
FedRL: Improving the Performance of Federated
Learning with Non-IID Data

Yufei Kang, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto

Timothy Zeyl
Huawei Technology Canada Ltd.

Abstract—Federated learning preserves data privacy by train-
ing machine learning models in a distributed fashion, where
local models are trained on the client devices and aggregated
on the server. Prevalent aggregation algorithms in federated
learning perform well in homogeneous settings, but suffer from
inadequate convergence in heterogeneous settings due to non-IID
data distribution. In this paper, we explore the shortcomings of
existing work and recognize that the memory loss of optimizers
in aggregation steps limits convergence performance. In response,
we propose FedRL, a new adaptive aggregation algorithm with
the supervision of a policy-based deep reinforcement learning
agent. Using real-world datasets, we evaluate the effectiveness of
FedRL by comparing to state-of-the-art adaptive aggregation al-
gorithms in the literature, and show its superiority in accelerating
convergence to a target accuracy.

I. INTRODUCTION

Federated Learning [1] represents an emerging machine
learning paradigm which allows client devices to train a
shared machine learning model under the orchestration of a
central server. In each iteration, remote clients perform the
optimization locally, and send the model updates only to a
server for aggregation. Though federated learning preserves
the privacy of user-generated data, convergence to a target
accuracy for the global model may be much slower, partly
due to the overhead it takes to communicate with the server,
and partly due to the non-IID distribution across client devices.

To reduce communication overhead, only a small portion
of all federated learning clients connect with the server
in each round to synchronize their models, and only after
multiple batches of local updating. In each iteration, clients
first download the global model and run several batches of
stochastic gradient descent (SGD) on their local datasets, and
then communicate their model updates to the server. The server
then leverages the federated averaging (FedAvg) [1], which is
typically used as the de facto aggregation algorithm, to simply
compute the average of model updates it receives from clients
to update the global model.

While federated averaging converges reasonably well in ho-
mogeneous settings and has a low communication cost, it does
not fully resolve the essential problems associated with statisti-
cal heterogeneity. Empirically, diverging and slow convergence
have been observed in settings where data distribution is
non-IID (not independent and identically distributed) [1]–[3].
In response to such disadvantages with federated averaging,

several new algorithms integrated with optimization practices
have been proposed, including FedAvgM [3], FedAdam and
FedAdagrad [4]. While these algorithms benefit from the craft
of learning rate adaptation, they experience performance losses
in convergence with some training workloads and certain data
distributions. As the optimization techniques involved were
not developed for federated learning scenarios, non-IID data
distributions were not addressed specifically. In fact, the non-
federated analogues of these optimizers struggle to achieve
adequate convergence behavior.

To address these challenges, in this paper, we explore
the underlying reasons for these limitations, as well as the
potential use of reinforcement learning agents. We then pro-
pose a new aggregation algorithm, called FedRL, to adap-
tively optimize the model according to training progress, with
the objective of incurring fewer communication rounds and
speeding up the convergence in the presence of non-IID data
distributions.

We begin our exploration by considering the pragmatic
optimizers in the literature as well as adaptive optimization
methods that make use of exponential moving average. As we
shall show, these optimizers all have problems converging to
the optimum due to improper hyper-parameter adjustments,
which results from the lack of long-term memory. This hap-
pens even in some convex settings [5], and could be more
severe in the complicated federated learning situation.

We recognize that these practices were unable to achieve
a balanced tradeoff between the adaptivity from optimization
methods with exponential moving average, and the experience
from past optimization trajectories in federated learning. In
FedRL, we strike that balance by building complementary
connections with a policy-based deep reinforcement learning
agent. By learning from past client update and the correspond-
ing model accuracy improvement, the agent develops adap-
tivity control over federated optimization. Combined with the
optimization method with exponential moving average, FedRL
is capable of proper adaptive aggregation given synchronous
information of the models. We conduct experiments on real-
world datasets and demonstrate that FedRL, whose aggregation
method has long-term memory and flexible adaptivity, offers
superior performance in both convergence rates and model
accuracy in federated learning settings with non-IID data.

Highlights of our original contributions in this paper are as
follows. To begin with, we recognize that the memory loss of978-1-6654-3540-6/22 © 2022 IEEE

optimizers in the aggregation step limits the convergence of
the federated learning algorithm in a heterogeneous setting. In
response, we propose a policy-based deep reinforcement learn-
ing agent to lead the aggregation process, which adds long-
term memory to adaptive optimization methods. Moreover,
we present a new and robust federated learning algorithm,
called FedRL, whose aggregation is supervised by an experi-
enced reinforcement learning agent to handle the convergence
challenge in non-IID settings. We perform an extensive set
of experiments on three real-world datasets, and show that
FedRL exhibits better convergence against heterogeneous data.
Finally, we verify the robustness and generalization of FedRL
on untrained data distributions and dynamic conditions where
clients generate data as training progresses. Without the need
for re-training, FedRL keeps its advantage over comparisons
on all scenarios.

II. RELATED WORK AND CHALLENGE

Federated Learning FedAvg is typically used as the de
facto algorithm. While it has achieved some success in homo-
geneous environments, in the presence of data heterogeneity,
it is observed to diverge and slowly converge [1]–[3]. As
such statistical heterogeneity is common in the real world,
researchers feel an imperative to improve the aggregation al-
gorithm for non-IID environments and made several attempts.

Some studies propose to improve it on the local training
side. FedProx [6], FedDane [7] and SCAFFOLD [2] regularize
the local objective functions or introduce additional control
variates to avoid local models drift towards their local minima.
With slightly improved model performance, clients have to
pay more computation cost on local training and parameter
tuning. Some other researchers propose to apply momentum
or adaptivity to the clients [8] [9]. However, client optimizer
states are separately updated when they perform momentum or
adaptive optimization methods, requiring extra communication
overhead for optimizer states synchronization.

Some researchers apply neuron matching in either coordi-
nate level [10] or layer level [11] before averaging. However,
the structural limitations restrict it to specific neural architec-
tures and cannot work generally in machine learning tasks.

Enabling server momentum, FedAvgM [3] runs accumu-
lation of the model updates history to dampen oscillations.
Later, introducing adaptivity, FedOpt aggregation framework
that incorporates adaptive optimizers is proposed. With Adam
and Adagrad optimization methods applied, FedAdam and
FedAdagrad are presented.

Although these adaptive optimization adoptions improve
convergence compared to FedAvg, they have difficulty adjust-
ing parameters when presented with more complicated non-
IID distributions, incurring convergence problem. To illustrate
the challenge, we conduct an experiment using FedAdam and
FedAdagrad in a heterogeneous setting on the CIFAR-10
dataset and plot the results in Fig. 1. For a fair comparison,
we also include FedAvg.

We train a modified VGG-16 model with PyTorch on the
CIFAR-10 dataset, which consists of 60000 32 × 32 color

0 50 100 150 200 250 300 350
Communication round (#)

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

FedAvg_IID
FedAdam_Non-IID
FedAdagrad_Non-IID
FedAvg_Non-IID

Fig. 1. Training a CNN model on non-IID CIFAR-10 data.

images in 10 classes. We consider 100 federated learning
clients in total, each running on a different thread in parallel,
and allow 10% of the clients to communicate their model
updates to the central server at each communication round.
The model is trained in both the IID and non-IID settings,
respectively. For the IID setting, the 60,000 samples are
randomly distributed among 100 clients, such that each client
owns 600 samples. For the non-IID setting, each client still
owns 600 samples, yet 50% of which come from a dominant
class and the remaining half belong to other classes.

As the results shows in Fig. 1, in the non-IID setting,
FedAdam and FedAdagrad performed slightly better than
FedAvg in terms of the accuracy and convergence speed.
However, when compared with the performance of FedAvg
in IID setting, where clients have the same quantity of data
but with an ideal distribution, we can see a performance loss
of these algorithms in both accuracy and convergence speed.

Before exploring the cause for such a weakness in a
federated learning setting, we first have a quick review of
adaptive optimization methods in a centralized setting.

Adaptive Optimization Methods In recent years, to al-
leviate the slow convergence of SGD in nonconvex settings,
automatic learning rate decay is introduced and Adagrad
is proposed as the path-breaker. While it demonstrated an
advantage over SGD, Adagrad suffers in dense setting due
to its uncontrollably rapid learning rate decrease [12].

Here cut in the method with exponential moving average
(EMA) [13]. By leveraging gradients scaled down by square
roots of exponential moving averages of squared past gradi-
ents, it gets rid of the burdensome gradients computed several
steps ago, and therefore prevents unrestrained learning rate
decay. Notably, Adam [14] is the most popular design of
this category with fine-tuned hyper-parameters. While Adam
benefits from fast convergence from EMA strategy, it has
difficulty prompt decelerating due to the loss of optimization
history. What’s worse, the problem is especially aggravated

Aggregated
Weights

Dimension
Reduction States

DRL Agent

Rewards

Actions

ServerClients

Fig. 2. Structure of FedRL

in high dimensional settings and when the variance of the
gradients with respect to time is large, which is common
in federated learning. That explains the failure of the above
experiments.

In response, AMSGrad [5] that maintains past updates
information, such as step sizes and moving directions, is
put forward. Different from Adam, AMSGrad maintains the
maximum of specific hyper-parameters until the present time
step and uses these maximum values for normalization. While
AMSGrad benefits from memory fragments and beats Adam
in some cases, its performance highly depends on the order
of incoming gradients, and has inadequate convergence in
complicated non-convex settings like federated learning.

Open Challenges For federated learning, an adaptive ag-
gregation mechanism that handles statistical heterogeneity is
demanded. Essentially, for adaptive optimization in server
aggregation, there is a gap in balancing the fast convergence
behavior using EMA and the prompt halt at the optimum via
leveraging past optimization trajectories.

III. FEDRL: SYSTEM DESIGN

In this section, we propose the design of FedRL to address
above challenge. We first formulate the convergence issue
as a DRL problem and subsequently design the DRL agent.
Further, with principal component analysis (PCA) [15], we
optimize the state space by dimension reduction. Finally, we
summarize the system in Fig. 2 and algorithm in Algorithm 1.

A. DRL problem formulation

The optimization process of federated learning can be
modeled as a Markov Decision Process (MDP), where state
st is represented by a function of aggregated gradients ∆t

computed from local model updates in communication round
t. Given a state st, DRL agent takes an action at to adjust
EMA hyper-parameters α1 and α2. Accordingly, the central
server optimizes the global model and broadcasts it. After
downloading the updated model, local clients run SGD on their
local datasets for a number of iterations and communicate the

Algorithm 1 FedRL
Initialization: m0, v0, local iteration K, loss function F ,
state s0, model weights ω0, maximum round T
for t = 0, . . . , T − 1 do

Select a subset St of clients at random
for client i ∈ Si do
ωit = SGDK(ωt−1, ηl,∇Fi(ωt−1))

end for
∆i
t = ωt − ωit

∆t = Si
|S|

∑
i∈S ∆i

t

α1, α2 = DRL agent(st)
mt = α1mt−1 + (1− α1)∆t

vt = α2vt−1 + (1− α2)∆2
t

Server aggregation: ωt+1 = ωt − ηg mt√
vt

end for

model updates to the central server. When all updates from
local clients are received, the central server updates the model
based on aggregated gradients ∆t+1 and transits the state to
st+1. Meanwhile, a reward signal rt can be observed, which
is a function of the test accuracy achieved by the global model
so far on a held-out test set.

B. Design of DRL Agent

Suppose there is a federated learning job on N participating
clients with a target accuracy Λ. At each communication
round, the federated learning server receives models updates
from remote clients and computes a state vector s, in response
to which the DRL agent acts and generates an action vector a.
Since the state vector s is computed from gradients of model
weights, and the action vector is composed of variations of
hyper-parameters, the state and action spaces are continuous.
Therefore, we select proximal policy optimization (PPO) to
serve as the DRL agent and design it follows.

State: We represent the state st at the time step t by a
vector st = ∆t �∆t, where ∆t denotes the aggregated
gradients computed by running averaging on the central server
after communication round t. Note that the length of the state
vector ∆2

t is exactly the same as the model weights ωt,
since it is calculated from the gradients of model weights ωt.
When the training model is complex, the state space could be
unexpectedly large. To this end, we reduce the dimension of
the state space to optimize the system and shall discuss it later.

Action: Given a state st at the time step t, the DRL agent
acts and generates an action vector at, which is defined as
at = [∆α1,∆α2], where ∆α1 and ∆α2 are variations of
adaptive parameters. Notably, these variations can be utilized
to compute the step sizes and moving directions for model
weights at the current communication round, with which server
aggregation could be performed in an optimized way. After-
wards, the updated model would be broadcasted by the central
server, back to selected clients, completing the communication
round..

Reward: Along with the state transition from st to st+1, a
reward signal rt is generated. Balancing training accuracy and

convergence speed, we define the reward at time step t as rt =
Γλ−Λ − Ω, t = 1, . . . , T , where λ is the testing accuracy of
the global models on the validation set after t rounds, Λ is the
target accuracy, Γ and Ω are positive constants to encourage
high test accuracy and punish slow convergence behaviors.
The DRL agent is motivated to maximize the expectation of
discounted accumulated reward, specifically

R =

T∑
t=1

γt−1rt =

T∑
t=1

γt−1(Γλ−Λ − Ω) (1)

where γ ∈ (0, 1] is the discount factor, which is selected to
balance between current reward and future rewards.

Empirically, to stimulate the DRL agent to learn optimiza-
tion policy that helps the FL server obtain the global model
with high test accuracy, we set Γ as 64. What’s more, to
penalize futile or even disastrous actions, Ω is set to be 1.
Consequently, rt ∈ (−1, 0], since 0 < λ ≤ Λ and Γ > 0. To
avoid short-sighting, we set the discount factor γ as 0.9 in our
implementation.

C. Optimizing State Space

Since modern deep neural networks have millions of pa-
rameters, including the gradient of every parameter in the
state space is infeasible. To reduce the dimensionality of the
state space, we introduce a principal component analysis PCA
module. Represented by the resulted vector, a lighter state
vector is obtained. Empirically demonstrated, for classification
tasks on the MNIST dataset, a clustering affecting local models
according to their dominant labels can be still observed even
if 431, 078 dimensions are dropped to 1 during the dimension
reduction process [16]. No negative effect would be incurred
with the dimension reduction module. In our system, for the
sake of efficiency, we reduce state space to 1 dimension. The
PCA model is trained at the first round of federated learning
with the aggregated updates on the server side, and then fixed
for each following communication round.

D. Overview

Now we conclude our design of FedRL in Fig. 2. At the
beginning of each federated learning round, the FL server
averages the received model updates and sends out the resulted
vector to the dimension reduction module, where the state
vector is computed. Afterwards, the DRL agent computes
an action vector and sends it back to the FL server. With
variations within the action vector, the FL server optimizes
the global model and terminates current rounds.

Remarkably, no extra communication cost is introduced to
federated learning clients in FedRL, since both the state vector
and the action vector are communicated between the DRL
agent and the FL server.

IV. EXPERIMENTAL RESULTS

To study the performance of FedRL on statistical het-
erogeneous setting, we conduct experiments on three real-
world datasets: MNIST, FashionMNIST and CIFAR-10. As
comparisons, we introduce the de facto algorithm FedAvg, and

state-of-the-art aggregation algorithms, FedAdam and FedAda-
grad. On each dataset, we train a CNN model with FedRL,
FedAvg, FedAdam and FedAdagrad respectively, and evaluate
the test accuracy of the trained model using the testing set.
Additionally, we explore both static setting, where clients own
the same data throughout the training, and dynamic setting
where clients generate data as training processes.

A. Datasets and Models

We explore different combinations of hyper-parameters for
the CNN models on different datasets and choose the hyper-
parameters leading to the best performance of FedAvg in IID
settings.
• MNIST: We train a CNN model with two 5× 5 convo-

lution layers. The first layer has 20 output channels and
the second has 50, with each layer followed by 2×2 max
pooling. For each client, the batch size is set to be ten
and the epoch number is five.

• EMNIST: We train a densely connected auto-encoder
with layers of size 784 (28 × 28) – 128 – 128 and a
symmetric decoder. For each client, the batch size is set
to be 100 and the epoch number is five.

• CIFAR-10: We train a modified VGG-16 model with less
convolution cores reducing requirement for memory and
additional batch normalization accelerating training. Ten
3× 3 convolution layers, three 1× 1 convolution layers,
and three full connected layers are included. The first
two 3 × 3 convolution layers have 64 output channels,
and a 2× 2 max pooling follows. The second two 3× 3
convolution layers have 128 output channels, and 2 × 2
max pooling follows. Next, two 3× 3 convolution layers
with 128 output channels are added, followed by one
1 × 1 convolution layers with the same output channels
and 2 × 2 max pooling layer. Then, two similar units
composed of two three convolution layers and a max
pooling layers with 256 output channels and 512 output
channels follow it. Further, two full connected layers with
1024 output channels are added, with each layer followed
by 0.5 dropping out. Finally, a full connected layer with
10 output channels are included. For each client, the batch
size is set to be 100 and the epoch number is 30.

• Performance metrics: To evaluate the convergence be-
havior, the amount of communication rounds required for
convergence and the test accuracy (loss) is utilized as the
performance metric.

B. Federated Learning Setting

Empirically, we simulate the federated learning setting with
the Python threading library. We consider 100 clients in
total, each of them running on a thread in parallel. At each
federated learning round, we randomly select 10% of total
clients to communicate their local updates to the central server.
To evaluate performance with non-IID distributed data, we
constructed three settings with different heterogeneity levels.
In the low heterogeneous setting, 20% of the data belong to
a dominant class, which is different across clients, and the

0 10 20 30 40 50 60 70
Communication round (#)

92

94

96

98

Ac
cu

ra
cy

 (%
)

FedAvg
FedAdam
FedAdagrad
FedRL

(a) Classification on MNIST data

0 50 100 150 200 250 300 350
Communication round (#)

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

FedAvg
FedAdam
FedAdagrad
FedRL

(b) Classification on CIFAR-10 data

0 50 100 150 200 250 300
Communication round (#)

0.006

0.008

0.010

0.012

Lo
ss

FedAvg
FedAdam
FedAdagrad
FedRL

(c) Auto-encoder on EMNIST data

Fig. 3. Evaluating the performance of FedRL with medium heterogeneity

remaining 80% belong to other classes randomly. In contrast,
in the medium (high) heterogeneous setting, 50% (80%) of
the data belong to a dominant class. Besides, to simulate
real-world data generation, we enable data to be successively
generated as federated learning progresses in dynamic setting.

C. Training the DRL Agent

In the training phase, the server has limited access to local
data. Therefore, we train the DRL agent with simulated IID
data. Towards tasks on MNIST and EMNIST, we construct the
training setting as that only ten clients are available in total
and all of them communicate their local updates to the central
server at each communication round. For task on CIFAR-
10, we construct the training setting as that 100 clients are
available and 10% of them can update to the central server at
each communication round.

We set up the PPO agent with stable-baselines31 and train
it on an instance with a Titan RTX GPU. Each iteration for
MNIST and FashionMNIST training task takes only seconds,
and each iteration for CIFAR-10 task takes 2 ∼ 3 minutes,
due to the deep neural networks. An episode starts at the
initialization of a federated learning job and ends when the
job converges to the target accuracy Λ or the test accuracy
plateaus. In image classification tasks, the target accuracy is set
to 99% on MNIST and 74% on CIFAR-10. For auto-encoder
training tasks on EMNIST, the target loss is set to 0.005.

D. Evaluations

After finishing the training, we evaluate FedRL in settings
where 100 clients with medium heterogeneous data exist.
We plot the test accuracy v.s. the communication rounds on
MNIST and CIFAR-10 in Fig. 3(a) and Fig. 3(b) respectively,
and training loss v.s. the communication rounds on EMNIST
in Fig. 3(c). The plotted data points are the average results of
repeated experiments.

As shown in Fig. 3(a), for the image classification task on
MNIST, FedRL converges to the target accuracy 99% after
38 rounds, outperforming FedAvg’s 76 rounds, FedAdam’s 49
rounds and FedAdagrad’s 43 rounds. Similarly, we plot the
empirical result of the classification workload on CIFAR-10

1https://github.com/DLR-RM/stable-baselines3

0 20 40 60 80 100 120 140
Communication round (#)

92

94

96

98

Ac
cu

ra
cy

 (%
)

FedAvg
FedAdam
FedAdagrad
FedRL

(a) Classification on low heteroge-
neous MNIST data

0 20 40 60 80 100 120 140
Communication round (#)

82.5

85.0

87.5

90.0

92.5

95.0

97.5

Ac
cu

ra
cy

 (%
)

FedAvg
FedAdam
FedAdagrad
FedRL

(b) Classification on high heteroge-
neous MNIST data

0 50 100 150 200 250
Communication round (#)

0.006

0.008

0.010

0.012

Lo
ss

FedAvg
FedAdam
FedAdagrad
FedRL

(c) Autoencoder on low heteroge-
neous EMNIST data

0 50 100 150 200 250 300 350
Communication round (#)

0.006

0.008

0.010

0.012

Lo
ss

FedAvg
FedAdam
FedAdagrad
FedRL

(d) Autoencoder on high heteroge-
neous EMNIST data

Fig. 4. Generalization of FedRL on different heterogeneity levels

in Fig. 3(b). While FedRL converges at the highest speed as we
expected, it is the only one that successfully reaches the target
accuracy. It indicates that by allowing more adaptivity, FedRL
effectively handle the non-IID issue, preventing it from falling
in the local optimum. Besides, we can refer the performance of
FedRL on training an auto-encoder on EMNIST in Fig. 3(c).
Here, FedRL is one of the top algorithms of converging to
the target mean square error 0.005 with 154 rounds. For
comparison, FedAvg and FedAdam take 328 and 180 rounds
to converge.

In all, demonstrated by above results, FedRL shows its supe-
riority over the comparison group when converging to a target
in federated learning settings with medium heterogeneous data.

E. Generalization and Robustness

In this section, we discuss the performance of FedRL facing
unseen scenarios with different data heterogeneity levels and
data generation dynamicity. To evaluate its robustness, we
conducted experiments on several settings.

0 10 20 30 40 50
Communication round (#)

90

92

94

96

98

Ac
cu

ra
cy

 (%
)

FedAvg
FedAdam
FedAdagrad
FedRL

(a) Classification on dynamic MNIST
data

0 50 100 150 200 250 300
Communication round (#)

0.006

0.008

0.010

0.012

Lo
ss

FedAvg
FedAdam
FedAdagrad
FedRL

(b) Auto-encoder on dynamic EM-
NIST data

Fig. 5. Robustness of FedRL to dynamicity

Generalization on heterogeneity To verify the general-
ization of FedRL across unseen heterogeneity levels, we
conduct follow-up experiments. Without re-training, we run
FedRL on settings where 100 clients with unseen low and
high heterogeneous data exist. Also, for comparison, we run
FedAvg, FedAdam and FedAdagrad on the same tasks. The
experimental results on MNIST and EMNIST are plotted in
Fig. 4.

Shown in Fig. 4(a) and Fig. 4(b), for classification tasks
on MNIST dataset, while high heterogeneity level incurs slow
convergence, FedRL is dominant over other aggregation algo-
rithms on both levels, achieving the target accuracy with the
fewest communication rounds. For the auto-encoder training
task on EMNIST, demonstrated in Fig. 4(c) and Fig. 4(d),
FedRL maintains an advantage in converging to target loss as
before.

Robustness to dynamicity Previously, we evaluate FedRL
on static setting where device data are only generated before
the federated learning starts. To verify its robustness to dy-
namicity, we test it on a setting where data are successively
generated as learning progresses. In this assessment, we set
a medium heterogeneity level. As before, FedRL does not
require re-training. The results on MNIST and EMNIST are
plotted in Fig. 5, with Fig. 5(a) representing the results on
MNIST and Fig. 5(b) as EMNIST.

Demonstrated by Fig. 5(a), for classification task on MNIST
dataset, FedRL shows its advantage over the comparisons, con-
verging to the target accuracy with the fewest communication
rounds, even when new data are successively generated. For
auto-encoder training task on EMNIST, we can refer similar
superior of FedRL over FedAvg, FedAdam and FedAdagrad in
dynamic setting.

V. CONCLUDING REMARKS

In this work, we explore the shortcomings of existing
federated aggregation methods with optimization practice and
recognize that the improper learning rate decay caused by
memory loss in adaptive optimization methods is responsible
for the failures of adaptive federated learning algorithm in
non-IID settings.

To overcome the weakness, we present FedRL, a new aggre-
gation algorithm that incorporates a DRL agent to guide opti-
mization in federated aggregation. In particular, we introduce
a policy-based deep reinforcement learning agent, namely,

PPO, to adjust the hyper-parameters in adaptive optimization
methods with EMA as the training processes. As the PPO
agent can learn from past updates history, FedRL can adjust
learning rate properly based on both fresh gradients and past
experience, thus converging fast and well to the optimum.

Furthermore, to elaborate the effectiveness of FedRL, we
conduct an extensive set of empirical evaluations on three
real-world datasets and demonstrate superiority of FedRL in
both convergence rate and model accuracy (training loss) in
heterogeneous settings with non-IID data. Finally, we testify
the robustness and generalization of FedRL on untrained data
distributions and dynamic conditions where clients generate
data as training progresses. Without the need for re-training,
FedRL keeps the advantage over comparisons on all scenarios.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication efficient learning of deep networks from decentralized
data,” in Proc. Artificial Intelligence and Statistics (AISTATS), 2017.

[2] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T.
Suresh, “SCAFFOLD: Stochastic controlled averaging for federated
learning,” in Proc. International Conference on Machine Learning
(ICML), 2020.

[3] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of non-
identical data distribution for federated visual classification,” in Proc.
Advances in Neural Information Processing Systems (NeurIPS), 2019.

[4] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ,
S. Kumar, and H. B. McMahan, “Adaptive federated optimization,” arXiv
preprint arXiv:2003.00295, 2020.

[5] S. Reddi, S. Kale, and S. Kumar, “On the convergence of ADAM and
beyond.” in Proc. International Conference on Learning Representations
(ICLR), 2018.

[6] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. Confer-
ence on Machine Learning and Systems (MLSys), 2020.

[7] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smithy,
“Feddane: A federated newton-type method,” in 2019 53rd Asilomar
Conference on Signals, Systems, and Computers. IEEE, 2019, pp.
1227–1231.

[8] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of
communication efficient momentum sgd for distributed non-convex
optimization,” in Proc. International Conference on Machine Learning
(ICML). PMLR, 2019, pp. 7184–7193.

[9] H. Yuan and T. Ma, “Federated accelerated stochastic gradient descent,”
in Proc. Advances in Neural Information Processing Systems (NeurIPS),
2020.

[10] M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, N. Hoang, and
Y. Khazaeni, “Bayesian nonparametric federated learning of neural
networks,” in Proc. International Conference on Machine Learning
(ICML). PMLR, 2019, pp. 7252–7261.

[11] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni,
“Federated learning with matched averaging,” in Proc. International
Conference on Learning Representations (ICLR), 2020.

[12] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine
learning lecture 6a overview of mini-batch gradient descent,” COURS-
ERA: Neural Networks for Machine Learning, vol. 14, no. 8, p. 2, 2012.

[13] T. Tieleman and G. Hinton, “Rmsprop: Divide the gradient by a running
average of its recent magnitude,” COURSERA: Neural networks for
machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[14] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proc. International Conference on Learning Representations
(ICLR), 2015.

[15] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley
interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433–
459, 2010.

[16] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-iid data with reinforcement learning,” in Proc. IEEE INFOCOM,
2020.

