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ABSTRACT
It is typical for video streaming service providers (such as NetFlix)
to rely on services from cloud providers (such as Amazon), in order
to build a scalable video streaming platform with high availability.
The trend is largely driven by the fact that cloud providers deploy
a number of datacenters inter-connected by high-capacity links,
spanning different geographical regions. Video traffic across dat-
acenters, such as video replication and transit server-to-customer
video serving, constitutes a large portion of a cloud provider’s inter-
datacenter traffic. Charged by ISPs, such inter-datacenter video
traffic incurs substantial operational costs to a cloud provider. In
this paper, we argue that costs incurred by such inter-datacenter
video traffic can be reduced or even minimized by carefully choos-
ing paths, and by assigning flow rates on each inter-datacenter link
along every path. We presentJetway, a new set of algorithms
designed to minimize cloud providers’ operational costs on inter-
datacenter video traffic, by optimally routing video flows in an on-
line fashion. Algorithms inJetwayare designed by following a
methodical approach based on an in-depth theoretical analysis. As
a highlight of this paper, we have built a real-world system frame-
work to implement and deployJetwayin the Amazon EC2 datacen-
ters. With both simulations and real-world experiments using our
implementation, we show thatJetwayeffectively helps transmitting
videos across datacenters with reduced costs to cloud providers and
satisfactory real-world performance.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems

Keywords
Inter-Datacenter Traffic, Flow Optimization

1. INTRODUCTION
Due to abundant resource availability and reduced management

costs, it is an emerging trend for video streaming service providers,
such as Netflix, to resort to the services of cloud providers, such
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as Amazon Web Services (AWS). As an example, Netflix is using
the Amazon Simple Storage Service (S3) for storing all of its video
masters, which are further transcoded to a number of video formats,
and are then distributed to Content Distribution Networks (CDNs),
ready to be served to end users [1,2].

On the other hand, Amazon Web Services as cloud providers
have recently introducedCloudFront, a CDN service with edge
servers around the world, designed to meet the needs of video stream-
ing providers. CloudFront seamlessly integrates with Amazon S3
and the Amazon Elastic Compute Cloud (EC2), so that videos hosted
in S3 or EC2 can be streamed using the Real Time Messaging Pro-
tocol (RTMP) to end users, from one of the edge servers with ge-
ographical proximity and low network latencies [3]. In addition,
in order to accommodate high-definition videos, Amazon S3 has
substantially raised its limit on object sizes (from 5 GB to 5 TB)
in December 2010 [4]. Given such a win-win situation as video
streaming providers are going “100% cloud” [1], it will be a near-
term certainty that large volumes of video traffic will flow from
cloud datacenters (e.g., S3), which host video masters, to CDN
edge servers (e.g.,CloudFront), which serve end users.

The tenet of providing cloud services is to maximize the shar-
ing of resources, while keeping tenants (e.g., Netflix) satisfied. To
provide cloud services with better availability and scalability, it is
customary for cloud providers to deploy a number of datacenters
across different geographical regions. These datacenters are typ-
ically inter-connected with high-capacity links leased from ISPs.
With substantial upfront investments to construct these datacenters,
it is certainly to the advantage of cloud providers to minimize op-
erational costs. Recent research reveals that traffic costs amount
to around 15% of operational costs incurred to a cloud provider, a
percentage that is similar to energy costs [5].

As large quantities of high-definition videos are being hosted in
these datacenters, a substantial amount of inter-datacenter traffic
will be incurred by replicating these videos and by serving these
videos to CDN edge servers, in order to provide a highly available
and scalable streaming service. Such inter-datacenter video traf-
fic constitutes a large portion of a cloud provider’s inter-datacenter
traffic. Since most cloud providers today rely on multiple Inter-
net Service Providers (ISPs) to connect their geographically dis-
persed datacenters [6], operational costs can be effectively reduced,
if costs charged by these ISPs on inter-datacenter video traffic can
be minimized.

Given dominant percentile-based charging models currently in
use by most ISPs [7],e.g., the 95-th percentile charging model,
it is feasible to reduce or even minimize cloud providers’ costs
by designing optimal routing and flow assignment algorithms for
inter-datacenter video traffic. In other words, video flows across
inter-datacenter links can be — and should be —split and trans-



mitted along multiple multi-hop paths, each of which can be opti-
mally and dynamically computed over time. The rationale is that,
the cost of transmitting the same amount of videos varies signifi-
cantly across different inter-datacenter links, due to regional pricing
and peering relationships among ISPs [8]. For example, domestic
video flows are substantially cheaper than flows to global destina-
tions, and video flows within the backbone network built by cloud
providers themselves incur very low costs.

Further, spatial and temporal characteristics of inter-datacenter
video traffic also motivates the design of new routing and flow
assignment algorithms.Temporally, a portion of the video flows
across datacenters may be more delay-tolerant than others, if they
represent video replication and backups. To reduce costs, we may
re-route these delay-tolerant video flows by using intermediate dat-
acenters as relays, flowing over multi-hop paths and splitting into
multiple paths [9].Spatially, datacenters located in different time
zones experience peak video traffic at different times, providing
more opportunities of resource multiplexing.

In this paper, we presentJetway, a new set of algorithms de-
signed to minimize operational costs on inter-datacenter video traf-
fic in an efficient and simple way. To guide the design of our algo-
rithms inJetway, we present a methodical and in-depth analytical
study on how inter-datacenter video traffic costs are to be mini-
mized by routing video flows via multiple multi-hop paths in an
optimized fashion. WithJetway, we take advantage of different
traffic costs on inter-datacenter links, usually charged by a multi-
tude of ISPs with the percentile-based charging model, taking into
account practical constraints of limited link capacities, as well as
different desired transmission ratesof videos, representing their
delay tolerance. Our study leads to new combinatorial algorithms
that are simple yet efficient enough for cloud providers to imple-
ment in practice: video flows are split and routed in an on-the-fly
fashion by solving the classicminimum-cost multicommodity flow
andmaximum concurrent flowproblems. An illustrative example
of routing inter-datacenter video flows is shown in Fig. 1, in which
the width of each flow denotes the flow rate on a particular link.
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Figure 1: Selecting the best paths for inter-datacenter video
traffic in a cloud with 5 datacenters. Based on differing traffic
costs on inter-datacenter links and varying transmission rates
of videos, the video from Datacenter2 (D2) to Datacenter5 (D5)
is best routed along path{D2 → D1 → D5}, {D2 → D3 →
D5}, and {D2 → D4 → D5}, represented by red (light gray)
flows; the video from Datacenter3 (D3) to Datacenter 1 (D1)
is best routed along path{D3 → D2 → D1} and {D3 → D1},
represented by blue (dark gray) flows.

We evaluate the performance ofJetwayin minimizing costs on
inter-datacenter video traffic with our real-world implementation
in the Amazon EC2 cloud, as well as extensive simulations. Our
Jetwayimplementation has been developed based on a flexible and
reusable video streaming framework: a highly-optimized packet
forwarder is hosted on each datacenter in the cloud, referred to

as aJet. We have developed theJet from scratch using the asyn-
chronous networking interface in the OS kernel, taking advantage
of the Asynchronous I/O (asio) framework in the Boost C++ li-
brary. TheJet is optimized to support concurrent video flows, each
with its own routing paths and flow assignments. Both our real-
world experimental results and simulations have shown that, by
routing video flows optimally,Jetwayis capable of reducing costs
on inter-datacenter video traffic.

The remainder of this paper is organized as follows. In Sec. 2,
we discuss the challenges of minimizing operational costs on inter-
datacenter video traffic to a cloud provider, and formulate the opti-
mal routing and flow assignment problem in an online fashion. In
Sec. 3, we propose algorithms inJetwaythat seek to minimize costs
by splitting and routing video flows optimally. In Sec. 4, we present
our real-world implementation ofJetwayin detail, and evaluate its
performance with both real-world experiments in the Amazon EC2
cloud and simulations. We discuss related work and conclude the
paper in Sec. 5 and Sec. 6, respectively.

2. JETWAY: RATIONALE, CHALLENGES,
AND PROBLEM FORMUATION

We first present the rationale and challenges that motivate the
design ofJetway, with an objective of minimizing operational costs
on inter-datacenter video traffic.

2.1 Rationale and Challenges
A cloud provider is usually charged by ISPs for its inter-datacenter

traffic. The operational costs incurred are typically based on the
amount of traffic the cloud provider generates. The percentile-
based charging model, which is also called theq-th percentile charg-
ing model, is predominantly used by ISPs today. With this charging
model, an ISP records the traffic volume a cloud provider gener-
ates during each 5-minute interval and sort them in a descending
order. At the end of a complete charging period, theq-th per-
centile of all 5-minute traffic volumes is considered as the charging
volumex, which will be used to derive the cost by a piece-wise
linear non-decreasing functionc(x) [10]. For example, if the 95-
th percentile charging model is in use and the charging period is
one year, then the charging volumex of the cost function corre-
sponds to the traffic volume sent during the 99864-th sorted interval
(95%× 365× 24× 60/5 = 99864).

Besides the fact that traffic costs on each inter-datacenter link
differ from one another, in that a relay path might incur much
lower costs than a direct path, the percentile-based charging model
provides further opportunities to reduce operational costs. With a
percentile-based charging model, if some video traffic is already
generated on one link, idling or transmitting less video traffic in
subsequent time intervals within the same charging period will be a
waste of capital investment, as these time intervals will be charged
based on the already generated traffic volume anyway. As such,
a feasible way to reduce costs is to carefully design routing paths
and flow assignments for each pair of inter-datacenter video flow
— a key idea in the design ofJetway— such that the idling and
under-utilized time intervals are eliminated as much as possible,
and theq-th percentile of video volumes over all time intervals is
minimized.

The following example intuitively explains the rationale of op-
timal routing with the percentile-based charging model. Shown in
Fig. 2,3 videos are to be transferred in an inter-datacenter network
with 4 datacenters. Assume that Video1 and2 are to be streamed
from datacenter D2 to D4 with rate8 and from D3 to D1 with rate
6 within the first time interval, respectively; and Video3 is to be



streamed from D3 to D4 with rate5 in the second time interval.
For the sake of simplicity, we assume that the100-th percentile
charging model with a linear cost function is in use in this exam-
ple, which implies that the cost incurred between each datacenter
pair is the maximum video volume sent during these time intervals,
multiplied by a flat cost per traffic unit shown on the link. The link
capacity are assumed to be5 for all the links.
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Figure 2: How traffic costs can be reduced with optimal rout-
ing: a motivating example.

If the difference of costs per unit of traffic on each inter-datacenter
link is considered, cheaper paths are preferred by video flows to re-
duce traffic costs. Shown in Fig. 2 (a), the optimal routing and flow
assignment in this scenario is: Video1 will take paths D2 → D1 →
D4 and D2 → D3 → D4, each with a flow of4 and Video2 will
take paths D3 → D2 → D1 and D3 → D1 with flow 1 and5, re-
spectively in the first time interval; and Video3 will take the direct
path at the second time interval, leading to a total cost of104 per
time interval.

If we further incorporate the consideration of the100-percentile
charging model in this example, we can see that a part of Video3
can be routed along the more expensive path D3 → D1 → D4,
taking advantage of the already generated traffic volume on this
path in past time intervals, when carrying the flows of Video1 and
2. Shown in Fig. 2 (b), the optimal routing and flow assignment
in this scenario is to route Video3 through path D3 → D1 →
D4 and D3 → D4 in the second time interval, with rates1 and4,
respectively. By doing so, costs on inter-datacenter video traffic
per time interval can be reduced to96, as Video3 is carried for free
with the percentile-based charging model.

Unfortunately, applying the basic concept of multi-hop routing
in each video flow presents formidable challenges when it comes
to more general cases, involving multiple video flows with differ-
ent source-destination datacenters. Due to the consideration of the
percentile-based charging model, the dimension oftime has to be
taken into account when computing incurred costs on a link, which
increases the complexity of the problem significantly. The cost of
inter-datacenter video traffic in one time interval is affected by the
traffic volume in time intervals before and after that time interval
within the same charging period. If we wish to optimize the cost
globally, we will need to estimate future traffic demand within the
entire charging period (say, a month or a year), yet inter-datacenter
traffic may not be accurately predictable beyond much finer time
scales (such as a few seconds) [11]. In order to design algorithms
to minimize costs incurred by inter-datacenter video traffic, it is our
objective to formulate the problem such that it is practically solv-
able, yet sufficiently efficient.

2.2 Network Model
Before formulating the problem of minimizing operational costs

on inter-datacenter traffic formally, we first introduce our network
model in this paper. Important notations used throughout this paper
are listed in Table 1.

Table 1: Notations and Definitions
Notation Definition

V the set of datacenters operated by a single cloud
provider

E the set of directed links connecting datacenters inV
K(t) the set of video flows initiated in the time intervalt

(sk, dk) source and destination datacenters of video flowk
rk the desired transmission rate of video flowk
cij the available capacity on link{i, j}
aij the cost per traffic unit on link{i, j}
fk
ij the flow assigned on link{i, j} for video flowk
t̄ the duration of one time interval
I the number of time intervals in a charging period

maxt fij the maximum aggregate flow rate on link{i, j} up
to intervalt

dij(t) the rate of other inter-datacenter traffic on link
{i, j} in the time intervalt

costij(t) the operational costs on link{i, j} up to intervalt
Kf (t) the already paid set of video flows during intervalt
Kc(t) the set of video flows with additional cost during

intervalt

We consider a cloud with multiple geographically distributed
datacenters operated by a single cloud provider. Every datacenter
in the cloud is connected to all other datacenters. We use a com-
plete directed graphG = (V, E) to represent the inter-datacenter
network, whereV indicates the set of datacenters, andE indicates
the set of directed links inter-connecting datacenters. For each link
{i, j} ∈ E , we use a non-negative real-value functionaij to denote
the cost per traffic unit from datacenteri to j; a positive function
cij(t) to denote the available link capacity at timet, which is the
maximum available rate of transmission from datacenteri to j.

Let K(t) be the set of videos to be transmitted at timet, all of
which are represented by source-destination video flows. During
its transmission to the destination datacenter, each flow can be split
and relayed by other datacenters,e.g., it can be routed over mul-
tiple paths and multiple hops within a path. For each video flow
k ∈ K(t), we use a specification(sk, dk, rk) to describe it. Here,
verticessk anddk indicate the source and the destination datacen-
ter from and to which flowk is being routed, andrk is the desired
transmission rate for video flowk. In the interest of minimizing
traffic costs incurred on inter-datacenter links, the desired transmis-
sion rate for each video flow that is being replicated to other dat-
acenters is obtained by its size divided by its corresponding maxi-
mum tolerable transfer time; and is the minimum rate for an enjoy-
able video playback for transit server-to-customer video flows.

Since the time dimension has to be considered in the percentile-
based charging model, we use a time-slotted model to incorporate
multiple time intervals in a charging period. LetI be the number of
time intervals in a charging period, witht as indices. The duration
of one time interval is assumed to be5 minutes, which is denoted
by t̄. To focus on the essence of the problem, we assume that the
100-th percentile charging model is in use,i.e., a cloud provider is
charged based on themaximumof traffic volumes generated over
all time intervals in a charging period. Our results can be extended
to a cloud environment with any percentile-based charging model,
which will be a topic of discussion forthcoming in this paper.

For simplicity, we assume that the cost functionc(x) is a linear
functionc(x) = a · x, wherex is the traffic volume to be charged.
To be exact, if we usefij(t) to denote the aggregate flow rate on
link {i, j} in the time intervalt, cost on inter-datacenter traffic in



one charging period is the dot product:

cost=
∑

{i,j}∈E

aij(max
I

fij)t̄I,

wheremaxI fij is the maximum aggregate flow rate on link{i, j}
of all fij(t), from 1 ≤ t ≤ I. Note that the aggregate flow rate
fij(t) may also contain other inter-datacenter traffic such as back-
ups and propagation of large updates. If we usedij(t) to denote
the rate of this part of flow on link{i, j} in the time intervalt, then
the aggregate flow rate on link{i, j} can be represented by

fij(t) = dij(t) +
∑

k∈K(t)

fk
ij(t),

wherefk
ij(t) indicates the amount of flow assigned on link{i, j}

for video flowk in the time intervalt.
To capture the fact that each video flowk may be initiated at any

time in a charging period, and will also be terminated after a period
of time, we letrk(t), the desired transmission rate of video flowk,
depend on the time indext, indicating whether or not flowk is in
transmission. More precisely:

rk(t) =

{

rk t ∈ time intervals video flowk is in transmission,

0 otherwise.

To simplify the model, we assume that video flows are always ini-
tiated at the beginning of a time interval, and terminated at the end
of a time interval.

2.3 Formulating the Online Problem
In the design ofJetway, the problem we are trying to solve is:

what is the optimal routing and flow assignment strategy we can
apply to inter-datacenter video flows initiated in the current time
interval to minimize operational costs, with the assumption that
past (historical) information is known? In other words, we seek
to find optimal routing paths and flow assignments for each video
flow initiated in the current time intervalt, so that the operational
costs to the cloud provider are minimized till the end of time inter-
val t, given all routing paths and flow assignments for video flows
initiated from time interval1 to t− 1.

If we use costij(t) to denote the operational costs on link{i, j}
up totime intervalt, the optimal routing and flow assignment prob-
lem in Jetwaycan be formulated as the following optimization
problem, with the assumption that all datacenters in the cloud pos-
sess information about all video flows:

min
fk
ij

(t)

∑

{i,j}∈E

costij(t) (1)

s.t.
∑

k∈K(t)

fk
ij(t) + dij(t) ≤ cij(t), ∀{i, j} ∈ E (2)

∑

j∈V

fk
ij(t) =

∑

j∈V

fk
ji(t),∀k ∈ K(t),∀i ∈ V/{sk, dk}

∑

j∈V

fk
skj(t)−

∑

j∈V

fk
jsk (t) = rk(t), ∀k ∈ K(t) (3)

fk
ij(t) ≥ 0, ∀k ∈ K(t), ∀{i, j} ∈ E , (4)

where costij(t) equals the product of the maximum aggregate flow
rate on each link overt time intervals and the duration of a time
interval with the100-th percentile charging model,i.e.,

costij(t) = aij(max
t

fij)t̄I. (5)

The optimization variable of problem (1) isfk
ij(t), which indi-

cates the flow assigned on link{i, j} for video flowk in the time

interval t. The assumption is that flows assigned on every link for
each video flow in the past time intervals, and current flow rates
incurred by other applications are knowna priori, i.e., fk

ij(1) up to
fk
ij(t − 1) anddij(t) are known. Inequality (2) stands for the link

capacity constraint, which ensures that the total flow assigned on
one link will not exceed its current capacity. Inequalities (3) repre-
sent the flow conservation constraint. For each video flow, the flows
going into any intermediate datacenter should equal to flows going
out of that datacenter; while the flows coming from the source dat-
acenter should be exactly the same as its desired transmission rate.
Inequality (4) ensures that all flows are non-negative.

With the100-th percentile charging model, the cost function (5)
can be rewritten as:

costij(t) =

{

costij(t− 1) fij(t) ≤ maxt−1 fij

aijfij(t)t̄I otherwise.

Based on historical information,maxt−1 fij t̄, the charging volume
up to time intervalt− 1, is known. The cost function on link{i, j}
up to time intervalt is equivalent to:

costij(t) = costij(t− 1) + aij(t)

(

fij(t)−max
t−1

fij

)

t̄I, (6)

whereaij(t) is a step-function offij(t) that has the form of:

aij(t) =

{

0 fij(t) ≤ maxt−1 fij

aij otherwise.

By substituting Eqn. (6) into the objective function, we get the
following optimization problem that is equivalent to problem (1):

min
fk
ij

(t)

∑

{i,j}∈E

aij(t)fij(t)t̄I. (7)

If we focus on decisions in the time intervalt, and drop the time in-
dices in the problem expressions, we can see that the optimization
problem (7) is in the form of the classic minimum-cost multicom-
modity flow problem.

However, none of the algorithms solving the minimum-cost mul-
ticommodity flow problem can be applied to solve this problem.
The reason is thataij(t) is now a function offij(t), which re-
sults in a non-linear cost function. Since our objective is to find a
simple yet efficient algorithm that can be readily implemented, we
would like to study alternative and more tractable formulations of
this problem.

3. SPLITTING AND ROUTING FLOWS
OPTIMALLY TO MINIMIZE COSTS

From Eqn. (6), we find that the cost on a link up to time interval
t equals the sum of the cost on that link up to time intervalt − 1,
and the additional cost incurred by the possible overflow in the time
interval t. This implies that, if the traffic volume on a link during
one time interval is less than the charging volume on that linkup to
the previous time interval, which is the maximum aggregate flow
rate on that link overt − 1 time intervals times the duration of
one time interval, no additional costs will be incurred. In other
words, the traffic volume in intervalt is carried on the linkfor free.
However, if the traffic on that link exceeds the previous charging
volume, the cloud provider will be charged extra for the overflow.

Fig. 3 illustrates the operational costs on link{i, j}. Having the
charging volume up to time intervalt−1, the same amount of traffic
is already paid for in the time intervalt, no matter if it is used up
or not. The blue net area in the figure represents the already paid
portion of the traffic volume, and the red diagonal area indicates
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Figure 3: An illustration of the operational costs on link {i, j}.

the potential traffic volume that will incur additional costs. This
implies that, if the video flows on each link are assigned in a fashion
that, the already paid portion of the traffic volume is utilized as
much as possible, and the traffic volume with additional costs is
minimized, the operational costs on inter-datacenter traffic up to
time intervalt will be minimized as a result. Based on this idea,
the design ofJetwayis based on decoupling problem (1) into two
sequential optimization problems.

3.1 Fully Utilizing the Already Paid Portion
of Traffic Volume

Havingmaxt−1 fij t̄ as the charging traffic volume on link{i, j}
up to time intervalt− 1, the amount of already paid traffic flow in
the time intervalt can be obtained as

∑

{i,j}∈E min(maxt−1 fij , cij(t)

− dij(t))t̄, in which the flow on each link is determined by its
charging traffic volume up to time intervalt − 1 and its available
link capacity in the time intervalt. Choosing from video flows ini-
tiated in the time intervalt, we can obtain a subsetKf (t), in which
the sum of the desired transmission rates are themaximumpossi-
ble amount that is no larger than the already paid traffic volume
divided by the duration of a time interval in intervalt. Kf (t) is the
already paid set of video flows to be carried during time intervalt.
In the ideal case, all video flows inKf (t) should be carried without
incurring additional costs.

As a consequence, for video flows inKf (t), our objective is to
find their feasible flow assignments, under the joint link capacity
constraint, the flow conservation constraint, and the non-negative
flow assignment constraint. The optimization presentation of this
problem is to find the maximum fractionz, such that up toz frac-
tion of each flow’s desired transmission rate is assigned on links in
the time intervalt [12]. Referred to as themaximum concurrent
flow problem, it has the following form:

max
fk
ij

(t)
z (8)

s.t.
∑

k∈Kf (t)

fk
ij(t) + dij(t) ≤ min(max

t−1
fij , cij(t)), ∀{i, j}

∑

j∈V

fk
ij(t) =

∑

j∈V

fk
ji(t),∀k ∈ Kf (t),∀i ∈ V/{sk, dk}

∑

j∈V

fk
skj(t)−

∑

j∈V

fk
jsk (t) = zrk(t), ∀k ∈ Kf (t)

fk
ij(t) ≥ 0, ∀k ∈ Kf (t), ∀{i, j} ∈ E

0 ≤ z ≤ 1.

Note that compared to the general maximum concurrent flow
problem, optimization problem (8) has its additional constraints
resulted from our objective to minimize costs on inter-datacenter
video traffic. Instead of being restricted by the available link capac-
ity only, the capacity constraint in problem (8) is further restricted

by the already paid portion of video traffic on each link, which en-
sures that no potential cost is incurred.

There exists a fast combinatorial algorithm to approach theǫ-
optimal solution of this problem. A flow assignment is said to be
ǫ-optimal if it overflows the link capacities by at most1 + ǫ factor
and has a cost that is within1+ǫ of the optimum. Sinceǫ can be de-
fined as small as possible, theǫ-optimal solution can approach the
optimum value as close as possible. It has been proved that theǫ-
optimal flow can be computed deterministically inO(ǫ−2knm logK
log3 n) time, whereK is the number of commodities (video flows),
m is the number of links, andn is the number of datacenters in the
cloud [13].

The general idea of this algorithm is to find the minimum dual
variableλ that indicates the congestion of flows. The procedure is
as follows. Routing each video flow separately, an initial flow as-
signmentfk that satisfies the desired transmission rate and obeys
the link capacity constraint to the extent ofλk is obtained for all
k ∈ Kf (t). Define a cost functionbk to each flow assignmentfk

with respect to a non-zero, non-negative length function. Repeat-
edly examine all flows inKf (t) in a round-robin fashion. If a flow
is found with a “bad” flow assignment by solving its correspond-
ing minimum-cost flow problem, its flow assignment is updated.
Note that the minimum-cost flow problem at each iteration can be
solved by successive approximation,which has a running time of
O(min(nm log n, n5/3m2/3, n3) log (nC)) [14].

The combinatorial maximum concurrent flow algorithm is de-
scribed inAlgorithm 1 , where a potential functionφ is used to
guide the algorithm [13].

Algorithm 1 The combinatorial maximum concurrent flow algo-
rithm.

1: Obtain the initial solution(f1, f2, ..., f |Kf (t)|).
2: Setα = 3(1 + ǫ)λ̄−1 lnmǫ−1; σ = (2ǫ)/(αλ̄−1).
3: while λf > (1− ǫ

2
)λ̄ & ∆φ > ǫ2φ(k) do

4: for Eachk ∈ Kf (t) do
5: Find the minimum cost flow assignmentf

k∗
overPk.

6: if bk − b∗k ≥ ǫbk then
7: Updatefk = f

k + σ(fk
∗
− f

k).
8: end if
9: end for

10: end while
11: Return(f1, f2, ..., f |Kf (t)|).

3.2 Minimizing the Additional Cost
The optimal fractionz∗ obtained by solving problem (8) indi-

cates that at mostz∗ fraction of flows fromKf (t) can be carried
using the already paid traffic volume. Ifz∗ = 1, all flows inKf (t)
can be carried without additional cost. Ifz∗ < 1, only z∗Fk of
each video flowk incurs no extra cost, and the transmission of the
remaining part of each flow does incur an additional cost. In this
case, we use the same indicatork to denote the leftover part of the
original video flowk, which has a transmission rate of(1− z∗)rk.

LetKc(t) denote the set of video flows that incur additional costs
in the time intervalt, including both flows inK(t)−Kf (t) and the
remaining partial flows inK(t) after solving optimization prob-
lem (8). Since the traffic of carrying video flows inKc(t) is bound
to incur additional costs, the cost function remains a linear function
with a flat per-unit cost. As a result, the optimal flow assignment
for these flows can be found by solving a minimum-cost multicom-
modity flow problem with a linear cost function in the time interval



t, which is exactly in the form ofminimum-cost multicommodity
flow problem.

The conventional way of solving this problem is to express it as
a linear program, and then to solve it with a polynomial-time lin-
ear program solver [12]. Similar to the maximum concurrent flow
problem, there exists a fast combinatorial algorithm to approach
theǫ-optimal solution to this problem, and the running time of this
combinatorial algorithm is proved to bẽO(ǫ−3Kmn) [15].

The algorithm solves the problem as follows. Represent the
flow assignment as(f1, f2, ..., f |Kc(t)|) ∈ (P1,P2, ...,P|Kc(t)|),
wherefk is the |E| × 1 flow assignment vector for flowk, and
f
k ∈ P

k. The polytopePk corresponds to the feasible flow as-
signments of flowk, i.e., flow assignments that obey the flow con-
servation constraint and the individual link capacity constraint, dis-
regarding the rest of the video flows. At each iteration, a flowk
is randomly chosen for anyk ∈ Kc(t). Compute the minimum-
cost flow assignmentfk

∗
overPk, and update its flow assignment

f
k to (1 − σ)fk + σfk

∗
if it causes a decrease in the potential

functionφ, which is used to guide the algorithm [15]. Similarly,
the minimum-cost flow problem at each iteration can be solved by
successive approximation [14]. The combinatorial minimum-cost
multicommodity flow algorithm is described inAlgorithm 2 .

Algorithm 2 The combinatorial minimum-cost multicommodity
flow algorithm.

1: Obtain the initial solution(f1, f2, ..., f |Kc(t)|).
2: Setα = (1/ǫ) ln(3|E|); σ = Θ(1/α3).
3: while φ(f1, f2, ..., f |Kc(t)|) > 3|E| do
4: Randomly choosek ∈ Kc(t).
5: Find the minimum cost flow assignmentf

k∗
overPk.

6: if φ(f1, ..., fk
∗
, ..., f |Kc(t)|) < φ(f1, ..., fk, ..., f |Kc(t)|)

then
7: Updatefk = (1− σ)fk + σfk

∗
.

8: end if
9: end while

10: Return(f1, f2, ..., f |Kc(t)|).

Our complete routing and flow assignment strategy inJetway
in the time intervalt is presented inAlgorithm 3 . As indicated
by our problem formulation, the routing and flow assignment for
video flows inJetwayis updated in a periodic fashion, which can
be adjusted flexibly by cloud providers.

Implementation Issues. A key assumption inAlgorithm 3 is that
every datacenter is required to possess information about all video
flows. If we need a distributed heuristic, there are both good and
bad news. The good news is that there exist distributed algorithms
to approach theǫ-optimal solution of the maximum concurrent flow
problem [16], which we use to maximize the utilization of the al-
ready paid portion of the traffic volume. The bad news is that the
design of efficient distributed solutions to the minimum-cost multi-
commodity flow problem — which we use to minimize additional
traffic costs — remains an open and elusive problem in theoretical
computer science [17]. Fortunately, since all datacenters are oper-
ated by the same cloud provider, we believe that, partly due to the
small number of datacenters in use, it is technically straightforward
to devise a centralized controller to obtain and access information
about all the video flows, which makes the algorithm design inJet-
way much less dependent on the availability of distributed algo-
rithms.

Although the100-percentile charging model is used as an exam-
ple in this paper, our algorithm is not only limited to this specific
charging model. Instead, it can be applied to any percentile-based

Algorithm 3 Routing and flow assignment strategy in the time in-
terval t.
1: Compute the already paid traffic volume in the time intervalt.
2: Obtain the set of video flowsKf (t).
3: For all flows k ∈ Kf (t), find the optimal flow assign-

ment (f1, f2, ..., f |Kf (t)|)∗f by solving the maximum concur-
rent flow problem usingAlgorithm 1 .

4: Obtain the set of video flowsKc(t).
5: For all flowsk ∈ Kc(t), find the optimal flow assignment

(f1, f2, ..., f |Kc(t)|)∗c by solving the minimum-cost multicom-
modity flow problem usingAlgorithm 2 .

6: for Each flowk ∈ K(t) do
7: if k ∈ Kf (t) & k ∈ Kc(t) then
8: f

k∗
= f

k∗
f + f

k∗
c .

9: else
10: if k ∈ Kf (t) then
11: f

k∗
= f

k∗
f .

12: else
13: f

k∗
= f

k∗
c .

14: end if
15: end if
16: end for
17: Return(f1, f2, ..., f |K(t)|)∗.

charging model as a feasible approach to reduce traffic cost when
no workload prediction is considered. With a generalq-th per-
centile charging model, the charging volume will be theq ∗ I-th
largest traffic volume over all time intervals in a charging period,
which implies that traffic volumes from theq∗I+1-th to the largest
time intervals can be as large as possible since they will not gener-
ate additional costs. Again, we seek to find out the optimal routing
and flow assignment strategy we can apply at the current time inter-
val, with the objective of minimizing operational costs with aq-th
percentile charging model.

To be specific, if we sort the aggregate flow rate on link{i, j}
from time interval1 to the last time intervalI in a decreasing order,
and use qt(fij , q)I to denote theq ∗ I-th value in this time series of
the aggregate flow rates, the already paid traffic volume in the time
intervalt can be represented by a general form of

∑

{i,j}∈E min

(qt(fij , q)I , cij(t)−dij(t))t̄. ThenAlgorithm 3 can be applied to
make the routing and flow assignment strategy with any givenq-th
percentile charging model.

4. JETWAY: PERFORMANCE EVALUATION
We believe that the best way to evaluateJetwayis to implement

it, and in this section, we evaluate howJetwayperforms in the Ama-
zon EC2 inter-datacenter network. Our real-world experimental re-
sults have validated that, by optimally finding routing paths and as-
signing flows for videos flows at each time interval,Jetwayreduces
costs on inter-datacenter video traffic by a substantial margin.

4.1 Implementation
Our Jetwayimplementation contains more than9000 lines of

C++ code, and is developed from scratch. To evaluate our proposed
algorithms in the Amazon EC2 inter-datacenter network, we need
to send actual video traffic between source-destination pairs, over
either single-hop or multi-hop paths, with possibilities of splitting
flows. For this reason, we have implemented a daemon process that
is able to send, receive, and relay video traffic, referred to as aJet.
By using asynchronous event-driven networking provided by the
Boostasio C++ framework, it is designed with performance and



Table 2: Link Capacities and Costs per Traffic Unit in the Amazon EC2 Inter-Datacenter Network
Link Capacity (Mbps)/Cost North California Oregon Virginia Sao Paulo Ireland Singapore Tokyo

North California — 520.40/1 252.67/2 116.75/15 98.67/20 103.69/27 173.06/30
Oregon 545.06/1 — 215.84/3 81.18/17 104.22/15 81.99/25 152.75/27
Virginia 240.78/2 210.64/3 — 139.41/10 221.55/10 81.44/15 110.10/17

Sao Paulo 40.98/15 60.84/17 11.85/10 — 22.41/25 9.59/18 62.42/22
Ireland 106.45/20 135.02/15 215.85/10 90.12/25 — 77.89/23 76.10/20

Singapore 124.40/27 110.95/25 84.54/15 57.31/18 80.92/23 — 242.80/5
Tokyo 178.36/30 143.44/27 99.40/17 61.99/22 43.61/20 116.33/5 —

scalability in mind. Since it is supposed to be running in cloud
VMs, the Jet supports major UNIX variants and Windows. As
compared to the traditional thread pool concurrency model, our im-
plementation incurs less memory and CPU overhead, even at high
packet processing rates.
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Figure 4: Jet: architectural components and design.

Fig. 4 has shown the architecture overview of aJet, comprising
of a number of key components.

Video Flow Manager. This component manages all ongoing
video flows within eachJet, where all video flows are included in
the Video Flow List. When the source-destination pair correspond-
ing to a new video flow is initiated, the Video Flow Manager will
add the corresponding flow in the video flow list, and create an I/O
proxy for transmission between the stored video and theJetat the
source datacenter. TheJetat the source is responsible for determin-
ing the routing paths and their corresponding transmission rates for
each video flow, based on ourJetwayalgorithms. All data packets
are then passed on to the Transmitter.

Transmitter. For data packets within a video flow, the Transmit-
ter retrieves its route from the Video Flow List, and send them to
the corresponding next-hopJet, which is either the destinationJet
over a direct path, or a relayJet in a multi-hop path with routing
information embedded. Further, the flow rate on each path is care-
fully controlled by the rate control algorithm, so that they conform
to the decisions made by theJetwayalgorithms.

Receiver. As an incoming data packet arrives, theReceiveriden-
tifies which destination datacenter that packet is addressed to. If it
is addressed to the datacenter thisJet is located at, the packet will
be saved via the I/O proxy. Otherwise, if it belongs to a multi-hop
relay path, the packet will be forwarded by the Transmitter to the
next-hop jet according to the routing path carried in the header.

Port. This component maintains active connections to allJetsfor
video flows, each of which is located in a different datacenter. The
Port is also able to probe link capacities and detect connection fail-
ures, such that the routing and flow assignment for each flow can
be adjusted adaptively as the network status evolves. TheJet is de-
signed to support a large number of concurrent video transmissions.
Both higher-level Transmitter and Receiver and the lower-level net-
work Port support multiplexed inter-datacenter connections to re-
duce additional overhead consumed by each video flow.

4.2 Experiments in the Amazon EC2 Cloud
We have conducted ourJetwayexperiments in the Amazon EC2

Cloud, one of the dominant Infrastructure as a Service (IaaS) cloud
providers. Fig. 5 shows the inter-datacenter network topology in
the Amazon EC2 cloud that we have used in our experiments. We
have launched7 standard on-demand medium instances with2 com-
pute unit and1.7 GB memory in each of the datacenters, installed
with ourJetwayimplementation. We log all statistics on every link
for each video flow every30 seconds, including the actual trans-
mission rate, receiving rate, and the end-to-end delay.
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Figure 5: The network topology used in our experiments.

We have first obtained the link capacities in the inter-datacenter
network through saturating the outgoing link of eachJet. The re-
sults are listed in Table 2, showing the average link capacity be-
tween each datacenter pair that we observe in3 minutes. Since
costs charged by ISPs on inter-datacenter links in the Amazon cloud
are not revealed, we assume a certain cost per Mbps per time inter-
val (5 minutes) on each link, reflecting different costs on transmit-
ting the same amount of video. Costs we used in our experiments
are also listed in Table 2.

We conduct our experiments for one hour, which has12 time
intervals in total. We consider the scenario that10 videos are to be
replicated to the datacenter located at Singapore at the beginning
of our experiments, with3 of them being Standard Definition (SD)
videos with sizes uniformly random between[500, 800] MB, and
7 of them being High Definition (HD) videos with sizes uniformly
random between[2, 4] GB. Source datacenters of these videos are
randomly selected from the remaining6 datacenters in the EC2
cloud. If we assume all video replications have to be finished within
30 minutes, we get the desired transmission rate of each video,
ranging from[2.22, 17.78] Mbps. We further assume that there are
3 inter-datacenter video flows satisfying requests from CDN edge
servers at the beginning of each time interval, with the source and
destination datacenters randomly selected from all7 datacenters
in the cloud. The desired transmission rate for these videos are
assumed to be uniformly random between[2.5, 8] Mbps, which are
standard rate requirements for today’s video streaming services.

For fair comparisons, we have also implemented an alternative
routing solution that performs better than the straightforward ap-
proach in terms of reducing traffic costs. Referred to as thetime-
slotted minimum cost algorithm(TSMC), it considers different costs



per traffic unit on each link only, without considering important as-
pects of the time dimension. In particular, TSMC solves the multi-
commodity minimum cost problem usingAlgorithm 2 at each time
interval, and obtains the routing paths and flow assignments for the
set of videos to be transmitted, based on current available link ca-
pacities. To study the effects of a more realistic percentile-based
charging model, we have implementedJetwayand TSMC, with
both the100-th percentile charging model and the95-th percentile
charging model, and compared their performance with different
charging models.

We first present the main performance metric, the total cost per
traffic unit over all links in the inter-datacenter network over time.
Fig. 6 shows the total cost per traffic unit in the Amazon EC2 inter-
datacenter network over one hour by usingJetwayand TSMC, re-
spectively, with the100-th percentile charging model. As we can
observe, starting from minute15, Jetwayis substantially more cost-
effective than TSMC. The benefits ofJetwayis becoming increas-
ingly visible as time elapses, and achieves a cost reduction of19%
after one hour with the100-th percentile charging model.
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Figure 6: Cost per traffic
unit with the 100-th percentile
charging model.
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Figure 7: Cost per traffic
unit with the 95-th percentile
charging model.

Note that both algorithms incurred almost the same cost over the
first few time intervals in our experiment. The rationale is that,
due to the limited number of video flows over a large number of
inter-datacenter links, the already-paid traffic volume can hardly be
utilized to the benefit of cost reduction. For each video flow, both
algorithms lead to similar optimal routing and flow assignments, by
solving the same multi-commodity minimum cost problem. Possi-
bilities of utilizing the already-paid traffic volume increase as time
elapses, which results in better performance withJetway. Take the
transit server-to-customer video flow (Video20) from the Ireland
datacenter (5) to the Oregon datacenter (2) as an example. Fig. 8
shows the routing and flow assignment for this video flow inJet-
way. We can see that, initiated at minute20, the flows of this video
takes both cheaper paths5 → 3 → 2 and5 → 3 → 1 → 2, and
expensive paths5 → 6 → 3 → 2 and5 → 6 → 3 → 1 → 2,
taking advantage of links5 → 6 and6 → 3 that are already used
for video replication at the first time interval.

 { 

   "Protocol": "TCP", 

   "PacketSize": 4096, 

   "AverageRate": 3, 

   "NodeID": 5, 

   "RoutingList": [ {   "PathList": ["3,1,2" ], "Weight": 0.334967   },

                            {   "PathList": ["3,2"], "Weight": 0.334967   }, 

                            {   "PathList": ["6,3,1,2"], "Weight": 1.8986165   }, 

                            {   "PathList": ["6,3,2"], "Weight": 0.4314495   } 

                          ], 

   "VideoID": 20, 

   "StartTime": 1200

 }

Figure 8: Routing and flow assignment for Video20 in Jetway.

We also present the total cost per traffic unit using bothJet-
wayand TSMC with the95-th percentile charging model in Fig. 7,
where we can observe a similar trend. With smaller absolute values
in costs, the reduction on the total cost per traffic unit withJetway
is up to8% in this case. Our results have confirmed thatJetway
can reduce costs on inter-datacenter video traffic substantially, even
with the (more realistic)95-th percentile charging model.

To investigate how ourJetwayalgorithms affect the performance
of video streaming services, we record the receiving rates for each
video flow every30 seconds in our experiment. We define the nor-
malized receiving rate to be the actual receiving rate observed at
the destination datacenter divided by the desired transmission rate
of this video flow. Fig. 9 shows the normalized receiving rates for5
video flows from the2nd time interval (minute5) to the7th time in-
terval (minute30). Each of them starts its transmission at the begin-
ning of every time interval, respectively. As we can see, the normal-
ized receiving rates for3 video flows are1 most of the time, with
minor fluctuations; and the normalized receiving rates for Video15
and Video17 exhibit obvious fluctuations, which is resulted by the
unstable network status on their common link3 → 6.

We also plot the CDF of the normalized receiving rates for all
video flows usingJetwayin our experiment. Shown in Fig. 10,
over 91.5% video flows usingJetwayexhibit receiving rates that
are more than90% of the desired transmission rates at their des-
tination datacenters. The mean value of the normalized receiving
rate is0.97 by usingJetway, which shows that the performance
of video streaming regarding the receiving rates is satisfactory by
usingJetway.
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Figure 10: CDF of the nor-
malized receiving rates for
all video flows usingJetway.

Another important performance metric in video streaming ser-
vice is the end-to-end delay experienced by each video flow. Since
Jetwayallows multi-path multi-hop transmission, we are interested
in investigating whether it will affect the end-to-end delay when
transmitting videos. Fig. 11 shows the CDF of the end-to-end de-
lays experienced by all video flows usingJetwayin our experiment.
We can observe that90% of the video flows experienced end-to-end
delays that are smaller than587.3 ms, and the mean value of end-
to-end delays for all videos is349.09 ms. We believe that these
values are reasonable, considering the nature of long-distance inter
continental inter-datacenter video transmissions.

To further investigate the effect ofJetwayon end-to-end delays
for video streaming, we take the Singapore datacenter (6) as an
example, and compute the average end-to-end delays experienced
by video flows from every other datacenter to this one, together
with their 95% confidence intervals. For comparisons, we also
compute the average end-to-end delays in each direct link, which
are obtained by the measured round trip time (RTT) on each link
divided by2, with their corresponding95% confidence intervals
as well. The results are shown in Fig. 12. As we can see, video



flows in Jetwayhave experienced almost the same end-to-end de-
lays as compared to those by sending through direct paths. Our
results prove that the multi-path multi-hop routing and flow assign-
ment algorithms inJetwaywill not affect the performance of video
streaming services significantly, yet the deployment ofJetwayleads
to substantially reduced operational costs on inter-datacenter video
traffic.
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Figure 11: CDF of the end-to-
end delays for all video flows
using Jetway.
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datacenter (6).

4.3 Simulation Results
To investigate the scalability and stability ofJetway, we fur-

ther evaluated it in a time-slotted simulator. The simulated inter-
datacenter network has20 datacenters, forming a complete graph.
The capacity on each link is assumed to be1000 units, and the
cost per traffic unit on each link is set to be uniformly random
within [1, 100]. In each time interval, the number of video flows
to be transmitted is uniformly random between[1, 200], each with
a desired transmission rate uniformly random between[1, 10] units.
The source and destination datacenters of each video flow are also
chosen uniformly random from the datacenter set. We conduct our
simulations20 times, each lasts for100 time slots.

Again, the main performance metric we are interested in is the
reduction in the total cost per traffic unit over time by usingJetway,
as a percentage of the normalized cost reduction ratios compared
to TSMC and their95% confidence intervals. Fig. 13 and Fig. 14
show the average percentage of reduction in the total cost per traf-
fic unit on video traffic with both the100-th percentile charging
model and the95-th percentile charging model, respectively. Con-
sistent with our experimental results shown in Fig. 6 and Fig. 7, the
normalized cost reduction ratio by applyingJetwayis increasing as
time elapses, and reaches up to an average of13% after100 time
intervals with the100-th percentile charging scheme. The similar
trend is observed with the95-th percentile charging model, with
even more cost reduction of up to20% in the long term. Our re-
sults further confirmed thatJetwaycan successfully reduce costs
on inter-datacenter video traffic, even in inter-datacenter networks
of larger scales and many video flows.

To further study the effects of the95-th percentile charging model
on Jetway, we show the portion of video flows carried by utilizing
the already paid portion of traffic volume inJetwaywith both the
100-th percentile and the95-th percentile charging models. Shown
in Fig. 15 and Fig. 16, around75% of video flows are carried by
utilizing the already paid portion of traffic volume with both charg-
ing models. These results have provided further solid evidence that
Jetwayworks effectively when it comes to utilizing the“free of
charge” bandwidth that is available during later time intervals in
the same charging period, made possible by any percentile-based
charging models typically used by ISPs.
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Figure 13: Average percent-
age of cost reduction with
the 100-th percentile charging
model.

20 40 60 80 100
0

10

20

30

40

Timeslot

A
v
g
. 
%

 o
f 

R
ed

u
ct

io
n

o
n
 C

o
st

s

 

 
Percentage of ratios

CI (95%)

Figure 14: Average percent-
age of cost reduction with
the 95-th percentile charging
model.
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Figure 15: Average percent-
age of flows carried by utiliz-
ing the already paid portion of
traffic volume with the 100-th
percentile charging model.
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Figure 16: Average percent-
age of flows carried by utiliz-
ing the already paid portion of
traffic volume with the 95-th
percentile charging model.

5. RELATED WORK
Geographically dispersed datacenters have attracted recent re-

search attention, as they have brought new opportunities and chal-
lenges. Most recent works focus on dynamic load distribution across
datacenters, with the objective of minimizing cloud providers’ op-
erational costs on energy or minimizing cloud users’ performance
penalty. Wuet al. proposed to migrate social media applications
into geo-distributed clouds operated by one or more cloud providers,
and designed an online content migration and request distribution
algorithm [18]. Liuet al. sought to reduce the total energy use of
a cloud by geographical load balancing [19]. In terms of improv-
ing the operational flexibilities on inter-datacenter communication
for cloud providers, GRIPhoN is proposed to offer cost-effective
restoration capabilities from the carrier’s perspective [20].

Besides analytical results, there are also a few measurement stud-
ies regarding the traffic characteristics across multiple datacenters.
[21] and [22] shed some light on good designs of caching and
load balancing strategies through measuring traffic dynamics in
the Google cloud. Chenet al. presented a first study of inter-
datacenter traffic characteristics via five Yahoo! datacenters [23].
Their measurement results motivate our study of reducing costs on
inter-datacenter video traffic.

To our knowledge, there exist two recent papers that considered
cloud providers’ operational costs on traffic. Zhanget al.designed
a routing algorithm to optimize the costs on datacenter-to-client
traffic [6]. However, with no consideration of the time dimension,
their problem is substantially simplified. Laoutariset al.proposed
NetStitcher, which takes advantage of the already paid traffic vol-
umes at night to reduce costs on inter-datacenter bulk traffic, such
as backups [9]. Our work differs in that, instead of conservatively
utilizing leftover bandwidth only for bulk transfers, we argue that
such costs can — and should — be minimized by globally optimiz-
ing the routing strategies for all inter-datacenter video traffic. In



addition,Jetwayhas considered the co-existence of multiple video
flows in its problem formulation, which is far more realistic and
complicated than the transfer of a single file in NetStitcher.

6. CONCLUDING REMARKS
To stream videos to end users, it is now the norm for video

streaming service providers, such as Netflix, to use services of
cloud providers, such as Amazon Web Services. To provide a bet-
ter performance, the cloud provider typically deploys multiple dat-
acenters across different geographical regions, and connect them
with an inter-datacenter network. Inter-datacenter traffic is typi-
cally charged by ISPs based on a percentile-based charging model,
with which cloud providers pay based on theq-th percentile of traf-
fic volumes measured in a short time interval, over a number of
such intervals in a charging period. Such a model implies that, if
traffic has already been generated during one time interval, up to
the same volume of traffic may be carriedfree of chargein subse-
quent time intervals.

In this paper, we have presentedJetway, designed to minimize
costs on inter-datacenter video traffic by splitting and routing video
flows over multiple multi-hop paths.Jetwaytakes full advantage of
our key observation that some of the traffic volumes can be trans-
ferred free of charge, while the desired transmission rates of video
flows remain satisfied. In order to designJetway, we have formu-
lated the problem of minimizing costs with the intent of maintain-
ing its tractability and the practicality of our solutions. We have
evaluated the performance ofJetwayusing our real-world imple-
mentation, with actual traffic flowing across seven Amazon EC2
datacenters around the world. We have shown thatJetwayis capa-
ble of reducing traffic costs, while maintaining satisfactory perfor-
mance with respect to both throughput and end-to-end delay.
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