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Abstract—With the proliferation of multi-touch mobile devices,
such as smartphones and tablets, users interact with devices in
non-conventional gesture-intensive ways. As a new way to interact
with mobile devices, gestures have been proven to be intuitive
and natural with a minimal learning curve, and can be used in
interactive multimedia applications. In order for multiple users
to collaborate in an interactive manner, we propose that gestures
can be streamed in multiple broadcast sessions, with each session
corresponding to one of the users as the source of a gesture
stream. During the interactive session, the Quality of Experience
(QoE) of mobile users hinges upon delays from when gestures are
entered by the source to when they are recognized by each of the
receivers, which we refer to asgesture recognizing delays. In this
paper, we present the design ofGestureFlow, a gesture broadcast
protocol designed specifically for concurrent gesture streams in
multiple broadcast sessions, such that the gesture recognizing
delay in each session is minimized. We motivate the effectiveness
and practicality of using inter-session network coding, and address
challenges introduced by the linear dependence of coded packets.
We evaluate our protocol design using an extensive array of real-
world experiments on mobile devices, involving a new gesture-
intensive interactive multimedia application, called MusicScore,
that we developed from scratch.

Index Terms—Multi-Touch Streaming, Inter-session Network
Coding, Mobile Framework.

I. I NTRODUCTION

NEW mobile devices with multi-touch displays have
brought revolutionary changes to ways users interact

with wireless devices, withmulti-touch gesturesused as the
primary means of interaction. In particular, interactive multi-
media applications on mobile devices have made it possible
to use gestures intensively to create and consume artistic or
musical content in an interactive and collaborative fashion,
since gestures are frequently needed to create and manipulate
artistic strokes or musical notes. With such media authoring
applications, it is desirable, if feasible, to support collaboration
among multiple participating users. As an example, it would
certainly be exciting if music composition hobbyists may
collaborate in real time to work on a musical piece.

To support such collaboration among multiple users in real
time, we propose thatgesturesare streamed in a broad-
cast fashion from one user to all participating users, in a
broadcast session. Streaming gestures themselves, ratherthan
application-specific data, has made it possible to optimizethe
design and implementation of agesture broadcast protocol
that can be reused by any mobile multimedia application that
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needs to support multi-party collaboration. Clearly, it isa
more elegant and reusable solution to serve the needs of an
entire category of gesture-intensive media applications.Once
received, gestures can be recognized and rendered in real time
by a live instance of the same application on a receiver. To
take such broadcast of gestures a step further,multiplegesture
broadcast sessions need to be supported concurrently, so that
any participating user can be the source of a gesture stream.

With such gesture streaming broadcast sessions in place, a
high-quality user experience within an interactive application
hinges upon an important Quality of Experience (QoE) metric:
the time it takes for a gesture to be recognized at each of the
receivers, starting from the time it is recognized at the source
of the session. Referred to as thegesture recognizing delay,
such a delay is an application-layer QoE metric that directly
affects the user-perceived quality of an application session.

In this paper, we presentGestureFlow, a new QoE-aware
gesture streaming protocol specifically designed for multiple
concurrent broadcast sessions of gestures, with the objective
of minimizing gesture recognizing delaysin these broadcast
sessions. Since only a subset of raw touch events can be recog-
nized as multi-touch gestures, the source of a broadcast session
needs to sendraw touch events, which will be recognized at
each of the receivers. Each recognized gesture will consist
of a number of network-layer packets, all of which need to
be received for the gesture to be correctly recognized. Unlike
traditional media streams, gesture streams typically incur low
yet bursty bit rates, but packet losses are not tolerable since
each lost packet will severely affect the accuracy of the gesture
recognizer on a receiver.

In order to support multiple broadcast sessions while min-
imizing gesture recognizing delays and guaranteeing reliable
packet delivery, we present a detailed design that usesinter-
session network coding, and addresses a number of open
challenges in our design that have not been discussed in the
literature: what the best size of the coding window should be,
how the coding window should be advanced, and how packets
from different sessions can be coded together.

To validate our design, we have developed a real-world im-
plementation ofGestureFlow, as well as an interactive music
composition application, calledMusicScore, using Objective-
C from scratch on the iPad.MusicScoretakes full advantage
of our implementation of theGestureFlowframework to allow
composers to enjoy a live collaborative session. During exten-
sive experiments presented in this paper, we have discovered
new challenges in the use of network coding within the
GestureFlowimplementation. It turns out that coded blocks
are linearly dependent with one another with an alarmingly
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high probability, leading to a much higher overhead than what
we originally anticipated. We found that it is due to the fact
that the coding window size is typically very small, which is
required to satisfy stringent delay requirements. We propose to
use systematic Reed-Solomon codes on the source to mitigate
the overhead due to such linear dependence, and show that
the revised QoE-aware gesture streaming protocol has met our
needs with the smallest possible gesture recognizing delay.

The remainder of this paper is organized as follows. Sec. II
discusses the motivation and challenges of QoE-aware ges-
ture streaming. In Sec. III, we describe our detailed system
design inGestureFlow, using inter-session network coding. In
Sec. IV, we present a thorough analysis of measurement results
using our implementation ofGestureFlowand MusicScore,
and observe that coded blocks are linearly dependent with
an alarmingly high probability. In Sec. V, we propose our
solution to mitigate such linear dependence among coded
blocks, and evaluate its performance. We discuss related work
and conclude the paper in Sec. VI and Sec. VII, respectively.

II. GESTURESTREAMING: MOTIVATION AND QOE

Multi-touch allows users to interact with user interface
elements directly with their fingers usinggestures, and has
been proven to be the most intuitive interface for a wide variety
of applications. These gestures can be as simple as a one-finger
tap, or as complicated as a three-finger swipe. As a running
example and experimental testbed, we have designed and
implemented an iPad application for music composition using
multi-touch gestures, calledMusicScoreand shown in Fig. 1,
from scratch.MusicScoreallows a user to create musical notes
with double taps, to change the pitch of notes by dragging
them vertically, and to select a group of notes by dragging a
rectangle around them.

Fig. 1. A screenshot of runningMusicScoreon the iPad.

A. Streaming Multi-touch Gestures

In MusicScore, there are situations in which a teacher gives
her student a tutorial on music composition when she is travel-
ing; or composition hobbyists collaborate to compose a piece
of music without being physically together. These examples
have shown a clear need to facilitate spontaneous sharing
of user experience among multiple users, which substantially
improves the utility of multi-touch applications. In a nutshell,

rather than streaming application-specific data, we propose that
multi-touch gestures are streamed instead, regardless of what
the application may be. With the same application running on
multi-touch devices belonging to all participating users,the
streamed gestures can be precisely rendered on a receiving
device, as if they are enteredlive by the local user.

By streaming multi-touch gestures, we immediately gain
a number of important benefits. In contrast to the design of
customized state exchange protocols for specific collaborative
media applications, such as musical symbols in a score and
artistic objects in a canvas, it would be much more generic
to stream multi-touch gestures as representatives of user inter-
actions. By handling the replay of streamed gestures as user
input, application states are updated correctly at the receiving
device. This implies that gesture streaming can serve as an
underlying framework that supports any media application
that desires multi-party collaboration. Furthermore, streaming
multi-touch gestures makes it easier for multiple users to
interact with the same set of application states at the same
time. In MusicScore, this implies that multiple users are able
to compose the same piece of music together, by composing
different voices or musical instruments in the piece.

Since all participating users are able to affect the state ofthe
application, it is a must that everyone can see the exact changes
made by other users. While some multi-touch gestures can
easily be replayed after being streamed to a different user,such
as adding a note inMusicScore, other gestures only change
the views of the local user, such as zooming, and do not affect
the state of the application. If participating users have different
views, it will be impossible to show all of them on one display.
We solve this problem by adopting a“picture in picture”
design: a user’s own gestures interact with the native view
using the full-screen display, and the views of participating
users are displayed in their respective overlay windows. In
the example shown in Fig. 2, both Alice and Bob are able to
work on their preferred views, and to observe the view of the
other party at the same time.

Alice Bob

Multi-touch streams

Fig. 2. A “picture in picture” design as multi-touch gesturesare streamed
between two users, who are collaborating to compose the same piece of music.

B. Quality of Experience

Our ultimate design objective is to design a reusable frame-
work, called GestureFlow, from the ground up to stream
multi-touch gestures to multiple participating users, with the
best possible Quality of Experience achieved. The framework
uses a shared set of well-designed presentation and transport
mechanisms to support a variety of interactive multimedia
applications, includingMusicScore. There are a number of
challenges when designing theGestureFlowframework.
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First, multi-touch gesture streams have avery low, yet
bursty, bit rate. In multi-touch applications, it is usually the
case that users interact with their devices frequently for awhile
and then stay idle most of the time. For example, a music
composer touches the display inMusicScoreto add or remove
notes only when she is inspired. Fig. 3 shows the bit rates of
a typical gesture broadcast session inMusicScoreover time.
We can observe that the peak bit rate reaches11 kbps, while
the average bit rate is no more than3 kbps.
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Fig. 3. Bit rates of a typical gesture broadcast session inMusicScoreover
time.

Second,multi-touch gestures need to be streamed in an
in-order, losslessand error-free fashion, as any lost or er-
roneously transmitted gesture to any of the participating users
makes it difficult to precisely render and reconstruct applica-
tion states at the receiver. This is different from typical media
streams, where a loss or an error is considered an inconve-
nience that degrades playback quality, but not a catastrophic
event.

Third, gesture streaming has a stringent delay requirement.
Media applications that need the support from a gesture
streaming framework are interactive in nature, and demand
the smallest possiblegesture recognizing delay, from when
gestures are recognized by the source, to when they are
eventually received and recognized by each of the receivers.

Finally, once the replay of streamed gestures has started at
a receiver, the interval between the replay of two consecutive
gestures has to be kept identical to the difference between their
original timestamps when they are generated at the sender.
Otherwise, rendered states of an application may be different
from the original. This implies that each gesture has to be
recognizedat the receiveron time, i.e., before its scheduled
replaying time, despite the fact that each gesture may be
received with different end-to-end delays over the Internet,
and as a result experience different gesture recognizing delays.
Similar to live media streaming, aninitial startup delay—
with a corresponding application buffer at the receiver — can
be used to mask varying gesture recognizing delays.

Using our “Bob and Alice” example, we illustrate delays
in the session from Alice to Bob in Fig. 4. Alice’s gestures
are received by Bob with end-to-end delaysτ1, τ2, τ3, . . . ,
and recognized by Bob’s application with gesture recognizing
delays v1, v2, v3, . . . . Though a gesture may be recognized
by Bob’s application, its replay may be delayed by an initial
startup delayδ, such that the intervals between gestures,
∆t1,∆t2, . . . , are kept precisely the same during replay. In
order to make sure all gestures are recognized on time for
replaying, the initial startup delayδ has to be no shorter

than the longest gesture recognizing delay,vmax. Therefore, to
achieve the best possible Quality of Experience with a short
δ, gesture recognizing delays need to be minimized.

TimeAlice's gestures
...

t

Bob's Receiving

Sequence Time
...

Gesture Replay

in Bob's device Time
δ

...

τ1 τ2 τ3

∆t2∆t1

∆t2∆t1

v1 v2 v3

Fig. 4. The replay of gestures from Alice to Bob, using an initial startup
delay δ to mask varying end-to-end delaysτi over the Internet, as well as
gesture recognizing delaysvi in the application.

With these unique characteristics, the design of theGesture-
Flow framework is more challenging than conventional media
streaming systems. It needs to be designed so that a bursty
and low bit-rate stream from each user can be transmitted to
all participating users in a reliable and timely fashion, ina set
of broadcast communication sessions.

C. Presenting Multi-touch Gestures

We are now ready to present a detailed design of our
GestureFlow framework. The first natural question is how
gestures should be presented and packetized, in preparation
for streaming to multiple participating users.

In multi-touch applications,gesture recognizersare in-
stances that analyze araw stream of touch objects in a
sequence, and determine the intention of users based on
properties of each gesture. It analyzes the number of touches
and the number of taps from the raw stream, and compares
them with the required ones stored in the recognizer to
make a decision. Table I shows descriptions and examples in
MusicScorefor a collection of useful gestures.

What information should be streamed for a precise playback
at a receiver? There are two alternatives. The first is to
use araw stream, represented by a successive sequence of
touch events(e.g., finger-down, finger-up, or location update
of touch), and the second is to stream a sequence of ges-
tures recognized by gesture recognizers. Intuitively, onemay
think streaming recognized gestures would be sufficient for
mobile applications. Unfortunately,GestureFlowneeds to use
the first alternative, and to stream raw touch events rather
than recognized gestures. This is because interactive media
applications typically include a mixture of raw touch events
and recognized gestures. Take a drawing application as an
example, while scaling or moving an object in the canvas can
be done by gestures, artistic drawing requires a raw stream
of touch events to track every movement of fingers. Table II
summarizes examples of multi-touch operations in typical
interactive applications, which require both raw touch events
and recognized gestures.

As soon as the raw stream is received, gestures can be
recognized by the same application on the receiver, as illus-
trated in Fig. 5. As a gesture is essentially a sequence of raw
touch events, before the last touch event arrives at the receiver
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TABLE I
EXAMPLES OF MULTI-TOUCH GESTURES INGestureFlow.

Gesture type Description Example in MusicScore Information needed to replay

Tap Tap a view with one or more fingers,
possibly multiple times

Select a note or chord The number of fingers used, the number of taps,
and the location in a given view

Swipe One or more fingers moving towards
a direction for a distance

Scroll up or down The location of the first touch, the direction of
the swipe, its velocity and the distance

Touch and hold Touch with one or more fingers and
hold for a short period of time

Trigger a pop-up menu to change the
note duration or to add accidentals

The location in a given view

TABLE II
EXAMPLES OF MULTI-TOUCH OPERATIONS IN TYPICAL INTERACTIVE

APPLICATIONS.

Interactive Brushes MusicScore
Application (Artistic drawing) (Music composition)

Touch
Events

Draw a curve with vary-
ing speed

Free play on the virtual
piano keyboard

Recognized
Gestures

Move a layer in the can-
vas using panning

Create a note using
double-tapping

and leads to a successfully recognized gesture, all preceding
touch events have already being streamed to the receiver.
In other words, the recognizer in the receiving application
has beenprogressivelyreceiving “partial” information about
this gesture; once the last raw touch event is received, the
gesture is immediately recognized. In contrast, if a gesture
is streamed when it is fully recognized by the sender, the
receiver has to wait for the transmission of an entire gesture,
which is typically larger than a touch event,i.e., the delay
of recognizing a gesture in the receiving application will be
higher.

iOS

Mobile

Application

GestureFlow

Application

Picture in Picture

Recognizers Recognizers

StreamingRaw Stream

Touch Objects

User's touches

raw touches

recognized
gestures

Fig. 5. Streaming a raw stream of touch objects.

To packetize and transmit a raw stream of touch objects
(Fig. 5), we propose to use a simple binary format, due to the
fact that there are only four types of events involved (touch-
begin, touch-move, touch-end and touch-cancel). With a raw
stream, touch objects are continuously generated as a user
interacts with her device, and transmitted with a compact form
of presentation so that the bit rate is minimized. Each of these
touch events should be accompanied by itssequence number
and timestamp. At a receiver, sequence numbers are used to
detect out-of-order delivery and losses of the event stream, and
timestamps help to replay them with precise time intervals as
they are originally generated: any time interval∆ti can be
computed as the difference between the timestamp of theith

event and that of the(i− 1)th.

III. T RANSPORTINGGESTURESTREAMS

When transporting gestures, we wish to achieve the best
possible Quality of Experience, in that gesture recognizing
delays are to be as short as possible. It is intuitive to conceive
a design where a TCP connection is established between each
pair of users, forming a complete graph of overlay. Although
TCP guarantees the reliable and in-order delivery of a stream
of bytes, the realistic nature of traffic on the Internet dictates
that overlay links based on TCP connections exhibit a wide
range of delays, and vary significantly over time as well.
Further, since TCP uses retransmissions to guarantee reliable
delivery, delays may escalate with a slightly more congested
link, leading to high delay jitters.

To minimize end-to-end delays of delivering gestures to re-
ceivers with guaranteed reliability, we present two approaches
by taking advantage of the “all-to-all” broadcast nature of
GestureFlow, where every participating node is the source
node of a broadcast session to all others, and multiple broad-
cast sessions exist concurrently in the complete overlay graph
connecting all users.First, we propose to userandom network
coding, which streams coded blocks using UDP flows rather
than TCP, and allows possible relaying nodes to relay blocks
that they receive after recoding.Second, instead of direct
connections in the case of using TCP, multiple paths between
the source and each receiver are used to minimize the end-to-
end delays of delivering gestures. Since all relaying nodesare
receivers themselves, no additional bandwidth is consumedto
take advantage of relay paths. The essence of our transport
solution is to use network coding as a rateless erasure code
for all broadcast sessions to guarantee reliable delivery,tightly
coupled with the use of multiple paths to minimize end-to-end
delays.

A. GestureFlow: Design Overview

In GestureFlow, we have designed a custom-tailored proto-
col to utilize random network coding in all of the concurrent
broadcast sessions, each streaming gesture events from one
of the participating nodes. The reliable delivery of original
data blocks is guaranteed with the erasure correction nature of
random network coding. Should a particular coded block be
lost, subsequent coded blocks received are equally innovative
and useful.

Data blocks flow conceptually from each source in acoded
form that is mixed with other blocks, via multiple single-
hop or two-hop paths to each destination, with each two-hop
path using one participating node as a relay. With multiple
paths, original data blocks will arrive at a receiver via thepath
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with the lowest delay, yet in a coded form. Fig. 6 illustrates
an example to show how blocks from Node1’s session are
transmitted in coded forms and following different paths.

1

2

3

4

Fig. 6. Streaming coded blocks from Node 1 to all other participating nodes
along multiple paths. Data blocks from Node1 are being transmitted to Node
4 in coded form, either using a direct link, or relayed by Node2 and Node
3 after being recoded with their own data blocks.

When participating nodes are used to relay data blocks, they
are also producing their own original blocks. What should each
node do with these data blocks belonging to multiple broadcast
sessions? Since a node is capable of recoding all coded blocks
it has received before transmitting them to others, shall we
allow for recodingacrossmultiple broadcast sessions? If we
do, a participating node would then serve the dual role of being
a source node and a relaying node. Referred to asinter-session
network coding in the theoretical literature, it has not yetbeen
adopted in any practical systems using network coding.

In the GestureFlowframework, we have made the decision
that all nodes are to perform network coding across multiple
broadcast sessions. If each node is allowed to mix all incoming
blocks with original blocks produced by itself, there is no
longer a need to allocate outgoing bandwidth to multiple
concurrent sessions, or to schedule outgoing blocks belonging
to different sessions competing for outgoing bandwidth. With
inter-session network coding, every node only needs to trans-
mit as many coded blocks as the outgoing bandwidth allows,
without considering the sessions they belong to.

In the four-node example shown in Fig. 6, if we consider
all 4 broadcast sessions from4 users concurrently, the inter-
session network coding engine in node2 is shown in Fig. 7.
As we can see, node2 produces coded blocks covering all4
sessions, each of which carries the necessary information other
nodes require to decode, such as the sequence numbers of
original blocks, all random coefficients, and the coded payload,
so that it is self-contained.

Node 2
Node 1

Node 3

Incoming Sessions Outgoing Sessions

Node 4

Node 1

Node 3

Node 4

Random
Network 
Coding

S1, S2, S3, S4

S1, S2, S3, S4

S1, S2, S3, S4

S1, S3, S4

S1, S3, S4

S1, S3, S4

S2

# of Sessions = 4
Start Seq. #
End Seq. #

S1

S2

Start Seq. #
End Seq. #

..
.

..
.

An Inter-Session
Coded Block

Coded Payload

Coefficents

Fig. 7. The inter-session network coding engine in node2, in the context
of the four-node topology shown in Figure 6, with4 “all-to-all” broadcast
sessions considered.

B. GestureFlow: Protocol Design

Now that we have presented an overview ofGestureFlow,
we are ready to discuss more details in our protocol design.

Basics of random network coding. Random network coding
has been well established in recent research literature [1],
[2], and has been shown to maximize throughput in multi-
cast sessions. With random network coding,k original data
blocks b = [b1, b2, . . . , bk]

T , each withs bytes, are to be
transmitted from the source to multiple receivers in a network
topology. A source of a broadcast session generates coded
blocksxj =

∑k
i=1 cji · bi as a linear combination of original

data blocks in a finite field (typicallyGF (28)), where the set
of coding coefficientscj = [cj1, cj2, · · · , cjk] is randomly
chosen. A relaying node is able to perform similar random
linear combinations on received coded blocks with random
coefficients. Coding coefficients related to original blocks bi
are transmitted together with a coded block.

A receiver is able to decode allk data blocks when
it has receivedk linearly independent coded blocksx =
[x1, x2, . . . , xk]

T , either from the source or from a relay. It first
forms ak× k coefficient matrixC, in which each row corre-
sponds to the coefficients of one coded block. It then decodes
the original blocksb = [b1, b2, . . . , bk]

T asb = C
−1

x. Such
a decoding process can even be performed progressively as
coded blocks arrive, using Gauss-Jordan elimination to reduce
C to its reduced row-echelon form (RREF).

Although inter-session network coding is conceptually sim-
ple to perform, its real-world design and implementation have
brought a number of challenges to the spotlight. In what
follows, we illustrate our design choices as we address these
challenges.

The size of an original data block. When determining what
the value ofs — the size of an original data block — should
be, we have discovered in our experiments that the size of one
gesture event in the stream is very small: less than512 bytes.
In GestureFlow, each original data block contains one touch
event if any touch event is produced. When original blocks of
different sizes are coded, they are padded with zeros to the size
of 512 bytes. Since gesture events do not vary substantially
in size and the streaming bit rate is very low, the overhead
introduced by such padding is not a concern.

Cumulative acknowledgments. How should receivers ac-
knowledge the source node of a broadcast session in which
an original data block has been correctly decoded? The first
intuitive idea is to selectively acknowledge each of the data
blocks as soon as they become decoded, even if they are not
consecutive to one another. While it is certainly possible for
the source node to remove any of the original blocks from the
coding window when it is acknowledged by all the receivers,
it requires a coded block to carry the sequence numbers of
all original blocks that are coded. Since sequence numbers of
original blocks are not consecutive, it is no longer feasible to
carry only the starting sequence number of theearliestoriginal
block. Since the additional overhead and complexity may not
be justified, we propose to usecumulativeacknowledgments,
which are much simpler.

With cumulative acknowledgments of decoded data blocks,
a receiver uses Gauss-Jordan elimination to reduce the coef-
ficient matrix of all coded blocks it has received so far to its
RREF, and finds out which block has just been completely
decoded. Instead of acknowledging a newly decoded data
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block immediately, the receiver sends an acknowledgment
for a decoded block only ifall earlier blocks with smaller
sequence numbers have been decoded. As an example shown
in Fig. 8, the receiver does not acknowledgeb3 even though it
has been decoded after receiving two coded blocksx1 andx3.
It waits until receiving another coded blockx4, which renders
all three data blocks,b1, b2, andb3, decoded.

1 1 1
Lost

1 1 0

0 0 1

1 0 0

0 1 0

0 0 1

RREF of the Coefficient Matrix 

b1 b2 b3

b3

b1, b2, b3

x
1

x
2

x
3

x
4

b1+ b2+ b3

2b1+ 3b3b2+

b1+ b2+2b3

2b2+b1+ b3

b1, b2, b3

Acknowledgment
for

decoded

decoded
ACK=3

Sender Receiver

Fig. 8. A receiver sends a cumulative acknowledgment only whenall earlier
blocks have been decoded.

Basics of the coding window at a source node with
no relaying. In the theory of random network coding, it is
assumed thatk data blocks are to be coded, and if more data
blocks are being transmitted, they are divided intogroupsof k
blocks, and coding is to be performed within each group. Ifk

is fixed, it corresponds to a fixed number of blocks to be coded.
However, a fixed group sizek may negatively affect the QoE
metric in gesture streaming: due to inherently bursty traffic
when gestures are streamed, a fixed group size may increase
the gesture recognizing delays. As an example, consider the
case where4 blocks are to be coded at a source node, yet only
3 are received or produced, followed by a long idle period.
With a fixed group size, the source node would have to wait
for all 4 blocks to become available.

To address this challenge, blocks are to be coded within
a sliding window in GestureFlow, referred to as thecoding
window. To explain the basic idea of a coding window, let us
first consider the simplified scenario where a node does not
relay coded blocks from other broadcast sessions,i.e., only
original blocks are coded by the source node of a broadcast
session. In this case, as a new original block containing a new
gesture event is produced, it is added to the coding window
at the source node. A maximum size of the coding window,
W , is imposed to guarantee successful decoding at receivers,
and it corresponds to the maximum number of original blocks
that can be coded to produce an outgoing coded block. The
source node performs random network coding on original
blocks within the coding window, and sends coded blocks to
all the receivers as newer blocks are being added to the coding
window. The coding window advances itself by removing the
earliest data block from the window when the source node
has received acknowledgments from all the receivers in the
broadcast session.

Fig. 9 shows the basic idea of the coding window at a
source node. At timet1, the coding window grows to3
as block 5 enters, and then reaches the maximum coding
window sizeW (4 blocks in this example) at timet2. Note
that even though blocks7 and8 have already been produced

containing new multi-touch events (and buffered), they arenot
added to the coding window since it has already reached its
maximum size. After a few coded blocks are received, the
receiver acknowledges that blocks3−5 have been successfully
decoded. At timet3, the coding window at the source node
advances itself by removing acknowledged blocks, and then
blocks 7 and 8 enter the coding window. By adopting the
sliding window mechanism, during bursty periods when touch
events are produced back-to-back, the coding window expands
to cover new events, so that they can be received and decoded
by receivers in time. During idle times when touch events are
scarce, the size of the coding window is naturally reduced as
acknowledgments are being received.

...

Coded Blocks

4 3

5 4 3

5 4 36

5 4 3

...

Coding Window

5

6

7

Alice's Multi-Touch
Event Timeline

...

Decoded for Replay

Sender
(Alice)

Receiver
(Bob)

t1

t2

t3

...

...

...

...

8

5 4 36

9

ACK8 7 6

8 7 69

Fig. 9. The coding window at a source node advances itself over time.

Shrinking the maximum size of the coding window on
demand. Since raw touch events are streamed directly and a
gesture consists of multiple raw touch events, with a fixed
maximum size for the coding window, blocks containing
information to recover one gesture may be split into separate
coding windows, incurring longer gesture recognizing delays
at the receivers. Longer gesture recognizing delays can be
reduced if we can send out a coded blockimmediatelywhen
the recognizer on the source node recognizes a gesture.

In our design, the source node will always “shrink” the
maximum size of the coding window to the current block
whenever a gesture is recognized, so that no other blocks can
enter the current coding window. By doing so, the source
node will not need to hold itself back and wait for new
original blocks after a gesture is already recognized; it is
also easier for receivers to receive enough coded blocks to
recover the gesture since fewer blocks are contained in a
coded block. Fig. 10 shows an illustration of our maximum
coding window size adjustment mechanism with the previous
example in Fig. 9. When a gesture is recognized by the
recognizer at timet4, the source node will adjust its maximum
size of the coding window to2 blocks, and send out these
coded blocks immediately. When the source node receives
acknowledgments confirming that blocks belonging to this
gesture are successfully decoded by all receivers, the source
node advances its sliding window, and the maximum window
size is then restored to its original value (4 blocks).

The coding window with inter-session network coding. Un-
fortunately, the design of the coding window inGestureFlow
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Fig. 10. The source node adjusts its maximum coding window sizeW when
a gesture is recognized by its gesture recognizer. The numberin the circle
indicates the size of the coding window; and the dark circle indicates that the
maximum coding window size has been reached.

becomes more complicated with inter-session network coding,
where a source node of a broadcast session also serves as a
relaying node for other sessions. The initial complexity comes
from the computation of the coding window size. Even though
a source node also serves as a relay and mixes incoming
coded blocks from other sessions, these incoming coded blocks
should not affect the computation of the coding window size.
In other words, the coding window size should still be the
number of original blocks that the source node itself has
produced, and the source node will not include new original
blocks in its coding window if it has reached its maximum
size.

As we mix blocks from multiple broadcast sessions, what
is the set of blocks that is to be coded on a node for an
outgoing block to be produced? Of course, if an original data
block is already decoded at a downstream receiver, it should
not be included in the recoding process. As a result, with
inter-session network coding, the coding window at each node
should selectivelyremove original data blocks within other
broadcast sessions, if they are no longer useful to all the
receivers. But how does a node in its role as a relay know
which original block is already decoded at receivers?

The short answer to this question is: the relaying node does
not know directly, but the source node knows, since receivers
sendscumulative acknowledgmentsto the source node of a
session, acknowledging the latest original block that has been
decoded. Of course, these acknowledgments are sent directly
from a receiver to the source node of a session, and are not sent
to any of the relaying nodes. Nevertheless, after the sourceof
a session advances its coding window by removing its earliest
original block, all relaying nodes will easily detect such an
advance, as the sequence number of the earliest original block
is embedded within a coded block.

When should a node remove a block from its coding
window? As a coded block arrives or as an original block is
produced, it adds its coefficient row to the existing coefficient
matrix, and reduces the new matrix to its RREF. After elimi-
nating original data blocks from its own broadcast session that
are acknowledged by all receivers, it simply recodes all rows in
the existing matrix, even if an original data block from another
broadcast session is completely decoded when reducing the
coefficient matrix to its RREF. The node does not remove the
block from its coding window immediately, since doing so
introduces the risk that subsequent original blocks may notbe

decoded. Instead, a node, in its role as a relay, waits until the
source node of a broadcast session advances its own coding
window. The relaying node removes an original block from its
coding windowonly when its sequence number is smaller than
the starting sequence number in a newly received coded block
from the source node of a session. Since the source node only
advances its coding window when all receivers have decoded
an original block, recoding such a block will no longer benefit
any of the receivers.
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Fig. 11. Removing data blocks from the coding window of a node in its
role as a relay (node4).

To illustrate the design of the coding window with inter-
session network coding, in the context of our four-node
example given in Fig. 7, Fig. 11 shows the coefficient matrix
at node4. b(j)i represents an original data blocki in the jth

broadcast session,Sj . In the left-side matrix in RREF, we
observe that node4 has decodedb(1)1 and b

(2)
1 , from S1 and

S2 respectively, by receiving the first three coded blocks, and
the fourth coefficient row corresponds tob(4)1 from node4
itself for inter-session network coding. In a newly received
coded block (the coefficients of this block are in the last
row), any information related tob(1)1 and b

(2)
1 is no longer

included, which indicates that the coding windows at node1
and node2 have advanced beyond these original data blocks.
In its role as a relay, node4 now removes coefficient rows that
correspond to these two blocks (circled by dashed rectangles)
from its coding window, within which it produces outgoing
coded blocks in the future.

In summary, Algorithm 1 describes theGestureFlowproto-
col using inter-session network coding.

IV. EXPERIENCES WITHGESTUREFLOW

We dedicate this section to investigations of howGes-
tureFlow performs in real-world systems. We implemented
MusicScore, a collaborative music composition application,
from scratch with the iPad Programming SDK, consisting over
59, 000 lines of code. Users interact withMusicScoreto com-
pose music using only multi-touch gestures.MusicScoretakes
full advantage of theGestureFlowframework to stream gesture
events among multiple participating users, such that composers
can enjoy a live collaborative experience. BothMusicScore
and theGestureFlowframework have been implemented in
Objective-C in the Xcode programming environment. Fig. 12
shows a scenario of a liveMusicScorecomposition session on
the iPad, in which collaboration is achieved usingGesture-
Flow.

To minimize the computational load on the iPad, we have
included an optimized implementation of random network
coding in theGestureFlowframework. Our implementation
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Algorithm 1 GestureFlowrunning on the source node of
sessionSj .
Event: Received a multi-touch event

1: Encapsulate the new multi-touch event into an original block, b(j)
i

, with
proper zero-padding.

2: if the maximum size of the coding window has not been reachedthen
3: Includeb(j)

i
into the coding window

4: Increment the size of the coding window
5: end if

Event: Received an ACK from a receiver in the sessionSj

6: Compute the smallest sequence numberr from all ACKs received so far
from receivers.

7: Advance the coding window by removing all original blocks beforeb(j)r

(inclusive).
8: Include more buffered original blocks into the coding window, if any,

until the maximum size of the coding window has been reached.
9: Recompute the size of the coding window based on the number of

original blocks included.
Event: Received a coded block
10: Add the coded block to the coding window.
11: Reduce the coefficient matrix (corresponding to blocks inthe coding

window) to its RREF using Gauss-Jordan elimination.
12: if b

(q)
p (q 6= j) and earlier blocks can be decodedand b

(q)
p+1 cannot be

decodedthen
13: Decode blocks tillb(q)p (inclusive)
14: Send ACK containingp to the source node ofSq

15: end if
16: if b

(q)
i

(i ≤ p, q 6= j) is not included in the received coded blockthen

17: Removing blocks associated withb(q)
i

from the coding window
18: end if
Event: The network is ready for a block to be transmitted
19: Produce and transmit a linear combination of all blocks in the coding

window with randomly generated coefficients.

Fig. 12. MusicScorein action: two users are collaboratively composing a
musical piece with support from theGestureFlowframework.

of network coding is able to progressively decode incoming
coded blocks using Gauss-Jordan elimination, while taking
full advantage of SIMD instructions available in the ARM v7
architecture, used by CPUs powering the iPad (all generations)
and the iPhone (including 3GS, 4 and 4S). TheGestureFlow
implementation itself contains over8, 000 lines of code.

A. Performance Analysis

As our primary QoE metric, we first present measurement
results with respect to the gesture recognizing delays. In each
run of our experiments, we measure the gesture recognizing
delay in a collaborative music composition session between
a pair of iPads runningMusicScore, and the corresponding
CDF curve is derived from multiple runs of our experiments.
Our experiments are performed in both Wi-Fi networks and

3G cellular networks to better capture the performance of
GestureFlow. Given a type of Internet connectivity (Wi-Fi or
3G), two iPads are connected to the Internet via two different
ISPs, reflecting a more dynamic network condition. We have
also implemented a traditional TCP-based streaming protocol,
namedTCP Relay, as a baseline for our comparisons. For
fairness,TCP Relayalso transmits data blocks through both
direct TCP link and two-hop relay paths to minimize both
end-to-end delays and delay jitters.

As shown in Fig. 13 and Fig. 14, whenGestureFlowis used,
averages of gesture recognizing delays are102.6 msec and
253.3 msec for Wi-Fi and 3G users, respectively. In contrast,
TCP Relaysuffers from much longer gesture recognizing
delays: 183.6 msec and485.1 msec on average, for Wi-
Fi and 3G users, respectively. The shorter delays achieved
by GestureFlowcan be attributed to both the adoption of
inter-session network coding and a sliding coding window,
specifically designed for gesture streaming. Besides, since
devices in cellular networks (3G or EDGE) cannot directly
connect with each other via TCP, due to NAT restrictions,
they have to connect to the same set of relays with publicly
accessible IP/port (e.g., dedicated relay servers for users in
cellular networks) for data exchange. This results in longer
end-to-end delays between 3G users, as shown in Fig. 14.
In contrast, UDP-basedGestureFlowcan easily achieve NAT
traversal in cellular networks, and as a result achieve shorter
end-to-end delays.
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Fig. 13. CDF of gesture recogniz-
ing delays between Wi-Fi users using
GestureFlowandTCP Relay.
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Fig. 14. CDF of gesture recognizing
delays between 3G users usingGes-
tureFlow andTCP Relay.

Furthermore, we would like to evaluate the performance
of GestureFlowin a real-world scenario with four users in
“all-to-all” broadcast sessions, with one iPad user connecting
to the Internet through campus Wi-Fi, one iPad user using
the household Wi-Fi access point, and two iPhone 4S users
connecting to the Internet through 3G and EDGE, respectively.
Similar to the two-user experiments, these four devices are
connected to different ISPs and located in different locations
in the same city. Table III summarizes the average gesture
recognizing delays in bothGestureFlowand TCP Relaybe-
tween each pair of devices, over20 runs of experiments. It is
clear thatGestureFlowachieves better performance: gesture
recognizing delays are23−52% shorter compared to those in
TCP Relay.

Next, we evaluate an important design choice adopted in
GestureFlow: the use of multiple paths between the source and
each receiver to minimize end-to-end delays. Fig. 15 shows the
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TABLE III
COMPARISONS OFGESTURERECOGNIZING DELAYS (MSEC) USING

GESTUREFLOW AND TCP RELAY.

GestureFlow
Wi-Fi 1 Wi-Fi 2 3G EDGE

/ TCP Relay

Wi-Fi 1 − 103/178 192/376 309/517
Wi-Fi 2 89/184 − 167/257 274/415

3G 224/391 188/294 − 364/493∗

EDGE 347/487 301/428 398/519∗ −

Note: there is no direct TCP connection between cellular devices due to
NAT restrictions. Relay paths have been used as a result.

average percentage of blocks a node receives from relaying
nodes in bothGestureFlowand TCP Relayin the four-user
“all-to-all” streaming scenario, along with the95% confidence
interval. We observe that inGestureFlow, Wi-Fi and 3G users
have more than10% of the received blocks from relaying
nodes, and up to30% of received blocks are from relaying
nodes for the EDGE user, due to longer network delays on
direct EDGE links. As a result, EDGE users rely more on
relay paths that have shorter delays than those direct ones.
However, only a small percentage of blocks are observed from
relaying nodes inTCP Relay, especially for the EDGE user,
which indicates that it fails to take full advantage of multiple
paths asGestureFlowdoes.

Fig. 15. The percentage of blocks
from relaying nodes over all received
blocks in GestureFlowand TCP Re-
lay.
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Fig. 16. The average of gesture
recognizing delays with different net-
work sizes usingGestureFlow and
TCP Relay.

To investigate the scalability ofGestureFlow, we further
study the correlation between the gesture recognizing delay
and the number of participating users. Note that all par-
ticipating nodes are Wi-Fi users in this experiment. Shown
in Fig. 16, as the number of nodes increases, the average
of gesture recognizing delays inGestureFlowvaries mildly
around 100 ms. We can even observe a slight decrease in
the gesture recognizing delay when the number of nodes is
large in GestureFlow, e.g., 14 nodes, which is due to an
increased number of relay paths that may provide shorter end-
to-end delays. In contrast, the average of gesture recognizing
delays inTCP Relayincreases significantly when the system
scales up, which is mainly due to congested TCP connections
that are overwhelmed by relayed blocks. Such an observation
implies that a set of complex relay selection and rate control
algorithms are required in TCP-based gesture streaming, as
opposed to the simpler design of inter-session network coding
in GestureFlow.

We also investigate the bandwidth overhead inGestureFlow

by evaluating the difference between the gesture streaming
bit rate, which is computed as the average of four broadcast
sessions, and the upload bit rate per user, which is defined
as the average upload bit rate each user devotes to every
broadcast session. As shown in Fig. 17, the gap between these
two curves becomes wider as the streaming bit rate becomes
higher. The reason is that during bursty periods, every user
has to contribute more bandwidth to upload coded blocks
containing blocks from other sessions, which introduces more
bandwidth overhead. Yet, the bandwidth overhead for each
user is less than5 kbps in general, which is reasonable. It
is critical to point out that even with overhead considered,
the upload bit rate per user is only about8 kbps on average,
which is fairly low in streaming systems. This verifies our
design philosophy that bandwidth is not a major concern in
GestureFlow.
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Fig. 17. Bandwidth overhead per user.

B. User Experience Evaluation

Although our experimental results have so far shown that
GestureFlowis able to provide a better Quality of Experience
for gesture streaming in interactive media applications by
providing shorter gesture recognizing delays, it may not yet be
fully convincing. We are more interested in the actual feedback
from real-world users whenGestureFlowis in use, since it
reflects the Quality of Experience directly. As a result, we have
conducted a series of experiments to capture user feedback.
We invite users to useMusicScorein a two-user interactive
music composition session over Wi-Fi hotspots. They are
asked to rate gesture recognizing delays they have experienced
in a 5-min interactive collaboration session, selecting from 4
categories: 1) delay is too long,i.e., not usable from a user’s
perspective; 2) delay is long, but still tolerable; 3) satisfying,
but with a noticeable delay; 4) excellent.
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Fig. 18. User experience ratings of
different gesture recognizing delays
in MusicScoreusingGestureFlow.
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Fig. 19. User experience ratings of
different gesture recognizing delays
in MusicScoreusingTCP Relay.
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In Fig. 18 and Fig. 19, we show gesture recognizing delays
of collaborative sessions and their corresponding user expe-
rience ratings, whenGestureFlowand TCP Relayare in use
through Wi-Fi connections, respectively. Clearly,GestureFlow
is able to garner higher user experience ratings with shorter
gesture recognizing delays compared toTCP Relay. Similar
trends are also observed with other connection types. While
most Wi-Fi users reported better collaboration experiences
when gesture recognizing delays are shorter than150 msec,
users are observed to be more tolerable to longer delays in 3G
networks. Our evaluation results show that users tend to give
a rating of4 even though their experienced delays are around
300 msec in 3G networks. This can be explained as users
usually expect 3G networks to be slower than Wi-Fi. Validated
by both shorter gesture recognizing delays and higher user
experience ratings, we believe thatGestureFlow is able to
achieve a satisfactory Quality of Experience.

C. Performance of Network Coding

Since we apply network coding inGestureFlow, it is impor-
tant to justify this design choice. Fig. 20 shows the relationship
between the maximum coding window sizeW and the gesture
recognizing delay. We observe that the gesture recognizing
delay increases whenW is getting either smaller or larger,
and reaches its minimum whenW equals to8. The underlying
reason is that whenW is set to be too small, the source
needs acknowledgments for almost every block to advance the
coding window. Subsequent blocks have to wait a longer time
before they can be coded and transmitted, which increases the
delay, especially in bursty periods. On the other hand, ifW

is too large, the received coded blocks always contain coding
coefficients for newly coded blocks, which increases the delay
in the decoding process.
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Fig. 20. The average delays along with95% confidence intervals in different
experiment settings.

As an adaptive maximum coding window size adjustment
mechanism is specifically designed for QoE-aware gesture
streaming, we would also like to verify its effectiveness
through performance evaluation. In Fig. 21, we compare the
gesture recognizing delays when the adaptive maximum cod-
ing window size adjustment mechanism is on and off among
Wi-Fi users. Clearly, benefited from the shrunk maximum
coding window when gestures are recognized, the average
gesture recognizing delay is reduced from121.5 msec to
102.6 msec. Similar results are also observed in measurements
among users with other Internet connection types.

Having evaluated the coding window size and its adaptive
adjustment mechanism, we now proceed to observe the actual
number of blocks to be coded at each node. We plot the CDF
for the number of original blocks and the number of relayed
blocks at each node, which are shown in Fig. 22 and Fig. 23,
respectively. From Fig. 22, we can see that90% of time there
is no more than5 original blocks to be coded at a node. This
indicates that most of the time there is very little delay added
in both the encoding and decoding processes, as blocks do
not have to wait too long to be transmitted or relayed. The
underlying reason is thatGestureFlowhas very bursty traffic.
Since users remain idle most of the time, the actual coding
window size is naturally reduced. Similarly, Fig. 23 shows
that 90% of the coding windows have a size of no more
than 11 blocks, with an average of around4 blocks. This
indicates that, in general, there is only one block or two from
each broadcast session required to be recoded at the relaying
node, which justifies the use of inter-session network coding.
By mixing a limited number of coded blocks from multiple
sessions together, recoded blocks generated by relaying nodes
are useful to downstream receivers with high probability.

Another concern when applying network coding is its CPU
load and memory usage, which are mainly introduced by
Gauss-Jordan elimination in the decoding process. We have
measured the CPU load and memory usage over time at an
iPhone 3GS node, with results shown in Fig. 25. As we can
see, the average CPU usage is8.4%, with peaks corresponding
to bursty bit rates in Fig. 17. The dashed line shows the
memory usage over time, which is2.4% on average. iPad
nodes have even lower CPU loads as they enjoy a higher
CPU frequency in their Cortex A8 architecture, and the same
memory usage as the iPhone 3GS (both have256 MB of
main memory). As such, the CPU load and memory usage
of network coding inGestureFloware acceptable.

It is critical to point out that coded blocks in network
coding, either from source nodes or relaying nodes, are con-
sidered useful only when they arelinearly independentwith
one another, or else they are regarded as redundant blocks.
The ratio of linear dependence among coded blocks with
different coding window sizeW is also investigated, when
evaluating the performance of network coding. For a specific
data block, its linear dependence is computed as the percentage
of linearly dependent blocks over the total number of coded
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Fig. 21. A comparison of gesture
recognizing delays betweenGesture-
Flow with and without the adap-
tive coding window size adjustment
mechanism.
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Fig. 25. The CPU load and memory usage of network coding in an iPhone
3GS device.

blocks involving the data block. By plotting the CDF of linear
dependence of all coded blocks in our experiment in Fig. 24,
we find out that in90% of them, around15% of blocks are
linearly dependent, which is an alarmingly high percentage.
The percentage of linear dependence is even higher when the
coding window size is becoming smaller,e.g.,it becomes18%
whenW = 8.

A high percentage of linear dependence among coded
blocks implies a large portion of redundant blocks, which
unnecessarily consumes bandwidth. Though we emphasize
that gesture streams typically incur very low bit rates, they
are highly bursty as well. Shown in Fig. 3, the bursty bit
rate reaches10 kbps in a session. The bandwidth waste due
to linearly dependent blocks may escalate with concurrent
broadcast sessions. More importantly, a high percentage of
linear dependence may result in longer gesture recognizing
delays as nodes have to wait for more useful blocks to decode
a gesture. With QoE awareness, we need to carefully analyze
and address the challenge of linear dependence.

V. THE PROBLEM OF L INEAR DEPENDENCE

A. Analyzing the Effects of Linear Dependence on QoE

In this section, we show theoretical insights on how linear
dependence among coded blocks negatively affects the Quality
of Experience of users by increasing their gesture recognizing
delays.

We first describe our system model formally. Assume thatN

users participate in a gesture broadcast session. Each of them is
not only a source that generates gestures, but also a receiver
and a relay of blocks from other sessions. The network is
modelled as a directed acyclic graphG = (V, E). V is the set of
network nodes that represent participating users,i.e., |V| = N .
E is the set of network links. The links are characterized by

the total link capacityeij expressed in blocks per second, and
the average packet loss rateπij , where(i, j) ∈ E denotes the
link between the nodesi and j in V. We denote the average
percentage of linear dependence among coded blocks byld.

It is obvious that the gesture recognizing delay depends
on the average packet loss rate and the percentage of linear
dependence among coded blocks. To be exact, the expected
delay observed at each node can be computed by estimating
the average number of blocks that it receives before it can
decode those gestures. LetDi be the average delay observed
at nodei for receiving a sufficient number of blocks such that
it can decode gestures in coding windows of all other users.
Di has the form of

Di = di

∞
∑

k=(N−1)W

kPi(k).

In this equation,k is the number of blocks that nodei
receives before it can decode the gestures;Pi(k) denotes the
probability of decoding these gestures after receiving exactly k

blocks; the constantdi denotes the average delay for receiving
one block and can be approximated asdi = 1

∑

j∈V−i
e−i

,

where V−i is the set of nodes inV without node i, i.e.,
V−i = V \ {i}. Note thatk includes all coded blocks that
can be either linearly dependent or independent from other
blocks.

Since at mostW original blocks, including all received
coded blocks from otherN−1 broadcast sessions, are allowed
to be coded together to produce a new coded block at each
node, the minimum number of blocks needed for decoding
gestures from all other users equals to(N − 1)W . That is
to say, the probability of decoding with fewer blocks than
(N −1)W equals0. Hence, the probabilityPi(k) of decoding
gestures from all other users with exactlyk blocks corresponds
to the probability of forming a full rank system upon receiving
the kth block but not before that. Analytically,

Pi(k) =

(

k − 1

k − (N − 1)W

)

p
(N−1)W
i (1− pi)

k−(N−1)W ,

wherepi represents the probability that a useful block arrives
at nodei.

Since a block is considered useful if it is not lost due to
packet erasures and it is linearly independent to coded blocks
that a node has already received, the probabilitypi can be
represented by the link capacity, the packet loss rate on each
link, as well as the average percentage of linear dependence
among coded blocks. It takes the following form:

pi =
(1− ld)

∑

j∈V−i
eji(1− πji)

∑

j∈V−i
eji

.

More formally, the probability that a useful block arrives at
each node is defined as the fraction of total useful blocks
arrived over its incoming bandwidth capacity.

From our analysis, we can see that when the percentage
of linear dependence among coded blocksld increases, the
probability pi of a useful block arriving at each node will
decrease. This then results in an increase of probabilityPi(k),
since ∂Pi(k)

∂pi
< 0. As a consequence, the average gesture

recognizing delayDi observed at each node will increase.
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B. Mitigating Linear Dependence

To mitigate the high percentage of linearly dependent blocks
that incur longer gesture recognizing delays, we are inspired
by systematic Reed-Solomon codes, and propose to generate
coding coefficients for the original blocks at each node based
on the Vandermonde matrix inGestureFlow.

With coding coefficients generated by the Vandermonde
matrix, each node codes original blocks first, rather than codes
coded blocks belonging to its own session from the onset.
These original blocks can be seen as a special case of coded
blocks, with coding coefficients as rows in an identity matrix.
After coding all original blocks, a node starts to generate and
code coded blocks from its own session. In order to code
k original blocks using an(n, k) Vandermonde matrix over
a Galois fieldFq, a node is able to generate up ton − k

coded blocks, after original blocks are coded. InGestureFlow,
a (n−k)×k Vandermonde matrixG [3] of the following form
is used to generate these coded blocks:

G =



















1 1 1 · · · 1

1 2 3 · · · k

1 22 32 · · · k2

...
...

...
.. .

...

1 2n−k−1 3n−k−1 · · · kn−k−1



















.

Since matrixG is a Vandermonde matrix, it is easy to see
that anyk × k submatrix ofG has a non-zero determinant
and is nonsingular, and as a result every subset ofk rows
of G is guaranteed to be linearly independent. As such, linear
independence among all original blocks coded from the source
is guaranteed with the use of the Vandermonde matrix. These
blocks from the source are always innovative once received.

Compared with random linear codes, one difference of
using the Vandermonde matrix at the source is that it is
not rateless. With the (n − k) × k Vandermonde matrix
G, a maximum ofn − k coded blocks can be coded, in
addition to the original blocks. In contrast, with a randomized
generation of code vectors, random network coding is able
to produce a practically infinite number of coded blocks to
ensure successful decoding with any erasure channel.

In practice, though, this is not a serious limitation in
GestureFlow. We have shown in Sec. IV-C that the optimal
coding window size,W , is 8, which implies thatk ≤ 8, and
the receiver is able to decode successfully as long ask linearly
independent blocks — original or coded — are received. Since
W is set to be so small, even if a standard size of the Galois
field q = 256 is used, and Galois field arithmetic is performed
on GF(256) during coding,n can still be chosen to be as
large asq − 1 = 255, which means that the code used is a
(255, k) code wherek ≤ W . This is indeed a linear code with
a very low rate, and implies that decoding will be successful
with high probability. In situations where the packet loss rate
is so high that fewer thank linearly independent blocks are
received, the session is considered to be terminated.

Other parts of the transport protocol inGestureFlowremain
the same, in a sense that the cumulative acknowledgments,
progressive decoding, relay paths, and inter-session network

coding are still adopted. Note that each node still uses random
linear network coding to generate coding coefficients when
recoding received blocks, so that there are no restrictions
imposed on the actual number of coded blocks in the coding
process.

C. Evaluating the Use of the Vandermonde Matrix
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Fig. 26. CDF of linear dependence
with the Vandermonde matrix used at
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different coding window sizes.

The effectiveness of using the Vandermonde matrix at the
source inGestureFlowis evaluated with additional experi-
ments with MusicScore. Fig. 26 shows the comparison of
CDFs of linear dependence between the originalGestureFlow
design and the use of Vandermonde matrix to mitigate linear
dependence. The maximum coding window sizeW is set to
be 8. It is clear that the90th percentile of linear dependence
is significantly reduced by using the new design, from18% to
6%. Since blocks coded using the Vandermonde matrix from
the source are guaranteed to be linearly independent with each
other, the linear dependence is caused by the recoding process
in relaying nodes, which is acceptably low. The ratio of linear
dependence with different coding window sizes is explored
in Fig. 27. We can see that the ratio of linear dependence
is decreasing as the coding window size increases, and the
ratio with the Vandermonde matrix used at the source is much
smaller than the originalGestureFlowdesign.

Since the most critical design objective inGestureFlowis
to satisfy a stringent delay requirement, we compare gesture
recognizing delays and their standard deviations from the Wi-
Fi 1 User to the other three users by using the new and original
GestureFlowdesigns, respectively, shown in Table IV. We
can observe that by using the Vandermonde matrix as coding
coefficients at the source, average gesture recognizing delays
through different kinds of connections have all been evidently
reduced. Since the redundancy due to linear dependence is
mitigated with the Vandermonde matrix at the source, a
received block can be used to decode with a higher probability,
which reduces the decoding delay.

TABLE IV
GESTURERECOGNIZING DELAYS (MSEC) AT WI-FI 1 USER WITH NEW

GESTUREFLOW DESIGN.

(x, s) Wi-Fi 2 3G EDGE

New (89, 23) (177, 87) (287, 168)
Original (103, 48) (192, 104) (309, 191)
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In summary, our experiments in Sec. IV and Sec. V have
evaluated our important design decisions made inGesture-
Flow, with the objective of reducing gesture recognizing
delays. Our results have confirmed that gesture recognizing
delays are effectively reduced with our proposed protocol in
GestureFlow, and that it scales well when the number of
participating nodes increases.

VI. RELATED WORK

With the inception of network coding [4] and random
network coding [1], [2] in information theory, the topic has
attracted a substantial amount of research attention. Analytical
studies [2], [4] have shown that network coding is able to
maximize information flow rates in multicast sessions in direct
acyclic graphs. In more practical systems, Gkantsidiset al. [5],
[6] have shown that the use of random network coding in peer-
to-peer file sharing systems can reduce the time to download
files. Annapureddyet al. [7], [8] have evaluated the use
of network coding in experimental peer-to-peer on-demand
streaming systems, and have shown that network coding helps
to achieve good performance with respect to the sustainable
playback rate and system throughput. UUSee, Inc. has suc-
cessfully adopted network coding into its commercial peer-
assisted on-demand streaming protocol [9]. Different from
these applications, the use of network coding inGestureFlow
is specifically designed for streaming low bit-rate traffic from
gesture events, and for ensuring reliable delivery with low
delays.

With respect to the design of transport protocols, RTP [10]
and RTSP [11] are able to provide one-to-all delivery of data
with real-time properties over IP multicast. Since RTP and
RTSP are originally designed for IP unicast, reliable multicast
protocols [12], [13] were proposed to improve the performance
of multi-party streaming, by reducing ACK/NAK implosion in
back traffic and optimizing retransmissions on multicast chan-
nels. In addition, network coding has been incorporated into
existing transport protocols. For example, CodeCast, presented
by Parket al. [14], is a network coding based multicast pro-
tocol for low-latency multimedia streaming. Sundararajanet
al. [15] have proposed a modified acknowledgment mechanism
to incorporate network coding into TCP, with the objective of
providing better support to a unicast session. In their solution,
the number of blocks involved in the sender’s sliding window
is completely controlled by TCP. The receiver acknowledges
the degree of freedom of the coefficient matrix of coded
blocks received so far. Network coding is used in a separate
underlying layer as a rateless erasure code, and is decoupled
from window-based flow control in TCP.

In comparison,GestureFlowis remarkably different. It is
designed specifically for multiple interactive broadcast ses-
sions, each involving a stream of gesture events, over reg-
ular IP unicast. Acknowledgments inGestureFlowserve the
purpose of indicating to the source when an original block
has been correctly decoded by all receivers in a broadcast
session. Rather than leaving the control of the sliding window
at the source to TCP, theGestureFlowdesign dictates very
specific rules about how the coding window advances itself,

and about what the maximum window size is. Receivers are
more conservative in that they only acknowledge blocks that
are completely decoded, and in a cumulative fashion.

The performance improvement brought by inter-session
network coding has drawn some recent research attention in
the literature. Eryilmazet al. provide a theoretical framework
in which a dynamic routing-scheduling-coding strategy is
proposed to decide whether blocks from two sessions should
be coded together at a node [16]. Yanget al.propose to divide
multiple sessions into groups and construct a linear network
coding for each group, with consideration of improving the
system’s benefits on bandwidth and throughput [17]. Focused
on directed networks with two multicast sessions, Wanget
al. discuss various aspects of pairwise inter-session network
coding, including the sufficiency of linear codes and the com-
plexity advantages of identifying coding opportunities [18].
I2NC combines inter-session and intra-session network coding
to improve the throughput in lossy wireless environments [19].
In contrast to previous research, the primary objective in
GestureFlowis to reduce the gesture recognizing delay as a
QoE metric in interactive multimedia applications, which has
not been the focus of study in previous work.

VII. C ONCLUDING REMARKS

We are firm believers that gestures represent a new paradigm
for users to interact with mobile devices, and that social
and collaborative aspects of gesture-intensive applications will
usher in an era ofstreaming gesture events live, so that
applications do not need to design and implement custom-
tailored solutions. We are intrigued by the very low yet bursty
bit rates when streaming gesture events over the Internet, as
shown in a real-world application —MusicScore— that we
have developed from scratch to compose music collaboratively
on mobile devices such as the iPad. Such low streaming bit
rates, coupled with the need for guaranteed reliability, low
gesture recognizing delays, and multiple concurrent broadcast
sessions when multiple users are involved, have brought us
brand new but very practical challenges that need to be
addressed with a new transport solution.

While designing theGestureFlowframework, we have tried
a number of alternative designs, governed by the principlesof
simplicity and practicality. This paper presents our design of
using random network coding with multiple paths, allowing
for recoding across multiple concurrent sessions. We intend
to present not onlyhow our design inGestureFlowworks,
but also why we have chosen such a design. The use of
network coding has simplified our design and implementation,
making them more practical. In closing, we are in the hope
that this paper only represents the first step towards a mature
framework that facilitates the streaming of gestures, so that
users interact with one another in a simple and transparent
fashion to create or consume multimedia content, wherever
they may be around the world.

REFERENCES

[1] P. Chou, Y. Wu, and K. Jain, “Practical Network Coding,” in Proc.
Allerton Conference on Communications, Control and Computing, 2003,
pp. 40–49.



14
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