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Abstract—Federated learning has garnered significant research attention as a privacy-preserving learning paradigm. Asynchronous
federated learning has been proposed to improve scalability by accommodating slower clients, commonly referred to as stragglers.
However, asynchronous federated learning suffers from slow convergence with respect to wall-clock time, due to the existence of data
heterogeneity and staleness. Existing strategies struggled to tackle both difficulties for a wide range of deep learning models. To
address the problem, we propose Polaris, a theoretically sound design and a new take to client selection for asynchronous federated
learning. With Polaris, we first theoretically investigated the design space of client sampling strategies from a geometric optimization
perspective, taking both data heterogeneity and staleness into account. Our design is not only theoretically proven, but also thoroughly
tested in our reproducible experimental open-source testbed. Our experimental results demonstrates overwhelming evidence that
Polaris outperformed existing state-of-the-art client selection strategies by a substantial margin over a wide variety of tasks and
datasets, as we train image classification models using CIFAR-10, CIFAR-100, CINIC-10, Federated EMNIST, and a language modeling
model using the Tiny Shakespeare dataset. Further, our extensive array of ablation studies have also shown that Polaris is both
scalable and robust as the size of datasets scale up and data heterogeneity vary.

Index Terms—Federated Learning, Distributed Machine Learning, Cloud Computing.
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1 INTRODUCTION

A S one of the emerging distributed machine learning
paradigms, federated learning (FL) [1] has attracted

widespread research attention, thanks to its merits in pre-
serving data privacy. In federated learning, a central server
coordinates training among edge devices, referred to as
clients, to build a shared model. The clients send their model
updates only and keep their raw data locally, allowing
for collaboration without revealing private data. Federated
learning has been used in a variety of real-world applica-
tions, e.g. Apple’s Siri for automatic speech recognition.

Yet, most existing mechanisms on federated learning
failed to scale efficiently beyond a few hundred clients with
the presence of extremely slow clients, called stragglers. This
is because they assumed fully synchronized aggregation
of client updates and the server always waits for strag-
glers before aggregation. To alleviate the negative impact of
stragglers on model convergence, asynchronous federated
learning was proposed [2]. In asynchronous design, the
server can perform aggregation as long as a portion of the
clients have reported [3], which helps reduce the time it
takes to complete each round of aggregation.

While it improves training performance with respect to
the elapsed wall-clock time, such performance improvement
brought by asynchronous federated learning can be limiting
due to two reasons: statistical heterogeneity and staleness. With
respect to statistical heterogeneity, training data is not in-
dependent and identically distributed (i.i.d.), local updates
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from different clients may diverge and global model conver-
gence may be slower. With respect to staleness, when slow
clients eventually finish their local training, their reported
model updates may be based on a global model in a much
earlier round that is already out-of-date. These staled model
updates adversely affect model convergence in federated
learning.

In the literature, existing studies focused on two strate-
gies for improving the convergence performance. First,
adaptive server aggregation algorithms were designed such
that model updates from clients with worse data quality or
with severe staleness are associated with smaller aggrega-
tion weights. However, these algorithms do not materially
affect the wall-clock time it takes to train and aggregate in
each communication round.

Second, adaptive sampling strategies were proposed to
sample clients with good data and prompt responses with
higher probabilities. With these strategies, data quality is
typically evaluated based on local gradients or losses, while
the response time is measured by the wall-clock training
time or staleness. However, clients with good data may
have long training times, which presents a challenge for
balancing data quality and response time. Solutions to such
a problem has only recently been attempted with heuristic
designs [4], with limited generality and theoretical analysis.
We need a more systematic and theoretically sound design
to better address the need for balancing data quality and
client response times. This motivates our work on a new
design for client sampling.

In this paper, with the presence of system and statis-
tical heterogeneity, we aim to explore the optimal way of
sampling clients in asynchronous federated learning that
maximizes performance. More specifically, our objective is
to minimize the wall-clock training time while guaranteeing



2

model convergence. To achieve this in a theoretically sound
approach, we formulate our objective as an optimization
problem, with convergence as constraints and client sam-
pling probabilities as variables.

Theoretically, to ensure model convergence, we derive
convergence bounds for asynchronous federated learning
that characterize the relationship between client sampling
probabilities and the number of rounds for the first time.
Based on this, we explore how the wall-clock training time
and clients sampling probabilities affect the total training
time, given both statistical heterogeneity and staleness. For-
mally, we develop an estimation of the total training time
as an explicit optimization objective. Furthermore, to make
it easily solvable by common optimization tools, we make
a relaxation and approximate the non-convex problem to
a geometric optimization problem with the client sampling
probability as the only variable.

In addition, we notice that although extensive research
has been carried out on estimating statistical heterogeneity
based on either gradients or losses in local optimization,
it is unclear how different methods impact the estimation
results. To further exacerbate the problem, no agreement has
been reached on an effective estimation method. To fill this
gap, we conduct experiments with a variety of estimation
methods based on gradients, losses and model updates,
with different averages across epochs and batches. Sup-
ported by our results, we conclude that statistical estimators
have little impact on estimating the local data quality and
thus client sampling. To avoid extra computation costs for
local clients, we estimate data quality by model updates in
this paper.

Building on the insights gained from our theoretical and
empirical work, we introduce a new client sampling algo-
rithm, called Polaris, for asynchronous federated learning.
Our algorithm operates on the server side and only requires
model updates from clients, ensuring the privacy of all
participants and encouraging greater participation in the
federated learning process. We have implemented Polaris
using our own open-source framework, Plato, designed
specifically for fair across-the-board performance compar-
isons in federated learning research.

Highlights of our original contributions are as follows.
First, we establish the analytical relationship between the
wall-clock training time and the client sampling probability,
considering statistical heterogeneity and staleness in asyn-
chronous federated learning, and ensuring convergence.
Second, we model the sampling problem as a geometric op-
timization problem. Empirically, we demonstrate that differ-
ent methods for estimating local data quality produce sim-
ilar results in client sampling. Based on these insights, we
propose Polaris, our new sampling algorithm. We evaluate
the performance of Polaris on multiple datasets, including
CIFAR-10, CIFAR-100, CINIC-10, Federated EMNIST, and Tiny
Shakepeare, and show that it outperforms existing methods.
Our experiments demonstrate the only hyperparameter in
Polaris is not sensitive and can be generally applied to
various scenarios. Our extensive ablation studies confirm
the effectiveness of Polaris in various scenarios with different
client sizes, local data partitions and heterogeneity levels.
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Fig. 1. Asynchronous Federated Learning Workflow

2 PRELIMINARIES

Asynchronous federated learning is a federated learning
paradigm that allows multiple clients to train a shared
machine learning model, without the need for all clients to
be connected to a central server at the same time. Compared
to traditional synchronous federated learning’s weakness
in handling stragglers, the asynchronous paradigm allows
the server to perform aggregation as long as reports from
a subset of the clients arrive, and therefore accelerates
convergence.

In asynchronous federated learning, each client trains a
local model on its own data, and then periodically sends
reports to a central server. When the amount of arrived
reports reaches a minimum bound, the server aggregates the
reports and updates the shared global model. This process
continues iteratively until the global model has converged
to a satisfactory level of accuracy.

Optimization Objective. Consider an asynchronous fed-
erated learning system involving a set of N = 1, . . . , N
clients, coordinated by a central server. Each client i has
ni local training data samples (xi,1, . . . , xi,ni), and the
total number of training data samples across N devices is
ntotal =

∑N
i=1 ni.

Define f(·, ·) as the loss function where f(ω;xi,j) indi-
cates how the machine learning model parameter ω per-
forms on the input xi,j , which is the j-th data sample of
client i. Thus, the local loss function Fi(ω) of client i can be
defined as

Fi(ω) :=
1

ni

ni∑
j=1

f(ω;xi,j). (1)

We denote pi as the aggregation weight of the i-th client
such that

∑N
i=1 pi = 1. Then, by denoting F (ω) as the global

loss function, the goal of asynchronous federated learning is
to find the solution ω of the following optimization problem:

min
ω
F (ω) :=

N∑
i=1

piFi(ω). (2)

Let us now denote t to be the index of an asynchronous
federated learning round. We describe one round (e.g., the t-
th) of the random client selection algorithm as follows. The
server uniformly samples a subset of K clients at random
(i.e., K = ‖K‖ and K ⊆ N ) and broadcasts the latest model
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ωt to the sampled clients. Each sampled client i sets the local
model as ωt,0i = ωt, and runs E steps of local optimization
on (1) to compute local update model ωt,Ei . After finishing
local training, the sampled client sends the updated model
back to the server.

When the server receives Ω reports from sampled K
clients (Ω ≤ K), it performs aggregation with weight pi
and compute a new global model by

ωt+1 =
Ω∑
i

piωi. (3)

Notably, ωi does not have to be local update based on the
latest round ωt,Ei . It can be ωt−τi,Ei that was optimized on a
global model in a much earlier round, as staleness τi < t is
allowed. This process repeats for a number rounds until the
global loss converges.

With such an asynchronous mode of operation as the
essential idea, FedBuff [3] is proposed. In FedBuff, the server
randomly sampled clients at each round as FedAvg but in-
troduces a buffer to store local updates and only aggregates
when the buffer size reaches a certain aggregation goal.
Due to its simplicity, FedBuff and its variants with different
weighting methods are commonly used.

Slow convergence. While FedBuff alleviates the negative
impact of stragglers, it lacks explicit control of slow clients
and therefore the staleness across the sampled clients can
go unbounded without any punishment. In cases of extreme
system heterogeneity, it may suffer from slow convergence
with respect to the elapsed wall-clock time. This is because
the total training time depends on both the number of
training rounds for reaching the target accuracy and the
wall-clock time elapsed in each round. Though uniform
sampling in FedBuff guarantees that the aggregated model
update in each round is unbiased compared to full client
participation, the aggregated model may have a high vari-
ance due to data heterogeneity, thus requiring more training
rounds to converge. Furthermore, with a substantial degree
of staleness, local updates adversely affect global model
convergence.

Moreover, considering the clients’ heterogeneous com-
munication delay and computation speed, uniform sam-
pling also suffers from the straggling effect, as the proba-
bility of sampling a straggler within the sampled subset in
each round can be relatively high, thus yielding a long per-
round time. Therefore, it is preferrable to adopt adaptive
client sampling.

3 PROBLEM FORMULATION AND CONVERGENCE
ANALYSIS

Open Challenges. To increase convergence performance
with regard to the wall-clock time, fast clients with high
quality local data are expected to be prioritized when sam-
pling clients. However, in reality, such ideal clients may
be difficult to find. It is more typical that clients are fast
with poor data quality or slow with high quality data. Even
worse, a small subset of clients are slow and contribute a
little to the global model, and they should be avoided.

If we prioritize fast clients, the average round latency
will be shortened but the number of training rounds re-
quired to reach convergence will increase. To avoid inflating

the number of rounds when handling stragglers, client
selection should also account for local data quality.

In short, to achieve a shorter time to convergence, which
is the product of the average round latency and the number
of rounds taken to reach the target accuracy, a good strategy
must strike a balance between data heterogeneity and local
staleness.

Problem Formulation. Our goal is to minimize the ex-
pected total learning time E[Ttotal(q, t)], while ensuring that
the expected global loss E[F (ωt(q))] converges to the min-
imum value F ∗ with an ε-precision, with ωt(q) being the
aggregated global model after t times of server aggregation
with client sampling probability q. This can be described as
the following optimization problem:

P1: minq, t E[Ttot(q, t)]

s.t. E[F (ωt(q))]− F ∗ ≤ ε,
N∑
i=1

qi = 1,

qi > 0,∀i ∈ N , t ∈ Z+.

(4)

The expectation in E[Ttot(q, t)] and E[F (ωt(q))] is due to
the randomness in client sampling q and local optimization
(e.g. SGD).

To explore the optimal client sampling strategy that
addresses system and statistical heterogeneity so as to min-
imize the wall-clock time for model convergence in asyn-
chronous federated learning, we describe the system model
as follows.

Sampling: In asynchronous federated learning, to reduce
the communication overhead, the server samples a subset
of K clients, where K = ‖K(q)‖ and K(q) ⊆ N , according
to a probability distribution q = {qi,∀i ∈ N} without
replacement, where 0 ≤ qi ≤ 1 and

∑N
i=1 qi = 1.

Statistical Heterogeneity: We consider the asynchronous
federated learning setting where the training data are not
independently and identically distributed among client de-
vices.

System Heterogeneity: For system heterogeneity, we fol-
low the same setup of [5] and [6]. Denote ti as the personal
round time of client i, which includes both local training
time and global communication time. For simplicity, we
assume that ti remains the same across different rounds for
each client i, while for different clients i and j, ti and tj can
be different.

Aggregation with staleness: At the t-th aggregation round,
denote ηt as the global learning rate, and τi(t) ≥ 1 as the
staleness of an update contributed by client i. Specifically,
when i ∈ K(q), the update ∆i(ω

t−τi(t)) reported by client
i was computed by starting point from ωt−τi(t). When
τi(t) = 1, there is no staleness in the model update, and
more generally τi(t) > 1 corresponds to some staleness: i.e.
t − τi(t) server updates have taken place between when
the client last pulled a model from the server and when the
client’s update is being incorporated at the server. Therefore,
the server aggregation can be described succinctly as

ωt+1 = ωt + ηt
Ω∑
i=1

pi∆i(ω
t−τi(t)). (5)
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Wall-clock Time: We consider the mainstream asynchronized
federated learning model where each sampled client per-
forms multiple E steps of local SGD before sending back
their model updates to the server. For asynchronous fed-
erated learning, the per-round time T t is computed as the
elapsed time between the last aggregation and the moment
Ω-th client arrives. Therefore, the total training time Ttot
after T rounds is

Ttot(T ) =
T∑
t=1

T t. (6)

Solving Problem P1, however, is challenging in four
aspects. First, it’s almost impossible to know how the client
sampling probabilities q and communication round t affect
the final model ωt(q) during the federated learning process.
Besides, it is difficult to obtain an analytical expression
result for asynchronous federated learning, and to find out
how the client sampling probabilities q and communication
round t affect the wall-clock training time. Additionally,
the objective E[Ttot(q,R)] is complicated to optimize due
to the straggling effect. Therefore, the total learning time
minimization problem can be complex and non-convex.
Furthermore, there are a variety of methods for estimating
the local data heterogeneity, but whether they perform
consistently in a wide variety of settings has not been well
explored in the literature.

To ensure a tractable convergence analysis, we make the
following assumptions throughout.
Assumption 1. (L-smooth): For each client i ∈ N , Fi is L-

smooth, i.e., ‖∇f(v) − ∇f(w)‖ ≤ L‖v − w‖ for all v
and w.

Assumption 2. (Strongly-convex): For each i ∈ N , Fi is µ-
strongly convex, i.e., Fi(v) ≥ Fi(w)+(v−w)TλFi(w)+
µ
2 ‖v −w‖22 for all v and w.

Assumption 3. (Bounded local variance): For each device
i ∈ N , the variance of its stochastic gradient is bounded:
E‖∇Fi(wi, ξi)−∇Fi(wi)‖2 ≤ σ2

i .

Assumption 4. (Bounded local gradient): For each client i ∈
N , the expected squared norm of stochastic gradients is
bounded: E[‖∇Fi(wi, ξi)‖2] ≤ G2

i .

Assumption 5. (Bounded Staleness when Ω = 1) For all
clients i ∈ N and for each server step t, the staleness
τi(t) between the model version in which client uses to
start local training and the model version in which ∆i is
used to update the global model is not larger than τmax,1
when w = 1.

Assumption 1–3 are common in the convergence analy-
sis of convex federated learning problems such as l2-norm
regularized linear regression, logistic regression [7], [8].
Nevertheless, the experimental results, to be presented in
Sec. 6, show that the proposed method based on geometric
optimization also works well for non-convex loss functions.

To account for the local data heterogeneity and explore
its influence on convergence, we do not follow the assump-
tion made in [7], [8], which states that Gi is uniformly
bounded by a universal G for all clients. Instead, we make
the Assumption 4 same as [9] that each client i has its
unique local Gi, and Gi is considered as an important factor

TABLE 1
Parameters

K(q) The subset of sampled clients

q Client sampling probability distribution

w Global model weights

wi Local model weights for client i

M The total number of sampled client at each round

pi Aggregation weight for client i

τi Staleness for client i

T Total round number

t Current round

Gi Local statistical bound for client i

η Global learning rate on the server

Ω The number of staled clients

N Total number of clients

when we formulate and solve the optimization problem for
optimal client sampling.

Assumption 5 is commonly made under asynchrony [3]
where staleness cannot go unbounded.

Convergence Analysis. We now show how aggregate
clients’ model updates are to be aggregated under sampling
probabilities q, such that the aggregated global model is
unbiased compared to that with full client participation,
which leads to our convergence result. We list the notations
used in this section in Table 1 for ease of reading.

We first define the ideal weighted model aggregated
from full client participation with no staleness in round t
as

w̄t =
N∑
i=1

wt
i . (7)

We then define the actual weighted model aggregated
from M arrived clients, Ω of which has staleness of τi, as
w̃t.

With these, we can derive Lemma 1.

Lemma 1. At t-th communication round of asynchronous
federated learning, when client K(q)t are sampled with
probability q = q1, . . . , qN , and their local updates are
aggregated as

w̃t+1 ← 1

M
(
M−ω∑
i=1

pi
qi
wt+1
i +

M∑
i=M−ω+1

pi
qi
wt+1−τi
i ), (8)

where aggregation weights pti of client i at t-th round
satisfies

M∑
i

pti = 1, (9)

we have
EK(q)t [w̃

t+1] = w̄t+1. (10)
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Proof sketch: We first take the expectation over the
weighted aggregation formula (8) on both sides. Note that
the sampling probability

∑N
i qi = 1. Together with (9), we

can obtain (10) with some mathematical derivations.
Based on Lemma 1, we derive Lemma 2.

Lemma 2. As the expected aggregated global model
EK(q)t [w̃

t+1] is unbiased compared to ideal model w̄t+1

with full client participation, the expected difference
of the expected aggregated global model EK(q)t [w̃

t+1]
and ideal model w̄t+1 at the t-th round is bounded as
follows:

EM(q)t‖w̃t+1 − w̄t+1‖2

≤ 4

M

N∑
i=1

p2
iG

2
i

qi
(ηtE)2 +

ω

M
ηt

N∑
i=1

p2
i qiτiGi. (11)

Proof sketch:

EK(q)t‖w̃t+1 − w̄t+1‖2

=EM(q)t‖
1

M
(
M−ω∑
i=1

wt+1
i +

M∑
i=M−ω+1

wt+1−τi
i )− w̄t+1‖2

=EK(q)t‖
1

M
(
M−ω∑
i=1

wt+1
i +

M∑
i=M−ω+1

wt+1
i )

+
1

M
(

M∑
i=M−ω+1

(wt+1−τi
i −wt+1

i ))− w̄t+1
i ‖

2

≤EK(q)t‖wt+1 − w̄t+1‖2

+EK(q)t‖
1

M

M∑
i=M−w+1

wt+1−τi −wt+1)︸ ︷︷ ︸
local drift

‖2

≤ 4

M

N∑
i=1

p2
iG

2
i

q2
i

(ηtE)2 +
ω

M
ηt

N∑
i=1

p2
i qiτiGi

Based on Lemma 1 and Lemma 2, we present the main
convergence result for arbitrary client sampling in Theorem
1.
Theorem 1. (Convergence Upper Bound) Let Assumptions

1 to 5 hold, γ = max{ 8L
µ , E}, and the decaying global

learning rate ηt = 2
µ(γ+t) . For given client sampling

probabilities q = {qi, . . . , qN}, the corresponding aggre-
gation weights pi, and staleness τi, the optimality gap
after t rounds satisfies

E[F (w(q)T )]− F ∗ ≤ 1

T
(α

N∑
i=1

p2
iG

2
i

qi
+ β + θ), (12)

where

β =
2L

µ2E
B +

12L2

µ2E
Γ +

4L2

µE
‖w0 −w∗‖2, (13)

and α = 8LE
µ2K with B =

∑N
i=1 p

2
iσ

2
i + 8

∑N
i=1 piG

2
iE

2

and Γ = F ∗ −
∑N
i=1 piF

∗
i and θ = ω

M ηt
∑N
i=1 p

2
i qiτiGi.

Proof Sketch. First, following the similar proof of conver-
gence with arbitrary client sampling in [6], we show that

E[F (wT (q))]− F ∗ ≤ 1

T
(α

N∑
i=1

p2
iG

2
i

qi
+ β), (14)

where E[F (w̄T )] is the expected global loss after T
rounds with clients sampled following probability distribu-
tion q, and α, β are the same at in (12).

In Lemma 2, we obtain

EM(q)t‖w̃t+1 − w̄t+1‖2

≤ 4

M

N∑
i=1

p2
iG

2
i

qi
(ηtE)2 +

ω

M
ηt

N∑
i=1

p2
i qiτiGi. (15)

By induction, we can obtain a non-recursive bound on
EK(q)t‖wT − w∗‖2, which is converted to a bound on
E[F (wt(q))] − F ∗ using L-smoothness in Assumption 1.
Finally, we show that the main difference of the contraction
bound compared to full client participation is the sampling
variance in (15), which yields the term in (12).

Remarks. Our convergence bound in Theorem 1 par-
tially alleviates the difficulties in solving optimization prob-
lem P1. First, it characterizes the relationship between client
sampling probabilities q and the number of rounds T for
convergence. Notably, our bound generalizes the conver-
gence where clients are uniformly sampled (qi = 1

N ) or
weighted sampled (qi = pi). More importantly, It lays
a foundation to obtain an analytical expression result for
asynchronous federated learning and find out how client
sampling probabilities q and communication round T af-
fect the wall-clock training time. It motivates the following
optimal client sampling design for asynchronous federated
learning with statistical and system heterogeneity and pro-
vides significant theoretical support.

4 ALGORITHM DESIGN

Substituting the convergence constraint we obtained in The-
orem 1, we can write the original optimization problem as:

P2: minq, t E[Ttot(q, t)]

s.t.
1

t
(α

N∑
i=1

p2
iG

2
i

qi
+ β + θ) ≤ ε,

N∑
i=1

qi = 1,

qi > 0,∀i ∈ N , t ∈ Z+.

(16)

In asynchronous federated learning, a central server
waits for a minimum number of client reports before it
performs aggregation. However, when a few malicious
stragglers exist and they delay local updates on purpose, the
system would be threatened. Hence, for system robustness
to malicious stragglers, the central server waits for Tmax at
most at each round. Therefore, we obtain

E[Ttot(q, T )] = TmaxT. (17)

Further, the original optimization problem can be ap-
proximated as:

P3: minq, t TmaxT

s.t.
1

t
(α

N∑
i=1

p2
iG

2
i

qi
+ β + θ) ≤ ε,

N∑
i=1

qi = 1,

qi > 0,∀i ∈ N , t ∈ Z+.

(18)
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For P3, relaxing T as a continuous variable, suppose
(q∗, t∗) is the optimal solution, then we have

1

t∗
(α

N∑
i=1

p2
iG

2
i

q∗i
+ β + θ) = ε. (19)

If the above holds, we can always find a t′ < t∗ that satisfies
it with equality, with (q∗, t∗) leading to a smaller value.
Therefore, we can obtain t from the above equation and the
objective function of the optimization problem would be

Tmax(α
N∑
i=1

p2
iG

2
i

qi
+ β + θ), (20)

where q is the only optimization variable. Hence, we obtain
the approximating optimization problem below

min
q

Tmax(α
N∑
i=1

p2
iG

2
i

qi
+ β + θ)

s.t.
N∑
i=1

qi = 1,

qi > 0,∀i ∈ N .

(21)

where

β =
2L

µ2E
B +

12L2

µ2E
Γ +

4L2

µE
‖ω0 − ω∗‖2, (22)

and α = 8LE
µ2K , B =

∑N
i=1 p

2
iσ

2
i + 8

∑N
i=1 piG

2
iE

2, Γ =

F ∗ −
∑N
i=1 piF

∗
i and θ = 1

KΩηt
∑Ω
i=1 p

2
i qiτiGi.

Clean up the constant terms without optimization vari-
able q, the approximating optimization problem can be
expressed as:

P4: min
q

N∑
i=1

p2
iG

2
i

qi
+A

N∑
i=1

p2
i qiτiGi

s.t.
N∑
i=1

qi = 1,

qi > 0,∀i ∈ N .

(23)

where A is a constant number.
Remarks. So far, we have addressed the third chal-

lenge for solving the optimization problem, by analytically
discussing how client sampling probabilities q and com-
munication round T affect the wall-clock training time.
Further, we have completed the problem formulation for
asynchronous federated client sampling.

Note that no additional information is required when a
server decides which clients to choose and therefore no ad-
ditional communication costs are introduced. From P4, we
can tell that the server assigns a higher sampling probability
to clients with a higher model contribution G and lower
staleness τ , which satisfies our intuition. Besides, the model
aggregation weights pi play an important role in balancing
the tradeoff.

Notably, problem P4 is a geometric problem and here
we conceptually visualize the geometric formulation 3D and
2D in Figure 2. Geometric optimization is widely applicable
and can be used in a variety of fields, including computer
graphics, computer-aided design, and machine learning.
From the plot, we know that the optimal solutions exist.
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Fig. 2. Optimal points exist in geometric formulations.
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Fig. 3. Different estimators perform similarly to one another with the
CIFAR-10 dataset.

Geometric optimization algorithms are often efficient and
effective at finding the optimal solution, especially when
combined with gradient-based optimization techniques. For
example, we can solve for the client sampling probability
q∗ very efficiently via convex optimization tools, e.g. CVX,
without incurring too much computation cost.

Influence of Statistical Estimators. In the formulated
optimization problem P4, the local data heterogeneity Gi
plays an important role in deciding which clients to select.
However, it cannot be directly measured as an observable
parameter. In existing studies, researchers estimate local
data heterogeneity with a variety of methods for client
sampling. Unfortunately, the impact of different estimation
methods has not been discussed and compared with one
another in a detailed manner.

To explore the influence of different estimators on client
sampling, we ran experiments in Pisces, the state-of-the-art,
with statistical estimators. We trained ResNet-18 models on
the CIFAR-10 dataset in a setting of 200 clients, 20 of whom
were selected at each round. For system heterogeneity, we
apply the Zipf distribution with a parameter of 1.2. For
statistical heterogeneity, we apply a Pareto distribution with
a concentration factor of 1. Here, we include 5 estimators:

Loss-per-batch. At each communication round, a client
estimates the loss via the weighted moving average with
the parameter of 0.9 of the losses across batches over 5 local
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epochs. Subsequently, the client determines the statistical
heterogeneity by employing the following

Gi = ni

√
1

ni

√
loss, (24)

where ni is the sample number on client i.
Loss-per-epoch. In each epoch, a client averages the loss

values over batches. Then, the client estimates the statistical
heterogeneity via the weighted moving average with the
parameter of 0.9 over local epochs.

Loss-last-epoch. In the last epoch, a client estimates loss
via the averages loss values over all batches. Then, client
compute statistical heterogeneity via formula (24).

Loss-per-epoch without square root. The client estimates
local loss values as Loss-per-epoch. Additionally, it calculates
the statistical heterogeneity following

Gi = ni

√
1

ni
loss. (25)

Model updates. At each communication round, a client
estimates the statistical heterogeneity by the norm of the
local model updates.

The results are plotted in Fig. 3, which shows that
the achieved accuracy may vary slightly with different
estimators. For instance, Pisces with model updates based
estimation attains the highest test accuracy among all com-
parisons. However, all runners exhibit similar convergence
performances. Therefore, we can conclude that estimation
methods do not affect sampling strategies, which means that
the optimization formulation is applicable to all estimators
for Gi. This addresses the fourth challenge.

As the loss-based estimation methods require extra com-
putation about the local loss values on the client side, we
estimate Gi via the local model updates, so that the cen-
tral server can figure out the optimal sampling probability
without requiring additional information.

Fair evaluation for unexplored clients. Since the server
does not have the access to clients before sampling, it
is essential to make informed predictions for unexplored
clients to facilitate fair sampling decisions. We observe that
the model updates within the federated learning process
are continuously evolving. To maintain fairness, we use
the average of the most recent updates from participating
clients as the basis for evaluating unexplored clients, and
substitute it with the actual value once the client is selected.
The prediction is calculated following:

Gunexplored = γ · Ḡlatest_updates, (26)

where the hyperparameter γ is a scale number. For the
initial round, clients were chosen uniformly.

Polaris. So far, we address the client sampling model
in asynchronous federated learning and be able to solve
out the sampling probability directly on the server side. We
propose the Polaris client sampler.

The Polaris sampler can be seamlessly integrated into
all asynchronous federated learning systems as a pluggable
component without the need for additional intermediate
values. This enhances the system’s flexibility and enables
it to evolve alongside the advancements in asynchronous

federated learning. We provide a summary of the Polaris
samplers with FedBuff aggregation rule below.

The Polaris sampler operates as follows: In each com-
munication round t, the server calculates the probability
distribution q on the server side and uses it to sample a
subset of K clients. The latest model ωt is then broadcasted
to the selected clients, where the server conducts a uniform
sampling in the first round. Each selected client i sets the
local model and performs E steps of local optimization to
generate the updated model ωt,Ei . Once the local training
is complete, the client sends the updated model back to
the server. After receiving Ω reports from the selected K
clients (Ω ≤ K), the server aggregates the models using
the weight pi and computes a new global model. Addi-
tionally, the server updates records for both reported clients
and unexplored clients and calculates the client probability
distribution q for next round.

Algorithm 1 FedBuff with Polaris Sampler
Input: Initial model ω0, minimum aggregation bound Ω,
number of local steps E
Output: Final global model parameter ωT

for communication round t = 1, . . . , T do
Server calculates optimal sampling probability q and
selects a subset of K clients following the distribution.
for sampled client i ∈ K(q) do

Client i does local optimization for E step.
Client i reports model ωt,Ei , staleness τi to server.

end for
if server receives Ω reports from sampled clients then

Server performs aggregations over Ω reports and
updates records for reported clients.
Server makes predictions for unexplored clients fol-
lowing formula (26).

end if
end for

5 IMPLEMENTATION

Platform. We conducted all of our experiments on Plato,
an open-source framework designed for scalable federated
learning research. The Plato framework uses object-oriented
subclassing, leveraging Python 3’s ABC library and Data
Classes. Additionally, the framework supports defining call-
back classes and customizing trainers by providing a list of
custom callback classes. With its ability to scale to a large
number of clients and its extensibility to accommodate a
wide variety of datasets, models, and FL algorithms, Plato is
an ideal tool for federated learning research. The framework
abstracts away the underlying ML drivers using convenient
APIs, making it agnostic to deep learning frameworks such
as TensorFlow, PyTorch, and MindSpore.

Plato facilitates client-server communication via
industry-standard WebSockets. The server can either
run on the same GPU-enabled physical machine as its
clients for emulation research testbeds or be deployed
in a cloud datacenter. Plato supports heterogeneity in
both client local time and local data distribution during
sampling. The framework allows for specifying random
seeds for random number generators and protecting
random number generation from third-party frameworks
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using random.getstate() and random.setstate(). Unlike
other frameworks that only count communication round,
Plato supports wall-clock time measurement, and we used
a pre-specified constant duration instead of measuring
the actual wall-clock time of local training loops on each
client to ensure the same set of clients would be selected
in each round across different algorithms and runs. With
these mechanisms in place, Plato enables fully reproducible
experiments through its reproducible mode, where the
same set of clients and data samples are selected across
runs.

Polaris. We devoted considerable effort to implementing
Polaris with just 220 lines of code. Our goal was to create an
efficient and lightweight solution that can easily integrate
with various clients and local trainers, making it a versatile
and plug-and-play module.

Pisces. Pisces is a cutting-edge client sampling algo-
rithm for asynchronous federated learning that calculates
the overall utility for each client and selects the top-k clients
for model training. To ensure fairness in model testing, we
have implemented Pisces [4] on top of the Plato framework
with just 350 lines of code. The implementation comprises
independent server, client, and trainer modules that are
highly readable, easy to reuse, and reproduce.

Oort. Oort is a state-of-the-art client sampling algorithm
used in synchronous federated learning. It ranks clients
based on both their system time and statistical heterogeneity
and selects the top-ranked clients in each communication
round. To ensure fair model testing, we have implemented
Oort [10] on top of Plato.

FedBuff. FedBuff is a popular and widely used asyn-
chronous federated learning algorithm due to its simplicity.
At each round, FedBuff randomly selects a subset of clients
and performs model aggregation over the selected clients.
We have implemented FedBuff on top of Plato and made
the entire code available as open source on [3].

6 PERFORMANCE EVALUATION

6.1 Experimental Setup
We run all experiments using Plato framework on a server,
with 3 NVIDIA RTX A4500 GPUs with 20GB of CUDA
memory. In each run, 200 clients participate and up to
10% of them are selected by the server sampler at each
round. The minimum aggregation bound for asynchronous
federated learning is 10 so that when 50% of the selected
clients arrive, the server performs aggregation and updates
the global model.

For system heterogeneity, we configure clients’ process-
ing latency to follow Zipf distribution with the parameter s
of 1.2. Zipf distribution models a practical scenario with var-
ious device speeds such that the majority of devices are fast
and a few devices are stragglers, while a medium number
of devices are with middle-of-the-road speed. With s > 1, it
satisfies the convergence of the generalized harmonic series.

To additionally introduce data heterogeneity, we set up
the local data distribution for each clients with two methods:
for datasets that are collected as a centralized dataset, for
example CIFAR-10, CIFAR-100 and CINIC-10, we sample local
data partitions following Dirichlet distribution with the
concentration parameter of 1. In Dirichlet distribution, with

TABLE 2
Parameters in experimental evaluation.

CIFAR-10 Tiny
Dataset CIFAR-100 CINIC-10 FEMNIST Shakespeare

Model Resnet-18 VGG-16 Lenet-5 Bert

Partition size 103/3 ∗ 103 2 ∗ 104 − −

Local epochs 5 1 5 5

Batch size 10 128 32 32

Optimizer SGD SGD SGD SGD

Learning rate 0.01/0.1 0.01 0.01 0.01

Momentum 0.9 0.5 0.9 0.9

Weight decay 10−4 0 0 0

Scheduler LambdaLR LambdaLR − −

Gamma 0.1 − − −

Steps 80, 120 − − −

α ≤ 1, the samples will be highly concentrated in a few
labels, and all the rest labels will have almost no samples,
while with α > 1, the samples will be dispersed almost
equally among all the labels. For datasets directly collected
from federated scenarios, for example Federated EMNIST
and Tiny Shakepeare, we directly allocate one partition to a
client to preserve native non-IID properties.

Datasets and Models. To evaluate Polaris’ effectiveness
on asynchronous federated learning training tasks, we con-
ducted experiments over five datasets, falling into two cate-
gories:

Synthetic non-iid datasets. Here, we introduce three image
classification datasets: the CIFAR-10 dataset with 60k colored
images in 10 classes, the CIFAR-100 with 60k colored images
in 100 classes, and a larger dataset, CINIC-10 with 270k
colored images in 10 classes. We train a ResNet-16 model on
CIFAR-10 and CIFAR-100, and a VGG-16 model on CINIC-10.

Real-world non-iid datasets. For image classification tasks,
we use Federated MNIST (FEMNIST) dataset with 805k
greyscale images in 62 categories built by partitioning
the data in Extended MNIST based on the writer of the
digit/character; For next word prediction tasks, we use
Tiny Shakespeare dataset, which is built from The Complete
Works of William Shakespeare via considering each speak-
ing role in each play a different device. We train a Lenet-5
model on FEMNIST and a BERT model on Tiny Shakespeare.

Parameters. For all training tasks, we use SGD as the
local optimizer and summerize all configurations in Table 2.
Notably, to guarantee model convergence, we assign larger
partition sizes to clients for large image datasets such as
CIFAR-100 and CINIC-10. For real-world datasets FEMNIST
and Tiny Shakespeare, as each data partition is directly
collected from a real-world role, the partition size is various
among each client.
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(a) ResNet-18 on CIFAR-10
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(b) ResNet-18 on CIFAR-100
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(c) VGG-16 on CINIC-10

Fig. 4. Polaris outperforms comparisons on synthetic datasets with dirichlet concentration factor of 1.
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(a) BERT on Tiny Shakespeare
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(b) LeNET-5 on FEMNIST

Fig. 5. Polaris Outperforms Comparisons on Real-World datasets.
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(a) ResNet-18 on CIFAR-10
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(b) ResNet-18 on CIFAR-100

Fig. 6. Exploration rate vs. elapsed time with Dirichlet concentration
factor of 1.

6.2 End-to-End Performance

Metrics and Visualization. We primarily measure the
elapsed time taken to reach the target accuracy (perplax-
ity) or to converge for four algorithms including Polaris,
Oort, Pisces and FedBuff. To rule out the noise incurred
by randomness, each experiment was run 5 times with
different random seeds in the sampler to ensure statistical
significance. The results were reported in the figures, with
a line indicating the mean and a shadow showing the 95%
confidence interval. In addition, we analyzed the frequency
of client involvement to gain insights into the root cause of
the performance differences across all algorithms. This anal-
ysis was presented in the exploration rate and distribution
plots.

In Figures 4 and 5, we compare the performance of
Polaris with that of the three other algorithms on the syn-
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(a) ResNet-18 on CIFAR-10

0 25 50 75 100 125 150 175 200
Client count (#)

0

20

40

60

80

100

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

(%
)

Polaris
Pisces
Oort
FedBuff

(b) ResNet-18 on CIFAR-100

Fig. 7. The Cumulative Distribution Function for Client Selection with
Dirichlet concentration factor of 1.

thetic non-iid datasets and the real-world non-iid datasets.
The blue line represents the performance of Polaris. Our
results demonstrate that Polaris consistently achieves the
best convergence performance across all datasets, with a
faster convergence speed and a higher or similar accuracy
(lower perplexity). Specifically, Polaris reaches the target
accuracy or perplexity 1.5–2 times faster in terms of the
wall-clock time when training various image classification
models on Federated EMNIST, CINIC-10, CIFAR-10, CIFAR-100
datasets, as well as the next word prediction model BERT on
the Tiny Shakespeare dataset.

Exploration vs. Exploitation. To investigate how the
tradeoff between exploration and exploitation of sampling
strategies affects asynchronous federated learning behavior,
we recorded the explored clients as learning proceeds and
plotted the exploration rate vs. wall-clock time in Figure
6. The x-axis represents the physical time, and the y-axis
represents the percentage of the explored clients out of
all 200 clients. Our analysis reveals that Oort and Pisces
follow an ε-greedy exploration strategy, which reach out
to new clients at the early stages of the learning process.
FedBuff, on the other hand, performs uniform sampling,
which results in a slower growth of the exploration rate
compared to Pisces and Oort. However, we were surprised
to find that Polaris, which outperformed all other methods,
did not aggressively explore new clients. Instead, it took
advantage of the explored clients and explored new clients
occasionally, demonstrating a different approach to balanc-
ing exploration and exploitation. This finding challenges
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(a) α = 0.5
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(b) α = 5
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(c) α = 10

Fig. 8. Polaris shows advantages in training ResNet-18 model on CIFAR-10 datasets with different concentration factors (α).
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(a) α = 0.5
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(b) α = 5

0 100 200 300 400
Elapsed time (s)

0

10

20

30

40

50

60

A
cc

ur
ac

y 
(%

)

Polaris
Pisces
Oort
FedBuff

(c) α = 10

Fig. 9. Polaris shows advantages in training VGG-16 model on CINIC-10 datasets with different concentration factors (α).

previous assumptions about the importance of exploration,
and rethinking its significance is necessary.

The distribution of client selection. To investigate how
biased sampling strategies affect asynchronous federated
learning behavior, we recorded the selection sets for all ex-
periments and visualized the client selection in Figure 7. The
x-axis represents all 200 clients, and the y-axis represents the
accumulated sampling probability.

The baseline algorithm FedBuff, represented by the red
line, uniformly samples clients and thus grows linearly. In
contrast, the state-of-the-art biased asynchronous sampling
method Pisces, represented by the orange line, exhibits a
smooth upward curve, indicating its preference for clients
with learning properties that accelerate global model con-
vergence. Similarly, the state-of-the-art biased asynchronous
sampling method Oort, represented by the green line, also
shows a smoother upward curve, suggesting its preference
for some clients with good learning properties. However,
this bias is less pronounced than in Pisces.

Our proposed algorithm Polaris, represented by the blue
line, levels out towards the upper bound with a steep
upward curve. This indicates that Polaris takes greater ad-
vantage of a subset of good clients, resulting in an improved
learning behavior. These results confirm the practical bene-
fits of biased sampling and highlight the effectiveness of our
proposed algorithm.

Polaris as a plug-and-play module. Polaris estimates the
local data quality by analyzing the model updates from

clients, which is a default part in clients reports. Unlike
other estimators that rely on local loss calculations, Polaris
does not require any additional information from clients
beyond their local model updates. As a result, Polaris can be
used as a plug-and-play module in asynchronous federated
learning, and can be combined with various aggregation
methods and local optimizations with minimal additional
effort.

6.3 Ablation Studies

To conduct a comprehensive analysis of Polaris’ effective-
ness across various environments and configurations, we
performed experiments for all four algorithms on datasets
with varying levels of data heterogeneity (controlled by a
concentration factor), smaller data partition sizes on local
clients, and larger scales with a total of 2000 clients. In
addition, we tested the sensitivity of the hyperparameter
γ in Polaris.

Robustness against different levels of statistical hetero-
geneity. We conducted a series of experiments to evaluate
the performance of Polaris on varying degrees of statistical
heterogeneity. To control the heterogeneity levels in Dirich-
let distribution, we applied concentration factors of 0.5, 5,
and 10. These levels represent the extreme non-iid, mild
non-iid, and approximating iid settings, respectively. Our
results on CIFAR-10 and CINIC-10 datasets, as shown in
Figure 8 and Figure 9, demonstrate that Polaris consistently
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(a) CIFAR-10, α = 0.5
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(b) CIFAR-10, α = 5
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(c) CIFAR-10,α = 10
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(d) CINIC-10, α = 0.5
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(e) CINIC-10, α = 5
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(f) CINIC-10, α = 10

Fig. 10. The Cumulative Distribution Function for Client Selection on CIFAR-10 and CINIC-10 with different Dirichlet concentration factors (α). Polaris
does more biased sampling compared to Pisces, Oort and FedBuff. When data tend to be more non-iid (α becomes smaller), biased sampling
strategy benefits.
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(a) Polaris keeps advantages
with smaller local data partitions
CIFAR-100.
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(b) Polaris is scalable when clients
number increases to 2000 on
CIFAR-10.
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Fig. 11. Polaris is scalable and robust to setting changes and keeps advantages over Pisces, Oort and FedBuff.

outperforms the other algorithms in terms of faster conver-
gence to the target accuracy on both datasets.

To further investigate the selected client distribution, we
plot the results in Fig 10. From the figure, we can observe
that Polaris still exhibits some biased sampling compared to
other algorithms. As the degree of statistical heterogeneity
increases, i.e. the concentration factor decreases, increasing
the bias level leads to better sampling performance. There-
fore, we conclude that Polaris is robust and effective in
handling different levels of statistical heterogeneity.

Robustness against different local data sizes. We eval-

uated the performance of Polaris on a setting with smaller
local data size by testing it on the CIFAR-100 dataset with
a local size of 2000, instead of the original size of 3000. As
shown in Figure 11a, while a smaller data partition can lead
to a lower accuracy, Polaris still maintained its advantage
over the comparison algorithms. This result demonstrates
the robustness of Polaris in the scenarios where local data
sizes may vary.

Scalability. We evaluate Polaris on a larger scale of
federated learning setting, with a total of 2000 clients and 50
clients selected at each round. As before, when 50% of sam-
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pled clients report, the central server performs aggregation
and updates the global model. The result, shown in Figure
11b, demonstrates that Polaris maintains its superiority over
FedBuff and Pisces even in the larger scale setting.

Hyperprameter sensitivity. We conducted experiments
to evaluate the sensitivity of the hyperparameter γ in Polaris.
The data samples used in FEMNIST are collected from real-
world users, making it an extremely non-iid dataset. Vary-
ing the value of α from 0.01 to 10, we observe from Figure
11c that the performance of Polaris remains stable, and there
is no need for fine-tuning the hyperparameter within the
range. This property of Polaris is particularly advantageous
as it can be applied to various settings without the need for
tedious hyperparameter tuning. Therefore, we conclude that
Polaris is a robust and practical algorithm for asynchronous
federated learning.

7 RELATED WORK

Due to limited communication bandwidth and device avail-
ability in large scale settings, federated learning algorithms
usually sample a small subset of clients in each round. By
default, the server selects clients uniformly at random since
FedAvg [1] and FedBuff [3] are proposed. In practice, how-
ever, uniform sampling suffers from slow model conver-
gence with respect to wall-clock time due to unpredictably
high degrees of statistical and system heterogeneity.

To tackle the problem, multiple adaptive client sampling
algorithms are presented. Mostly, researchers focus on im-
proving the necessary communication round to converge
with the methods that first evaluate clients’ statistical prop-
erties, such as gradients [11]–[13] and losses [14], and select
more “important” ones. While these methods reduce com-
munication rounds, they do not efficiently improve learning
performance with respect to wall-clock time.

To address the issue, extensive research efforts that pri-
oritize clients with fast response times and high quality
of data have been made. Among these methods, Oort is
the leading one. To guide client selection, Oort ranks each
client with a utility score that considers the client’s response
time and data quality and selects the top group. While it
performs well in synchronous settings, it faces challenges in
asynchronous scenarios, in which staleness exists.

Recently, Pisces [4] is proposed as a solution for asyn-
chronous federated learning. It profiles clients statistical
utility using a similar formula as Oort. Different from Oort,
Pisces records the staleness instead of the response duration
to evaluate speed utility, and exponentially punishes high
stalenesses. Yet, it’s limited as a heuristic and lacks theoreti-
cal support from an optimization perspective.

In this work, we systematically study the sampling prob-
lem in asynchronous federated learning and propose Polaris
as an analytical solution from an optimization perspective.
To efficiently navigate client sampling, Polaris calculates the
optimal sampling strategy based on the reported staleness
and model updates at each communication round. As learn-
ing proceeds, the server updates the sampling probability
in each round and always performs the optimal sampling.
Additionally, Polaris does not require clients to perform
extra local calculation, which Oort and Pisces do. This
benefit provides better privacy preservation and reduces

computation burdon for remote devices, thus encouraging
more potential clients to participate.

8 CONCLUDING REMARKS

In this study, we analyzed the sampling strategy in asyn-
chronous federated learning from an optimization perspec-
tive, and proposed a theoretical sound solution, Polaris sam-
pler. First, our analysis established the theoretical relation-
ship between physical time and client sampling probability,
accounting for statistical heterogeneity and staleness, and
provided convergence bounds. Further, we formulated the
sampling task as a geometric optimization problem. Addi-
tionally, our empirical analysis confirmed that model update
is on a par with other loss based methods in estimating
local data quality but does not require extra communication
overhead.

Based on our findings, we proposed a novel
client sampling algorithm named Polaris, which outper-
formed existing methods on multiple datasets, including
CIFAR-10, CIFAR-100, CINIC-10, Federated MNIST, and Tiny
Shakespeare. Our experiments demonstrated that the single
hyperparameter γ is not sensitive within a considerably
wide range and does not require extensive fine-tuning.
Additionally, extensive ablation studies confirmed the scal-
ability and robustness of Polaris against different local data
partitions and data heterogeneities.
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