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Abstract—Choosing the best cloud configuration for large-scale data analytics jobs deployed in the cloud can substantially improve

their performance and reduce costs. However, current cloud providers offer a wide variety of instance types and customized cluster

sizes, making it both time-consuming and costly to pinpoint the optimal cloud configuration. This article presents the design,

implementation, and evaluation of SILHOUETTE, a cloud configuration selection framework based on performance models for various

large-scale analytics jobs with minimal training overhead. The essence of SILHOUETTE is to build performance prediction models with

carefully selected small-scale experiments on small subsets of input data to estimate the performance with entire input data on larger

cluster sizes. To reduce the training time and cost, SILHOUETTE incorporates new statistical techniques to select those experiments that

yield the best possible information for performance prediction. Moreover, we develop a novel model transformer to convert a prediction

model built on one instance type to a different instance type with only one extra experiment, which significantly reduces the training

overhead. We evaluate SILHOUETTE with an extensive array of large-scale data analytics jobs on Amazon EC2. Our experimental results

have shown convincing evidence that SILHOUETTE is effective in optimizing cloud configuration while saving both training time and costs

compared with existing solutions.

Index Terms—Cloud configuration, large-scale data analytics, performance prediction, training overhead

Ç

1 INTRODUCTION

THE last decade has seen rapid growth in large-scale data
analytics jobs that are more complex than ever, such as

natural language processing [1], deep learning for image
processing [2], and genomic data analysis [3]. Comparedwith
traditional workloads, these analytics jobs are typically data-
intensive and computationally demanding, often requiring
much longer completion times and inducing much higher
costs. To execute these large-scale data analytics jobs, it has
been routine to resort to the cloud to leverage its abundant
computing capacity. However, it is challenging to determine
the best cloud configuration given a specific job, and a poor
choicemay incur significantly higher costs to the user.

Determining the right cloud configurations is critically
crucial for modern cloud service providers, such as Amazon
EC2 [4], Google Compute Engine [5], andMicrosoft Azure [6].
They provide users with a total of over 100 instance types

with different resource configurations (i.e., CPU, memory,
storage, and networking capacity) to cater to the behavior and
demand of different jobs. While most cloud service providers
only allow users to choose from the pool of available instance
types, Google enables users to create virtual machines with
customizable configurations (in terms of vCPUs and mem-
ory), making it even more challenging to choose the right
cloud configurations.

The migration towards serverless cloud architectures –
such as AWS Lambda [7], Google Cloud Functions [8], and
Microsoft Azure Functions [9] – allows users to run their jobs
as serverless functions without launching instances with
pre-specified configurations. However, serverless architec-
tures may require applications to refactor their code, and
serverless cloud providers may not be interested inminimiz-
ing job completion times and incurred costs.

The choice of cloud configurations, i.e., the types and the
number of instances, directly affects a job’s completion time
and monetary cost. A properly chosen cloud configuration
can achieve the same performance goal at a much lower
cost. Potential savings are even more significant for large-
scale data analytics jobs due to their much longer comple-
tion times. Unfortunately, it is difficult to accurately and
efficiently optimize cloud configuration given highly diver-
sified resource requirements from different jobs. Besides,
the search space is potentially huge, especially given many
combinations of instance types and cluster sizes. An exhaus-
tive search for the best cloud configuration is neither practi-
cal nor scalable in such a vast search space.

CherryPick [10] is proposed to reduce the search space of
all possible cloud configurations. Given a specific job, a cost
minimization model is established. A few cloud configura-
tions are run and their execution times are fed into the
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optimization model, based on which the next cloud configu-
ration to run is selected according to Bayesian optimization.
The iterative process helps distinguish the near-optimal
configuration from the rest with a few runs. However,
CherryPick can only meet the goal of cost minimization but
not other objectives, such as minimizing the job completion
time with a cost budget. Alternatively, model-based mecha-
nisms build prediction models to estimate the execution
time under different cloud configurations for different
jobs [11], [12], [13]. The prediction models are more expres-
sive and can be used to choose cloud configurations that
serve different purposes, e.g., cheapest or fastest. The most
recent attempts include Ernest [11], PARIS [12] and Arrow
[14]. However, Ernest only optimizes the number of instan-
ces given a specific instance type but does not consider dif-
ferent types of instances. PARIS and Arrow focus on
deriving the best instance type across multiple public
clouds but not optimizing the number of instances needed.

In this paper, we present the algorithm design and
implementation of SILHOUETTE, a new algorithmic frame-
work proposed to address the problem of cloud configura-
tion selection for large-scale data analytics jobs. Specifically,
given the type and the workload (size of the input data) of a
specific data analytics job, SILHOUETTE predicts the execution
time under different cloud configurations, based on which
the type of instances and the number of instances can be
optimized according to the client-defined policy. SILHOUETTE

helps users achieve a balance between cost and completion
time in cloud computing environments. It can achieve a
high prediction accuracy with a low search overhead.

In SILHOUETTE, we first collect the training data to build the
base runtime predictionmodel for a specific instance type. To
reduce the number of experiments needed for training data
collection, we propose new statistical techniques to sort out
the most informative experiments for performance estima-
tion so that we can achieve high accuracy with only a small
number of tests. We then establish the prediction model
based on a comprehensive analysis of both computation and
communication patterns in typical data analytics jobs. The
computation time generally increases quasi-linearly with the
size of input data, and the communication time usually
depends on the cluster size and the execution framework of
the job. We leverage mutual information to shape the predic-
tion model in a way that best reflects the computation and
communication pattern of the given job.

To further reduce training overhead, rather than repeat-
ing the experiments on every instance type, we propose to
transform the prediction model of one instance type to
another with only one extra experiment. Then, SILHOUETTE

integrates prediction models for all instance types to choose
the best cloud configuration that fulfills a user-specified
goal, e.g., minimizing cost with a completion time deadline
or minimizing the completion time with a cost budget.

We have implemented SILHOUETTE on Amazon EC2 and
evaluate its performance using six representative large-scale
data analytics jobs, including TeraSort and WordCount in
Hadoop, three machine learning tasks in SparkML, and TPC-
DS in Spark SQL. Compared to existing solutions including
Ernest [11], CherryPick [10] and coordinate descent search,
SILHOUETTE can further reduce the training time and the train-
ing cost by up to 66 percent. Our experimental results have

also verified the robustness of SILHOUETTE for various jobs,
cloud configurations, and input dataset sizes. In summary,
our workmakes the following contributions:

� We propose SILHOUETTE, a cloud configuration selec-
tion system for large-scale data analytics jobs with
high accuracy and low overhead.

� We build performance prediction models by study-
ing the computation and communication patterns of
large-scale data analytics jobs in a cluster computing
environment with a minimal training overhead.

� We conduct extensive experiments to confirm the
accuracy, cost-effectiveness, and robustness of
SILHOUETTE.

The rest of the paper is structured as follows. We first pres-
ent the principles that guide the design of SILHOUETTE in Sec-
tion 2. Then, we give an overview of SILHOUETTE and
introduce specific design decisions in Section 3. We perform
extensive evaluations of SILHOUETTE using six representative
large-scale data analytics jobs in Section 4. We review
related works in Section 5. We discuss operational chal-
lenges and provide a road map for future works in Section 6.
Finally, we summarize the work in Section 7.

2 BACKGROUND AND MOTIVATION

In this section, we discuss the challenges of finding the best
cloud configurations for large-scale data analytics jobs.

Complex Cost Models. Cloud platforms provide various
ways for users to pay for cloud resources. For example,
there are four ways to pay for Amazon EC2 instances: on-
demand, reserved instances, spot instances, and dedicated
hosts. In this paper, we focus on the most commonly-used
on-demand instances, which charge users by the instance
type and the execution time. Users can configure the
cloud with different types and numbers of instances for
different jobs. In general, an instance with more CPU,
memory, and storage has a higher unit price per time
unit. For users, choosing a more powerful configuration
(regarding the number and the type of instances) may
accelerate the computation but raise the unit price per
time unit. In contrast, using a less powerful configuration
saves costs per time unit but may lead to longer execution
times.

Fig. 1 shows the runtime and the total cost for a
SparkML [15] classification algorithm (the details of the job
are described in Section 4) with one instance of 8 different
types. The cheapest instance m4.large naturally yields the
longest completion time, yet the total cost is not necessarily
the lowest. Fig. 1 shows that r3.2xlarge has both longer
completion time and a higher total cost than c4.2xlarge

even though the former has more memory. This observation
indicates that choosing the right cloud configuration is quite
complicated and challenging, even more so for large-scale
analytics jobs whose execution times are much longer and
consume more resources.

Non-Linear Relationship. The key to finding the best cloud
configuration lies in how the complex relationship between
the execution time and the cloud configuration, including
the instance type and the number of instances, can be dis-
covered and profiled. The cloud provider offers various
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instances for different purposes, e.g., compute/memory/
storage-optimized or general-purpose instances. As shown
in Fig. 2, the available maximum bandwidth capacities are
different across instance types. For m4 and c4 families of
instances, we find that the instance type with fewer cores
has more bandwidth available per core, which will directly
affect the end-to-end completion times of different jobs.

Large-scale analytics jobs are computationally demand-
ing and sensitive to the number of available cores, memory,
and storage. Their completion times usually have a non-
linear relationship to the quantity of resources in the cloud
configuration. Consider three large-scale analytics jobs: (a)
CTR, which predicts click-through-rate for the display
advertising challenge (Dac) dataset1 [16] using an imple-
mentation of SparkML, (b) TeraSort [17], a benchmark
sorting job for big data analytics on Hadoop [18] and (c)
TPC-DS, a decision support benchmark [19]. Fig. 3a illus-
trates the completion times of CTR and TeraSort using
different numbers of instances of the same type, i.e., m4.
large. It is natural that both applications’ completion times
are shorter with more instances, but the rate of decrease is
slower with more available resources. In addition, Fig. 3b
shows significant runtime gaps when TPC-DS uses different
instance types, mainly due to different core numbers and
CPU/RAM ratios (e.g., c4.2xlarge delivers the best per-
formance thanks to more cores and a higher CPU/RAM
ratio).

Job Diversity. There is a variety of large-scale analytics
jobs with different resource requirements, e.g., computa-
tionally demanding or memory demanding, which should

be considered when making cloud configuration choices.
Even with the same computing capacity, the total costs will
be different under different cloud configurations for differ-
ent jobs.

Fig. 3c shows the total costs of CTR and TeraSort with
a fixed number of cores, but different types and numbers
of instances from the m4-family, e.g., four m4.2xlarge

instances each with 8 cores or two m4.4xlarge instances
each with 16 cores. We can observe that for TeraSort, the
4-node m4.2xlarge cluster has the lowest total cost, while
CTR benefits the most from single-node m4.4xlarge clus-
ter. There is usually a tradeoff between the runtime and
the budget for TPC-DS as shown in Figs. 3b and 3d. Quan-
tifying such tradeoff is also a crucial design requirement in
SILHOUETTE. Moreover, the best cloud configuration depends
on the application configuration, such as the number of
map and reduce tasks. Our work on choosing the best
cloud configuration is complementary to existing works on
identifying the best application configurations [20], [21], i.e.,
SILHOUETTE can work with any application configuration.

3 SILHOUETTE: DESIGN DETAILS

In this section, we present the detailed design of SILHOUETTE,
a data-driven approach for optimizing cloud configuration,
with the objective of using minimal training data to achieve
a balanced tradeoff between performance and overhead.

3.1 Overview

The design rationale of SILHOUETTE is a three-step process:
(1) gather information from small-scale selected training
experiments on one instance type; (2) build a base prediction
model based on the computation and communication pat-
terns of the job, then transform the base prediction model to
accommodate all other candidate instance types; (3) adopt a
configuration selector to optimize cloud configuration.

Given a specific job and workload (size of the input data),
SILHOUETTE enables the user to optimize the cloud configura-
tion by predicting the performance and cost of candidate
cloud configurations. Fig. 4 shows the architecture of SILHOU-

ETTE, consisting of three major steps.

� Training data collector. The training data collector first
determines which training experiments to conduct.
The training experiments run the analytics job with
small subsets of the input data on a limited number
of instances of a specific type. We develop a selection
approach to reduce the number of experiments to
run while obtaining enough training data for estab-
lishing the execution time prediction model. The
training data collector then runs the job on selected
experiments to obtain the execution time samples.

� Model constructor. The model constructor models the
relationship between the execution time and the
cloud configuration in two steps. The model builder
first builds a base prediction model fitted using the
training data of one instance type obtained from the
training data collector. Then the model transformer
transforms the base prediction model to prediction
models for other instance types.

Fig. 1. Execution times and total costs of a machine learning job with
EC2, across various instance types.

Fig. 2. Maximum bandwidth capacities across different instance families.

1. We use a subset of the Dac dataset to make the timescale of CTR
comparable to that of Terasort.
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� Selector builder. With prediction models for all candi-
date instance types in the execution time predictor
pool, the selector builder can obtain the estimated
execution time and cost for a specific job with a spe-
cific configuration. Then, according to the user-
defined policy, the selector builder optimizes the
cloud configuration using grid enumeration. In this
way, the user can obtain the most-preferred cloud
configuration that yields the shortest execution time
or minimum cost.

3.2 Training Data Collector

The training data collector conducts experiments on a spe-
cific instance type with only small fractions of the input
data, which helps predict the performance of job execution
on the entire input data. The training data collection consists
of experiment selection and experiment execution.

Experiment Selection. There are two important parameters
to determine for experiment selection: (1) scale, i.e., the frac-
tion of input data; and (2) the number of instances used in the
job execution. Suppose the scale is constrained in 1% � 10%
of the entire input data, and the number of instances is lim-
ited to be smaller than 10, then there are 100 experiment set-
tings, i.e., (scale, number) pairs, which will induce a high
overhead. Therefore, we propose statistical techniques to
run fewer experiments while maintaining high prediction
accuracy. The key idea is to select the experiments that yield
the most information for predicting the performance of
cloud configurations.

We use Ei ¼ ðxi; yiÞ to denote an experiment setting,
where xi is the number of instances and yi is the scale. Let
M denote the total number of experiment settings obtained
by enumerating all possible scales and numbers of instan-
ces. Then, we obtain the K-dimensional feature vector Fi ¼
ðf1ðxi; yiÞ; f2ðxi; yiÞ; . . . ; fkðxi; yiÞÞ, in which each entry corre-
sponds to one term in the prediction model. The prediction
model is built to predict the execution time Tbaseðxi; yiÞ
needed to run experiment Ei. More specifically, we choose
a subset of all experiment settings to run to obtain the train-
ing data for establishing the prediction model that forecasts
the execution time of the remaining experiment settings.
We use linear fitting to obtain the prediction model. Linear
fitting is chosen due to its simplicity and good performance,
as shown in the experiments.

T ðxi; yiÞ ¼
XK

k¼1

wkbkfkðxi; yiÞ; (1)

where wk is the fitted coefficient, bk 2 f0; 1g indicates
whether feature fk is chosen or not. bk ¼ 1means the feature
is chosen, and bk ¼ 0 means the feature is not chosen. The
form of the feature function fkðx; yÞ; k 2 ½1; K� are con-
structed based on the analysis of the execution time of
large-scale analytics jobs.

Large-scale analytics jobs are numerically intensive and
inherently iterative. More specifically, large-scale analytics
jobs often run in a succession of supersteps (i.e., iterations)
until a termination condition is satisfied. Each superstep is
mainly composed of two phases: 1) concurrent computation
and 2) communication. The computation time is related to
the workload and the cloud configuration [11], and there is
only a few common communication patterns in large-scale
analytics jobs [22], [23], [24]. Therefore, we can dissect the
execution time T ðxi; yiÞ under experiment setting Ei into
the computation time and the communication time. Our
main objective is to customize the prediction function for a
given job by characterizing the computation and the com-
munication patterns of the job and design feature functions
fkðx; yÞ that can yield a suitable fitting. In summary, we con-
struct the feature vector as

Fi ¼ ðyi=xi;
ffiffiffiffi
yi

p
=xi; 1; xi; logxi; x

2
i Þ; (2)

inwhich the first three elements correspond to typical compu-
tation time patterns, and the rest elements correspond to typi-
cal communication time patterns. A detailed analysis of
different computation and communication patterns of typical

Fig. 3. (a) Execution times of CTR and Terasort with different numbers of m4.large instances. (b) Execution times of TPC-DS with different num-
bers of m4.large, r4.xlarge and c4.2xlarge instances. (c) Costs of CTR and Terasort with varying resources of m4 family instances. (d)
Costs of TPC-DS with different numbers of m4.large, r4.xlarge and c4.2xlarge instances.

Fig. 4. Architecture of SILHOUETTE.
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large-scale analytics jobs can be found in [11]. Note that users
can choose certain elements in Fi by setting bk as 0 or 1, and
can addmore elements inFi based on specific analytics jobs.

Experiment selection aims to obtain as much information
as possible with as few experiments as possible. Therefore,
it is desirable to choose experiment settings that can yield
divergent information. According to the optimal design the-
ory [25], the coefficients in Equation (1) can be estimated by
experimental designs that optimize certain statistical crite-
ria. We adopt D-optimality, a popular criterion that maxi-
mizes the determinant of the information matrix, i.e., the
weighted sum of the covariance matrix FT

i Fi. In this way,
we can obtain the highest differential Shannon information,
a measure of average surprisal of the random variables of
coefficients wk; k 2 ½1; K�.

max
ai;i2½1;M�

XM

i¼1

aiF
T
i Fi

�����

�����; (3)

subject to 0 � ai � 1; i 2 ½1;M�; (4)

XM

i¼1

aiyi=xi � B; (5)

where ai represents the probability that experiment setting
Ei is selected. The larger the ai, the more likely that Ei is
selected. The total cost of the selected experiments is con-
strained by the budget constraint B. More specifically, yi=xi

is the cost for running experiment Ei according to the cloud
pricing model (i.e., the cost is associated with the workload
and the number of instances). Equation (3) is a convex opti-
mization problem, and we leverage CVXPY,2 a Python-
embedded solver for convex optimization problems. The
output of the above optimization problem is ai; i 2 ½1;M�,
i.e., the probability that Ei is selected. We sort ai and choose
the first m experiment settings with the highest probability
ai. The value of m is determined by the user or the adminis-
trator considering a tradeoff of training overhead and the
performance. In our experiments, we choose m ¼ 10 out of
a total ofM ¼ 100 candidate experiment settings.

Experiment Execution. Given a selected experimental set-
ting Ei ¼ ðxi; yiÞ, we need to decide which data samples
from the entire input dataset should be included to form the
experiment dataset to satisfy the specified scale yi. We use
random sampling to select data samples from the entire
input dataset, as random sampling can avoid getting stuck
in isolated regions of the dataset. We first randomly pick a
starting seed sample from the input dataset. Then, at each
sampling step, an outgoing sample is picked uniformly at
random. The process continues until the number of selected
samples satisfies the scale requirement. Having obtained
the small datasets and deployed the specified number of
instances, we run the job with the selected experiment set-
tings to get the execution time samples as training data to
build the prediction models.

3.3 Model Constructor

The model constructor consists of the model builder and the
model transformer. The model builder establishes the base
prediction model, given the collected execution time train-
ing data for a specific instance type from the training data
collector. On the other hand, the model transformer derives
the prediction models for all other instance types according
to the base prediction model.

Model Builder. Given all the candidate feature functions in
Fi, users can select the ones that are most predictive of the
execution time Ti. We also provide a way of feature selec-
tion to help trim Fi. We use mutual information [26], [27],
[28] as the criterion to sift good predictors. Given the col-
lected m training execution time data samples under differ-
ent numbers of instances and different data scales, we first
compute the K-dimensional feature vector Fi ¼ ðf1ðxi; yiÞ;
f2ðxi; yiÞ; . . . ; fkðxi; yiÞÞ for each experiment setting. Then,
we calculate the mutual information between each feature
function fkðxi; yiÞ; i 2 ½1;m� and the execution time Ei; i 2
½1;m�, and choose the fk whose mutual information with the
execution time is higher than a threshold.

The base prediction model we are fitting based on the m
training execution time samples tries to learn values of wk

in the following equation.

Tbaseðx; yÞ ¼
XK

k¼1

bkwkfkðx; yÞ; (6)

bk 2 f0; 1g; (7)

wk � 0: (8)

where bk is determined by the user or the mutual informa-
tion. We use a non-negative least squares (NNLS) solver to
find the model that best fits the training data, which can
avoid over-fitting and corner cases, e.g., the execution time
becomes negative as the number of instances increases
infinitely.

Model Transformer. The cloud provider usually provides
various families of instances with different combinations of
CPU, memory, storage, and networking capacity to meet
different jobs’ needs, e.g., general-purpose and compute/
memory/storage-optimized. Through extensive experi-
ments, we find that given a specific job and a fixed dataset
scale, the execution time of two different instance types has
a certain relationship when scaling the cluster size. These
observations motivate us to design a transformer in SILHOU-

ETTE, which helps convert prediction models between differ-
ent instance types according to simple mapping. Therefore,
we do not need to run experiments on every instance type
to acquire the training data to build prediction models,
which greatly reduces the training time and training costs.

One way to construct such transformers is to find the
relationship between execution time and instance hardware
parameters, e.g., bandwidth, and then derive the mapper
based on hardware parameters for different instance types.
Nevertheless, such a method is complicated to design and
implement due to the vast number of instance types and
hardware parameters. In this paper, we adopt a simple yet
effective mapping approach. We use the transformer F to
represent a mapping from the base prediction model built2. https://www.cvxpy.org/
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for one instance type to the target prediction model for
another instance type F : Tbaseðx; yÞ ! Ttargetðx; yÞ. Through
extensive experiments to compare execution times on differ-
ent instance types for the same job and the same dataset
scale, we find that the category of feature functions in pre-
diction functions are similar, i.e., the values of bk for
Ttargetðx; yÞ can inherit from Tbaseðx; yÞ. In other words, if fk
is included in Tbaseðx; yÞ, it is most likely that Ttargetðx; yÞ
should also contain fk. This is mainly because the computa-
tion and the communication patterns of the job remain
unchanged under the same job and the same number of
instances. However, the weight of each feature function wk

will be different under different instance types, and we can
focus on the mapping of weights from the base prediction
model to the target prediction model. Besides, only the
weight of the feature functions that contain x should be
changed since y remains unchanged among different pre-
diction models.

First, given a selected experiment setting Ei ¼ ðxi; yiÞ that
has run on the base instance type, we have already known
its execution time as Tbaseðxi; yiÞ. Second, we run the experi-
ment Ei on the target instance type to get the execution time
Ttargetðxi; yiÞ. Hence, we can calculate the ratio of the two
execution times as gEi ¼ Ttargetðxi; yiÞ=Tbaseðxi; yiÞ. Finally,
we reconstruct the weight wk of each term containing x, and
the model transformer derives the prediction model for the
target instance type as

Ttargetðx; yÞ ¼
XK

k¼1

bkw
0
kfkðx; yÞ; (9)

where w0
k ¼ wk if feature fkðx; yÞ is not a function of x, and

w0
k ¼ wk=fkðgEi ; 1Þ if feature fkðx; yÞ is a function of x. For

example, the target weight for the feature y=x is wk � gEi ,
and the target weight for the feature y=

ffiffiffi
x

p
is wk �

ffiffiffiffiffiffiffi
gEi

p
.

We can also improve the mapping accuracy with n
experiments where 1 � n < m. More specially, we select
the first n experiment settings with the highest ai as
obtained from Equation (3). Note that the values of ai are
the same for different instance types. We obtain the ratio of
execution time for experiment Ei with probability ai as g

Ei .
The fitted weight of the prediction model for the target
instance type is

w0
k ¼ wk=fkðg; 1Þ; (10)

where the weighted mean g of gEi is

g ¼
Pn

i¼1 aig
Ei

Pn
i¼1 ai

:

3.4 Selector Builder

After model construction, the predictor for the given job and
a certain instance type is a 3-tuple ðjob; instance t;model Tt

ðx; yÞÞ. All predictors will be put into a predictor pool,
within which there is a variety of predictors for different
jobs and instance types.

Given a job, all the related execution time prediction
models can be integrated into a single execution time pre-
dictor T ðxx; yÞ, in which xx is the cloud configuration vector

consisting of both the type t and the number of instances x
as ðt; xÞ. For a given input dataset of the job, we aim at find-
ing the most preferred cloud configuration that satisfies spe-
cific execution time and cost constraints. Let P ðxxÞ be the
unit price per time unit of the cloud configuration xx, i.e., the
unit price of the instance type t times the number of instan-
ces. The cloud configuration optimization problem can be
formulated as

xx� ¼ SðT ðxx; yÞ; Cðxx; yÞ; Rðxx; yÞÞ; (11)

where

Cðxx; yÞ ¼ P ðxxÞ � T ðxx; yÞ; (12)

0 � y � 1: (13)

inwhich the total costCðxxÞ required for finishing the jobwith
a cloud configuration is the unit price multiplies the execu-
tion time, Rðxx; yÞ is the constraints enforced by the user, e.g.,
the maximum tolerated execution time or the maximum tol-
erated cost, and the selector Sð�Þ is determined by the user to
optimize the cloud configuration xx� that achieves the desir-
able performance-cost tradeoff.

SILHOUETTE allows users to implement a high-level policy
of cloud configuration selection. A policy can be to choose a
cloud configuration for a certain job that: (a) induces a mini-
mum cost with a specified execution time constraint, or
(b) requires the shortest execution time in the worst case.
SILHOUETTE can also be used to check whether a job can be
finished on time with a specific cloud configuration. An
example of policy (a) is to minimize the total cost while
ensuring that the execution time is within a deadline.We can
translate this policy as the following optimization problem

min
ðt;xÞ

Cðt; xÞ ¼ P ðt; xÞ � T ðt; x; 1Þ; (14)

subject to T ðt; x; 1Þ � T ; (15)

T ðt; x; 1Þ ¼ Ttðx; 1Þ ¼
XK

k¼1

bt
kw

t
kfkðx; 1Þ: (16)

Given the above objective function and constraints, it is
possible to conduct an exhaustive search or adopt heuristic
algorithms. T ðt; x; 1Þ first decreases, then increases with x.
This is because initially, with more instances, the computa-
tion time drops quickly. However, as the number of instan-
ces becomes too large, the communication time increases
dramatically. Therefore, we can find the maximum xmax

that satisfies T ðt; x; 1Þ � T . We can then enumerate all pos-
sible experiment settings with x 2 ½1; xmax� for the given
jobs. Most notably, this means that SILHOUETTE can check
whether each candidate satisfies the constraints and select
the cheapest one without any experiment execution.

Given the chosen cloud configuration, we deploy the clus-
ter in the cloud environment with existing images through
our cloud controller using the cloud’s APIs. Furthermore,
the cloud controller is also used as a training data collector.
Once a job is finishedwith a specific dataset scale yi and clus-
ter size xi, the execution time tEi can be added as the training
data or the data for rebuilding predictionmodels withmodel
builder ormodel transformer illustrated in Section 3.3.
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4 EVALUATION

This section evaluates the performance of SILHOUETTE by
answering three key questions: 1) Does the prediction
model built by SILHOUETTE achieve high accuracy for hetero-
geneous large-scale analytics jobs? 2) Does the experiments
for collecting the training data in SILHOUETTE introduce a low
overhead? 3) Is SILHOUETTE robust for a variety of analytics
jobs and different sizes of input data?

4.1 Experimental Setup

Large-Scale Data Analytics Jobs. We evaluate SILHOUETTE with
five large-scale analytics jobs, namely, (1) Classification,
(2) Regression, (3) Clustering, (4) TeraSort, and (5) Word-
Count, on two data-parallel processing engines, Spark [29]
and Hadoop [18]. The details of data analytics jobs are as
follows.

� The 3machine learning jobs, i.e., classification, regres-
sion, and clustering, are part of SparkML [15]. For
classification, we use samples with 44,000 features
from rcv1 [30], a collection of text categorization
benchmark jobs. For regression and clustering, we
use 1 million synthetic samples with 44,000 features.
We set up the TPC-DS [19] benchmark with
SparkSQL [31]. The TPC-DS has a set of standard
decision support queries based on those used by
industry users. We evaluate SILHOUETTE on TPC-DS
with 99 queries, where the TPC-DS benchmark has
relevant data for various tables.

� For Hadoop, we use TeraSort [17], a common bench-
marking application for large-scale data analytics
that requires a balance between I/O bandwidth and
CPU speed. TeraSort sorts a set of randomly-gener-
ated records. We run TeraSort on Hadoop with 200
million samples, which is large enough to exercise on
the cloud. We also use WordCount [32], which com-
putes the occurrence frequency of each word in
English literature. WordCount leverages identity
map and identity reduce functions as theMapReduce
framework to perform the counting. We run Word-
Count to count words in 55 million entries from
Wikipedia articles.

Cloud Configuration. To test the effectiveness of SILHOUETTE

for different types of instances,we choosem4.large (general
purpose), c5.large (compute-optimized), r4.large

(memory-optimized), and i3.large (storage-optimized)
from Amazon EC2. All instances are located in the US West
(Oregon). Each instance runs the Linux system with default
hardware (vCPU,memory, storage and network performance
as in https://aws.amazon.com/ec2/instance-types/). Table 1

lists the hardware configurations and prices for each type of
instances.

For training the data collector, we choose m4.large as
the base instance type since it has the lowest unit price. For
experiment selection, we consider that the number of
instances xi is within [1,10], the fraction of input data is
within [1%, 10%] with 1 percent apart. Thus, there is a total
of M ¼ 100 candidate experiment settings. For simplicity,
we set bk ¼ 1; k 2 ½1; K� for all jobs. The budget B is set as 1.
After solving problem (3) to get the probabilities ai; i 2
½1; 100�, we select m ¼ 10 experiment settings with the high-
est ai to run to collect the training data.

For the model constructor, we fit the training data using
the non-negative least squares solver to establish the base
prediction model. To transform the base prediction model
to prediction models for other instance types, we run three
extra experiments for model transformation.

For the selector builder, we use the on-demand pricing of
Amazon EC2 published in June 2018 as our cost model, as
shown in Table 1. The policy we adopt is to minimize the
total cost subject to the deadline constraint, the same as in
Equation (14).

Our experiments are run with Apache Spark 2.2 and
Hadoop 2.8. Our predicted execution times are compared
against at least ten actual runs of execution times, and our
figures show the mean value with error bars indicating the
standard deviation.

Our experiments are selected according to those in Cherry-
Pick [10] to demonstrate the effectiveness of SILHOUETTE.
However, we did not run real-world applications that are
more complicated. We have made our code open-source and
expect that more researchers can test SILHOUETTE with real-
world applications in the future.

Our code is made available at https://github.com/
williamlinl/Silhouette.

4.2 Effectiveness

We compare SILHOUETTE with Ernest and CherryPick to show
its efficiency and effectiveness. First, we compare SILHOUETTE

and Ernest in terms of prediction accuracy and training over-
head. Then, we compare SILHOUETTE and CherryPick in terms
of training overhead. CherryPick does not establish an execu-
tion time prediction model, but only a cost minimization
model. Therefore, the comparison with CherryPick does not
include the execution time prediction accuracy. The imple-
mentation of Ernest and CherryPick is according to the open-
source projects at https://github.com/amplab/ernest and
https://github.com/harvard-cns/cherrypick/tree/master/
spearmint/examples/cherrypick, respectively.

Comparison With Ernest. In Fig. 5, we compare the perfor-
mance of SILHOUETTE, Ernest and coordinate descent search,

TABLE 1
Configurations for Different Instance Types

Instance vCPU Memory (GiB) Storage (GB) Dedicated EBS Bandwidth (Mbps) Network Performance (Gbps) Price

m4.large 2 8 EBS-only 450 moderate $0:1 per hour
c5.large 2 4 EBS-only up to 4,750 up to 10 $0:085 per hour
r4.large 2 15.25 EBS-only n/a up to 10 $0:133 per hour
i3.large 2 15.25 1 x 475 NVMe SSD n/a up to 10 $0:156 per hour
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in which coordinate descent search seeks for the optimal con-
figuration from a randomly chosen starting point (instance
type, cluster size) and searches one dimension at a time: first
along the dimension of RAM/CPU ratio, then the cluster
size. Fig. 5a shows that the ratios of the predicted execution
time to the actual execution time of SILHOUETTE for SparkML,
TeraSort and WordCount are 0.994, 0.914 and 0.916 (the
prediction accuracies are 99.4, 91.4 and 91.6 percent), and
those of Ernest for SparkML, TeraSort and WordCount are
0.979, 1.001, 1.024 (the prediction accuracies are 97.9 percent,
99.9 and 97.6 percent). The prediction accuracy of SparkML
is comparable with that of Ernest. The training time and the
training cost of SILHOUETTE are much shorter than those of
Ernest. As shown in Figs. 5b and 5c, SILHOUETTE can save up
to 25 percent runtime and 30 percent cost compared with
Ernest, and using coordinate descent search requires much
more time and cost compared with SILHOUETTE. We can see
from Fig. 5d that the training time and the training cost of
SILHOUETTE raise much slower than those of Ernest when
there are more candidate instance types. When there are
5 candidate instance types, the training time of SILHOUETTE

and Ernest is 25 minutes and 83minutes, respectively, which
shows that SILHOUETTE can slash the training overhead by as
much as 66 percent.

Comparison With CherryPick. We compare SILHOUETTE

against CherryPick using TPC-DS. Unlike a traditional

dataset with a constant size, TPC-DS can run with different
raw data sizes produced by the data generator based on a
set of discrete scaling points (scale factors). Fig. 6 presents
the prediction accuracy of SILHOUETTE versus cluster size and
scale factor. It is shown that SILHOUETTE can achieve a high
prediction accuracy (the lowest prediction accuracy is 97.5
percent) and is stable with scaling dataset size.

To implement CherryPick, we use large, xlarge, and
2xlarge instance types within each family as listed in
Table 1, and change the total number of cores from 32 to
112, thus we have a total of 66 configurations [10].

As we use a 20 scale factor database for the job, both SIL-
HOUETTE and CherryPick pick the near-optimal configuration
that minimizes the running cost. For search time, as shown
in Fig. 7a, SILHOUETTE spends a longer time on model train-
ing. However, CherryPick has a higher search cost because
it uses larger cluster sizes and the whole dataset during
search, which is more expensive. In comparison, SILHOUETTE

always uses smaller and cheaper clusters. Although Cherry-
Pick identifies the near-optimal configuration for a specific
scale factor, it is sensitive to the variation of input workload.
As shown in Fig. 7b, when we change the scale factor to 40,
CherryPick needs to rerun to build a new model for the new
job while SILHOUETTE can use the previous model to select a
new cloud configuration without re-train. In this way, SIL-
HOUETTE saves search time and cost. Since input workloads
usually vary in practice, SILHOUETTE can always maintain a
satisfactory performance while CherryPick should be rerun
to adapt to different workloads. Furthermore, CherryPick
may not be suitable for meeting other objectives, such as
minimizing job completion time with a cost budget, but SIL-
HOUETTE can deal with different goals.

4.3 Prediction Accuracy

We evaluate the prediction accuracy of the five jobs where
the base and transformed execution time prediction models
are built for m4.large and c5.large, respectively. In this
experiment, we configure SILHOUETTE to use 1 � 8 instances
and 1% � 8% of the input data for training data collection.
We then predict the execution time for cases where the
SparkML algorithms use the entire input data on 4, 8, and
16 instances, and the Hadoop applications use the entire
input data on 16 and 32 instances. To show how close the
prediction is to the actual job completion time, we use the
ratio of the predicted job completion time to the actual job
completion time as the evaluation metric.

Figs. 8a, 8b, 8c, 8d, 8e, 8f and 8g demonstrate the predic-
tion accuracy for jobs in SparkML. Both the base prediction

Fig. 5. Performance comparison of SILHOUETTE with the baseline Ernest (a)
prediction accuracy, (b) training time, (c) overhead, and (d) scalability.

Fig. 6. Prediction accuracy using SILHOUETTE for TPC-DS with (a) differ-
ent cluster sizes (scale factor = 20) and (b) different scale factors (cluster
size = 10).

Fig. 7. Comparing SILHOUETTE with CherryPick with different scale factors
(TPC-DS).
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model for m4.large and the transformed prediction model
for c5.large achieve a high accuracy, which confirms the
effectiveness of the model transformer in SILHOUETTE. More
specifically, all predicted execution times by SILHOUETTE are
within 19 percent deviation from the actual execution time.
We can observe a few exceptions with a slightly higher
error, which is due to the performance variations of instan-
ces in the cloud environment, which leads to discrepancies
in the execution time between the test and the actual runs.

Figs. 8d and 8e shows the prediction accuracy for Tera-
Sort and WordCount. Different from SpartML jobs that
directly print the results to the terminal, these two jobs read
input and write output to the Hadoop distributed file sys-
tem (HDFS) with a heavy shuffle. SILHOUETTE can capture
such I/O overheads in the base prediction model. It is
shown that both the base prediction model for m4.large

and the transformed prediction model for c5.large can
achieve an accuracy higher than 77 percent. SILHOUETTE man-
ages to maintain predictive power in the transformed pre-
diction model.

Fig. 8 shows that the prediction accuracy is higher for a
medium number of machines, and is lower for a large or a
small number of machines, possibly due to the following
reasons. When we select experiments for obtaining training
samples, we usually choose experiments with small num-
bers of machines in order to reduce training costs, thus the
prediction power for a large number of machines is natu-
rally limited. When the number of machines is too small,
e.g., 4, the prediction accuracy is also low, possibly due to a
high performance variation at low computation capabilities.

SILHOUETTE experiments on small fractions of the input
data to train the prediction model to estimate the comple-
tion time on the entire input data. We use the same number
of experiment settings to build the base and transformed
prediction models and evaluate their prediction accuracy
with a varied size of entire input data. Fig. 9 illustrates that
when we use 0:5�; 1�; 1:5�; 2�; 2:5� and 3� dataset sizes,
the prediction error is always below 15 percent, which
shows that the predictive power of the models trained by
SILHOUETTE with small subsets of the dataset can maintain as
the input dataset scales.

4.4 Training Overhead

SILHOUETTE aims at finding the best cloud configuration with
a low overhead. Therefore, we compare the completion
time of running the job on the entire input data (both actual
and predicted runtime) with the time spent in obtaining the
training data for building the base prediction model. Note
that the training time consists of two parts: the time to solve
the optimization problem (3) and the time to run selected
experiment settings. The former consumes several millisec-
onds using the python-embedded solver CVXPY, while the
latter runs in hours for large-scale data analytics jobs. There-
fore, the predominant component of the training overhead
comes from running selected experiment settings.

Fig. 10a demonstrates that the training time of SILHOUETTE

is below 20 percent of the total completion time for all appli-
cations except TeraSort. The dataset of TeraSort is larger
than those of other applications, and unlike others, TeraSort
read/write disks more frequently, thus requiring more
training time. Despite this, large-scale data analytics jobs
often recur, while the training is a one-time deal. If TeraSort
is rerun for 40 times on the entire dataset, the training time
is lower than 1 percent of the total actual execution time.
The short training time confirms that SILHOUETTE can effi-
ciently handle large-scale analytics jobs.

SILHOUETTE can also enable users to balance the tradeoff
between the training cost and the accuracy of the trained
prediction model. Fig. 10b shows the cost of running the
experiments to obtain the training data and the RMSE of the

Fig. 8. Prediction accuracy using SILHOUETTE for (a) Classification. (b) Regression. (c) KMeans. (d) Pearson. (e) PCA. (f) Naive Bayes. (g) Summary
statistics. (h) TeraSort. (i) WordCount.

Fig. 9. Prediction accuracy of SILHOUETTE with different dataset sizes.
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trained prediction model when we select different numbers
of experiment settings. We can observe that the cost
increases first slowly then sharply with the number of
selected experiment settings while the RMSE first decreases
then becomes stable beyond a certain number of experi-
ments. It is shown that choosing 10 experiment settings is a
wise choice, which achieves a high prediction accuracy and
induces an acceptable cost.

4.5 Applications

We apply SILHOUETTE to optimize cloud configuration for a
particular job WordCount. We run experiments on m4.

large instances to build a base prediction model and rerun
one experiment for each of the three other instance types,
namely c5.large, r4.large and i3.large. We integrate
all predictionmodels for the selector builder to select the best
cloud configuration. We assume that the selector aims at
minimizing the total cost given a deadline, and we consider
cloud configurations with different numbers of instances
from the above four instance types to find the cheapest one.
Table 2 shows the actual execution time and the total cost of
running the job with the entire dataset using the best cloud
configuration regarding each instance type. We can observe

that the execution time of the compute-optimized instance
type c5.large is relatively the same as that of the storage-
optimized instance type i3.large, yet the cost of the for-
mer is 1.93 times lower than that of the latter. This indicates
that SILHOUETTE identifies WordCount as computation-inten-
sive, thus choosing the instance type with better CPUs and
stronger computing capacity.

When users have a fixed-time or fixed-cost budget, it can
be tricky to figure out how many instances should be
deployed for a job. We can use SILHOUETTE to optimize the
number of instances given a specific instance type. We con-
sider two jobs, TeraSort and WordCount. Using the predic-
tion model trained with selected experiment samples, we
can estimate the execution time across a wide range of clus-
ter sizes, as shown in Fig. 11. We also show the actual execu-
tion time to validate the prediction results. It is shown that
the predicted execution time closely approximates the
actual execution time for TeraSort and WordCount across a
wide range of cluster sizes of m4.large instances. Con-
sider that a user has a fixed-time budget of 3,000s to run 10
times of TeraSort and 5 times of WordCount. According to
Fig. 11 and taking error margin into account, SILHOUETTE can
infer that launching 16 instances for TeraSort and 8 instan-
ces for WordCount is sufficient to meet their deadlines.

5 RELATED WORK

Performance Prediction. There have been numerous efforts on
predicting performance based on system properties and
workload patterns to support SLOs or deadlines. Thus far,
several approaches have concentrated on exploring the rela-
tionship between performance and system configurations for
algorithms implemented on distributed platforms [33], [34],
[35]. Distributed jobs can be modeled at a fine granularity to
optimize configuration options [36], [37]. Various works pre-
dict interference among applications and consolidate VMs on

Fig. 10. (a) execution time versus training time of SILHOUETTE and (b)
Training cost versus prediction error across different numbers of
selected experiment settings.

TABLE 2
Optimizing Cloud Configuration

Instance Cost (Normalized) Runtime (Normalized)

m4 0.75 1.00
c5 0.51 0.81
r4 0.88 0.88
i3 1.00 0.86

Fig. 11. Prediction and actual execution time with different cluster sizes
of m4.large instances for (a) TeraSort. (b) WordCount.
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underlying physical machines [38], [39], [40]. In SILHOUETTE,
we establish runtime prediction models based on training
samples with small subsets of the dataset and the transforma-
tion between the runtime across different instance types.

Cloud Configuration Selection. Modern cloud providers
have offered simple suggestions for selecting cloud configu-
rations. Amazon EC2 [4], for example, recommends c4 fam-
ily of instances (compute-optimized) for machine learning
jobs. However, there are many types of instances within a
family, and it is unclear how to decide the exact type and
number of instances. Onemethod to choose the best configu-
ration is to model application performance and then select
the best cloud configuration [11], [41]. Another approach for
choosing the best cloud configuration is to exhaustively
search for the optimal or near-optimal cloud configuration.
However, this method incurs a high overhead since there are
nearly 100 instance types, and the cluster size is infinite. To
reduce the search cost, previous works [10], [42], [43] have
tried to build efficient frameworks based on Bayesian opti-
mization. CherryPick [10] is proposed to reduce the search-
ing time given a particular objective, but the fixed objective
restricts its application since different users may prefer dif-
ferent performance-cost tradeoff. The frailty of Bayesian
optimization is identified later in [14], and the authors pro-
posed to use low-level performance information (e.g., mem-
ory usage) to instruct the search of Bayesian optimization.

Dynamic Resource Provisioning. Several dynamic
resource provisioning approaches have been proposed to
meet the application performance requirement. In [20],
[21], customized cluster resource managers schedule dis-
tributed deep learning jobs to cater resource-intensive and
time-consuming plans. Many online schedulers largely
rely on historical traces to dynamically adjust resource
allocations [44], [45], [46]. Nevertheless, an online adjust-
ment may be disruptive to large-scale data analytics jobs,
and the adjustment may not be fast enough to track the
demand fluctuations. Also, prior large-scale scheduling
systems [47], [48], [49] aimed at allocating resources adap-
tively based on the job progress and the data flow graph
dependency. The security of executing data analytics jobs
in the cloud environments has also been considered in
existing works [50], [51]. SILHOUETTE focuses on long-term
recurring large-scale analytics jobs and plans ahead to
optimize the cloud configuration.

6 DISCUSSION

In this section, we discuss some of the issues and limitations
of SILHOUETTE.

Model Transformation. SILHOUETTE transforms the base pre-
diction model to the prediction model for other instance
types by considering the ratio of execution times by the base
instance type and another instance type under the same
experiment settings. In this way, the prediction model of a
new instance type can be established with a single or a few
experiments. To improve the performance of model trans-
formation, we may run more experiments or use more com-
plicated mapping approaches. For example, we may
consider that weight w0

k of the target instance type is a linear
function of all or some of the weights of the base instance
type, i.e., w0

k ¼
PK

k¼1 �k;kwk. Linear regression may be used

to obtain the coefficients �k;k with more experiments than
the simple solution in SILHOUETTE. A tradeoff of overhead
and performance improvement needs to be considered to
decide the appropriate mapping methods.

Heterogeneous Cluster. Cloud service providers provide a
wide selection of instance types, which can be jointly used
in one cluster. With heterogeneous instance types, the clus-
ter may achieve better performance with less resource pro-
visioning. However, the number of potential cluster
configurations increases exponentially with the types of
instances, making it extremely challenging to pinpoint the
most appropriate configuration. This is the very reason that
existing works only focus on homogeneous instance clus-
ters, which we follow in our design of SILHOUETTE. Heteroge-
neous clusters will be our future direction, and we will
study how to optimize configuration consisting of different
instance types efficiently.

Cloud Performance Variation. One primary concern about
cloud computing solutions like Amazon EC2 is the perfor-
mance variation, i.e., the completion time varies during
repeated executions with the same cloud configuration. We
investigate this issue by running jobs repeatedly on differ-
ent sizes of instance clusters for 20 times. Table 3 shows that
the standard deviation is always less than 15, and the varia-
tion is tiny for all cluster sizes. This indicates that SILHOUETTE

is relatively robust under cloud performance variations.
Furthermore, we may introduce container technologies and
auto-scaling mechanisms to adjust the resource provision-
ing dynamically according to specific performance indica-
tors, which improves the performance of SILHOUETTE.

Hardware and Application Customization. Following exist-
ing works CherryPick and Ernest, SILHOUETTE only considers
the type and the number of instances, but not the specific
hardware configurations of each instance, e.g., cache, net-
work switches for communications. Furthermore, SILHOU-

ETTE provides a general way of finding the best cloud
configuration for different jobs without considering each
job’s specific characteristics. For example, some compute-
intensive applications use accelerators in the cloud environ-
ment. In the future, we aim to improve SILHOUETTE by further
considering hardware configurations of each instance and
customize SILHOUETTE for different jobs.

Input Data Distribution. To train the execution time pre-
diction model, we run selected experiment settings with
small fractions of the input data. We randomly sample
the input dataset to attain the designated workload of the
selected experiment settings. However, some applications
may require a larger sampling size in order to reach cer-
tain accuracy bounds. Our experiment selection process
only aims to obtain as much information as possible with
as few experiments as possible but does not consider the

TABLE 3
Performance Variations

Number of instances

4 8 16 32

Classification 6.25 3.28 11.91 4.01
Clustering 1.81 2.61 3.34 2.31
TeraSort 2.87 14.28 10.65 3.89
WordCount 3.56 7.18 3.94 1.64
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input data size requirement of specific data analytics jobs.
The input dataset may contain adversarial samples,
which leads to data skewness and affects the performance
of data analytics jobs. To account for input data distribu-
tion when selecting experiment settings and optimizing
cloud configuration is a future direction that is worth
exploring.

7 CONCLUSION

We present SILHOUETTE to help users find the proper cloud
configuration, which dramatically trims down the cost for
recurring large-scale data analytics jobs. SILHOUETTE builds
runtime prediction models based on a few experiments on
small fractions of input data with limited cluster sizes.
Instead of running experiments on all types of instances as
in existing solutions, SILHOUETTE can intelligently transform
the prediction model of one instance type to another with
only one extra experiment. Our extensive experiments on
Amazon EC2 with commonly-used benchmark data analyt-
ics jobs confirm that SILHOUETTE can identify appropriate
cloud configurations with up to 66 percent less overhead
compared with existing solutions.
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