
Enabling Encrypted Rich Queries in
Distributed Key-Value Stores

Yu Guo , Xingliang Yuan , Xinyu Wang, Cong Wang , Senior Member, IEEE,

Baochun Li , Fellow, IEEE, and Xiaohua Jia , Fellow, IEEE

Abstract—To accommodate massive digital data, distributed data stores have become the main solution for cloud services. Among

others, key-value stores are widely adopted due to their superior performance. But with the rapid growth of cloud storage, there are

growing concerns about data privacy. In this paper, we design and build EncKV, an encrypted and distributed key-value store with rich

query support. First, EncKV partitions data records with secondary attributes into a set of encrypted key-value pairs to hide relations

between data values. Second, EncKV uses the latest cryptographic techniques for searching on encrypted data, i.e., searchable

symmetric encryption (SSE) and order-revealing encryption (ORE) to support secure exact-match and range-match queries,

respectively. It further employs a framework for encrypted and distributed indexes supporting query processing in parallel. To address

inference attacks on ORE, EncKV is equipped with an enhanced ORE scheme with reduced leakage. For practical considerations,

EncKV also enables secure system scaling in a minimally intrusive way. We complete the prototype implementation and deploy it on

Amazon Cloud. Experimental results confirm that EncKV preserves the efficiency and scalability of distributed key-value stores.

Index Terms—Encrypted key-value store, searchable encryption, order-revealing encryption

Ç

1 INTRODUCTION

IN order to manage massive data records in large-scale
applications, distributed data stores are fast developed and

draw increasing attention. Among others, key-value (KV)
stores such as Redis [2], DynamoDB [3] and RAMCloud [4]
are one of the most popular production systems, due to their
strength of performance, scalability, and fault tolerance. To
enrich their data management features, efforts [2], [5], [6] are
being made to allow expressive queries via secondary attrib-
utes, in addition to accessing data via the primary key. On the
other hand, plaintext data stores face critical concerns of data
privacy due to growing data breach incidents [7]. Therefore,
there is an urgent need to design new solutions for distributed
KV stores to meet stringent privacy requirements for big data
applications.

To address this issue, two research directions are recently
explored. The first is to focus on enabling specific queries over

encrypted data, such as searchable symmetric encryption
(SSE) for keyword search [8], [9], [10] and order-revealing
encryption (ORE) for order comparison [11], [12], [13]. The
other direction is to develop comprehensive solutions to sup-
port rich queries via various primitives, such as CryptDB [14]
and BlindSeer [15]. Unfortunately, neither of them is specifi-
cally designed for distributed KV stores. Cryptographic prim-
itives do not consider the deployment in real-world systems,
while most of existing encrypted databases focus on the cen-
tralized setting, treating the underlying data store as a black
box. It is questionable whether the performance benefits of
KV stores can still be preserved.

In this work, we aim to design EncKV, an encrypted KV
store with rich query support. As a starting point, we build
EncKV on top of the framework as proposed in our previous
work [16]. There are two salient features of this framework.
The first is that data values of each record are mapped into
encrypted KV pairs, which protects the relations between
data values and mitigates inference attacks [17]. The second
feature is that this distributed index framework facilitates
secure queries in parallel. It co-locates the encrypted data
records and corresponding indexes at the same nodes, so as to
avoid inter-node interaction during queries. However, this
preliminary work enables limited functionality, and rich
queries over encrypted data are yet to be supported.

To achieve our goal, we first classify queries in KV
stores into two common categories, i.e., exact-match
queries and range-match queries. To balance security and
performance, EncKV leverages the practical primitives for
searching over encrypted data, i.e., searchable symmetric
encryption (SSE) [8], [10] and order-revealing encryption
(ORE) [13], [18]. They are recognized with stronger secu-
rity notions than property-preserving encryption, while

� Y. Guo and X. Jia are with the Department of Computer Science, City
University of Hong Kong, Kowloon Tong, Hong Kong.
E-mail: y.guo@my.cityu.edu.hk, csjia@cityu.edu.hk.

� X. Yuan is with the Faculty of Information Technology, Monash University,
Clayton, VIC 3800, Australia. E-mail: xingliang.yuan@monash.edu.

� X. Wang and C. Wang are with the Department of Computer Science, City
University of Hong Kong, Hong Kong, and also with the City University
of Hong Kong, Shenzhen Research Institute, Shenzhen, Nanshan 518172,
China. E-mail: xy.w@my.cityu.edu.hk, congwang@cityu.edu.hk.

� B. Li is with the Department of Electrical and Computer Engineering,
University of Toronto, Toronto, Ontario M5S 1A1, Canada.
E-mail: bli@ece.toronto.edu.

Manuscript received 7 Jan. 2018; revised 8 Oct. 2018; accepted 26 Nov. 2018.
Date of publication 7 Dec. 2018; date of current version 15 May 2019.
(Corresponding author: Cong Wang.)
Recommended for acceptance by S. Chen.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2885519

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 6, JUNE 2019 1283

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9078-7462
https://orcid.org/0000-0002-9078-7462
https://orcid.org/0000-0002-9078-7462
https://orcid.org/0000-0002-9078-7462
https://orcid.org/0000-0002-9078-7462
https://orcid.org/0000-0002-3701-4946
https://orcid.org/0000-0002-3701-4946
https://orcid.org/0000-0002-3701-4946
https://orcid.org/0000-0002-3701-4946
https://orcid.org/0000-0002-3701-4946
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0001-8702-8302
https://orcid.org/0000-0001-8702-8302
https://orcid.org/0000-0001-8702-8302
https://orcid.org/0000-0001-8702-8302
https://orcid.org/0000-0001-8702-8302
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

outperforming sophisticated ORAM and secure multi-
party computation from the perspective of efficiency [19].

For exact-match queries, EncKV carefully integrates Cash
et al.’s SSE scheme [10] into the local index framework, and
customizes it to support exact-match queries via encrypted
secondary attributes. Here, we use KV pairs to index records
thatmatch the same attribute, and each record of this attribute
is distinguished by a stateful counter. As a result, EncKV’s
exact-match indexes hold the security of SSE and can be
stored in anyKV store for easy deployment.

For range-match queries, EncKV carefully integrates
Lewi and Wu’s scheme [13], one of the latest ORE schemes.
Intuitively, ORE ciphertext achieves semantic security,
while order relations are revealed during dedicated com-
parison protocols. By applying ORE schemes to our system,
an outside attacker who can only access ORE ciphertexts
will not derive any useful information. But we observe that
directly using this ORE scheme would suffer from recent
leakage-abuse attacks [12], [20], because the comparison
protocol leaks the order relations of ciphertexts, as well as
the first block position in which the ciphertext differs. The
latter information could reveal the order relations of cipher-
texts which are not compared yet. To address this issue, we
first propose to protect order relations by tokenizing the
orders (i.e., “>” and “<”) embedded in queries and ORE
ciphertexts. Accordingly, the servers will not know whether
the matched results are greater or smaller than the query
values. To protect the position of the first block that differs,
we follow the design philosophy of Cash et al.’s scheme [21]
to conduct the comparison protocol on permuted block
ciphertexts. But unlike that scheme performing expensive
pairing operations, our design still preserves efficiency by
leveraging symmetric-key based operations only. Due to
the reduced leakage, our design effectively mitigates the
existing attacks against ORE.

To further enable system scaling, we note that adding new
nodes or removing old nodes will involve relocation of the
encrypted index and data. Simply relying on the client to relo-
cate the index and data of the affected nodes will stop the
query service, as the query cannot be processed until the relo-
cation is finished. But if we provision the server a capability of
relocation, additional information of data values will be
learned, i.e., underlying relations between encrypted key-
value pairs. To solve the problems, we propose a secure scal-
ing protocol for EncKV in a minimally intrusive fashion. The
idea is to copy data and index to the new nodes, and conduct
the relocation during the query procedure incrementally. This
treatment enables seamless query services while preserving
the security as query functions.

In summary, our contributions are listed as follows:

� We design an encrypted and distributed KV store
called EncKV. It supports rich query functions over
encrypted data with guaranteed security, i.e., SSE’s
security notion [10] for exact-match queries, and ORE
[13]’s security notion for range-match queries.

� We propose an enhanced ORE scheme to reduce the
leakage in range-match queries. The new ORE con-
struction conducts order comparison via tokenmatch-
ing in a random fashion. It hides the order relations
and partial information between ciphertexts.

� We provide two mechanisms for indexing: a bulk
update mechanism to build indexes for a set of data
records, as well as an incremental update mechanism
to insert individual index entries for newly added
records.

� We devise new protocols for secure system scaling. It
enables data relocation smoothly without loss of data
and index confidentiality when the system scales out.

� We implement our system prototype and deploy it on
Amazon Web Service. The results show that it pre-
serves linear scalability of distributed data stores
with respect to their performance. The throughput of
processing encrypted indexes increases linearly with
the number of nodes in the cluster. By facilitating
query processing in parallel with its local index
framework, the query latency is reduced when more
nodes are added.

The rest of this paper proceeds as follows. Section 2
reviews related work, and Section 3 introduces EncKV’s
architecture and threat assumptions. Our system design is
presented in Section 4.1. The security analysis is conducted in
Section 5, and an extensive array of evaluation results is
shown in Section 6.2. Section 7 concludes the paper.

2 RELATED WORK

Encrypted Database Systems. To enable secure rich queries
over encrypted data, a line of work on encrypted database
systems has been proposed [14], [15], [22], [23], [24]. The first
functionally rich database system is CryptDB [14], which
used deterministic encryption (DET) and order-preserving
encryption (OPE) schemes to support SQL queries over
encrypted relational databases. However, recent inference
attacks [17] showed that CryptDB would be vulnerable to
frequency analysis due to the leakage revealed in the cipher-
texts of DET andOPE.

BlindSeer [15] supported secure rich queries by using a
Bloom filter tree as the index, which is then searched via the
evaluation onYao’s garbled circuits. Arx [24] devised a range
query protocol based on a tree-based data structure. It used
chained garbled circuits to compare the encrypted values
with tree (range index) nodes. Since the circuits cannot be
reused for security, the nodes of the tree should be re-garbled
after each range query. A recent design called Seabed [25]
was proposed to support data analytics over encrypted data-
sets. It introduced a customized schema to partition sensitive
columns into multiple columns to defend against frequency
attacks. But this customization incurs large storage over-
head, up to 10� as reported. Other encrypted databases [26],
[27], [28], [29] using trusted hardware aimed to support full
functionality. But their security assumption relies on trusted
hardware at the server side.

The systems discussed abovewere not explicitly optimized
for distributed data stores. In [16], an encrypted distributed
key-value store was designed with a secure multi-data model
to support and secure distributed query enabled. Yet, this
initial work only introduced a blueprint of the local index
framework for practical query performance. Here, we employ
this index framework, and carefully design and adapt the
encrypted exact-match and range-match indexes to this
framework to enable secure, efficient, and different types of
queries over encrypted data records.

1284 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 6, JUNE 2019

Searchable Symmetric Encryption. Another line of related
works [8], [9], [10], [30] targeted on cryptographic primitive
for encrypted keyword search, i.e., searchable symmetric
encryption (SSE). Curtmola et al. [8] formalized the security
notions of SSE and presented the first constructions against
non-adaptive and adaptive chosen-keyword attacks. After
that, Kamara et al. [9] formalized the notion of dynamic SSE.
In [10], Cash et al. implemented a dynamic SSE scheme for
large-scale databases by considering I/O efficiency. Recent
efforts on SSE focus on improving the security of dynamic
SSE, aka achieving forward privacy [31], [32] and backward
privacy [33], [34]. As mentioned, those primitives do not con-
sider the deployment in real-world systems, and they nor-
mally assume a centralized setting.

Order-Revealing Encryption. Order-revealing encryption
(ORE) [13], [18], [21] is symmetric encryption that allows pub-
lic comparison on ciphertexts for secure range queries. The
initial result, also known as order-preserving encryption
(OPE) [11], only supports simple numerical comparison. To
improve security of OPE, new schemes were proposed [35],
[36], [37]. But the tradeoff was that multiple rounds of interac-
tionwere introduced, i.e.,OðlognÞ, n is the number of indexed
values. The first practical ORE scheme was introduced by
Chenette et al. in [18], while it leaked the location of the first
different bits. Very recently, Lewi et al. [13] presented a new
ORE construction. The comparison result only revealed the
location of the first different block of two ciphertexts rather
than a bit. In a concurrent and independent work, Cash
et al. [21] provided another ORE construction based on bilin-
ear pairings.

Differences from Conference Version. Portions of the work
presented in this paper have previously appeared in [1]. The
primary improvements are summarized as follows: First, we
enhance our ORE scheme proposed in the conference version
to further reduce the leakage in range queries. Such improve-
ment effectively mitigates the existing attacks on ORE. Sec-
ond, we detail the protocol for record insertion, whereas only
the sketch of this operation was shown in the conference ver-
sion. Third, we design new protocols for secure system scal-
ing that fit within the practicality realm. Fourth, we redo all
the experiments, extend the performance evaluation, as well
as performing query performance comparisonwith the plain-
text system and prior works.

3 OVERVIEW

3.1 System Architecture

Fig. 1 illustrates our system architecture. It consists of two
entities: a trusted client and a cluster of server nodes deployed
in the environments such as cloud or off-premise data cen-
ters. In the present embodiment, EncKV is particularly suit-
able for clients which store their sensitive data records in
distributed data stores. The client encrypts data records and
outsources the encrypted datasets to the server nodes. Later,
it can retrieve data from the nodes based on the query tokens.
The nodes are adapted to provide the storage and the compu-
tation service. Each node processes query requests from the
client andutilizes theAPIs of the underlyingKV stores to per-
form put/get operations.

EncKV uses standard symmetric encryption and secure
cryptographic hash functions to build encrypted label-value

(LV) pair(s).1 It formulates an extensible abstraction, which
maps the data formatted from different data models to
encrypted key-value pairs such that both data values and
their inherent relationships are strongly protected. As a result,
EncKV can distribute these encrypted pairs across the nodes
by using the standard data partition algorithm [3].

To enable secure rich queries based on secondary attri-
butes of data, EncKV leverages a framework for distributed
local indexes. It requires the client to maintain a small-sized
consistent hashing ring to track the label range associa-
ted with each node. Therefore, the corresponding encrypted
indexes can be inserted to targeted nodes. To retrieve data
records via secondary attributes, the client first generates
query tokens from the query condition attribute, and then
broadcasts the tokens to each node respectively. When the
node receives the tokens from the client, it performs token
matching over its local index. Once a matched record is
found, it returns the encrypted record IDs to the client.
Finally, the client decrypts the record IDs and generates
labels to fetch the encrypted result values.

3.2 Threat Assumption

EncKV considers the threats from semi-honest (aka honest-
but-curious) adversaries, who faithfully follows the pre-
scribed protocols but may intend to learn the information of
data and queries. The attackers cannot access the private keys
stored at the client, but they could dump the entire contents
of the datasets from the server nodes. They could also learn
about the query tokens, accessed index entries, and the
matched data records. Currently, EncKV does not consider
that attackers can learn the background information about
the datasets and queries, e.g., the partial (entire) content of
queries or the query distribution [17], [38], [39]. Nevertheless,
we make discussions on how to leverage off-the-shelf techni-
ques to mitigate those threats later in Section 4.4. In addition,
EncKV does not consider actively malicious attackers (e.g.,
mentioned in [40]), which can be addressed by orthogonal
studies [31], [41].

3.3 Cryptographic Primitives

A symmetric encryption scheme is a set of three polynomial
time algorithms P ¼ ðKGen;Enc;DecÞ: The key generation
algorithm KGen takes a security parameter k as input and
outputs a secret key K; The encryption algorithm Enc takes

Fig. 1. The architecture of EncKV.

1. We use the term ”label” instead of ”key” to avoid ambiguity.

GUO ET AL.: ENABLING ENCRYPTED RICH QUERIES IN DISTRIBUTED KEY-VALUE STORES 1285

a keyK and a value v 2 f0; 1g� as inputs and outputs a cipher-
text v� 2 f0; 1g�; The decryption algorithm Dec takes a keyK
and a ciphertext v� as inputs and returns v.

Define pseudo-random function F : K�X ! R, if for all
probabilistic polynomial-time distinguishers Y , jPr½Y F ðk;�Þ ¼
1jk K� � Pr½Y g ¼ 1jg fFunc : X ! Rg�j < neglðkÞ,
where neglðkÞ is a negligible function in k.

Define pseudo-random permutation F : K�X ! X, if
for all k 2 K, F ðk; �Þ is a permutation on X and no efficient
distinguishers Y can distinguish the outputs of F ðk; �Þ from
the outputs of pð�Þ, where p is a random permutation onX.

4 THE ENCKV DESIGN

In this section, we present the designs of EncKV’s encrypted
indexes for secure exact-match and range-match queries, as
well as the corresponding query protocols following the index
constructions. Features such as data relocation, incremental
updates, and batch queries are also introduced for practical
and security considerations.

4.1 The Underlying Encrypted KV Store

Our system is built on top of a recently proposed encrypted
KV store [16]. This prior work has two features. First, it pro-
vides a solution that securely partitions the encrypted data
and distributes them across multiple nodes to preserve high-
performance and linear scalability. Second, it devises a frame-
work for encrypted and distributed indexes that support
secure and efficient queries on secondary attributes of data
records. By leveraging its design philosophy, we carefully
integrate EncKV’s index design with this framework to sup-
port secure rich queries.

Fig. 1 illustrates how a column-oriented data set is inserted
into EncKV. Note that other data models such as documents
and graphs are also supported as demonstrated in [16]. Spe-
cifically, for eachKVpair ðl; vÞwith label l and value v, EncKV
protects it as a pseudo-random label and an encrypted val-
ue:hl; vi ¼ hP ðkl; CjjRÞ; Eðkv; vÞi, where P is a secure PRF,
kl; kv are private keys, R is the record ID (primary key), C is a
column (secondary) attribute, v is a value on C, and E is a
symmetric encryption algorithm.

To preserve the data locality during the queries, EncKV
uses the unique record ID R as the label for partition. This
approach allows the encrypted values for a given record are
stored at the same node, while protecting both the schema
and value relations of each record. Note that the record IDs
can be stored at either the client or server nodes in ciphertexts
for system scaling.

4.2 Exact-Match Index and Query Protocol

4.2.1 Encrypted Index Design

The design of exact-match indexes is inspired by a recently
SSE scheme proposed in [10]. The idea of this scheme is to
use encrypted keyword-document pairs to index documents
matching the same keyword. EncKV adopts this idea and
indexes the record IDs that match the same values on a
certain attribute.

Algorithm 1 presents the exact-match index building pro-
cedure. For each value vj on column Cv, the client first initial-
izes n counters, where n is the number of nodes. Given the

value vj’s record ID R, the client finds the node location on
the consistent hashing ring. Then it generates two tokens t1 ¼
G1ðke; CvjjvjjjiÞ, t2 ¼ G2ðke;CvjjvjjjiÞ that protect the values
vj via PRF. After that, it builds the encrypted index ha ¼
H1ðt1; cjiÞ;b ¼ H2ðt2; cjiÞ � EncðkR;RÞi that securely indexes
R, where cji is the index counter to differentiate records with
the same values on C. The exact-match index holds the secu-
rity of SSE. Without querying, no information of the index
(except the size) is known. Note that the counters will not be
used in the later query protocol, and thus they can be dropped
if no recordswill further be inserted.

Algorithm 1. Buildext: Build Exact-Match Indexes

Input: Private key ke; values fv1; . . . ; vmg on attribute Cv;
secure PRFs fH1; H2; G1; G2g.

Output: Encrypted indexes fIext1 ; . . . ; Iextn g.
1: Initialize a hash table S to maintain counters;
2: forvj 2 fv1; . . . ; vmg do
3: i routeðRÞ; // R is vj’s ID, i 2 f1; ng is node ID
4: t1 G1ðke; CvjjvjjjiÞ;
5: t2 G2ðke; CvjjvjjjiÞ;
6: if S:findðijjjÞ ¼ ? then
7: cji 0;
8: else
9: cji S:findðijjjÞ;
10: end if
11: a H1ðt1; cjiÞ;
12: b H2ðt2; cjiÞ � EncðkR;RÞ;
13: cji þþ;
14: S:putðijjj; cjiÞ;
15: Iexti :putða; bÞ;
16: end for

4.2.2 Secure Query Protocol

Based on the construction of the exact-match index, we pres-
ent the corresponding query protocol in Algorithm 2. Given a
query with two attributes, the client wants to find all the val-
ues fvrg in attribute Cr on a matching condition such that
another attribute Cv’s value is equal to v. First, the client gen-
erates query tokens t1 ¼ G1ðke; CvjjvjjiÞ, t2 ¼ G2ðke; CvjjvjjiÞ,
where i from 1 to n, and broadcasts ft1; t2g to each node. After
receiving the tokens, each node processes the requests in par-
allel. Specifically, the node retrieves the matched index
entries via computing H1ðt1; ciÞ, where ci is a self-incremen-
tal counter. Then it unmasks the entry via XORing H2ðt2; ciÞ
and returns the encrypted ID set frg to the client for decryp-
tion. Finally, the client generates the corresponding label
P ðkl; CrjjRÞ one by one and fetches the encrypted result val-
ues from the KV store.

The proposed query protocol provides strong protection
for data values and attribute associations. During a query pro-
cedure, the node only sees the access pattern, i.e., the accessed
index entries, return encrypted values, and query tokens. It
also learns the query pattern, i.e., the repeated queries,
because tokens are deterministic. Recall that EncKV’s query
protocol requires two rounds of interaction. The first is to
obtain the encrypted record IDs, and the second round is to
fetch the matched results. This treatment leads to an imm-
ediate security improvement, hiding the relations between
data values on different attributes. Each node only learns the

1286 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 6, JUNE 2019

matched values associated with the same attribute. It
will reveal neither the relations between values in different
attributes, nor the relations between different values in
same attributes. Therefore, it effectively addresses the infer-
ence attacks [17]. More detailed analysis can be found in
Section 5.1. Regarding the query performance, the query time
complexity is linear in the number of matched result values,
where the complexity of eachmatch isOð1Þ.

Algorithm 2.Queryext: Secure Exact-Match Query Protocol

Input: Private key ke; result value attribute Cr; query condition
value v on attribute Cv.

Output: Encrypted matched results fvrg.
Client:Token
1: for i 2 f1; . . . ; ng do
2: t1 G1ðke; CvjjvjjiÞ;
3: t2 G2ðke; CvjjvjjiÞ;
4: Send ðt1; t2Þ to node i;
5: end for
Nodei:ExtQuery
1: ci 0;
2: a H1ðt1; ciÞ;
3: while findðaÞ 6¼ ? do
4: b findðaÞ;
5: r Iexti :getðH2ðt2; ciÞ � bÞ;
6: ci þþ;
7: a H1ðt1; ciÞ;
8: Return r to client for decryption;

Client
9: R DecðkR; rÞ;
10: l P ðkl; CrjjRÞ;
11: Fetch vr via l;
12: end while
13: // Note: in the implementation, all matched frg are sent

back in a batch, and fvrg are fetched in a batch.

4.3 Range-Match Index and Query Protocol

4.3.1 Design Rationale

In current literature, a strong candidate for secure range
query is order-revealing encryption (ORE), which is first
introduced by Boneh et al. [42]. ORE has two advantages
while OPE does not have. First, an ORE scheme allows a
publicly computable function to compare two ciphertexts,
which does not restrict the structure of the ciphertext space.
Second, attackers who can only access the ORE ciphertext
will not derive any useful information due to its semantic
security. Recently, Lewi et al. [13] proposed the first practi-
cal ORE scheme that achieves a balance on security and effi-
ciency. The core idea of their scheme is to split a message
into bit blocks with equal length, and conduct encrypted
comparison from the first blocks of two messages. However,
their scheme is generic and reveals the order relations of
compared ciphertexts. In addition, the index of the first bit
block that differs is revealed between two ciphertexts.
Recent leakage-abuse attacks [12], [20] show that the above
information could be exploited to recover the underlying
values of the ciphertexts.

For instance, let the block size is 2 bits, and one compares a
message token m1 ¼ ‘‘1011’’ with two ORE ciphertexts m2 ¼
‘‘1000’’ and m3 ¼ ‘‘0100’’ respectively. Under the leakage

profile of [13], the leakage on ðm1;m2Þ is m1 > m2 and the
index of the first different block is 2, i.e., the 2nd block. On
the comparison of m1 and m3, the leakage is m1 > m3 and
the index of the first different block is 1. As a result, the
attacker can infer that m2 > m3 even without comparison
based on the above information.

Motivated by the observations above, our goal is to
design an ORE scheme that introduces less leakage com-
pared to the existing ones [1], [13], [18]. To this end, our
design intuition lies in the following two aspects. First, we
aim to hide the order relations in queries and results. This
property is achieved in our conference version by tokeniz-
ing the orders in ORE ciphertexts. Specifically, the messages
are encrypted into ciphertext blocks, where each block
embeds its value’s attribute, sub index values, and tokens of
the order relations. As a result, the servers learn neither the
order of underlying ORE ciphertexts, nor whether two
queries are conducted in the same order condition if the
query attributes are different.

Algorithm 3. OREtoken: ORE Token Generation

Input: Private key ko; value v on attribute Cv; order cmp;
secure PRFs fF1; F2; F3g; secure PRP p; random PRP f.

Output: ORE query token ctL.
1: Derive k1; k2; k3 from ko;
2: for i 2 f1; bg do
3: j� pðF2ðk2; vji�1Þ; vjiÞ;
4: qi F3ðk3; cmpjjCvjjj�Þ;
5: ctLji F1ðk1; vji�1jjj�Þ; qi;
6: end for
7: ctL fctLjfð1Þ; . . . ; ctLjfðbÞg;

Algorithm 4. OREenc: ORE Ciphertext Encryption

Input: Private key ko; value v on attribute Cv; secure PRFs
fF1; F2; F3; Qg; secure PRP p; random PRP ’.

Output: ORE ciphertext ctR.
1: Derive k1; k2; k3 from ko;
2: Generate a nonce g;
3: for i 2 f1; bg do
4: for j 2 f1; 2dg do
5: ~vji p�1ðF2ðk2; vji�1Þ; jÞ;
6: if ~vji 6¼ vji then
7: si;j F3ðk3; cmpð ~vji; vjiÞjjCvjjjÞ;
8: zi;j si;j þQðF1ðk1; vji�1jjjÞ; gÞ;
9: end if
10: end for
11: ctRji zi;’ð1Þ; . . . ; zi;’ð2d�1Þ;
12: end for
13: ctR fctRj’ð1Þ; . . . ; ctRj’ðbÞg; g;

Second, we aim to hide the index of the first different
blocks of two ORE ciphertexts. Inspired by Cash et al.’s
scheme in [21], this can be achieved by random permutation.
However, their construction is built on bilinear mapping,
which is completely different from our current design. How
to leverage random permutation on block ciphertexts poses
two challenges. The first challenge is to preserve the correct-
ness of the ORE comparison. The original design requires the
comparison to be conducted blocks by blocks, and simply per-
muting those blocks could cause mismatches. To solve this

GUO ET AL.: ENABLING ENCRYPTED RICH QUERIES IN DISTRIBUTED KEY-VALUE STORES 1287

problem, our observation is that there exists one and only one
sub blockmatched during the comparison. Therefore,we pro-
pose to embed the hash value of each block’s entire prefix into
the block ciphertext. Note that the original scheme embeds
the previous block into the ciphertext. Due to the uniqueness
of the prefix in each block, the token matching operation can
still correctly be performed even blocks are shuffled, as illus-
trated in Fig. 2.

The second challenge is to ensure the security of the ORE
comparison. Note that straightforwardly applying secure
permutation on the encrypted blocks still reveals the block
equality in each comparison. Then the attacker can find out
the index of the first differing block by counting how many
matched blocks have in common. To reduce this leakage,
we remove the equality information in each block and
replace it with a dummy value. Therefore, the server cannot
match the “equal” value during the comparison.

4.3.2 Enhanced ORE Construction

We define ½v� as the message space. Let F : f0; 1g�� ½v� !
f0; 1g� be a secure PRF, the length of data value jvj > 0, and
integers b; d > 0 such that b� d ¼ jvj. Let p : f0; 1g�� ½d� !
½d� be a secure PRP. Given a jvj-bit string, let vji denotes the ith
block of the value v, and vji�1 represents its entire prefix. We
use 00jj00 to denote the concatenation. Our ORE scheme
P ¼ fOREtoken;OREenc;OREcmpg is defined as follows:

� OREtokenðko; v; cmpÞ: Given a data value v on attri-
bute Cv and order condition cmp 2 f> ; < g, the
algorithm first splits the value v into b blocks with
length of d bits. For each block i 2 ½1; b�, it computes
the sub index value j� 2 f1; 2dg via pðF2ðk2; vji�1Þ;
vjiÞ, and generates the encrypted query condition as
qi ¼ F3ðk3; cmpjjCvjjj�Þ. Then it sets ctLji ¼ fF1ðk1;
vji�1jjj�Þ; qig. Finally, the algoritm applies a random
PRP f on fctLj1; . . . ; ctLjbg, and outputs the ORE
query token ctL.

� OREencðko; vÞ: First, the algorithm uniformly choo-
ses a nonce g for value v. Then for each block
i 2 ½1; b�, the algorithm computes all possible block
value ~vji ¼ p�1ðF2ðk2; vji�1Þ; jÞ, and compares it with
the current block vji. If the comparison result
cmpð ~vji; vjiÞ is not 00equal00, then the algorithm gener-
ates the encrypted entry as zi;j ¼ si;j þQðF1ðk1; vji�

1jjjÞ; gÞ, where the protected order is si;j ¼ F3ðk3;
cmpð ~vji; vjiÞjjCvjjjÞ. Finally, the algorithm permutes
all the encrypted blocks via random PRP ’, and out-
puts the ORE ciphertext ctR.

� OREcmpðctL; ctRÞ: On input the query token ctL ¼
fctLj1; . . . ; ctLjbg and the ORE ciphertext ctR ¼
fctRj1; . . . ; ctRjb; gg, the algorithm finds the specific
block pair ðctLji; ctRji0 Þ that matches the query condi-
tion qi, where i; i0 2 ½1; b�. Symmetric to the block
encryption, the encrypted order is obtained via s~i ¼
zi0;~i �Qðxi; gÞ, where xi is the query token of corre-
sponding block ctLji, zi0;~i is the block of ctRji0 , and g is

the nonce of ctR ciphertext. If no such block pair
exists, output false. Otherwise, output true.

Algorithm 5. OREcmp: ORE Ciphertext Comparison

Input: ORE query token ctL; ORE ciphertext ctR;
Output: true or false.
1: ctLj1; . . . ; ctLjb ctL;
2: ctRj1; . . . ; ctRjb; g ctR;
3: fori 2 f1; . . . ; bg do
4: xi; qi ctLji;
5: fori0 2 f1; . . . ; bg do
6: zi0;1; . . . ; zi0;2d�1 ctRji0 ;
7: for~i 2 f1; . . . ; 2d � 1g do
8: s~i zi0;~i �Qðxi; gÞ;
9: if s~i ¼ qi then
10: return true; // condition matched
11: end if
12: end for
13: end for
14: end for
15: return false;

Our enhanced ORE construction leaks only the equality
pattern of the most significant differing block, not the origi-
nal location of these blocks. As an example, if m1 > m2 and
m1 > m3, and same blocks arematched in two comparisons,
the server only knows m2 and m3 matches the same order
condition (not the order) of m1, and the matches appear in
the same blocks. If different blocks are matched in two com-
parisons, the server will never know the orders of m2 and
m3, because blocks are shuffled.We are aware that the equal-
ity information would be revealed after all sub blocks are

Fig. 2. The ORE comparison algorithm. (1) Case 1 (red highlight): Both ORE ciphertexts ctRð1011Þ and ctRð0101Þ match the token block ctLj1ð00Þ of
the query token ctLð0010Þ. (2) Case 2 (blue highlight): Only the ORE ciphertext ctRð1011Þ matches the token block ctLj2ð10Þ of the query token
ctLð1010Þ. Without background knowledge about the query condition, the attackers cannot infer the order relation between ctRð1011Þ and ctRð0101Þ
even after multiple comparisons.

1288 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 6, JUNE 2019

matched just like all existing ORE schemes. To address this
issue, one straightforward solution is to re-encrypt the
matched sub block, as proposed in [24], [33].

Regarding the comparison complexity, the worst-case sce-
nario of block comparison is b2 operations. For each sub block,
the worst-case scenario is 2d � 1 operations, because the
equality entry is removed from the result set, the number of
encrypted entry is 2d � 1 instead of 2d. We emphasize that all
above algorithms are conducted by symmetric key based
operations. The experiments later show that our enhanced
ORE scheme is still scalable for large-scale applications.

4.3.3 Encrypted Index Design

The construction of encrypted range-match indexes follows
the same treatment as the exact-matched indexes. The
detailed procedure that indexes values fv1; . . . ; vmg for a
given attribute Cv is shown in Algorithm 6. Given the record
IDR, the client first finds the target node iwhere the record is
stored. Then it builds the encrypted index entry ha;bi by
securely embedding attributeCv, node ID i and the counter ci.
Note that the underlying content of b also contains the ORE
ciphertext ctR which is generated from the ORE encryption
schemeOREencðko; vÞ inAlgorithm 4.

Algorithm 6. Buildrng: Build Range-Match Indexes

Input: Private keys kr; ko; values fv1; . . . ; vmg on attribute Cv;
secure PRFs fH1; H3; G1; G2g.

Output: Encrypted indexes fIrng1 ; . . . ; Irngn g.
1: Initialize a hash table S to maintain counters;
2: forvj 2 fv1; . . . ; vmg do
3: i routeðRÞ; // R is vj’s ID, i 2 f1; ng is node ID
4: t1 G1ðkr; CvjjiÞ;
5: t2 G2ðkr; CvjjiÞ;
6: if S:findðiÞ ¼ ? then
7: ci 0;
8: else
9: ci S:findðiÞ;
10: end if
11: a H1ðt1; ciÞ;
12: ctR OREencðko; vjÞ; // shown in Algorithm 4
13: b H3ðt2; ciÞ � ðctRjjEncðkR;RÞÞ;
14: ci þþ;
15: S:putði; ciÞ;
16: Irngi :putða;bÞ;
17: end for

4.3.4 Secure Query Protocol

The corresponding query protocol following the range-
match index construction is presented in Algorithm 7. Given
two range query attributes and the order condition cmp 2
f> ; < g, the client asks EncKV to return all values fvrg in
attribute Cr on the matching condition such that the query
attributeCv’s value should be larger than the value v. Similar
to the exact-match query protocol, the client generates query
tokens ft1; t2g from Cv for each node i. After that, it calls the
OREtokenðko; v; cmpÞ function to generate ctL as shown in
Algorithm 3, and sends ft1; t2; ctLg to each node. When the
query tokens arrive, each node first unmasks the correspond-
ing ORE index entries via incremental counters. If the tokens

ft1; t2g correctly recover an ORE ciphertext ctR, the server
node performs the ORE comparison OREcmp ðctL; ctRÞ as
presented in Algorithm 5. Once the ORE token ctL matches
the query condition, the server returns the corresponding
record ID ciphertext EncðkR;RÞ to the client to fetch the
result values on attribute Cr. In current treatment, the query
time complexity is OðmCvÞ, where mCv is the number of val-
ues onCv at a certain node.

Algorithm 7. Queryrng: Secure Range-Match Query
Protocol

Input: Private keys kr; ko; result value attribute Cr; query
condition value v on attribute Cv; order condition cmp.

Output: encrypted matched results fvrg.
Client:Token
1: fori 2 f1; . . . ; ng do
2: t1 G1ðkr; CvjjiÞ;
3: t2 G2ðkr; CvjjiÞ;
4: ctL OREtokenðko; v; cmpÞ;// Algorithm 3
5: Send ðt1; t2; ctLÞ to node i;
6: end for
Nodei:RngQuery
1: ci 0;
2: a H1ðt1; ciÞ;
3: while findðaÞ 6¼ ? do
4: b findðaÞ;
5: r Irngi :getðH3ðt2; ciÞ � bÞ;
6: Parse r as rx EncðkR;RÞ, ry ctR;
7: ci þþ;
8: if OREcmpðctL; ctRÞ ¼ true then // Algorithm 5
9: Return rx to the client;
10: end if
11: a H1ðt1; ciÞ;
12: end while
14: // Note: we ignore the steps to fetch final results, which is

the same in Line 9 to 11 in Algorithm 2.

4.4 Batch Queries

EncKV’s rich query protocols via secondary attributes are
conducted in two phases. The first phase is to obtain the
encrypted record IDs from the nodes if the index entries on a
query attribute match the query condition. The second phase
is to fetch the result values of these matched records on a tar-
geted attribute. Such treatment will let the server nodes to
know the relations between index entries of different attrib-
utes and values of the same records (see formal analysis in
Section 5).

To reduce this leakage, one immediate improvement is to
conduct queries in two rounds of interaction in a batched
manner. We are aware that such treatment can be realized
via a dedicated query planner, which is also used in [22],
[24]. Based on the batch query mechanism, EncKV can fur-
ther obfuscate data correlations on different attributes.

4.5 Secure Update Operations

Our system supports two types of update operations when
new data records are added, i.e., the incremental update and
the bulk update. The bulk update is suitable for the case
when adding a large number of records to EncKV, such as

GUO ET AL.: ENABLING ENCRYPTED RICH QUERIES IN DISTRIBUTED KEY-VALUE STORES 1289

migrating an unencrypted database to EncKV. To achieve
this, the client may utilize the proposed index building func-
tions in Algorithm 1 and Algorithm 6 to generate encrypted
exact-match and range-match indexes respectively.

The incremental update is suitable for the case when data
records are occasionally inserted/updated into EncKV. To
update a record value, the client first removes the old value
and then inserts the new value to the KV store. This is done by
generating the update token li P ðkl; CvjjRÞ using the
update attribute Cv and record ID R. For the index update,
the procedure follows the same treatment as the record
update. The obsolete index entry will be removed by fetching
the matched entries on the old value vo via token to G1
ðke; CvjjvoÞ. After deletion, the client re-encrypts all the entries
and inserts them back. For the new entry, the index entries
that match the new value v will be fetched to get the maxi-
mum counter. Then the new LV pair is inserted via the incre-
mented counter.

During the update operation, server nodes will learn the
relations between newly inserted index entries and those que-
ried attributes (also known as update leakage [9], [31], [43]).
As acknowledged in prior dynamic SSE schemes [9], [10], we
consider this leakage as the cost pay for enabling update oper-
ations. To improve the security, a recent SSE schemewith for-
ward privacy [31] can readily be adapted to EncKV, since we
both employ the encrypted dictionary [10] for the index con-
struction. The idea is to use a one-way trapdoor permutation
to generate the newly inserted entries so that they are unlink-
able to previous query tokens. As a performance tradeoff, the
update and query throughput would downgrade due to the
computation of public key based trapdoor permutation, and
the client needs to store some state information to generate
new index entries. One recent work [33] achieves backward
privacy via a heavy primitive, i.e., puncturable encryption.
We will leave the design of efficient forward and backward
secure searchable encryption schemes as futurework.

4.6 System Scaling

Adding new node smoothly is a fundamental requirement for
distribution data stores to handle the rapidly increasing data
records. The native solution is to rebuild the index entries and
data records for the affected nodes at the client side. However,
this is not suitable for a large-scale dataset because the client
needs to download all the record entries on the affected nodes
before relocating them to the new one.

In this work, we propose to conduct the data relocation
gradually during the queries as introduced in Algorithm 8.
For each query, only the matched data records on the affected
nodeswill be relocated if their labels point to the newly added
node. The benefits are two-fold: (1) The movement of the
indexes can be achieved without interrupting the query ser-
vice. (2) The security will not be affected, because the relation
is still operated by the client.

4.6.1 Data Relocation

Recall that EncKV dispatches the encrypted LV pairs via the
consistent hashing algorithm. Therefore, when a node is
added, the client may locate its position on the updated ring
along with its neighbors. Namely, the preceding neighbor
node can directlymove the corresponding values to the newly

added nodewithout any extra overhead. For instance, assum-
ing a newly added node nodej is assigned to locate between
nodei and nodez where i; j and z are nodes’ positions on the
consistent hashing ring. First, nodei copies all the encrypted
pairs to nodej. As a result, both nodei and nodej contain the
same encrypted dataset which records IDsR 2 ½i; zÞ. To elimi-
nate the duplicated data, the client will sequentially remove
them on nodei during each query, as shown in Line 16 of
Algorithm 8.

Algorithm 8. AddNodes: Secure Data Relocation Protocol

Input: Private key ke; query token ðt1; t2Þ; query condition
attribute Cv; result value attribute Cr; new node nodej.

Output: Encrypted data hlj; vji and indexes fIexti ; Irngi g.
Nodei:Relocation
1: ci 0;
2: ai H1ðt1; ciÞ;
3: while findðaiÞ 6¼ ? do
4: bi findðaiÞ;
5: ifoperation is exact�match then
6: r Iexti :getðH2ðt2; ciÞ � biÞ;
7: else ifoperation is range�match then
8: r Irngi :getðH3ðt2; ciÞ � biÞ;
9: end if
10: ci þþ;
11: ai H1ðt1; ciÞ;
12: Return r to client for relocation;

Client
13: R getðkR; rÞ;
14: l P ðkl; CrjjRÞ;
15: while route(R)=jdo //j is new node’s ID
16: nodei:delðlÞ;
17: ifoperation is exact�match then
18: Iexti :delðaiÞ;
19: ðaext

j ;bext
j Þ Buildext;//Algorithm 1

20: else ifoperation is range�match then
21: Irngi :delðaiÞ;
22: ðarng

j ;brng
j Þ Buildrng;//Algorithm 6

23: end if
24: end while
25: end while
Nodej:Relocation

1: Get ðlj; vjÞ from nodei;// data relocation from nodei;

2: Iextj :putðaext
j ; bext

j Þ;
3: Irngj :putðarng

j ; brngj Þ;

4.6.2 Index Relocation

Regarding the encrypted index relocation, we propose to
conduct the index rebuilding procedure during the queries.
In particular, when the client obtains the record IDs in each
query, those IDs are used to trace the locations of encrypted
value via the updated consistent hashing ring. Then the cli-
ent rebuilds the updated indexes, and inserts them to the
newly added node as presented in Algorithm 8. Given
query tokens ðt1; t2Þ, the nodei locates all the matched index
entries via ai H1ðt1; ciÞ and returns r to the client for
index rebuilding via XORing operation. If the index reloca-
tion is the exact-match index, r is the encrypted record ID
R. Otherwise, it contains both the encrypted record ID R
and ORE ciphertext ctR for range-match index. Then, the

1290 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 6, JUNE 2019

nodei deletes the corresponding index entries if the hash
value of the record ID indicates the newly added node.
After that, the client rebuilds the index entries based on the
record ID R (and ctR for range-match index), and inserts
them to the newly added node nodej directly via the consis-
tent hashing ring.

5 SECURITY ANALYSIS

In this section, we perform a formal security analysis for
EncKV. EncKV randomly maps data records to encrypted LV
pairs to hide the relations of the underlying ciphertexts, and
each data value is encrypted via symmetric encryption with
semantic security. Therefore, it can effectively defend against
inference attacks [17], which rely on statistic information and
relations of encrypted data values.

On the other hand,we evaluate the security of secure exact-
match queries and range-match queries respectively. We first
define the leakage in EncKV’s query protocols, and quantify
its security guarantees following the primitives we adopted,
i.e., SSE [10] and ORE [13] respectively. In addition, we will
discuss our enhancedORE scheme on the protection against a
series of recent attacks using range query leakage.

5.1 Security on Exact-Match Queries

The exact-match index design is built on the framework of
SSE [8], which provisions the nodes a controlled capability to
return the encrypted results. Once the client uploads the
encrypted index to the server node, the index size will be
learned. During the query procedure, the access pattern and
search patternwill be revealed,where access pattern indicates
the accessed entries, and search pattern is the repeated query
tokens. Since our query protocol includes multiple column
attributes, the access pattern also contains the associations
between those columns. Following the security notion of SSE,
we first define the leakage functions in EncKV’s exact-match
queries as follows:

Lext1 ðCÞ ¼ ðfmign; hjaj; jbjiÞ;

where C is the secondary attribute set, n is the number of
nodes, mi is the size of exact-match index Iexti of node i, and
jaj; jbj are the index lengths of label and value.

Lext
2 ðvC; Cv; CrÞ ¼ ðfti1; ti2gn; ffha;bi; hl; v�igcignÞ;

where vC is the value of query condition, Cv is the column
attribute of vC and Cr is the result value’s attribute. fti1; ti2gn
are query tokens for n nodes, and fha;bi; hl; v�igci are
matched index entries and result set at each node.

Lext3 ðQÞ ¼ ðMq�q; Tv�!aÞ;
whereQ is q number of adaptive queries.Mq�q is a symmetric
bit matrix that traces the repeated queries. For i; j 2 ½1; q�, the
matrix element Mi;j and Mj;i are equal to 1 if the tokens
ti1 ¼ tj1. Otherwise, they are equal to 0. Tv�!a is an inverted list
to trace the accessed index entries [17]. For each posting list
v�jfa1; . . . ;aag in T , the associations between the matched
index entries and data values on different attributes are also
learned. Following the simulation-based security defini-
tion [8], [9], we give the formal security definition as follows:

Definition 1. Let Ext ¼ ðKGen;Buildext;QueryextÞ be our
scheme for secure exact-match query, and let Lext

1 , Lext
2 and

Lext3 be the leakage functions. Given a probabilistic polynomial
time (PPT) adversary A and a PPT simulator S, define the fol-
lowing probabilistic games RealAðkÞ and IdealA;SðkÞ:

RealAðkÞ: The client calls KGenð1kÞ to get a private keyK.
A selects a datasetD and asks the client to build fIext1 ; . . . ; Iextn g
via Buildext. Then A adaptively conducts a polynomial number
of q queries with the tokens and ciphertexts generated from the
client. Finally,A returns a bit as the output.

IdealA;SðkÞ: A selects D, and S builds fI 0ext1 ; . . . ; I 0extn g for
A based on Lext1 . Then A adaptively performs a polynomial
number of q queries. From Lext2 and Lext3 in each query, S gen-
erates the simulated tokens and ciphertexts, which are proc-
essed over fI 0ext1 ; . . . ; I 0extn g. Finally, A returns a bit as the
output.

Ext is adaptively secure with ðLext1 ;Lext2 ;Lext3 Þ if for all PPT
adversaries A, there exists a PPT simulator S such that:
Pr½RealAðkÞ ¼ 1� � Pr½IdealA;SðkÞ ¼ 1� 	 neglðkÞ, where
neglðkÞ is a negligible function in k.

Theorem 1. Ext is adaptively secure with ðLext1 , Lext
2 , Lext3 Þ

leakages under the random-oracle model if G1; G2; H1; H2 and
P are secure PRF.

Proof. The objective is to prove that the adversary A cannot
distinguish between the real index and the simulated one
as defined in Definition 1. We first define random oracles
fHG1;HG2;HH1;HH2;HPg.

From Lext
1 , the simulator S simulates the encrypted

exact-match indexes fI 0ext1 ; . . . ; I 0extn g for n nodes, which
have the same size as the real encrypted indexes. It con-
tains mi index entries, where each entry uses jaj-bit and
jbj-bit random string as a label-value pair.

When the first query sample ðvC;Cv;CrÞ is sent to node
i, S generates t01 ¼ HG1ðk0ejjCvjjvC jjiÞ and t02 ¼ HG2ðk0ejj
CvjjvC jjiÞ as simulated tokens, where k0e is a random string.
After that, a random oracle HH1 is operated in the way of
a0 ¼ HH1ðt01; ciÞ from 1 to ci to find the matched entries,
where ci is the number of matched index from Lext

2 . For
each accessed entries, another random oracleHH2 is oper-
ated to obtain R0� inside via computing R0� ¼ HH2ðt02;
ciÞ � b0.R0� can be derived from ð�;HRðk0Rjj�Þ �RÞ, where
HR is a random oracle, k0R and � are random strings, andR
is the record ID. Then, with a random string k0l, S simulates
l0 ¼ HP ðk0ljjCrjjRÞ, and generates random strings v�

0
as the

simulated value with the same length to the real one. And
fromLext

3 , S updatesM 0
1;1 ¼ 1 in a matrixM 0

q�q, and inserts
v�
0 ja0 for each v�

0
in the inverted list T 0

v�0!a0 .
In the subsequent jth queries (j 2 f2; qg), if the query

appears repeatedly, S will choose the same tokens simu-
lated before, and return the repeated matching results.
Meanwhile, it will update the corresponding element in
M 0

1;j and M 0
j;1 to be “1”. Otherwise, S will generate simu-

late tokens and operate random oracle to get the results
as shown in the first query procedure. Note that Tv�!a

from Lext
3 traces the repeated results queried from differ-

ent attributes, therefore all hl0; v�0 i appeared before can be
copied from T 0

v�0!a0 .
Due to the semantic security of secure PRF, A cannot

differentiate the simulated tokens and results from the
real tokens and results. tu

GUO ET AL.: ENABLING ENCRYPTED RICH QUERIES IN DISTRIBUTED KEY-VALUE STORES 1291

5.2 Security on Range-Match Queries

The range-match index is built on the ORE scheme proposed
in [13], which achieves semantic security. Further, we lever-
age random permutation and secure PRF to enhance the leak-
age profile of ORE ciphertexts. The resulting improvement is
that the order result and the position of the first different block
are protected. To integrate the ORE ciphertext into the local
index framework, we use SSE scheme as an overlay to protect
ORE ciphertexts in the encrypted indexes. In terms of quanti-
fied leakage,we provide the security definition as follows:

Lrng1 ðCÞ ¼ ðfmign; hjaj; jbjiÞ:
Where C is the secondary attribute set, n is the number of
data nodes and mi is the size of range index Irngi at node i.
Given an index entry, jaj; jbj are the bit lengths of the
encrypted label and value.

Lrng
2 ðvC; Cv; CrÞ ¼ ðfti1; ti2gn; ctL; ffha;bi; hl; v�igcignÞ;

where vC is the query value on column Cv and Cr is the col-
umn of query result. fti1; ti2gn are query tokens for n nodes
and ctL is the ORE tokens. fha;bi; hl; v�igci are the matched
index entries and the corresponding result values.

Lrng
3 ðvC; cmpÞ ¼ ðffbdifgcignÞ;

where bdif is the permuted block that differs.

Lrng
4 ðQÞ ¼ ðMq�q; Tv�!aÞ;

whereQ is q number of range-match queries.Mq�q is the sym-
metric bit matrix that maintains the repeated queries. Each
element in the Mq�q is initialized as 0. For i; j 2 ½1; q�, the ele-
ments of matrix Mi;j and Mj;i are equal to 1 if two tokens
ti1 ¼ tj1. Tv�!a is an inverted list to trace the associations
between the accessed index entries on different attributes and
the corresponding encrypted result, as defined in exact-match
queries. Given the above definitions of adversary views, the
security definition of range-match queries is given as follows:

Definition 2. Let Rng ¼ ðKGen;Buildrng;QueryrngÞ be our
scheme for secure range-match query, and let Lrng

1 , Lrng
2 , Lrng

3 ,
and Lrng

4 be the leakage functions. Given a PPT adversary A
and a PPT simulator S, define the following probabilistic
experiments RealAðkÞ and IdealA;SðkÞ:

RealAðkÞ: The client calls KGenð1kÞ to get a private keyK.
A selects a datasetD and asks the client to build fIrng1 ; . . . ; Irngn g
via Buildrng. Then A conducts a polynomial number of q queries
with the tokens and ciphertexts generated from the client. Finally,
A returns a bit as the output.

IdealA;SðkÞ: A selectsD, and S builds fI 0rng1 ; . . . ; I 0rngn g for
A based on Lrng

1 . Then A performs a polynomial number of
non-adaptive q queries. From Lrng2 , Lrng

3 and Lrng
4 in each

query, S generates the simulated tokens and ciphertexts.
Finally, A returns a bit as the output.

Rng is non-adaptively secure with ðLrng1 , Lrng
2 , Lrng

3 , Lrng
4 Þ

if for all PPT adversaries A, there exists a simulator S such
that:Pr½RealAðkÞ ¼ 1� � Pr½IdealA;SðkÞ ¼ 1� 	 neglðkÞ,
where neglðkÞ is a negligible function in k.

Theorem 2. Rng is non-adaptively secure with ðLrng1 , Lrng
2 ,

Lrng
3 , Lrng

4 Þ if G1; G2; H1; H3; P; F1; F2; F3 are secure PRF.

Proof. The objective is to prove that the adversary A cannot
distinguish between the real index and the simulated one
as defined in Definition 2. We first define random oracles
fHG1;HG2;HH1;HF1;HF2;HF3;HOg.
S iterates over q queries all at once, and generates ran-

dom strings fk0r; k0o; k0R; k01; k02; k03; k0lg. For the query ðcmp;
vC;Cv; CrÞ (cmp 2 f< ; > g) to the node i, S generates
t01 ¼ HG1ðk0r; CvjjiÞ and t02 ¼ HG2ðk0r; CvjjiÞ as simulated
tokens. Regarding the ORE query token ct0L, S first splits
vC into b blocks, and generates ct0Lji = fHF1ðk01; vji�1jj ~v0jiÞ;
q0ig as simulated tokens, where ~v0ji ¼ pðHF2ðk02; vji�1Þ; vjiÞ
and q0i ¼ HF3ðk03; cmpjjCvjj ~v0jiÞ. From Lrng

2 , S computes a0 ¼
HH1ðt01; ciÞ from 0 to ci, where ci is the number of matched
entries. To simulate an ORE ciphertext ct0R on Cv, S first
obtains bdif from Lrng

3 , which is the first permuted block
that differ between ctL and ctR. Then S simulates 2d � 1
sub blocks in each block. For the block bdif , S simulates
z0 ¼ q0i þHOðHF1ðk01; vji�1jj ~v0jiÞ; g 0Þ as the matched sub
block, where g 0 is a random string. After that, it generates
random strings for the rest of blocks.

To simulate index entries, S computes b0 ¼ HH3ðt02; ciÞ
�ðct0RjjR0�Þ, where R0� isHRðk0Rjj��RÞ. Then, with a ran-
dom string k0l, S simulates l0 ¼ HP ðk0l; CrjjRÞ, and gener-
ates random strings v�

0
as the simulated value with the

same length to the real result. For repeated queries, S can
return corresponding tokens and ciphertexts from Lrng

4

just like mentioned in exact-match queries. After all
queries are simulated, S inserts mi random index entries
to I 0rngi , wheremi is obtained from Lrng

1 .
Due to the semantic security of secure PRF, A cannot

differentiate the simulated tokens and results from the
real tokens and results. tu

5.3 Correctness and Security Discussion on ORE

Our ORE scheme is built on top of the Lewi and Wu’s
scheme [13]. We customize it in the following two ways.
First, the order information is fully protected by secretly
embedding it in each ORE ciphertext block via PRF with the
attribute and block index. Second, the random permutation
technique is carefully utilized to hide the location of the first
different block of two ciphertexts during the comparison.
We will later show that the above two improvements
hide the information against attackers to launch attacks on
secure range queries. Next, we perform correctness analy-
sis of the proposed ORE scheme, and discuss how our
ORE scheme can defend against existing leakage-abuse
attacks [12], [17], [20], [39], [44], [45].

5.3.1 Correctness Analysis

To prove that the proposed ORE scheme returns correct
comparison results, we show that there exists one and only
one bit block matched during the comparison between the
ORE token and ORE ciphertext. Accordingly, we present
the following theorem:

Theorem 3. Given a query token m1 on the attribute C and the
ORE ciphertext m2 with b blocks with the length of d bits, and
the matching condition ~� f> ; < g, if m1 ~� m2 stands,
then there exists one and only one matched sub-block mj

2ji,
where i 2 f1; bg and j 2 f1; 2d � 1g.

1292 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 6, JUNE 2019

Proof. Recall that the sub-block in an ORE ciphertext m2 is
encrypted as F3ðk3; cmpjjCjjjÞ þQðF1ðk1;m2ji�1jjjÞ; gÞ,
where cmp 2 f> ; < g, C is the attribute, j 2 f2d � 1g is the
unique sub-index, andm2ji�1 is the prefix value. Therefore,
if a matched sub-block is found, m1 and m2 must coincide
with all the following conditions: (1) the query condition
and attribute should be the same. (2) the sub-index j should
be the same. (3) the prefix values should be the same, i.e.,
m1ji�1 ¼ mj

2ji�1.
Assume that m1js and mj

2js match the query condition,

where s 2 f1; bg, and there exists another entry mp
2jl in m2

that matches the query condition. In other words, mj
2js ¼

mp
2jl, where s 6¼ l or j 6¼ p. For the case s 6¼ l, it means that

there exist two matched entries in different blocks. Recall
that thematched blocks should have the same prefix value.
If the two entries are in two different blocks, the bit length
of their prefix must be different. Thus, this case is untena-
ble. For the case j 6¼ p, it means that the matched entries
are in two different sub blocks. As mentioned, the sub-
index in a specific block is unique. Namely, mj

2js ¼ mp
2jl if

and only if j ¼ p. Thus, there exists only one encrypted
entrymatched the query condition. tu

5.3.2 More Discussion

As analyzed in Section 5.2, our range-match index based on
the newORE scheme ensures strong protection against attack-
ers with snapshot access to the encrypted database. In this
subsection, we generalize the existing attacks on OPE/ORE
schemes, and discuss howour enhancedOREdesign is secure
against these attacks.

Against Sorting Attack. In [17], Naveed et al. propose a con-
ceptually simple approach to exploit OPE-encrypted data-
bases. Particularly, the sorting attack exploits the similarity of
the order information between the OPE ciphertexts and a
publicly available dataset to map; it maps each well-ordered
OPE ciphertext to the element of the plaintext space with the
same ranks. Later, Grubbs et al. [20] devise a new leakage-
abuse attack that abstracts the sorting attack as a non-crossing
bipartite matching problem to improve attack accuracy. We
are aware that all these sorting attacks are only applicable to
deterministic OPE schemeswith the rank leakage.

In contrast, the order information in our scheme is trans-
formed into tokens, and is securely embedded in the ORE
ciphertext block with a random nonce. After comparison,
no plaintext order information is revealed. Therefore, our
ORE design can effectively defend against sorting attacks.

AgainstMulti-ColumnAttack. In [12], Durak et al. extend the
above sorting attack by using range queries among different
data attributes. This multi-column attack aims to exploit the
inter-column correlations to reveal more information about
the underlying values. To resist this attack, our ORE construc-
tion embeds the column attribute with different comparison
results into random masks in ORE ciphertext block encryp-
tion. Thus, the attacker will learn neither the order of the
underlying values on a column attribute, norwhether two dif-
ferent queries are conducted in the same order condition.
Besides, the query tokens for the same column attribute are
different at different data nodes. Thus, this approach can fur-
ther hide the inter-column correlations. On the other hand,
EncKV utilizes an interactive batch query mechanism to

further hide the associations across data values on different
attributes. During the range query procedure, each node only
learns the matched value associated to the same column attri-
bute, and it cannot exploit the associations between values in
different attributes of a data record, thereby effectively
addressing inference attacks. Thus, themulti-column attack is
not applicable to our range-match query protocol.

Against Access Pattern Attack. In [12], Durak et al. also pro-
pose a specific ORE attack on Chenette et al.’s scheme [18].
As mentioned, the comparison result in [18] leaks the order/
equality information, as well as the position of the first bit
that differs between two ciphertexts. Thus, the attacker can
directly learn the value of each different bit after multiple
comparisons. We note that this attack can hardly to deter-
mine the value in our ORE construction, because values are
encrypted into ciphertext blocks. Meanwhile, since both ORE
ciphertext blocks and token blocks are randomly shuffled
before uploading to the server node, the attacker cannot learn
the original location of these matched blocks. As a result, our
newORE construction prevents the access pattern attack.

Against Reconstruction Attack. In [44], Kellaris et al. intro-
duce a generic reconstruction attack on encrypted databases
using range query leakage, such as access pattern and com-
munication volume. Essentially, the attacker first conducts
enough well-ordered range queries and then determines the
order relations of encrypted data by observing the distribu-
tion of query results. Thus, this attack can recover the cipher-
texts without knowing the orders of ciphertexts and queries.
We note that this attack highly relies on prior knowledge of
query distributions, whichmakes it difficult to be launched in
our distributed data store. Because the attacker needs to com-
promise all the server nodes in EncKV to obtain the full query
results. Besides, adding dummy records can mitigate the
recovery rate of this attack. Recently, Lacharite and Minaud
extend the above attack and show that it can recover the
ciphertext without prior knowledge of the query distribution
when the dataset is dense [45]. Likewise, onemay always add
dummy records to improve security. The authors also pro-
pose another reconstruction attack approach without the
assumption of the dense condition. But this attack still relies
on the auxiliary information of order results to launch the
attack,which is protected in our ORE scheme.

6 EXPERIMENTAL EVALUATION

6.1 Prototype Implementation

We implement the proposed system prototype2 in C++ and
perform the evaluation on Amazon Web Services. We create
AWS “M4-xlarge” instances with 4 vcores (2.4 GHz Intel
Xeon1 E5-2676 v3 CPU), 40 GB SSD and 16 GB RAM. In this
experiment, we generate a Redis (v3.2.0) cluster that consists
of 9 AWS “M4-xlarge” instances as the data nodes of the KV
store and 4 AWS “M4-xlarge” instances as the clients of data
applications. All of these instances are installed on Ubuntu
server 14.04. Our system uses Apache Thrift (v0.9.2) to imple-
ment the remote procedure call (RPC) between the clients
and servers.

For cryptographic primitives, we use OpenSSL (v1.01f) to
implement the symmetric encryption via AES-128 and the

2. EncKV: An Encrypted Key-value Store with Rich Queries: online
at https://github.com/CongGroup/ASIACCS-17.

GUO ET AL.: ENABLING ENCRYPTED RICH QUERIES IN DISTRIBUTED KEY-VALUE STORES 1293

https://github.com/CongGroup/ASIACCS-17

pseudo-random function via HMAC-256. EncKV’s encrypted
exact-match and range-match indexes are integrated into the
implementation3 of the distributed local index frame-
work [16]. The proposed ORE design builds on top of the
implementation4 of the ORE scheme [13]. In this evaluation,
we evaluate 2-bit, 4-bit and 8-bit parameter settings as the
block size for ORE encryption. In total, EncKV’s implementa-
tion consists of 17083 lines of C++ code (which includes 2508
lines for the enhancedORE scheme).

6.2 Performance Evaluation

Our evaluation targets on the encrypted indexes, query per-
formance, system scalability, and bandwidth overhead.

Index Evaluation. Table 1 presents the index space con-
sumption of the exact-match index and range-match index
respectively. For the exact-match index, each entry is gener-
ated by using AES-128 encryption algorithm. Thus, the size of
each index pair ha;bi is 256 bits. As we can see, the size of
exact-match indexes grows linearly from 0.012 GB to 0.024 GB
as the number of indexed values increases to 800K. Regarding
the space consumption of the range-match indexes, each
index entry additionally contains an ORE ciphertext ctR for
the range comparison. As the construction of an ORE cipher-
text is encrypted using blocks, the size of ciphertext depends
on the bit length of blocks d. Specifically, each block ciphertext
contains 2d � 1 sub blocks, where each is 64 bits (truncated
from AES cipher output). With a 128-bit nonce, encrypting a
32-bit value requires 128þ 64� ð2d � 1Þ � 32=d bits. Table 1
shows that the size of range-match index grows quickly in the
block size d. Asmentioned in [13], there is a tradeoff in cipher-
text space and security. The larger block size has stronger
security while introducing more space cost. In Table 2, we
compare existing OPE/ORE schemes [11], [13], [18] with our
ORE scheme by generating ORE ciphertexts locally without
column attributes. It shows that the encryption time cost of
our ORE scheme is significantly faster than the OPE
scheme [11]. Specifically, generating an ORE ciphertext with
4-bit design only requires 81.68 ms, which is almost 44 times
faster compared to the OPE scheme. For order comparison,
our scheme introduces additional computation cost due to
the block permutation. Nonetheless, the average processing
time of the ORE comparison is still less than 0.97 ms, which is
within an acceptable level.

Figs. 3a and 3b present the time cost of building the
encrypted indexes at the client side. Both time costs increase
linearly with the growing number of indexed values. Building
the range-match index takes more time because it needs to
construct ORE ciphertexts. Fig. 3b also compares the time cost

of range-match index in different block sizes of the ORE
encryption scheme. The result shows that the 8-bit OREdesign
slowly increases the building time by almost 32 percent, when
there are 160K indexed values. In addition, we compare the
initialization time cost of our 8-bit index design with our con-
ference version (denoted as YGWWLJ17). Since each ORE
ciphertext block should be generated independently with ran-
dom permutation, it introduces additional time cost for build-
ing the encrypted range-match index. As we can see from the
Fig. 3b, although the building time is roughly 5 times higher
compared to YGWWLJ17, it is a one-time setup cost, and this
can further be improved via parallelization.

Query Evaluation. To assess the efficiency and scalability
of EncKV, we evaluate the query performance using batch
queries. These queries are generated by one target attribute
using exact-match and range-match query protocols. In this
experiment, we pre-loaded the database with 160K data
records to evaluate the practicality of EncKV.

Fig. 3c compares the throughput of exact-match index
with a plaintext Redis index, when varying the number of
duplicates per value of the indexed attribute. In our design,
each node increments a counter to find all matched records.
Then the client expands these matched records to relevant
tokens for nodes to fetch their underlying encrypted values.
Thus, the number of tokens corresponding to a query value
increases with the number of duplicates. This treatment
hides the relations between data values on different attrib-
utes, but it introduces a significant part of the query time
cost. In contrast, a redis index maps duplicates to a single
reference and locates them all in a scan. Overall, our evalua-
tion shows that both exact-match index and Redis index
decrease in similar proportions. The throughput of EncKV
decreases from about 93.5K to 21.9K as the number of dupli-
cate values grows from 10 to 100. when the whole column
values are unique, the query throughput of exact-match
queries can achieve up to 200K entries per second, while
that of Redis is 277K entries per second.

Regarding the throughput of range-match query, we
compare a plaintext version with different types of range-
match index scheme as presented in Fig. 3d. The through-
put of range-match query remains stable because the query
time complexity is O(n) (n is the number of records at a cer-
tain attribute). Specifically, the encrypted range-match
index incurs an overall throughput loss of approximately
3:6� in the worst case. The overhead comes from the cost of
blocks matching and cryptographic operations during the
ORE comparison. Furthermore, we measure the ORE com-
parison overhead via varying the block size of the ORE
encryption scheme. An interesting result shows that 4-bit
ORE scheme achieves a better efficiency than other ORE
schemes. Specifically, the throughput with 4-bit ORE
scheme is about 37.5 percent higher than that of 8-bit design,

TABLE 1
Space Consumption of Encrypted Index

Values Exact-match 2 bit block 4 bit block 8 bit block

400K 0.012(GB) 0.155(GB) 0.370(GB) 3.052(GB)
600K 0.018(GB) 0.232(GB) 0.554(GB) 4.578(GB)
800K 0.024(GB) 0.310(GB) 0.739(GB) 6.104(GB)

TABLE 2
ORE Performance Comparison

OPE/ORE Schemes Block size Encryption Comparison

Boldyreva OPE [11] -
 3601.82 m s
 0.36 m s
Chenette ORE [18] 1 bit
 2.06 m s
 0.48 m s
Lewi ORE [13] 4 bits
 54.48 m s
 0.38 m s
Our ORE scheme 4 bits
 81.68 m s
 0.97 m s

3. An encrypted, distributed, and searchable key-value store: online
at https://github.com/CongGroup/BlindDB.

4. An implementation of order-revealing encryption: online at
https://github.com/kevinlewi/fastore.

1294 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 6, JUNE 2019

https://github.com/CongGroup/BlindDB
https://github.com/kevinlewi/fastore

which is around 151K entries per second. On the one hand,
the ORE ciphertext size increases by 8:4� from 4-bit design to
8-bit design when encrypting 32 bits value. Reading a large
size ciphertext introduces a significant overhead. On the other
hand, the comparison complexity for a d-bit ORE design is
ð32=dÞ2. Thus, the throughput of 4-bit ORE design is slightly
higher than 2-bit design. Overall, there is a tradeoff in data
security and query performance. The larger block size has
stronger security while incurring more performance penalty.
Meanwhile, the result shows that the time cost for 8-bit ORE
comparison ranges from around 9:46s to 9:77s. This evalua-
tion result confirms that our enhanced ORE design can sup-
port secure range query efficiently.

We further evaluate the query latency of exact-match and
range-match queries respectively. In Fig. 3e, we can find that
as the number of nodes increases, the latency of exact-match
queries that returns a fixed number of results is reduced dra-
matically in similar proportions. Specifically, when the num-
ber of matched records is 32K, the query latencywith 36 cores
(i.e, 9 nodes) is around 1.45s, which is roughly one-third of
the latency with 12 cores. For the evaluation of range query
latency, we pre-inserted 160K data records with 8-bit ORE
design. Fig. 3g shows that the result follows a similar down-
ward trend as the number of nodes increases. The latency of
range-match queries with 32 cores is roughly half of the
latency with 16 cores for returning 32K matched encrypted
values. The results confirm that EncKV benefits from the
encrypted local index framework and can effectively handle
queries in parallel. Fig. 3gmeasures the performance compar-
ison between our new range-match index design and previ-
ous design. Kindly recall that in our conference version, the
order comparison is conducted with the block sequence.
Thus, comparedwith the previous design, our newORE com-
parison protocol on shuffled block is slower. Nonetheless, as
shown in Fig. 3g, processing 8K matched records with 36
cores instance requires just 13.3s, which is modest for com-
mon data store applications. In addition, in exchange, our
new design leaks strictly less information than the state-of-
the-art OPE/ORE schemes as discussed previously. Accord-
ing to the evaluation result, our new index design in EncKV is
shown to be still efficientwhile improving the security.

To gain a deeper understanding of EncKV’s query perfor-
mance, we compare the exact-match query performance with
an existing work [16] (denoted as YWWQL16) using the same
set of queries, as presented in Fig. 3f. Intuitively, our design
achieves optimal time complexity that scales in the number of
matched results. In contrast, YWWQL16 performs token
matching by enumerating all values on an attribute. The
query time ofYWWQL16 slowly improveswith the result size
because the number of tokens increases with the returned
records. And the computation of generating a token is a con-
stant-time operation. When the result size is 10K, the query
time of EncKV is around 0.75s, which is almost 10� faster
than the YWWQL16. Further, when all records are returned,
the time cost of exact-match query is the same in bothworks.

In this experiment, we also evaluate the incremental scal-
ability of EncKV by measuring the time cost for index entry
insertion. As shown in Fig. 3h, it will not introduce much
overhead compared to the case without indexing. Note that
the time cost includes the network transmission for each new
indexed value, and thus it is much higher than the index
building cost (as shown in Figs. 3a and 3b). When the num-
ber of newly added values is 10K, it takes 5.86s to index
entries for exact-match indexes, of which 48.6 percent due to
the network transmission.

Bandwidth Evaluation. Recall that EncKV requires the cli-
ent to generate query tokens for each node. To assess the
bandwidth overhead, Fig. 4 shows the ratio between the
query token size and result size. As shown in Fig. 4a, the ratio
of exact-match query decreases gradually with the increased

Fig. 3. Evaluation of the system performance.

Fig. 4. Query token bandwidth overhead.

GUO ET AL.: ENABLING ENCRYPTED RICH QUERIES IN DISTRIBUTED KEY-VALUE STORES 1295

size of results. Specifically, the ratio for 30 nodes decreases
from around 0.6 to 0.15 percent when the number of result
values increases from 10K to 40K. Meanwhile, the result
shows that the increasing number of nodes can render a rise
in the bandwidth. The ratio of 10K result size increases from
about 0.2 to 1 percent as the number of nodes increases to 50.
Likewise, Fig. 4b shows that the ratio of range-match queries
follows a similar downward trend as the number of result
size increases. But the corresponding ratio is higher than the
exact-match queries because the ORE token ctL enlarges the
size of the query token. As shown, the ratio for 50 nodes
reaches around 5 percent when the number of result size is
10K. Nevertheless, the bandwidth overhead of query tokens
is negligible to the size of results in our experiment.

7 CONCLUSION

EncKV is a functionally rich key-value store that can handle
large volumes of encrypted data records with guaranteed
data protection. It leverages the latest practical primitives for
searching over encrypted data (i.e., SSE and ORE) and pro-
vides encrypted local indexes to support exact-match and
range-match queries via secondary attributes of data records.
EncKV’s prototype is deployed on a Redis cluster. The exten-
sive experiments for performance evaluation confirm that it
preserves advantages in existing distributed data stores such
as high throughput and linear scalability. As future work, we
plan to explore advanced encryption techniques to support
other rich queries, such as Boolean search and Join search.
Meanwhile, we leave how to extend EncKV to support a
multi-client setting as our futurework.

ACKNOWLEDGMENTS

This work was supported by the China National Science and
Technology Major Project Grant No. 2016YFB0800804, the
National Natural Science Foundation of China under Project
61732022, 61572412 and 61672195, and the Research Grants
Council of Hong Kong under Project CityU 11204215, CityU
11276816, CityU 11212717, and CityU C1008-16G, the Oceania
Cyber Security Centre POC scheme, and an AWS in Educa-
tion Research Grant award. A preliminary version [1] of this
paper was presented at the 12th ACM Asia Conference on
Computer and Communications Security (ASIACCS’17).

REFERENCES

[1] X. Yuan, Y. Guo, X. Wang, C. Wang, B. Li, and X. Jia, “Enckv: An
encrypted key-value store with rich queries,” in Proc. ACM Asia
Conf. Comput. Commun. Security, 2017, pp. 423–435.

[2] Redis, “An advanced key-value cache and store,” 2015. [Online].
Available: http://redis.io/

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels, “Dynamo: Amazon’s highly available key-value
store,” ACM SIGOPS Operating Syst. Rev., vol. 41, no. 6,
pp. 205–220, 2007.

[4] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee,
B. Montazeri, D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, et al.,
“The ramcloud storage system,” ACM Trans. Comput. Syst.,
vol. 33, no. 3, 2015, Art. no. 7.

[5] FoundationDB, “FoundationDB: Data Modeling,” [Online].
Available: http://www.odbms.org/wp-content/uploads/2013/
11/data-modeling.pdf

[6] A. Kejriwal, A. Gopalan, A. Gupta, Z. Jia, S. Yang, and J. Ousterhout,
“Slik: Scalable low-latency indexes for a key-value store,” in Proc.
USENIXAnnu. Tech. Conf., 2016, pp. 57–70.

[7] Information is Beautiful, “World’s biggest data breaches,” 2016.
[Online]. Available: http://www.informationisbeautiful.net/
visualizations/worlds-biggest-dat a-breaches-hacks/

[8] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient con-
structions,” in Proc. 13th ACMConf. Comput. Commun. Security, 2006,
pp. 79–88.

[9] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proc. ACM Conf. Comput. Commun.
Security, 2012, pp. 965–976.

[10] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner, “Dynamic searchable encryption in very large databases:
Data structures and implementation,” in Proc. Netw. Distrib. Syst.
Security Symp., 2014, pp. 23–26.

[11] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-
preserving symmetric encryption,” in Proc. Annu. Int. Conf. Theory
Appl. Cryptographic Techn., 2009, pp. 224–241.

[12] F. B. Durak, T. M. DuBuisson, and D. Cash, “What else is revealed
by order-revealing encryption?” in Proc. ACM ACM SIGSAC Conf.
Comput. Commun. Security, 2016, pp. 1155–1166.

[13] K. Lewi and D. J. Wu, “Order-revealing encryption: New
constructions, applications, and lower bounds,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Security, 2016, pp. 1167–1178.

[14] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan,
“Cryptdb: Protecting confidentiality with encrypted query proc-
essing,” in Proc. ACM 23rd ACM Symp. Operating Syst. Principles,
2011, pp. 85–100.

[15] V. Pappas, B. Vo, F. Krell, S. Choi, V. Kolesnikov, A. Keromytis,
and T. Malkin, “Blind seer: A scalable private DBMS,” in Proc.
IEEE Symp. Security Privacy, 2014, pp. 359–374.

[16] X. Yuan, X. Wang, C. Wang, C. Qian, and J. Lin, “Building an
encrypted, distributed, and searchable key-value store,” in Proc.
11th ACM Asia Conf. Comput. Commun. Security, 2016, pp. 547–558.

[17] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on
property-preserving encrypted databases,” in Proc. ACM 22nd
ACM SIGSAC Conf. Comput. Commun. Security, 2015, pp. 644–655.

[18] N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu, “Practical order-
revealing encryption with limited leakage,” in Proc. Int. Conf. Fast
Softw. Encryption, 2016, pp. 474–493.

[19] B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin,
V. Gadepally, R. Shay, J. D. Mitchell, and R. K. Cunningham,
“Sok: Cryptographically protected database search,” in Proc. IEEE
Symp. Security Privacy, 2017, pp. 172–191.

[20] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Risten-
part, “Leakage-abuse attacks against order-revealing encryption,” in
Proc. IEEE Symp. Security Privacy, 2017, pp. 655–672.

[21] D. Cash, F.-H. Liu, A. O’Neill, and C. Zhang, “Reducing the leakage
in practical order-revealing encryption,” Cryptology ePrint Archive,
Report 2016/661, 2016. [Online]. Available: http//eprint.iacr.org/
2016/661

[22] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing
analytical queries over encrypted data,” in Proc. VLDB Endowment,
vol. 6, pp. 289–300, 2013.

[23] H. Shafagh, A. Hithnawi, A. Droescher, S. Duquennoy, and W. Hu,
“Talos: Encrypted query processing for the internet of things,” in
Proc. 13th ACM Conf. Embedded Networked Sensor Syst., 2015,
pp. 197–210.

[24] R. Poddar,T. Boelter, and R.A. Popa, “Arx: A strongly encrypted
database system,” Cryptology ePrint Archive, Report 2016/591,
2016. [Online]. Available: http//eprint.iacr.org/2016/591

[25] A. Papadimitriou, R. Bhagwan, N. Chandran, R. Ramjee, A.
Haeberlen, H. Singh, A. Modi, and S. Badrinarayanan, “Big data
analytics over encrypted datasets with seabed,” in Proc. USENIX
Symp.Operating Syst. Design Implementation, 2016, pp. 587–602.

[26] S. Bajaj and R. Sion, “Trusteddb: A trusted hardware based
database with privacy and data confidentiality,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2011, pp. 205–216.

[27] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich, “VC3: Trustworthy data
analytics in the cloud using SGX,” in Proc. IEEE Symp. Security
Privacy, 2015, pp. 38–54.

[28] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications
from an untrusted cloud with haven,” in Proc. USENIX Symp.
Operating Syst. Design Implementation, 2014, pp. 267–283.

[29] C. Priebe, K. Vaswani, and M. Costa, “Enclavedb: A secure
database using SGX,” in Proc. IEEE Symp. Security Privacy, 2018,
pp. 264–278.

1296 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 6, JUNE 2019

http://redis.io/
http://www.odbms.org/wp-content/uploads/2013/11/data-modeling.pdf
http://www.odbms.org/wp-content/uploads/2013/11/data-modeling.pdf
http://www.informationisbeautiful.net/visualizations/worlds-biggest-dat a-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-dat a-breaches-hacks/
http//eprint.iacr.org/2016/661
http//eprint.iacr.org/2016/661
http//eprint.iacr.org/2016/591

[30] Q. Wang, M. He, M. Du, S. S. M. Chow, R. W. F. Lai, and Q. Zou,
“Searchable encryption over feature-rich data,” IEEE Trans.
Depend. Secure Comput., vol. 15, no. 3, pp. 496–510, May/Jun. 2018.

[31] R. Bost, “Sophos - forward secure searchable encryption,” in Proc.
ACM Conf. Comput. Commun. Security, 2016, pp. 1143–1154.

[32] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H. Kim, “Forward
secure dynamic searchable symmetric encryption with efficient
updates,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security,
2018, pp. 1449–1463.

[33] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward
private searchable encryption from constrained cryptographic
primitives,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security,
2017, pp. 1465–1482.

[34] S.-F. Sun, X. Yuan, J. Liu, R. Steinfeld,A. Sakzad, V. Vo, and S.Nepal,
“Practical backward-secure searchable encryption from symmetric
puncturable encryption,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Security, 2018, pp. 763–780.

[35] R. A. Popa, F. H. Li, and N. Zeldovich, “An ideal-security protocol
for order-preserving encoding,” in Proc. IEEE Symp. Security
Privacy, 2013, pp. 463–477.

[36] F. Kerschbaum, “Frequency-hiding order-preserving encryption,”
in Proc. ACM 22nd SIGSAC Conf. Comput. Commun. Security, 2015,
pp. 656–667.

[37] D. S. Roche, D. Apon, S. G. Choi, and A. Yerukhimovich, “Pope:
Partial order preserving encoding,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Security, 2016, pp. 1131–1142.

[38] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse
attacks against searchable encryption,” in Proc. ACM Conf. Comput.
Commun. Security, 2015, pp. 668–679.

[39] P. Grubbs, T. Ristenpart, and V. Shmatikov, “Why your encrypted
database is not secure,” in Proc. ACM 16th Workshop Hot Topics
Operating Syst., 2017, pp. 162–168.

[40] P. Grubbs, R. McPherson, and M. Naveed, “Breaking web applica-
tions built on top of encrypted data,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Security, 2016, pp. 1353–1364.

[41] Y. Zhang, J. Katz, and C. Papamanthou, “Integridb: Verifiable
SQL for outsourced databases,” in Proc. ACM 22nd ACM SIGSAC
Conf. Comput. Commun. Security, 2015, pp. 1480–1491.

[42] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and
J. Zimmerman, “Semantically secure order-revealing encryption:
Multi-input functional encryption without obfuscation,” in
Proc. Annu. Int. Conf. Theory Appl. Cryptographic Techn., 2015,
pp. 563–594.

[43] M. Du, Q.Wang,M. He, and J.Weng, “Privacy-preserving indexing
and query processing for secure dynamic cloud storage,” IEEE
Trans. Inf. Forensics Security, vol. 13, no. 9, pp. 2320–2332, Sep. 2018.

[44] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic attacks
on secure outsourced databases,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Security, 2016, pp. 1329–1340.

[45] M.-S. Lacharit, B. Minaud, and K. G. Paterson, “Improved recon-
struction attacks on encrypted data using range query leakage,”
in Proc. IEEE S&P, 2018, pp. 297–314.

Yu Guo received the BE degree in software engi-
neering from Northeastern University, in 2013,
and the MS degree in electronic commerce from
the City University of Hong Kong, in 2014. He is
currently working toward the PhD degree with the
Department of Computer Science, City University
of Hong Kong. His research interests include
cloud computing security, searchable encryption,
and privacy-preserving data processing.

Xingliang Yuan received the BS degree in elec-
trical engineering from the Nanjing University of
Posts and Telecommunications, in 2008, the MS
degree in electrical engineering from the Illinois
Institute of Technology, in 2009, and the PhD
degree in computer science from the City Univer-
sity of Hong Kong, in 2016. He is a lecturer
with the the Faculty of Information Technology,
Monash University, Australia. His research inter-
ests include cloud security, privacy-aware com-
puting, and secure networked systems.

Xinyu Wang received the BE degree from East
China Jiaotong University, in 2011. He is cur-
rently working toward the PhD degree with the
Department of Computer Science, City University
of Hong Kong. He worked for Tencent as a soft-
ware engineer from 2011 to 2013. His research
interests include cloud computing, network secu-
rity, and big data.

Cong Wang (SM’17) received the BE degree in
electronic information engineering and the ME
degree in communication and information system
from Wuhan University, China, and the PhD
degree in electrical and computer engineering
from the Illinois Institute of Technology. He is cur-
rently an associate professor with the Depart-
ment of Computer Science, City University of
Hong Kong. His research has been supported by
multiple government research fund agencies,
including the National Natural Science Founda-

tion of China, the Hong Kong Research Grants Council, and the
Hong Kong Innovation and Technology Commission. His current
research interests include data and computation outsourcing security in
the context of cloud computing, network security in emerging Internet
architecture, multimedia security and its applications, and privacy-
enhancing technologies in the context of big data and IoT. He received
the Presidents Award from the City University of Hong Kong in 2016. He
was a co- recipient of the Best Student Paper Award at CHINACOM
2009, the IEEE MSN 2015, and the IEEE ICDCS 2017. He has been
serving as the TPC co-chairs for a number of IEEE conferences/work-
shops. He is a member of the ACM. He is a senior member of the IEEE.

Baochun Li (F’15) received the BEngr degree
from the Department of Computer Science and
Technology, Tsinghua University, China, in 1995,
and the MS and PhD degrees from the Depart-
ment of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, in 1997 and 2000,
respectively. Since 2000, he has been with the
Department of Electrical and Computer Engineer-
ing, University of Toronto, where he is currently a
professor. He holds the Bell Canada Endowed
chair in computer engineering since August 2005.

His research interests include cloud computing, multimedia systems,
applications of network coding, and wireless networks. He was the recipi-
ent of the IEEE Communications Society Leonard G. Abraham Award in
the Field of Communications Systems in 2000, the Multimedia Communi-
cations Best Paper Award from the IEEE Communications Society in
2009, and the University of Toronto McLean Award in 2009. He is a mem-
ber of ACM and a fellow of the IEEE.

Xiaohua Jia (F’13) received the BSc and MEng
degrees from the University of Science and Tech-
nology of China, in 1984 and 1987, respectively,
and the DSc degree in information science from
the University of Tokyo, in 1991. He is currently
the chair professor with the Department of Com-
puter Science, City University of Hong Kong. His
research interests include cloud computing and
distributed systems, computer networks, wireless
sensor networks and mobile wireless networks.
He is an editor of the IEEE Transactions on Paral-

lel and Distributed Systems (2006-2009), Wireless Networks, Journal of
World Wide Web, Journal of Combinatorial Optimization, etc. He is the
general chair of ACM MobiHoc 2008, TPC co-chair of IEEE MASS 2009,
area-chair of IEEE INFOCOM 2010, TPC co-chair of IEEE GlobeCom
2010-Ad Hoc and Sensor Networking Symposium, and Panel co-chair of
IEEE INFOCOM 2011. He is a fellow of the IEEE Computer Society.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GUO ET AL.: ENABLING ENCRYPTED RICH QUERIES IN DISTRIBUTED KEY-VALUE STORES 1297

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

