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Abstract—In peer-assisted video-on-demand (VoD) streaming
systems, server bandwidth costs can be astronomical when the
number of videos and peers scales up. Since peers are able
to seek to an arbitrary point of playback in any video at
any time, prefetching is often considered a desirable way to
redistribute media content in the entire system so that less server
bandwidth may be consumed. In this paper, we point out that
the benefits of prefetching in peer-assisted VoD do not come
without considerable upfront costs of bandwidth, and as such
prefetching strategies should be carefully designed to remain
beneficial, but practically carried out in a decentralized manner.
We show how the challenge of minimizing server bandwidth is
equivalent to maximizing the system-wide utility in the context of
double auction markets, where each peer participates in a number
of double auctions by bidding for and selling video segments.
With simulations, we show that prefetching strategies based on
such double auction markets are decentralized, and are effective
in reducing the consumption of server bandwidth as well, as
compared to existing alternative heuristics in the literature.

I. INTRODUCTION

Peers in peer-assisted video-on-demand (VoD) systems are
allowed the flexibility of requesting an arbitrary point for
streaming playback in any video at any time. The design of
peer-assisted VoD systems is much more challenging than live
streaming, due to the temporal diversity of streaming requests
and a dearth of opportunities sharing video segments among
peers, often with prodigious quantities of videos being made
available for streaming.

Since all requests that cannot be satisfied by peers will
need to be sent to dedicated streaming servers, reducing
bandwidth costs incurred on these servers has become the most
important challenge in VoD systems. As examples, YouTube
was estimated to have consumed $470 million a year, and
Facebook was estimated to be spending $500,000 a month
on bandwidth [1]. A natural intuition to offload servers is to
perform prefetching in peer-assisted VoD systems: a large peer
cache can be engaged on non-volatile storage, so that a peer
is able to prefetch any segment from any video in the entire
system, even one that it is not prepared to playback, effectively
manipulating the popularity distribution of segments. The intu-
itive purpose of such prefetching is to improve the availability
of video segments on peers, so that they are more likely to be
served by peers rather than by dedicated servers, conserving
server bandwidth.

In this paper, we would first like to argue that the benefits
of prefetching do not come without substantial upfront costs
of bandwidth. When prefetching is performed to reduce the

consumption of server bandwidth, it also consumes upload
bandwidth in the system to download video segments with the
hope that they can be useful to other peers in the near-term
future. Whether prefetching is beneficial in reducing server
bandwidth costs hinges upon whether the prefetched segments
brings marginally more utility than the cost of performing such
prefetching. To our knowledge, existing prefetching heuristics
in the literature have not yet considered such upfront band-
width costs of prefetching.

While it is certainly our wish to design prefetching strategies
that justify such upfront bandwidth costs, we have come to
realize that such a design should not be yet another heuristic
based upon intuition. While our objective in this paper is to
design practical and decentralized prefetching strategies that
justify their costs and reduce server bandwidth consumption,
our design is based upon a more in-depth understanding of
the challenge at hand, by first formulating the challenge of
minimizing system-wide server bandwidth consumption as a
centralized optimization problem, taking into account practical
constraints of upload and download bandwidth availability, as
well as local caching capacities.

Since practical prefetching decisions must be made in a de-
centralized fashion, we believe that peer-assisted VoD systems
can be treated as trading markets. Segments are considered as
commodities in these markets, with each associated with a
price at each time. Every peer makes their local decisions by
participating in these trading markets with their “bids” and
“asks” for segments, behaving as both buyers and sellers to
maximize their benefits. We model these trading markets as
double auction markets, and prove that the problem of mini-
mizing server bandwidth is equivalent to that of maximizing
the system utility in these decentralized markets. Peer trading
actions in these markets govern their prefetching decisions.

Our motivation of using double auction markets to solve
the server bandwidth minimization problem is inspired by the
power of markets arbitrating decisions of both buyers and
sellers in a decentralized fashion. Auctions have the ability
to determine which buyer should obtain the commodity from
which seller, and to match uploading and downloading peers
in the context of prefetching in peer-assisted VoD systems.
All decisions being made in double auction markets are
decentralized, which makes it simpler to incorporate them into
the design of prefetching strategies.

The remainder of this paper is organized as follows. In
Sec. II, we formulate the challenge of minimizing server



bandwidth in peer-assisted VoD systems. Sec. III transforms
the formulation to problems in decentralized double auction
markets through decomposition, and describes prefetching
strategies governed by these auctions. In Sec. IV, we show the
effectiveness of our prefetching strategies in reducing server
bandwidth costs, as compared to alternative heuristics in the
literature. We discuss related work and conclude the paper in
Sec. V and Sec. VI, respectively.

II. SERVER BANDWIDTH MINIMIZATION IN
PEER-ASSISTED VOD SYSTEMS

We first present an example to explain why benefits of
prefetching do not come without significant upfront costs of
bandwidth.

A. Prefetching Is Not Free!

By utilizing idle upload bandwidth among peers to store
segments that hopefully will be requested by other peers in
the near future, prefetching strategies aim to provide a better
playback quality in VoD systems. However, we must realize
that their benefits may not come without costs. As an example,
consider a simple scenario shown in Fig. 1.
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Fig. 1. Prefetching is not free.

As shown in Fig. 1, peer v, which has segment 5 stored in its
cache at this time, has the capacity of uploading only one seg-
ment. Without prefetching, the playback request for segment 5
from peer u1 can be satisfied by peer v, shown in Fig. 1(a).
In contrast, when a prefetching strategy A is involved, as
demonstrated in Fig. 1(b), peer v’s upload bandwidth is used
to satisfy the prefetching request of segment 5 from peer u2.
As such, a subsequent playback request from peer u1 has to be
redirected to streaming servers if u1 is sensitive to a delayed
delivery. With the use of prefetching strategies, peers may be
forced to upload segments to other peers who are not viewing
them at the moment, or are even not planning to view them in
the future. There are risks involved, in that less peer upload
bandwidth can be devoted to serve active playback requests.
If the prefetched segment can not be used to respond to future
playback requests to save server bandwidth costs, consuming
a higher amount of server bandwidth is unavoidable.

It now becomes clear that prefetching has to be performed
with caution and due diligence. The probability of “hitting”
right segments is of utmost importance. An ill-designed
prefetching strategy may increase server bandwidth costs,
rather than reducing them.

B. System Model

Our primary objective in this paper is to find out how
prefetching strategies can be designed so that server bandwidth
costs can be reduced, or even minimized. We first present the
context of our discussions and a model of peer-assisted VoD
systems.

Consider a peer-assisted VoD system with a total of M
constant-length segments to be shared. Once a peer logs in,
it contacts tracker servers and retrieves a set of neighbours,
i.e., peers who can upload and download segments among one
another, according to certain neighbor selection algorithms.
For each segment k, assume the access probability is pk,
and the sum of access probabilities pk satisfies the condition∑M

k=1 pk = 1. We recognize that, in practice, there are
numerous neighbor selection algorithms and it is not easy to
accurately determine pk. Since challenges involved in neighbor
selection and modeling access probabilities are orthogonal to
the scope of this paper and have been discussed in the literature
(e.g., [2], [3]), we assume that they are known a priori.

Though we consider a realistic VoD system supplying
multiple video channels, we do not focus on the notion of
videos or channels, and instead focus on a (potentially large)
collection of segments, regardless of which video they belong
to. A peer is not restricted to caching and serving segments
from only the video it is actively viewing, i.e., inter-session
prefetching is allowed. Each peer u has a known upload
bandwidth xu, download bandwidth du, and a limited cache
space cu, all in terms of segments (rather than bytes). Note
that, again, since there are dedicated servers to guarantee the
users’ viewing experiences, and peer bandwidth is used as
additional resources to alleviate the server load as much as
possible, and incentives are not considered as concerns in this
paper. In other words, xu is the reported available upload
bandwidth of peer u.

To formalize recurring user participation that takes into
account of heterogeneous viewing habits, we adopt the widely
used ON-OFF model. There are a total of N participating
peers, with each peer either ON (i.e., present in the system) or
OFF (i.e., logged off) at time t. This behavior can be modeled
as an alternating renewal precess {ρu(t)} for each peer u:

ρu(t) =

{
1 user u is ON at time t

0 otherwise
, 1 ≤ u ≤ N.

With this notation, the number of peers in the network at t
can be denoted by N(t) =

∑N
u=1 ρu(t). To represent the fact

that peers do not synchronize their arrivals or departures, and
generally exhibit uncorrelated lifetime characteristics in peer-
assisted VoD systems, we assume that peers behave indepen-
dently, i.e., processes {ρu(t)} and {ρv(t)} are independent
for any u 6= v. Without loss of generality, we treat all
ON-time and OFF-time processes as i.i.d. sets of variables.
Assume for each process {ρu(t)}, its ON durations follow
a specific distribution Fu(x) and its OFF durations follow
another distribution Gu(x). In this paper, both ON and OFF



durations are considered to be exponentially distributed:

Fu(x) = 1− e−λux,

Gu(x) = 1− e−µux,

where 1/λu and 1/µu are the average lengths of time peer u
stays ON and OFF, respectively.

In the case of inter-session prefetching, what a peer is up-
loading and downloading can be independent from its playback
behavior. Consequently, as long as a peer stays ON, no matter
which video it is viewing or switching to, its resources —
more specifically, all cached segments and upload bandwidth
— can always be contributed to the system. On the contrary,
once a peer departs, neither its upload bandwidth nor its
storage space can be used. Nevertheless, after its departure,
the content previously downloaded and stored will remain in
its non-volatile cache, and these segments can be shared again
once this peer joins the system again.

C. Centralized Server Bandwidth Minimization

We emphasize that minimizing server bandwidth costs
constitutes an objective with the highest priority to content
providers. Since server bandwidth is consumed only when the
supply of one segment from peers cannot meet the demand
for the same segment, the problem of minimizing server
bandwidth cost is equivalent to minimizing the “deficit” of
peer bandwidth demand over supply. To be more precise, the
demand for a particular segment k at time t is the total number
of online peers that are asking to access segment k; and the
supply of segment k from peers at time t is the sum of
committed upload bandwidth from all online peers who are
caching segment k at t. Ideally, we wish to find a feasible
prefetching algorithm to optimally determine which segment
should be prefetched from which peer, respecting peer capacity
bounds, and minimizing server bandwidth costs.

Under the assumption that all peers possess global infor-
mation of which set of segments other peers have stored
in their caches, at time t, the centralized server bandwidth
minimization problem can be formulated as a binary integer
programming problem:

min
M∑

k=1

(
N∑

u=1

ρu(t)pk −
N∑

u=1

ρu(t)Ik
u(t + 1)xu

)

s.t.
M∑

k=1

N∑
u=1

T k
vu(t) ≤ ρv(t)xv , ∀v (1)

M∑
k=1

N∑
v=1

T k
vu(t) ≤ ρu(t)du, ∀u (2)

M∑
k=1

Ik
u(t + 1) ≤ cu, ∀u (3)

Ik
u(t + 1) =

Ik
u(t) + ρu(t)

(
N∑

v=1

T k
vu(t)−Dk

u(t)

)
, ∀u. (4)

In this formulation, T k
vu(t) is the optimization variable,

which is the binary variable to denote whether peer v is
uploading segment k to peer u at time t. If it is uploading,
T k

vu(t) = 1; otherwise T k
vu(t) = 0. Similarly, Ik

u(t) and Dk
u(t)

are the binary variables to denote whether segment k is stored
or deleted in peer u at time t, with Ik

u(t) = 1 indicating
segment k is stored in peer u’s cache at time t and Dk

u(t) = 1
representing peer u decides to replace segment k at time t. In
such a centralized manner, Ik

u(t) is supposed to be known at
time t. Dk

u(t) is regulated by the adopted cache replacement
algorithm. Once the cache replacement algorithm is fixed,
Dk

u(t) is known at time t as well. The objective is to find
the optimal prefetching strategy T k

vu(t) for all peers based on
current information, so that the server bandwidth consumption
at time (t + 1) is minimized.

Inequality (1) stands for the upload bandwidth capacity
constraint; Inequality (2) represents the download bandwidth
capacity constraint; and Inequality (3) denotes the storage
capacity constraint. In contrast to previous work assuming
that peer uploading bandwidth is the only bottleneck in video
transmissions, our analysis is based on a more in-depth under-
standing of the challenge at hand. We formulate the problem
taking into account practical constraints of both peer upload
and download bandwidth availability, as well as local caching
capacities. Eq. (4) is the update equation for the cache status
indicator Ik

u . Whether segment k is stored in peer u at the
next time slot should be determined by if other peers upload
this segment to peer u at time t, along with if this segment is
chosen to be replaced at time t.

Since the demand for each segment at time t,
(
∑N

u=1 ρu(t))pk, is known in our context, the minimization
problem is equivalent to maximizing the latter part of
the objective function under constraints (1)(2)(3). Replace
Ik
u(t + 1) using update Eq. (4), so that Inequality (2) and (3)

can be combined as:
M∑

k=1

N∑
v=1

T k
vu(t) ≤ min{ρu(t)du, cu −

M∑
k=1

(
Ik
u(t)−Dk

u(t)
)
}. (5)

In subsequent analysis, we focus on decisions at a spe-
cific time. Therefore, time indices in above expressions are
dropped, as we obtain the following optimization problem
equivalent to the original one.

max
∑

k

∑
u

∑
v

T k
vuxuρu

s.t.
∑

k

∑
u

T k
vu ≤ x′v , ∀v∑

k

∑
v

T k
vu ≤ y′u, ∀u

where x′v = ρvxv and y′u equals to the right part of Eq. (5).
The formulation is a comprehensive integer optimization

problem, which is NP-hard in general. There exist many pos-
sible heuristics to solve it. For a general integer programming
problem, we can relax it to a continuous linear optimization
problem, use the primal-dual decomposition method, or use



dynamic programming [4]. For this particular problem, we can
transform it into an equivalent minimum cost flow problem
that can be solved in polynomial time [5]. Though through
some of them we are able to obtain analytical lower bounds of
server bandwidth cost in peer-assisted VoD streaming systems,
the objective in this paper is to design prefetching strategies
that can be implemented in a decentralized and light-weight
fashion. Since we will later show that the utility maximization
problem in double auction markets is equivalent to the dual
of the server bandwidth minimization problem, we choose to
adopt the primal-dual decomposition method here.

The corresponding dual problem may be formulated as
follows:

min
∑

v

rvx′v +
∑

u

quy′u

s.t. rv ≥ 0, ∀v
qu ≥ 0, ∀u.

For some large constant C, replace rv = C−r′v , qu = C−q′u.
The constant C can be dropped without affecting the solution.
The dual problem can be rewritten as:

max
∑

v

r′vx′v +
∑

u

q′uy′u (6)

s.t. r′v ≥ 0, ∀v
q′u ≥ 0, ∀u,

where the dual variables r′v and q′u can be considered as the
average profit per segment that peer v has gained by uploading
no more than x′v number of segments, and the average profit
per segment that peer u has gained by downloading no more
than y′u number of segments, respectively. With these intuitive
explanations, we believe that the optimization problem (6)
is closely related to the social utility maximization problem
in double auctions. We will prove that the two problems are
equivalent in Sec. III.

III. PREFETCHING STRATEGIES
IN DOUBLE AUCTION MARKETS

In this section, we show that double auctions can be a useful
tool to solve the server bandwidth minimization problem in a
decentralized manner.

A. The Concept of Double Auctions

The original auction algorithm solves the assignment prob-
lem, where a set of objects are to be assigned to a set of
persons. The goal is to find a one-to-one mapping between
persons and objects, such that the total utility gained by all
persons is maximized over a given person-object utilization
function. In double auction markets in particular, multiple
buyers and sellers submit bids and asks simultaneously in each
period, and a trade is made if a buyer’s bid exceeds a seller’s
ask.

Without loss of generality, we focus on one double auction
sub-market in an arbitrary round, i.e., in a round that multiple
holders and interested buyers trade for one particular commod-
ity. The reservation prices are defined as the true highest price

qb
i a buyer i is willing to offer for the particular commodity, as

well as the lowest price qs
j a seller j is willing to accept. Their

values are computed according to the participant’s private
evaluation of that commodity. The bid (ask) price bi (sj) is the
reported price that buyer i (seller j) is willing to trade. The
clearing price p0 is the transaction price at which winning
buyers and sellers trade. The utility gain for a buyer and a
seller is denoted as ui(bi) and uj(sj), respectively. A buyer
who buys her commodity valued at b and pays p to receive it
will obtain a utility of b−p; a buyer who pays nothing and not
receiving the commodity obtains zero utility. Similarly, a seller
who sells her commodity valued at s and receiving a payment
of p obtains a utility of p − s; otherwise zero is obtained if
no trade and payment arise. If all participants bid truthfully,
the social welfare maximization problem in a double auction
sub-market with m buyers and n sellers can be formulated as
follows:

max
m∑

i=1

ui(bi) +
n∑

j=1

uj(sj)

s.t. xi ∈ {0, 1}, ∀i
yj ∈ {0, 1}, ∀j,

where ui(bi) = xi(bi − p0) and uj(sj) = yj(p0 − sj); xi

and yj denote whether a buyer i or a seller j enters into a
transaction or not, respectively.

Theorem 1: The dual of the server bandwidth minimization
problem in peer-assisted VoD streaming system is equivalent
to the social utility maximization problem in double auction
markets.

Proof: Consider the action of uploading segments as
“selling,” and downloading them as “buying.” A segment is
the commodity to be traded in a sub-market. Let Mv and
Mu denote the set of sub-markets peer v joins as a seller and
peer u joins as a buyer, respectively. The total utility gains of
peer v as a seller can be represented as

∑
k∈Mv

uk
v(sv), and

the total utility gains of peer u as a buyer can be represented as∑
k∈Mu

uk
u(bu), where uk

v(sv) and uk
u(bu) denote the utility

gains for peer v and peer u in trading segment k. Double
auction mechanisms intend to maximize system-wide utility
gains of all participants, which can be formulated as follows:

max
N∑

v=1

∑
k∈Mv

uk
v(sv) +

N∑
u=1

∑
k∈Mu

uk
u(bu)

s.t. uk
v(sv) ≥ 0, ∀v

uk
u(bu) ≥ 0, ∀u.

Since a peer cannot upload/download segments more than
its upload/download bandwidth, the number of sub-markets
a peer joins as a seller/buyer cannot exceed the number of
segments a peer can upload/download simultaneously. If we
let all the peers participate in exactly the same number of
sub-markets with this upper bound, i.e. |Mv| = x′v and
|Mu| = y′u, the optimization problem above is equivalent to



the following one:

max
N∑

v=1

x′v
|Mv|

∑
k∈Mv

uk
v(sv) +

N∑
u=1

y′u
|Mu|

∑
k∈Mu

uk
u(bu)

s.t. uk
v(sv) ≥ 0, ∀v

uk
u(bu) ≥ 0, ∀u.

Now the underlying connection between our server band-
width minimization problem and the double auction method
is rather evident. Let

r′v =
1

|Mv|
∑

k∈Mv

uk
v(sv),

q′u =
1

|Mu|
∑

k∈Mu

uk
u(bu),

we shall see that the social utility maximization problem is
equivalent to the dual of the server bandwidth minimization
problem.

Based on the established connection between our problem
and the double auction method, the primal variable T k

vu can be
viewed as an indicator showing whether peer v sells segment
k to peer u, and the dual variables r′v and q′u can be treated
as the average profit per segment for peer v to upload and
peer u to download segments. Then r′vx′v is the utility gain
of peer v as a seller, and q′uy′u is the utility gain of peer u
as a buyer. This implies that the dual of the server bandwidth
minimization problem can be solved using the mechanism of
double auction markets.

B. Segment-Based Market Organization

We envision the existence of an online market place, where
all participating peers behave as buyers and sellers; segments
are treated as commodities, the basic trading unit in our
design. The entire market consists of M sub-markets, with
each of them trading one of the M segments. Every segment
is associated with a price Pk at each time and an invisible
currency is adopted. Uploading segments is considered as
selling, and downloading is considered as buying. It is critical
to note that it is not actually selling, but “duplicating,” as
the seller still owns that segment in its cache. However, due
to the possible price degradation of segments incurred by
duplication, risks exist for uploading segments to others.

From the system point of view, the auction among peers
is a double auction with multiple commodities, referring to
the large number of segments waiting to be traded in the
system. If we divide the market into several sub-markets,
where each sub-market only trade one segment, a particular
segment in a sub-market may be interested by multiple peers,
either buying or selling. That is to say, for each sub-market,
it is a single-commodity single-unit double auction, i.e., each
agent wishes to buy (sell) one unit of the same item (segment),
as no peer wishes to save the same segment repeatedly given
her limited storage space. Peers can participate in multiple
sub-markets to trade their holdings simultaneously. However,

these single-commodity double auctions are inter-dependent
with one another, due to the upload/download bandwidth and
storage capacity constraints.

To decouple these inter-dependent double auctions, We
impose the following constraints to restrict peer behavior:

. Each peer can only participate in min{xu, cu} number of
auctions at each time as a seller. It prefers auctions trading
min{xu, cu} number of segments that have the least risk.

. Each peer are restricted to join in min{du, cu} number
of auctions at each time as a buyer. It intends to join such
auctions trading the most valuable min{du, cu} segments that
it does not have in its cache at the moment.

The rationale behind these assumptions are as follows. The
number of sub-markets a peer can participate in is determined
by the proof of Theorem 1, i.e., it should be equal to the upper
bound of the “available” upload and download bandwidth. It
is reasonable that peers intend to join as many sub-markets
as they can to gain more profit. However, the number of
segments a peer uploads at each time is restricted by not only
its upload bandwidth but also its local storage capacity, as it
cannot upload segments more than the number it is able to
store. Similarly, the number of segments a peer can download
at each time is also limited by its download bandwidth and its
storage capacity. Downloading segments more than its storage
capacity will be a waste of bandwidth resource. By joining
auctions trading segments of the least risk, i.e., segments that
have the least reduced price when duplicating them once, the
profit gained by uploading can be maximized. Also, peers
favor those valuable segments as they wish to maximize the
total value stored in their limited caches. Based on the same
objective, we adopt a simple but intuitively reasonable cache
replacement algorithm: when the storage capacity is exceeded,
peers will choose to delete the least valuable segment from
their caches.

Under the restriction of aforementioned rules, single-
commodity double auctions in sub-markets are independent
from one another. Peers can be buyers and sellers at the same
time in different sub-markets. These auctions are executed
periodically and peers submit bids/asks simultaneously in
each trading period. Such distributed double auctions can
be illustrated by the example in Fig. 2, where peer v (the
black dot in the figure), which has segment 5 stored in
its cache, participates in sub-markets trading segment 3, 4, 5
simultaneously. It serves as a seller in the sub-market trading
segment 5, i.e., uploading segment 5 to another peer, while
as buyers in other two sub-markets, i.e., downloading these
segments from other peers.

C. Double Auctions in Prefetching

Based on segment-based markets, we now discuss the
allocation and pricing strategy used in each of the sub-markets.
For a given segment in a given trading period, suppose there
are m buyers and n sellers willing to trade. Each buyer i
reports the bid price as bi, and each seller j asks for sj for
this segment.
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Fig. 2. Prefetching decisions in double auction markets.

Bids and asks of buyers and sellers. Let the price of a
segment, Pk, at a specific time be proportional to the current
demand of this segment, and be inversely proportional to the
availability of it in the system, i.e., Pk = N̂pk/Ak, where
N̂pk =

∑
u∈Nngh

ρupk is the local demand for segment k,
and Ak =

∑
u∈Nngh

ρuIk
uxu is the local segment availability

in the system at the time. Nngh is the set of neighbors of a
certain peer. The intuition is that, segments with more requests
and with scarcer availability in the system should have higher
prices than others. Since peers only have segment availability
of their neighbors by periodically exchanging buffer maps,
peers compute the price of each segment by using their local
information. As a consequence, it is possible for different
peers to have different evaluations of the same segment. In
addition, the local demand and local availability of a segment
vary over time, leading to price fluctuation of all segments.
Peers adjust their bidding strategies according to such price
fluctuations, so that the number of each segment stored in the
system is controlled dynamically and the diversity of segments
is maintained.

Here, the bid price bi for a buyer is the price of the segment
computed by i’s partial information; and the ask price sj

is the estimated loss by selling this segment, which is the
locally computed reduced price of this segment by duplicating
it once. To be precise, sj = Pk − N̂pk/(Ak + x̄), where
x̄ = 1

N̂

∑
u∈Nngh

ρuIk
uxu. Note that the ask price is not the

segment price but the risk of executing this trade, seeing that
it is “duplicating” not “selling.” What the seller loses is the
risk, i.e., price degradation, caused by increasing the segment
availability in the system. As a result, sellers ask for prices
trying to compensate for this loss.

At first glance, it may seem that there exists no benefit for
peers to sell and upload segments. By uploading any segment,
its price decreases due to the increased availability, leading
to a decrease of the total value of all segments in a seller’s
cache. It seems that “duplicating” any segment will create a net
loss for sellers. In fact, however, if all peers refuse to upload,
segment prices will remain the same and none of them suffers
value degradation in its cache. Yet if any one of them chooses
to upload, all other peers will suffer, while the uploading peer
will be adequately compensated by the buyer. This is similar
to the classical Prisoner’s Dilemma problem in game theory. It
has been proved that the concern of each player to maximize
her own payoff results in a unique equilibrium for this game.
In our context, the rational choice is for every seller to upload,

similar to players deciding to defect in the Prisoner’s Dilemma
problem.

The continuous double auction. Our objective is to find
an economically robust double auction mechanism with high
efficiency. The unique properties of peer-assisted VoD systems
further impose requirements in designing the auction protocol.
As we discussed in Sec. III-B, each peer chooses proper
sub-markets to attend as either a buyer or a seller after it
has completed downloading or uploading a segment. With
asynchronous peers in real-world peer-assisted VoD systems,
such downloading or uploading processes at different peers
complete at different times. Since the computation of bids
and asks occur after completing the previous downloading or
uploading processes, they are asynchronous events as well. As
a result, it is cumbersome to require that trades in the market
is executed, synchronously.

As such, we propose to adopt the continuous double auc-
tion [6] in this paper, which is widely used in major foreign
exchanges (FX) or stock exchanges (such as NASDAQ and
NYSE). In the continuous double auction, there is usually
a fixed-duration trading period, and buyers and sellers can
submit bids and asks, respectively, at any time during the
trading period and the market clears continuously. Specifically,
the market partly clears whenever there is a match between a
pair of bid and ask, i.e., a trade is executed immediately when
a bid exceeds an ask.

The continuous double auction fits our needs in peer-
assisted VoD systems since its continuity caters to the asyn-
chronously arrival of bids and asks. Since one peer trades with
another peer once it finds a compatible pair of bid or ask,
there is no global knowledge needed to efficiently allocate
traded resources in a market. The efficiency can be achieved
by local interactions of market participants, each of which
possess only partial knowledge of the market condition, and
no synchronization is required among peers. It has been shown
that, with a continuous double auction, trading prices converge
very quickly to the price computed as the intersection point
of the true demand and supply curves [7], after only several
trading periods, and the trading becomes almost fully efficient.
Experimental results also show that the double auction is better
from both resource’s and user’s perspectives, facilitating high
resource utilization [8].

To make the continuous double auction more amenable to
implementation in peer-assisted VoD streaming systems, we
modify it by eliminating the existence of auctioneers. The
role of auctioneer is much less emphasized in a continuous
double auction. As the auctioneer only needs to collect bids
and asks and informing players about them [9], the auctioneer
can be readily replaced by broadcasting all bids and asks to
every participating player in the same sub-market. Similar to
the traditional open outcry mechanism used in a real-world
stock exchange such as NYSE, where stock brokers transfer
information about bids and asks through shouting and the
use of hand signals, participating peers collectively act as
an “auctioneer” as everyone has complete information of all
bids and asks in the sub-market. Both the executed trade



and its trading price are monitored by all participating peers,
which provides the trusted environment that an auctioneer
traditionally provides.

In addition, the partially connected peer topologies in peer-
assisted VoD systems impose further restrictions that the trade
can only be executed between neighbors, which means bids
and asks of each peer only need to be broadcast to its
neighbors. To a certain peer in a certain sub-market, only
its participating neighbors’ bids or asks have impact on its
decision. In our double auctions, every peer announces the
sub-market it intends to join, and the corresponding bid or ask
it is going to report after it has finished downloading or up-
loading a segment. These announcements are broadcast among
its neighbors only, which reduced the bandwidth overhead
incurred. Decisions are made based solely on local broadcast
announcements.

The continuous double auction in peer-assisted VoD systems
is described in Protocol 1.

Protocol 1 The prefetching strategy using continuous double
auctions in peer-assisted VoD systems.

1: Each peer announces a bid or an ask in one of the
participating sub-markets and broadcast it to its neighbors.

2: When peer i with bid bi as a buyer receives one ask sj

from its neighbor j, it does the following:
3: if sj ≤ bi then
4: Peer i proposes to peer j that they can trade at the

trading price p0 = 1
2 (bi + sj), and sends the proposal

to j.
5: if peer i has already received peer j’s proposal then
6: Peer i and j confirm the trade at the trading price p0

and both of them exit this sub-market.
7: else
8: No trade is confirmed yet.
9: end if

10: end if
11: When peer j with ask sj as a seller receives one bid bi

from its neighbor i, it does the following:
12: if bi ≥ sj then
13: Peer j proposes to peer i that they can trade at the

trading price p0 = 1
2 (bi + sj), and sends the proposal

to i.
14: if peer j has already received peer i’s proposal then
15: Peer i and j confirm the trade at the trading price p0

and both of them exit this sub-market.
16: else
17: No trade is confirmed yet.
18: end if
19: end if

We now use a 3-player sub-market to illustrate our auction
mechanism. Shown in Fig. 3, peer 1, 2 and 3 broadcast their
offering prices in the sub-market, with peer 1 acting as a seller
and peer 2 and 3 as buyers. Assume b2 and b3 are all qualified
bids to trade, i.e., b2 ≥ s1 and b3 ≥ s1. Let us assume that
peer 1 receives b3 first. It will send a proposal to trade with

peer 3 immediately after receiving b3. Once the proposal from
peer 3 arrives at peer 1, which indicates peer 3 has received s1

and is also willing to trade, a trade is executed between peer
1 and 3 at a trading price of p0 = 1

2 (s1 + b3). Note that the
trading price is computed and monitored by both peer 1 and
3, which assures that no one can cheat in the trading process.

(b)

peer 1

peer 2peer 3

(a) Broadcasting offered prices

s1 s1

b2

b2

b3

b3

peer 1

peer 2peer 3

Peer 1 and peer 3 trade

proposal proposal
proposal

Fig. 3. Prefetching decisions in double auction markets.

D. Required Economic Properties

Truthfulness, ex-post individual rationality and budget bal-
ance are critical properties required to design economically
robust double auctions [10]. We now prove these properties in
our double auctions.

Theorem 2: The periodic double auction mechanism as
described in Sec. III-C is economically robust.

Proof: We first prove the truthfulness property. A double
auction is defined to be truthful if no buyer or seller can
obtain a higher utility gain by cheating, i.e., setting bid or
ask not equal to its true utility value. Trustfulness is essential
to resist market manipulation and ensure auction fairness and
efficiency. It also eliminates the overhead of strategizing over
other players. Suppose a buyer i with true utility value bi

reports di 6= bi. Consider the outcomes of bidding di and bi.
It is not difficult to find out that the only possible scenario
of obtaining higher utility gain by bidding di is that i wins
by bidding di but loses by bidding bi, which only happens
when di > bi. In this case, let p0(di) = 1

2 (di + sj) and
p0(bi) = 1

2 (bi + sj) be the trading prices with bids di and
bi, respectively. We then have p0(di) ≥ p0(bi) > bi. Recall
that the utility gain of a buyer i by trading with seller j with
bid di equals to qb

i −p0(di) = bi−p0(di), which is negative in
this case. Therefore, our double auction markets are truthful.

We then prove ex-post individual rationality and budget
balance. A double auction is ex-post individually rational if the
expected utility gain of any truthful participant in the auction
is non-negative for all possible outcomes. Ex-post individual
rationality ensures a non-negative utility gain if a participant
reports its true utility value, and therefore provides incentives
in the auction. The clearing price of a pair of buyer i and
seller j is defined as p0 = 1

2 (bi + sj) and a trade is made
only when bi ≥ sj . By definition, all bids and asks are non-
negative in every sub-market. So bi − p0 = 1

2 (bi − sj) ≥ 0
and p0 − sj = 1

2 (bi − sj) ≥ 0, which implies p0 ≤ bi and
p0 ≥ sj for any winning buyer i and seller j. This proves that
the double auction mechanism is ex-post individual rational.

A double auction is ex-post budget balanced if the mecha-
nism’s payoff is non-negative for all possible outcomes, which
ensures that the auction will never run into deficit. Since the



total buying and selling quantities are guaranteed to match,
and in each of the trading pairs, the payoff of a buyer is
always the same as the revenue of a seller. Therefore, by the
definition of budget balance, our double auctions are ex-post
budget balanced.

E. Implementation Issues

Towards a practical implementation of double auction mar-
kets in realistic peer-assisted VoD systems, we briefly discuss
a few implementation concerns.

. Locally computed bids and asks: The bids and asks reflect
segment prices and estimated losses. All practical peer-assisted
VoD streaming systems require periodic buffer map exchanges
among neighboring peers. Traditionally, a peer’s buffer map
contains the availability of segments stored in its cache. If we
allow its upload bandwidth information to be included in its
buffer map, then peers will be able to receive sufficient local
information to compute the necessary bids and asks through
periodic buffer map exchanges.

. Multiple qualified bids and asks: Since a trade is executed
when a bid is larger than or equal to an ask in our markets,
there might be scenarios that a seller with ask sj receives
multiple bids or a buyer with bid bi receives multiple asks
that are qualified for successful trades. An intuitive question
will be with whom should the seller or buyer to trade. This
can be solved naturally by the continuity property. Since bids
and asks are allowed to arrive asynchronously and the market
is cleared partially as time goes by, the seller will always trade
with the first arrived bid that is larger than or equal to sj , and
vice versa.

. Peer dynamics: In practical scenarios, caused by peer
departures and varied interests, participants in each sub-
market are different. Our auction-based prefetching strategy
can readily adapt to such dynamics. When a new peer joins, it
immediately initiates the prices and estimates reduced prices of
segments based on its partial information, and then participates
in auctions of the corresponding sub-markets. When a peer
leaves, its bids and asks will not arrive to other peers, so that
it will be naturally excluded from auctions.

IV. EXPERIMENTAL EVALUATION

Our evaluation of the proposed auction-based prefetching
strategy is based on its implementation in a time-slotted
simulator using C++. For comparisons, we have also simulated
the following alternative heuristics: (1) The near-sequential
prefetching strategy [11]: it prefetches segments randomly
after the playback point, while giving higher priorities to
a set of segments right after playback; (2) The popularity-
based prefetching strategy [12]: it determines which segment
to prefetch according to the segment access probability and
preferring those segments with high access probabilities; (3)
The worst-seeded prefetching strategy [13]: it requires peers
to prefetch the rarest segments in the system; (4) The price-
based global prefetching strategy: it always asks for the
most valuable segments under the assumption that each peer
has global information of segment prices. Note that the last

alternative is considered only for comparison purposes and is
referred to as optimal henceforth.

We compare the performance of alternative heuristics to our
auction-based protocol in terms of server bandwidth costs.
To simulate heterogeneous peers, we set the upload and
download bandwidth distribution as follows: 80% of peers
have a uniformly random upload bandwidth within 3 − 7
segments per time slot, representing the DSL users; 20%
of peers have a uniformly random upload bandwidth within
5−10 segments per time slot, representing Ethernet users. All
peers have a uniformly random download bandwidth within
5 − 10 segments per time slot. With the changing parameter
specifically indicated, all experiments are conducted in a
system consists of 1000 peers and 10000 segments, with a
random graph topology. The local cache size of each peer
is set to be uniformly random within 10 − 20 segments. We
assume that every peer joins the system with a full cache,
caching segments randomly chosen from all segments. The
default average time that peer stays ON or OFF in the system
is 10 time slots.

Since our objective is to mitigate the server bandwidth cost,
the main performance metric in our simulation is the average
server cost over the total demand, i.e., the portion of requests
served by servers. We conduct our simulations for 100 time
slots, and the average is computed from time slot 30 to 100,
when relatively stable performance levels are achieved. We
assume the segment popularity follows a stretched exponential
distribution (SE), which has been discovered to be the access
pattern for most media workloads in the Internet [14].
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Fig. 4. Server bandwidth cost over time.

A. Overall Performance of the Auction-based Prefetching
Strategy

First, we would like to show the overall performance of
every prefetching strategy. We simulate each of them in the
experiment setting with a larger scale — 1200 peers and
12000 segments for 100 time slots — and their respective
performance over time is shown in Fig. 4. Due to the inherent
randomness of stored segments at the beginning when all peers
join the system, the server cost starts from around 55%, i.e.,
55% of the requests are satisfied by servers. From the figure,
we can observe that all prefetching strategies are able to reduce
the server cost to some extent. It can be observed that our



auction-based prefetching strategy defeats other alternatives
by a substantial margin in terms of server bandwidth costs.

It is critical to point out that sometimes the server cost with
the use of the near-sequential prefetching strategy becomes
higher over time. This indicates that, rather than reducing the
server bandwidth cost, the near-sequential prefetching strategy
even increases the server bandwidth cost at times. Compared
with the cost of preforming such a prefetching strategy, the
benefits it brings are marginal or even negative. This reflects
our intuition that the benefits of prefetching do not come
without substantial upfront costs of bandwidth.

B. Performance with Different System Scales

We also show the effect of varying system scales on
prefetching strategies. We first discuss the effect of varying
the number of peers. Consider experiment settings with the
number of peers varying from 800 to 1200, respectively. The
comparison result with respect to the average server bandwidth
cost of all prefetching strategies is shown in Fig. 5. We then
turn our attention to different performance levels as the number
of segments varies. In experiment settings with the number
of segment ranging from 8000 to 12000, respectively, Fig. 6
illustrates the average ratio of server bandwidth consumption.
We observe that the server load decreases when the number
of peers increases, and increases with an increase of the
number of segments. The curves in these two figures show
reverse trends, since an increase of the peer population size
is equivalent to a decrease of the number of segments. It is
easy to see that our auction-based prefetching strategy shows
consistently better performance as compared to alternative
prefetching strategies.
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Fig. 5. Average server bandwidth
cost vs. the number of peers.
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Fig. 6. Average server bandwidth
cost vs. the number of segments.

C. Effect of Cache Size and Peer Churn

To investigate the impact of the cache size on the per-
formance of average server bandwidth costs, peers in each
experimental setting are equipped with different local caches,
ranging from 10 segments to 30 segments. As shown in
Fig. 7, we can observe a steep decrease of the average server
bandwidth cost with an increase of cache sizes. It conforms
with the intuition that with larger local caches, peers can store
a higher number of segments so that more requests could be
satisfied by peers. Though all prefetching strategies follow
the same descending trend, the performance improvement of
the auction-based strategy is more evident, which reflects its
effectiveness on “hitting” proper segments.

We now proceed to evaluate the performance of our auction-
based prefetching strategy in dynamic environments. With
other parameters fixed in the experimental setting, we vary the
average length of time peers stay ON or OFF in the system.
We assume that all the peers’ ON and OFF durations have
the same exponential distribution. When the average length
of time that peers stay ON/OFF in the system changes from
2 time slots to 25 time slots, as shown in Fig. 8, we can
see a graceful decrease of average server bandwidth costs.
When peers join and depart abruptly, the auction-based and the
worst-seeded strategies preform equally well. However, when
the average duration of peers staying in the system becomes
longer, the performance gap between these two strategies
gradually becomes more substantial. According to a recent
measurement study [15], there is a large fraction of peers
that tends to stay in the peer-assisted VoD system for over
15 minutes and nearly a half of them will stay for over 30
minutes, which implies that peer dynamics are rather mild in
practice.
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Fig. 7. Average server bandwidth
cost vs. cache sizes (segments).
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D. Overhead of the Continuous Double Auction

To investigate the communication overhead incurred by
double auctions, we compute it as the ratio of bandwidth
devoted to broadcasting bids and asks to neighbors over the
total system traffic. Shown in Fig. 9, it is clear that the
bandwidth overhead is reasonably low, with a consumption of
only 1.5% of the total bandwidth usage. This is because the
broadcast of bids and asks is only restricted to neighbors, and
the number of neighbors of a peer is usually small, around
20 − 50 in real-world peer-assisted VoD systems. Since the
process of computing bids and asks is performed by each peer
individually, we argue that the processing overhead raised by
the double auction is reasonable.
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Fig. 9. Overhead of double auctions.



V. RELATED WORK

Prefetching strategies in peer-assisted VoD streaming sys-
tems have been studied extensively. They allow peers to
prefetch and store various portions of the streaming media
ahead of their playing positions, which improves the playback
experience. In addition to prefetching strategies we mentioned
in Sec. IV, there are several other heuristics. Considering
random seek, Zheng et al. [16] propose a prefetching strategy
to minimize the random seeking distance by using quantization
theory. He et al. [12] develop a prefetching strategy based
on the estimated segment access probability to minimize the
expected seeking delay at every viewing position.

To minimizing server bandwidth cost in peer-assisted VoD
streaming systems, significant research efforts have been un-
dertaken. In [17], by comparing cache prefetching, opportunis-
tic cache update and a hybrid caching strategy, Kozat et al.
find out that a utility maximization solution based on dynamic
programming performs better in minimizing the average load
on streaming servers. Wang et al. [18] design a distributed rate
allocation algorithm to cut down on ISP-unfriendly traffic, thus
reducing server load.

In addition, game theoretic analyses, such as auctions and
bargaining, have been employed in P2P streaming. Hausheer
et al. [19] present PeerMart, which introduces double auctions
market in trading P2P services. It is applied in structured P2P
overlay networks only, where peers in a leaf-set is clustered
with one broker. Clustering peers is hard to be generalized
to pull-based P2P overlay networks which are widely used in
commercial peer-assisted streaming systems and it just shows
effectiveness in small scale networks. Another proposal that
uses auctions in peer-assisted VoD system is presented by
Chu et al. [20], in which a protocol design with network
coding is proposed. However, their objective is to minimize
the aggregate link cost, and they discuss the case of a single
video with the only peer upload bandwidth as a constraint.

Our work distinguishes from all existing works in the
following three important aspects. First, we seek to design
a prefetching strategy with the sole objective of minimizing
server bandwidth cost. Second, rather than considering the
single video case, or restricting inter-session content sharing,
our prefetching strategy allows for multiple video streams and
heterogeneous peers with respect to both upload and download
constraints. Third, our prefetching strategy in double auction
markets regulates not only which peer should prefetch which
segment, but also from which serving peer the segment is to
be served. Our modified continuous double auctions allow for
the lack of a central auctioneer, which may be cumbersome to
implement and cause substantial messaging overhead in real-
world systems.

VI. CONCLUDING REMARKS

Our focus in this paper is to reduce server bandwidth costs
in peer-assisted VoD systems when prefetching strategies are
used. We have pointed out that the benefits of prefetching
do not come without substantial upfront costs of bandwidth.
In contrast to previously designed strategies, we show that

prefetching strategies can be designed following principles
of double auction markets, inheriting their decentralized and
practical nature. We show that the dual of the server band-
width minimization problem is equivalent to the system-
wide utility maximization problem in double auction markets.
Peer trading actions in these double auction markets govern
their prefetching behavior. With double auction markets, our
prefetching strategies regulate not only which segments should
be uploaded or downloaded, but also to and from whom. As
shown by our simulation results, auction-based prefetching
strategies enjoy substantial improvement with respect to the
reduction of server bandwidth costs.
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