
Window size = 6
Window size = 2

(b)

0 2 4 6 8 10
0

2

4

6

Time

W
in

do
w

 s
iz

e

51−91
51−88

(c)

Fig. 10. (a) Throughput under different sending window sizes for two pairs of
nodes: node 51 and 88, node 51 and 91. (b) Total number of buffered packets
evolves with time under different window sizes for the flow between node 51
and 91. (c) Window size evolves with time, where the vertical line marks that
CodeOR transits from the slow start stage to the congestion avoidance stage.

0 500 1000 1500
0

2

4

6

8

10

x 10
4

Packet size (bytes)

T
hr

ou
gh

pu
t (

by
te

s/
s)

CodeOR
MORE

Fig. 11. Throughput under different packet sizes.

estimated window size matches exactly the optimal window
size in Fig. 10 due to the noise introduced by the wireless
random channel and the extra few segments that the algorithm
attempts to maintain in the network.

D. Reducing Data Packet Sizes to Increase Throughput

We finally investigate the impact of reducing the packet size
on MORE and CodeOR. We consider again the node pair, 51
and 91, illustrating the experimental results in Fig. 11. We
observe the same trends as in the discussion of Sec. VI. In
particular, we observe that reducing the packet size mostly
does not improve MORE because the network utilization
decreases as the packet transmission time decreases so that
the end-to-end ACK overhead time dominates. In contrast,
these experiments confirm that CodeOR benefits more with
moderate to small packet sizes than MORE.

VIII. C ONCLUSION

In this paper, we provide theoretical and practical evidences
to show that the throughput of prior opportunistic routing
protocols based on network coding degrades in a large-scale
network. We then introduce CodeOR to allow the concurrent

transmission of multiple segments to fully utilize network
resources. We show that CodeOR significantly outperforms
existing approaches in network throughput while maintaining
a similar amount of data transmissions. Furthermore, we show
that unlike existing protocols, CodeOR is able to achieve
higher throughput for moderate to small packet sizes. Com-
bining this with a smaller segment size decreases the decoding
delay, which makes CodeOR especially appropriate for real-
time multimedia applications.

REFERENCES

[1] P. Gupta and P. R. Kumar, “The Capacity of Wireless Networks,” IEEE
Transactions on Information Theory, vol. 46, no. 2, pp. 388–404, March
2000.

[2] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and
Evaluation of an Unplanned 802.11b Mesh Network,” inProc. of ACM
MOBICOM, 2005.

[3] S. Biswas and R. Morris, “ExOR: Opportunistic Multi-HopRouting for
Wireless Networks,” inProc. of ACM SIGCOMM, 2005.

[4] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading Structure
for Randomness in Wireless Opportunistic Routing,” inProc. of ACM
SIGCOMM, 2007.

[5] M. Wang and B. Li, “How Practical is Network Coding?” inProc. 14th
Proc. of IEEE International Workshop on Quality of Service (IWQoS),
2006.

[6] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network Information
Flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp.
1204–1216, July 2000.

[7] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros, “The
Benefits of Coding over Routing in a Randomized Setting,” inProc.
of IEEE International Symposium on Information Theory, 2003.

[8] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in The Air: Practical Wireless Network Coding,” inProc. of
ACM SIGCOMM, 2006.

[9] D. S. Lun, M. Medard, and R. Koetter, “Network Coding for Efficient
Wireless Unicast,” inProc. of International Zurich Seminar on Commu-
nications (IZS), 2006.

[10] S. Katti and D. Katabi, “MIXIT: The Network Meets the Wireless
Channel,” in Proc. of the Sixth ACM Workshop on Hot Topics in
Networks (HotNets-VI), 2007.

[11] B. Radunovic, C. Gkantsidis, P. Key, and P. Rodriguez, “An Optimiza-
tion Framework for Opportunistic Multipath Routing in Wireless Mesh
Networks,” in Proc. of IEEE INFOCOM, Minisymposium, 2008.

[12] X. Zhang and B. Li, “Optimized Multipath Network Coding in Lossy
Wireless Networks,” inProc. of IEEE ICDCS, 2008.

[13] ——, “Dice: a Game Theoretic Framework for Wireless Multipath
Network Coding,” inProc. of ACM MobiHoc, 2008.

[14] C. Gkantsidis, W. Hu, P. Key, B. Radunovic, P. Rodriguez, and S. Ghe-
orghiu, “Multipath Code Casting for Wireless Mesh Networks,” in Proc.
of CoNEXT, 2007.

[15] A. Miu, H. Balakrishnan, and C. E. Koksal, “Improving Loss Resilience
with Multi-Radio Diversity in Wireless Networks,” inProc. of ACM
MOBICOM, 2005.

[16] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-
Throughput Path Metric for Multi-Hop Wireless Routing,” inProc. of
ACM MOBICOM, 2003.

[17] G. Sharma, R. R. Mazumdar, and N. B. Shroff, “On the Complexity of
Scheduling in Wireless Networks,” inProc. of ACM MOBICOM, 2006.

[18] T. M. Cover and J. A. Thomas,Elements of Information Theory, 2nd ed.
Wiley, June 2006.

[19] A. F. Dana, R. Gowaikar, R. Palanki, B. Hassibi, and M. Effros, “Capac-
ity of Wireless Erasure Networks,”IEEE Transactions on Information
Theory, vol. 52, no. 3, pp. 789–804, March 2006.

[20] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to End Congestion
Avoidance on a Global Internet,”IEEE Journal on Selected Area in
Communications, vol. 13, no. 8, pp. 1465–1480, October 1995.

[21] J. Camp, J. Robinson, C. Steger, and E. Knightly, “Measurement Driven
Deployment of a Two-Tier Urban Mesh Access Network,” inProc. of
ACM International Conference on Mobile Systems, Applications, and
Services (MobiSys), 2006.

