
Clockwork: Scheduling Cloud Requests
in Mobile Applications

Yanjiao Chen‡, Zixuan Yu§, Baochun Li§

§State Key Lab of Software Engineering, School of Computer, Wuhan University, China
§Department of Electrical and Computer Engineering, University of Toronto

Email: ‡chenyanjiao@whu.edu.cn, §{zixuan.yu, bli}@ece.toronto.edu

Abstract—It is essential for mobile application developers to
manage backend resources to serve dynamic user requests from
the frontend. For a typical mobile application, the rate at which
the user requests arrive at the backend fluctuates dramatically.
However, it is difficult or expensive to frequently adjust the
capacity of the backend to meet the request demand. In this
paper, we present Clockwork, a third-party cloud service, which
smooths the demand profile by redistributing delay-tolerant re-
quests and prioritizing delay-sensitive requests, so that sufficient
capacity can be provided with reduced cost and wastage. To
begin with, Clockwork plans the optimal backend capacity on a
relatively long timescale based on future demand estimated by
machine learning algorithms. We discuss pros and cons of various
simple machine learning algorithms and advanced deep learning
algorithms, in terms of their prediction accuracy and training
time. Then, Clockwork schedules user requests on a shorter
timescale through a fair and Pareto-optimal rate allocation. We
implemented a fully-functional prototype of Clockwork on cloud
servers and user mobile devices. The experimental results show
that Clockwork can effectively help developers cut cost, as well
as improve the backend utilization.

I. INTRODUCTION

The market for mobile applications is booming. In 2015,
global application downloads are estimated to be 179 billion
[1], generating $45 billion revenues [2] and involving 5.5
million developers [3]. To compete for market share and
profits, application developers are motivated to provide quality
service with reduced cost.

Backend provisioning is one of the fundamental concerns
for developers, as all user requests from the frontend of an
application need to be handled by the backend. Developers
can either use Mobile-backend-as-a-Service (MBaaS) or build
their own backends on cloud platforms (such as Amazon EC2).
In the former case, developers can directly enjoy backend
services offered by MBaaS providers, who charge fees based
on the number of requests sent to the MBaaS backend. In
the latter case, developers can construct their backends using
instances, and pay for their usage.

One of the biggest challenges facing backend provisioning
is a mismatch between timescales of request demand variance
and backend resource availability. The rate at which user
requests arrive at the backend varies from second to second,
but developers can neither change the MBaaS service plan
nor adjust instance configurations at such a fine granularity
of time. Though Amazon EC2 also provides auto-scaling

(a) Provisioning for
peak demand

(b) Provisioning for
average demand

(c) Clockwork

Fig. 1: Backend provisioning comparison.

mechanisms, it requires developers to determine how many
instances to add or reduce, and it takes time to boot up or
shut down computers. Rather than trying to let the backend
capacity closely track the demand profile, which is difficult
or even impossible to realize, we explore a new way of
backend provisioning. We smooth the demand profile by
redistributing delay-tolerant requests and prioritizing delay-
sensitive requests, which potentially lightens the burdens on
the backend and saves money for developers.

To achieve such a goal, we present Clockwork, a third-
party cloud service designed to help developers manage back-
end provisioning. Clockwork features a two-tier architecture:
backend capacity planning on a long timescale, and rate-
based request scheduling on a short timescale. Both tiers are
indispensable in helping developers maintain a sufficient and
cost-effective backend. As shown in Fig. 1(a), if the backend
capacity caters to the peak demand to avoid any performance
degradation, there will be a considerable wastage of resources
and money. Nevertheless, if the backend capacity falls short
of the peak demand, as shown in Fig. 1(b), some requests will
have to be dropped or experience unacceptably long processing
times. In comparison, Clockwork schedules requests according

978-1-5090-6599-8/17/$31.00 ©2017 IEEE

Rate-based
Scheduling

Mobile Device

Request Queue

Request Scheduler

Default
Scheduling

Cloud Servers

Rate Calculator

Request Rate Allocation

Request
Information Table

Backend

Future
Demand Prediction

Backend Capacity Planning

Historical Data

Optimal Capacity

Backend
Service

Update Capacity

Fig. 2: Architecture of Clockwork.

to delay tolerance, as shown in Fig. 1(c), thus flattening the
request demand and slashing the required backend capacity.

There are several challenges facing the implementation of
Clockwork. To plan for the long-term backend capacity, it is
crucial to have an accurate prediction of the future request
demand. There is a wide variety of machine learning algo-
rithms for data prediction, each of which has their advantages
and disadvantages. We compare the prediction accuracy and
training time of four machine learning algorithms (Section
III-B). It is shown that deep learning algorithms, including
convolutional neural networks and deep belief networks, yield
better prediction results but require a much longer time to
train than simpler machine learning algorithms, such as logistic
regression and multilayer perceptron. With the estimated future
demand, the Clockwork derives the optimal backend capacity
that minimizes developer’s cost, while conforming to the
constraint on request delay (Section III-A).

Given the long-term capacity, to ensure that the backend is
not overwhelmed by instant request demand, we adopt a rate-
based resource allocation strategy (Section IV). Clockwork
centrally assigns rates to users based on the quantity and delay
tolerance of their requests, then individual users autonomously
schedule their own requests. We build a network utility max-
imization (NUM) model to decide the rate allocation, which
is proved to be fair and Pareto-optimal.

We have implemented the server-side of Clockwork using
the Amazon Web Service (AWS), and the client-side of Clock-
work on iOS-based mobile devices. We present the imple-
mentation details (Section V) and evaluate the performance of
Clockwork by a small-scale pilot experiment and a large-scale
simulation (Section VI). The results show that Clockwork can
help developers substantially cut down the backend cost, as
well as improve the backend utilization.

0
10
20
30
40
50

1 2 3 4 5

Ti
m

e
(S

ec
on

d)

Number of instances

t2.nano t2.micro t2.small

(a) Launch instances (b) Terminate instances

Fig. 3: Time for launching or terminate instances

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45 50 55 60

Tr
af

fic
 (1

0,
00

0
G

B
)

Time (Second)

Fig. 4: Network traffic fluctuations.

II. CLOCKWORK: MOTIVATIONS AND ARCHITECTURE

Mobile application development comprises two major parts:
frontend design and backend support. Simply put, the frontend
of an application is what users can see and experience on their
mobile devices. The frontend differentiates one application
from another, thus it is vastly diversified for different appli-
cations. The backend of an application supports its frontend
functionalities. When a user interacts with the application
through the frontend, the corresponding operations are ac-
commodated via API requests to the backend. Typical API
requests of a mobile application include queries, saves, and
logins, amongst other kinds of operations invoked by users to
perform a task. Some requests are urgent, while some others
are delay-tolerant. Take social messaging applications as an
instance. The request of sending a message is urgent and
should be served straightaway, while the request of updating
the user profile can wait to be served later.

In this paper, we focus on the backend of the application
development, whose cost model is more common across all
applications. Mobile application developers can use the ready-
made and customizable backend provided by MBaaS or build
their own backends on cloud platforms such as Amazon EC2.

MBaaS providers, such as Appcelerator, appery.io, and Ku-
mulos, charge developers based on the number of API requests
sent by users to the MBaaS backend. More specifically, the
developer should subscribe to a service plan, usually on an
hourly or monthly basis. The service plan specifies the limit
on the maximum number of requests that can be sent within a
unit time, e.g., one minute. If such a limit is hit, extra requests
will be discarded with error messages to users. A service plan
with a higher request limit will cost more.

If a developer utilizes Amazon EC2 to set up the backend,
her cost depends on the number and the type of instances that

are launched. For example, a t2.nano instance with 1 CPU
and 0.5GB memory costs $0.0059 per hour, and a t2.small
instance with 1 CPUs and 2GB memory costs $0.023 per hour.
The payment is prorated by the hour. This indicates that once
a developer turns on a t2.large instance, she will immediately
be charged $0.094, even if she doesn’t plan to use the instance
for the entire hour.

Fig. 4 illustrates the world network traffic by the second1,
from which we can infer that there is a dramatic fluctuation
in mobile backend traffic. The demand peak may be much
higher than the average, but is only momentary. In contrast,
developers can only change MBaaS service plan on an hourly
basis. As for cloud services, Fig. 3 shows that it takes around
one minute to launch or terminate an instance, and a new
instance is charged for a full hour even if it is only needed
for a short period of time.

To address the above challenge, the architecture of Clock-
work consists of two major modules: backend capacity plan-
ning and request rate allocation, as shown in Fig. 2. Backend
capacity planning is conducted on a relatively long timescale,
e.g., per hour, since it is either difficult or costly to frequently
change the backend capacity. Request rate allocation is per-
formed on a short timescale, e.g., per minute, based on the
dynamics of request demand.

III. BACKEND CAPACITY PLANNING

A. Backend Capacity Optimization

Without loss of generality, we define the backend capacity
as the maximum number of requests that can be served per
minute, which is directly linked to the cost of the backend
(e.g., to pay for the MBaaS service plan or the instances
on Amazon EC2). We assume that the developer is able
to adjust the backend capacity on an hourly basis. Let N
denote the required backend capacity, to be determined by
the optimization model. The developer classifies all possible
requests of the application into K types, according to their
delay tolerance. For example, there can be K = 3 types of
requests: urgent, medium, and delay-tolerant. An hour consists
of i = 1, 2, ..., 60 minutes, during which the backend capacity
is fixed. Let nki denote the estimated number of type k requests
that will arrive at the i-th minute in the next hour. In this
section, we assume that nki , i ∈ [1, 60], k ∈ [1,K] are available
as inputs to the optimization model, and we will discuss how to
predict nki in details in the next section. Without Clockwork,
to guarantee the performance of the backend, the developer
has to make sure that the backend capacity is greater than the
peak demand, i.e., N ≥ maxi

∑
k n

k
i . We will show that such

over-provisioning is unnecessary with the request scheduling
mechanism of Clockwork.

We make the simplified assumption that all requests gen-
erated in a specific hour will be served within that hour. In
other words, during the current hour, the backend will neither
serve requests from the previous hour, nor put off requests
to the next hour. At the i-th minute, let δkij ∈ [0, 1] denote

1http://www.internetlivestats.com/

the proportion of the nki requests that will be postponed
to the j-th minute. We have i ≤ j ≤ 60, and δkii is the
proportion of requests that are not delayed. All requests to
be served at the j-th minute, denoted by Nj , include those
deferred from the previous minutes to the j-th minute, and
those generated and instantly served in the j-th minute, i.e.,
Nj =

∑j−1
i=1

∑K
k=1 δ

k
ijn

k
i +
∑K
k=1 δ

k
jjn

k
j =

∑j
i=1

∑K
k=1 δ

k
ijn

k
i .

To guarantee the performance of the backend, its capacity
should be larger than the peak demand after request schedul-
ing, i.e., N ≥ maxj∈[1,60]Nj .

Delaying requests will affect the user experience, thus the
developer needs to have a control over how many and how
long a certain type of requests can be delayed. Clockwork
allows the developer to set the upper-bound of δkij as δkij ,
which depends on the request type k and the length of delay
j−i. For instance, in a social messaging application, if sending
a message is regarded as the most urgent type of requests
and should not be delayed, the developer can simply set
∀j > i, δsend a message

ij = 0; if no request should be delayed
for more than half an hour, the developer can simply stipulate
that ∀k, δkij = 0, if j − i > 30.

As the backend cost will monotonically increase with the
backend capacity, we set the objective of Clockwork as to
minimize the required backend capacity, without violating the
constraint on δkij designated by the developer.

min
δkij

N, (1)

subject to N ≥ max
j∈[1,60]

Nj , (2)

Nj =

j∑
i=1

K∑
k=1

δkijn
k
i ,∀j, (3)

60∑
j=i

δkij = 1,∀i,∀k, (4)

0 ≤ δkij ≤ δkij ,∀i,∀j,∀k. (5)

Constraint (2) guarantees that the backend capacity is large
enough to meet the peak request demand. Constraint (3) shows
the number of requests per minute after scheduling. Constraint
(4) ensures that all the requests initiated in the i-th minute
are served, either instantly or in later minutes. The objective
function is minimized through variables δkij , and we can get the
optimal backend capacity as N∗ = maxj∈[0,60]N

∗
j , in which

N∗j =
∑j
i=1

∑K
k=1 δ

k
ij
∗
nki . The optimization problem (1) is a

linear programming problem, and can be solved by existing
algorithms such as Simplex and Interior point algorithms.
Fig. 5 gives an example of how the backend capacity planning
of Clockwork works. It is shown that the demand profile is
smoothed as Clockwork schedules requests to cut the peak and
fill the valley.

B. Future Demand Prediction

The optimization problem (1) requires the input of nki ,
the expected number of type k requests generated at the

Table 1

No Clockwork

Clockwork

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

2817 3517 3188 3383 2592 4085 2644 3678 1677 2940 2540 3660 3036 2138 2862 3160 3193 3179 3300 2973 3402 3217 3186 4379 2584 884 4308 2680 2193 2358 2947 1346 2764 3011 2805 3876 4601 2267 308 1587 2589 2150 4211 2327 3103 2128 1850 2436 5085 3013 4133 1869 2266 1646 2619 3243 3123 3400 4024 3655

879 2104 1834 1999 1128 2198 1806 2523 2772 3244 2832 3444 3065 2972 3097 3369 3109 3247 3164 2722 2594 2459 2953 2921 2558 2715 2870 2476 2514 3216 2940 2317 2697 2466 3039 2824 2923 2808 2078 2419 2574 2836 3131 2971 2993 3222 3302 3227 3608 3584 3658 3617 3652 3665 3717 3778 3799 3825 3839 3840

x axis Time
(minute)

y axis Number of
requests

0

1500

3000

4500

6000

10 20 30 40 50 60

N
um

be
r o

f R
eq

ue
st

s

Time (Minute)

No Clockwork Clockwork
Capacity without Clockwork

Capacity with Clockwork

Fig. 5: Request demand smoothing by Clockwork.

i-th minute of the next hour, which can be learned from
historical data using machine learning algorithms. We focus
on four widely-used algorithms: logistic regression (LR),
single-hidden-layer multilayer perceptron (sMLP), deep belief
networks (DBN), and convolutional neural networks (CNN).
Logistic regression and sMLP are simple machine learning
models, while DBN and CNN are deep learning models. For
simplicity, in this paper, we use these models for classification,
while they can easily be adapted for regression. For instance,
nki ∈ (1, 100] and nki ∈ (100, 200] can be defined as class 1
and class 2, respectively.

Historical data are collected in the form of the num-
ber of requests generated in each minute. The input vector
xxx to the machine learning model should contain the best
predictors for nki . Two potential factors need to be taken
into consideration. One is temporal-proximity, i.e., the most
recent demand indicates the near future. The other is di-
urnal effect, i.e., demands at the same time of each day
have a similar trend. Therefore, we use the demand of the
previous two hours and the demand at the same time of the
previous two days as the input vector to predict nki , i.e.,
xxx = (nki−180, · · · , nki−61, nki−1440−180, · · · , nki−1440+179,
nki−1440∗2−180, · · ·nki−1440∗2+179), and Y = nki . Furthermore,
we normalize entries in the input vectors as xxx→ xxx/max{nki },
and discretize the output into 10 levels for classification.

We use synthetic datasets to evaluate the performance of the
four machine learning models as follows. Assume that there
are 100 users, each generating requests according to a Poisson
process. Without loss of generality, we only consider one type
of requests. We first generate a series of values with a diurnal
pattern (low demand at working time, and high demand at
leisure time), to represent the request arrival rate at different
time of a day for an average user. Then, we compute the arrival
rate for each individual user by adding noise to the arrival rate
of the average user. Aggregating the number of requests from
all users at each minute yields the demand profile. We run the
four machine learning algorithms on a MacBook Pro laptop
with 2.9 GHz Intel CPU and 8 GB memory.

As shown in Fig. 6, deep learning models outperform
simple models when the dataset is more noisy, since deep
learning models are more powerful in discovering the intricate
relationship between the input and the output. Unexpectedly,
at the low noise level, DBN gives the worst prediction result,
even inferior to the logistic regression model. One possible

Table 1

low noise

medium noise

high noise

low noise

medium noise

high noise

Low noise

Medium noise

High noise

Low noise

Medium noise

High noise

logistic mlp

error Accuracy time error Accuracy time

20.62500% 0.79375 24.2 low noise 14.70529% 0.85294715 6.9

33.97917% 0.66020833 19.1 medium noise 33.94309% 0.66056911 5.3

44.50000% 0.555 12.3 high noise 42.20529% 0.57794715 1.4

DBN CNN

error time error time

25.508130% 0.7449187 327.4 low noise 14.22105% 0.85778947 409.3

31.09756% 0.68902439 378.1 medium noise 31.25263% 0.68747368 449.4

40.24390% 0.59756098 349.9 high noise 39.84211% 0.60157895 418.5

LR sMLP DBN CNN

0.40333333333333 6.9 327.4 409.3

0.31833333333333 5.3 378.1 449.4

0.205 1.4 349.9 418.5

LR sMLP DBN CNN

0.79375 0.85294715 0.7449187 0.85778947

0.66020833 0.66056911 0.68902439 0.68747368

0.555 0.57794715 0.59756098 0.60157895

0

125

250

375

500

Low noise Medium noise High noise
LR sMLPDBN CNN LR sMLPDBN CNN LR sMLPDBN CNN

418.5
449.38

409.33

349.86
378.13

327.38

1.415.266.86 0.2050.3180.403

Tr
ai

ni
ng

 T
im

e
(M

in
ut

e)

50%

60%

70%

80%

90%

Low noise Medium noise High noise
LR sMLPDBN CNN LR sMLPDBN CNN LR sMLPDBN CNN

60.2%

68.7%

85.8%

59.8%

68.9%

74.5%

57.8%

66.1%

85.3%

55.5%

66.0%

79.4%

A
cc

ur
ac

y

Fig. 6: Prediction accuracy.

Table 1

low noise

medium noise

high noise

low noise

medium noise

high noise

Low noise

Medium noise

High noise

Low noise

Medium noise

High noise

logistic mlp

error Accuracy time error Accuracy time

20.62500% 0.79375 24.2 low noise 14.70529% 0.85294715 6.9

33.97917% 0.66020833 19.1 medium noise 33.94309% 0.66056911 5.3

44.50000% 0.555 12.3 high noise 42.20529% 0.57794715 1.4

DBN CNN

error time error time

25.508130% 0.7449187 327.4 low noise 14.22105% 0.85778947 409.3

31.09756% 0.68902439 378.1 medium noise 31.25263% 0.68747368 449.4
40.24390% 0.59756098

349.9 high noise 39.84211% 0.60157895 418.5

LR sMLP DBN CNN

0.40333333333333 6.9 327.4 409.3

0.31833333333333 5.3 378.1 449.4

0.205 1.4 349.9 418.5

LR sMLP DBN CNN

0.79375 0.85294715 0.7449187 0.85778947

0.66020833 0.66056911 0.68902439 0.68747368

0.555 0.57794715 0.59756098 0.60157895

0

125

250

375

500

Low noise Medium noise High noise
LR sMLPDBN CNN LR sMLPDBN CNN LR sMLPDBN CNN

418.5
449.38

409.33

349.86
378.13

327.38

1.415.266.86 0.2050.3180.403

Tr
ai

ni
ng

 T
im

e
(M

in
ut

e)

50%

60%

70%

80%

90%

Low noise Medium noise High noise
LR sMLPDBN CNN LR sMLPDBN CNN LR sMLPDBN CNN

60.2%

68.7%

85.8%

59.8%

68.9%

74.5%

57.8%

66.1%

85.3%

55.5%

66.0%

79.4%

A
cc

ur
ac

y

Fig. 7: Training time.

reason is that the complicated structure of DBN leads to the
over-fitting problem. In other words, the model exaggerates
the noise in the training data, instead of learning the general
trend, therefore gives poor predictions when applied to the
testing data.

As shown in Fig. 7, the training time of deep learning
models is far higher than that of simple models, which is not
surprising since the deep learning models contain far more
parameters to be learned. The training time of DBN and CNN
also depends on the choice of the number of layers and neurons
in each layer. Though the training time diverges considerably,
given a new input, it takes almost the same time (less than a
second) for the trained models of all four algorithms to yield
the prediction result.

IV. REQUEST RATE ALLOCATION

As shown in Fig. 2, after having been notified of the optimal
backend capacity by Clockwork, the developer will purchase
a new MBaaS service plan or adjust the instance configuration
on Amazon EC2 accordingly. Given the backend capacity
fixed for the upcoming hour, there are three potential ways
for Clockwork to conduct request scheduling for all users, as
shown in Fig. 8.

Proxy mode. As shown in Fig. 8(a), users send all their
requests to the cloud servers of Clockwork, which acts as a
proxy to redirect these requests to the backend. Given that
the backend capacity is N , we can simply sort all requests
according to their delay tolerance, and send the top N most ur-
gent requests every minute. Nevertheless, an important concern
with this approach is privacy. Users are, in general, not willing

Request Buffer

Clockwork

Requests

RequestsRequest Sorted Queue

Every Request Information

Clockwork

Request
Information Sorting

Backend

User

Backend

Permission
Requests

Request Sorted Queue Periodic Information

Clockwork

Rate Calculation

User

Backend

Allocated RateRequests

Request
Information Table

Request Buffer

User

(c)

(b)

(a)

Fig. 8: Three ways of requests scheduling.

to reveal sensitive information to a third-party cloud service
provider such as Clockwork. For this reason, it is better for
users to send requests directly to the backend by themselves,
but with scheduling instructions from Clockwork.

Tight control. As shown in Fig. 8(b), whenever a new
request is generated, instead of sending it to Clockwork, the
user informs Clockwork of the type and initiation time of the
request, then waits for the permission to send the request to the
backend. Similar to the proxy mode, every minute, Clockwork
can simply give permissions to the top N most urgent requests.
Though this approach avoids the privacy issues, it is not
scalable as the frequent communications between users and
Clockwork may lead to an excessive amount of overhead and
long latencies.

Rate allocation. To overcome the drawbacks of a stringent
centralized control mechanism and give users more auton-
omy, we adopt a rate-based scheduling strategy, as shown in
Fig. 8(c). Within each minute, Clockwork periodically assigns
rates to users, based on their reported request information.
Users then schedule their own requests according to the
allocated rates. In the remainder of this section, we derive
a rate allocation strategy that is proved to be fair and Pareto-
optimal.

Assume that there is a finite set of S users. We divide
each minute into 1, 2, ..., T time slots, and users contact the
cloud servers of Clockwork for a new rate at the start of
each time slot. Given the backend capacity as N , the cap
for the number of requests per time slot is N/T , shared by
all users. At time slot τ , the number of requests of user s
is denoted by Xs(τ), so the overall request state is XXX(τ) =(
X1(τ), · · · , XS(τ)

)
. Clockwork allocates a rate of Rs(τ) to

user s, the maximum number of requests that user s can send
within time slot τ . We have RRR(τ) =

(
R1(τ), · · · , RS(τ)

)
. A

rate allocation result RRR(τ) is feasible if the cap is not hit, that
is,
∑S
s=1Rs(τ) ≤ N/T . Leveraging the definition of utility

functions of the network utility maximization (NUM) problem
[4], we assume that the utility of assigning rate Rs(τ) to user
s is Xs(τ) ·Us

(Rs(τ)
Xs(τ)

)
, in which Us(·) is a function of Rs(τ)

Xs(τ)
.

Our objective is to maximize the weighted sum of utilities of
all users.

max
Rs(τ)

S∑
s=1

ωs(τ) ∗Xs(τ) ∗ Us
(Rs(τ)
Xs(τ)

)
,

subject to
S∑
s=1

Rs(τ) ≤
N

T
. (6)

in which ωs(τ) is the weight of user s, specified by the
developer. The weight ωs(τ) is added to account for the
delay tolerance of requests. If most of the requests of user
s are urgent, ωs should be larger. To treat all users without
bias, we adopt the same utility function for all users, i.e.,
Us(·) = U(·),∀s. Utility function U(·) is usually assumed to
be non-decreasing and concave [4]. This is reasonable because
a higher rate will naturally lead to a higher utility, and the
increment of utility is more significant when the rate is low,
but less significant when the rate is already high. We will show
that, with a proper utility function U(·), the rate allocation
resultRRR(τ), as the solution to the maximization problem in (6),
can be fair and Pareto-optimal. More specifically, we choose
the α-fair utility function, widely used in the field of network
resource allocation, to help achieve these ideal properties [4].

Definition 1. (α-fair function). α-fair function, introduced by
Mo and Walrand [5], is defined as:

Uα(x) =

{
x1−α

1−α , for α ∈ (0,∞) \ {1},
log x, for α = 1.

(7)

Definition 2. (α-fair rate allocation). A feasible rate allo-
cation result RRR is called (weighted) α-fair if, for any other
feasible rate allocation result RRR′, we have:

S∑
s=1

ws
R′s −Rs
Rαs

≤ 0. (8)

α-fair rate allocation is equivalent to proportional fair rate
allocation when α → 1, and max-min fair rate allocation
when α → ∞. In the following context, we first give the
rate allocation result according to the maximization problem
in (6) with α-fair function, then prove that it is α-fair and
Pareto-optimal.

Proposition 1. At time slot τ , given the request state XXX(τ)
and the cap of the number of requests N/T , the rate allocation
result based on α-fair function is:

R∗s(τ) =
(ωs(τ))

1/αXs(τ)∑S
s=1(ωs(τ))

1/αXs(τ)
· N
T
,∀s. (9)

Proof. The Lagrangian for the problem is given by:

L(RRR,µ) =

S∑
s=1

ωs(τ)Xs(τ)

1− α
(Rs(τ)
Xs(τ)

)1−α
+µ(

N

T
−

S∑
s=1

Rs(τ)).

The optimal solution corresponds to the stationary point of the
Lagrangian function:

∂L

∂Rs(τ)
= ωs(τ)(

Rs(τ)

Xs(τ)
)−α − µ,∀s,

∂L

∂µ
=
N

T
−

S∑
s=1

Rs(τ).

(10)

By setting ∂L/∂Rs(τ) = 0, we have:

Rs(τ) = Xs(τ)(
µ

ωs(τ)
)−

1
α ,∀s. (11)

By setting ∂L/∂µ = 0, we have:

S∑
s=1

Rs(τ) =
N

T
=

S∑
s=1

Xs(τ)(
µ

ωs(τ)
)−

1
α . (12)

Combining (11) and (12), we can get the rate allocation result
as (9).

Theorem 1. The rate allocation result given by Proposition
1 is weighted α-fair.

Proof. Let RRR(τ) 6= RRR∗(τ) denote an arbitrary feasible rate
allocation result. Multiplying (11) by (Rs(τ) − R∗s(τ)), we
have:(
Rs(τ)−R∗s(τ)

)
ωs(τ)

(R∗s(τ)
Xs(τ)

)−α
= µ

(
Rs(τ)−R∗s(τ)

)
.

Summing over all s, we have:

S∑
s=1

ωs(τ)Xs(τ)
Rs(τ)−R∗s(τ)

(R∗s(τ))
α

= µ

S∑
s=1

(
Rs(τ)−R∗s(τ)

)
.

According to (10), we have
∑S
s=1R

∗
s(τ) = N/T and∑S

s=1Rs(τ) ≤ N/T . Hence, we have:

S∑
s=1

ωs(τ)Xs(τ)
Rs(τ)−R∗s(τ)

(R∗s(τ))
α

= µ

S∑
s=1

(
Rs(τ)−R∗s(τ)

)
= µ(

S∑
s=1

Rs(τ)−
S∑
s=1

R∗s(τ)) ≤ 0.

The strict inequality holds for all RRR(τ) 6= RRR∗(τ), due to the
uniqueness of RRR∗(τ). Based on definition 2, the rate allocation
result given by (9) is weighted α-fair.

The efficiency of the rate allocation result given by Theorem
1 is characterized by Pareto-optimality as follows.

Definition 3. (Pareto-optimality). A rate allocation result
RRR(τ) is said to be Pareto-optimal, if for any rate allocation
result RRR′(τ), which satisfies ∀s,R′s(τ) ≥ Rs(τ), it must be
true that RRR(τ) = RRR′(τ).

Pareto-optimality implies that there is no other rate alloca-
tion result that can improve every user’s utility by assigning
everyone a higher rate.

Theorem 2. The rate allocation result given by Proposition
1 is Pareto-optimal.

Proof. Assume that there exists a feasible rate allocation result
RRR(τ), which satisfies ∀s,Rs(τ) ≥ R∗s(τ). We have:

S∑
s=1

Rs(τ) ≥
S∑
s=1

R∗s(τ)

=

S∑
s=1

(ωs(τ))
1/αXs(τ)∑S

s=1(ωs(τ))
1/αXs(τ)

· N
T

=
N

T
.

If RRR(τ) 6= RRR∗(τ), there exists at least one user s, Rs(τ) >
R∗s(τ), and the cap on the number of requests per time slot will
be violated. Therefore, it must be true thatRRR(τ) = RRR∗(τ).

V. SYSTEM IMPLEMENTATION

In this section, we first discuss implementation issues re-
garding the computation of rate allocation on the cloud servers.
Then, we address the problem of request scheduling on user
devices.

A. Rate Computation on Cloud Servers

1) User Synchronization: In our implementation, we set the
number of time slots within a minute as T = 4, i.e., users
report their request information to cloud servers of Clockwork
and obtain the allocated rate every 15 seconds. Three kinds
of HTTP requests are used for users to communicate with
cloud servers. The first kind of HTTP requests are sent when
users launch the application or restart the application from
background. The cloud servers will reply with an initial rate
R0 and the synchronization reference. R0 is above zero, since
we find that upon logging in, users tend to perform many
operations, thus sending many requests. If R0 = 0, these
requests can not be sent until a new rate is assigned at the
next time slot, which may lead to a poor user experience.

The second kind of HTTP requests are used to periodically
report users’ request information and ask for rate allocation.
The cloud servers maintain a table of all active users, including
the user ID, number of requests XXX(τ), weight ωωω(τ), and the
rate allocation result RRR(τ). Users log in at different times, and
the local time on their mobile devices may be different from
the time on cloud servers. We need to synchronize users to
ensure that they update XXX(τ) and ωωω(τ) at (almost) the same
time for cloud servers to compute the rate allocation RRR(τ).
Recall that the response to the first kind of HTTP requests
upon user arrival includes a synchronization reference. We
use the second of the server time as this synchronization
reference. For example, if a new user arrives at 00:00:43 of the
server time, the synchronization reference will be 43, which is
then fed into a (one-time) timer function on the user device.
The function will be executed after 15 − (43 mod 15) = 2
seconds, i.e., at 00:00:45 of the server time, triggering another
(iterative) timer function that will communicate with the cloud

servers every 15 seconds. In this way, all users will be
synchronized to report their request information at the start
of each time slot.

The last kind of HTTP requests are used to inform the
cloud servers that the application goes to background or is
terminated, so that the user will be removed from the rate
allocation table.

If a user’s HTTP requests fail, the application will get an
error message. In this case, without allocated rate from the
cloud servers, the user device will carry out a default request
scheduling mechanism, which we will describe in Section
V-B2). Meanwhile, the user will keep trying to contact the
cloud servers every 15 seconds.

2) Rate Allocation Computation: We classify all requests
into K = 3 types: type 3 requests are the most urgent, and type
1 requests are the least urgent. Then we define that the weight
of a user is the sum of types of all her requests. For example,
if user s has 15 type 1 requests, 10 type 2 requests, and 5 type
3 requests, her weight is ωs(τ) = 15 ∗ 1+10 ∗ 2+5 ∗ 3 = 50.
It can be easily checked that a user with more urgent requests
will get a higher weight.

Since users will turn up for new rates at the start of time slot
τ + 1, the cloud servers need to calculate the rate allocation
result RRR(τ + 1) before the end of time slot τ , by which the
reports on XXX(τ) and ωωω(τ) haven’t been submitted yet. One
option is for the cloud servers to wait for XXX(τ) and ωωω(τ) at
the beginning of time slot τ + 1, and then compute RRR(τ + 1)
accordingly. However, users’ HTTP requests will not arrive
at exactly the same time, due to different network conditions.
Early users may have to wait an undesirably long time for all
other users to report their information, after which the new rate
allocation can be calculated. To avoid this situation, we decide
that the cloud servers will work out the new rate allocation
RRR(τ + 1) 5 seconds before the end of each time slot, using
the available information XXX(τ − 1) and ωωω(τ − 1).

3) Request Cap Adjustment: When computing rate alloca-
tion for each time slot, we assume that the cap on the number
of requests to be sent is N/T , in which N is the backend
capacity, and T is the number of time slots within a minute.
However, as some of the allocated rates may be unused (as
Xs(τ) < Rs(τ)), we can adjust the cap to make a better use
of the backend capacity. At the first time slot of each minute,
the cap will be N/T ; at the following time slots, the cap will
be N/T plus the remaining rates from the previous time slot.
For example, if the backend capacity is 1800, and each minute
is divided into T = 4 time slots. At time slot 1, the request
cap is 1800/4 = 450. If the actual number of requests sent to
the backend during time slot 1 is 430, the request cap at time
slot 2 will be 450 + (450− 430) = 470.

B. Request Scheduling on User Devices

1) Dynamic Request Scheduling: The user device will keep
a queue of requests ranked in a non-ascending order of
priorities that are jointly determined by the type and the
initiation time of a request. A new request will be inserted
into the queue, and wait for its turn to be sent to the backend.

Let QQQs(τ) = (qs,1(τ), qs,2(τ), · · ·) denote the request queue
of user s, in which qs,i(τ) is the priority of the i-th request,
and we have qs,1(τ) ≥ qs,2(τ) ≥ · · · . The number of requests
in the queue is denoted by |QQQs(τ)|.

A major problem facing the request scheduling on the user
device is that the new rate obtained at the start of a time slot
may not be able to cater to the new requests arrived later
during the time slot. More specifically, at the start of time slot
τ , upon receiving a new rate Rs(τ), if user s instantly sends
the top Rs(τ) requests in the queue QQQs(τ − 1) (given that
|QQQs(τ−1)| > Rs(τ)), an urgent request generated later during
time slot τ can no longer be sent. For example, at 00:00:15,
with a queue of (2, 1, 1) and an allocated rate of 2, the user
device sends the first 2 requests in the queue right away to
the backend. At 00:00:25, a new request with a priority of 3
is generated, but has to be detained as the allocated rate is
drained.

The above-mentioned problem arises as the user device can
not predict future request dynamics and preserve enough rate
for them. To mitigate this problem, we design a threshold-
based request scheduling mechanism that works as follows.
Firstly, we set a priority threshold θq . At the beginning of
time slot τ , with the new rate Rs(τ), user s will immediately
send the requests whose priority exceeds θq to the backend.
If the number of such requests is greater than Rs(τ), the first
Rs(τ) will be sent; otherwise, the rest of the rate is reserved
for later requests with high priorities. If a newly-generated
request has a priority lower than θq , it will be inserted in the
queue; otherwise, it will be checked whether the allocated rate
is exhausted. If yes, the request will be inserted in the queue;
otherwise, it will be sent at once to the backend (note that in
this case, the queue only contains requests whose priority is
lower than θq). At the end of time slot τ , if the remaining rate
is greater than zero, the user device will send as many queued
requests as possible, before asking for a new rate.

2) Default Request Scheduling: If the user device fails
to get responses from cloud servers of Clockwork, either
upon logging in or during periodic rate allocation, a default
request scheduling mechanism based on the Additive Increase
Multiplicative Decrease (AIMD) algorithm, will come into
effect. The requests will be sent to the backend at a lower rate
if it is inferred that the current overall request demand is high,
vice versa. There are various indications of the current request
demand. For example, when using MBaaS, if the request limit
is hit, further requests will be rejected with an error message
of error code 155. If a user receives such an error message,
she should multiplicatively decrease the rate by b; otherwise,
she will additively increase the rate by a:

Rs(τ) =

{
Rs(τ − 1) + a, if no error code,
Rs(τ − 1)/b, if error code. (13)

The default request scheduling will continue until the user
device succeeds in getting new allocated rate from cloud
servers of Clockwork.

sqrt(w_1)*X1
R_2
sqrt(w_2)*X2

user1 0 24 17 27 12 15 24 11 22 6 4 7 1 24 2 0 0 101 96 58 11 87 14 13 78 0 0 0
0 61 43 67 30 37 60 28 59 18 10 21 3 67 5 0 0 259 249 148 28 258 40 36 230 0 0 0

10 125 46 86 124 241 85 72 63 12 11 15 10 42 10 10 10 37 48 19 17 82 15 55 102 10 10 10
0 187.44599222 111.4764549131 221.0045248406 65.72670690062 91.24143795447 185.903200618 58.20652884342 168.9852064531 25.45584412272 12.64911064067 32.07802986469 1.732050807569 196.4484665249 4.472135955 0 0 1625.441170883 1514.854448454 705.6004535146 58.20652884342 1397.426921166 88.54377448471 78 1182.928569272 0 0 0

user2 0 0 10 2 2 0 2 2 14 90 50 34 80 38 38 0 84 98 54 171 46 9 101 16 16 78 0 1
0 0 27 5 5 0 5 5 35 225 125 85 223 95 95 0 213 245 139 471 126 25 298 43 43 230 0 3

10 10 27 11 17 10 11 14 36 128 85 68 115 70 91 10 125 35 26 60 79 12 121 71 18 115 10 134
10 125 46 86 124 241 85 72 63 12 11 15 10 42 10 10 10 37 48 19 17 82 15 55 102 10 10 10

0 9.372299611088 5.573822745657 11.05022624203 3.286335345031 4.562071897724 9.295160030898 2.910326442171 8.449260322655 1.272792206136 0.632455532034 1.603901493235 0.086602540378 9.822423326247 0.22360679775 0 0 81.27205854413 75.74272242269 35.28002267573 2.910326442171 69.87134605831 4.427188724236 3.9 59.1464284636 0 0 0
10 10 27 11 17 10 11 14 36 128 85 68 115 70 91 10 125 35 26 60 79 12 121 71 18 115 10 134

0 0 2.598076211353 0.22360679775 0.22360679775 0 0.22360679775 0.22360679775 4.14125584817 67.5 27.95084971875 15.6732255774 59.73273809227 18.51890925514 18.51890925514 0 61.29698198117 76.69713162824 31.83253053089 185.5566692415 25.81743596874 2.25 87.17651633324 5.245950819442 5.245950819442 59.1464284636 0 0.086602540378

X axis Time Slot 横坐标是1，2，3.。。
Y axis left: Rate right: Weighted number of requests
legend 看看能不能改成特殊符号
所有的字体尽量⼤大

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19 21

R
at

e

Time Slot

W
eighted num

ber of requests

W
eighted num

ber of requests

(ω1)
1/2X1R1

0

50

100

150

200

0

40

80

120

200
R2 (ω2)

1/2X2

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19

R
at

e

Time Slot

(a) User 1

sqrt(w_1)*X1
R_2
sqrt(w_2)*X2

user1 0 24 17 27 12 15 24 11 22 6 4 7 1 24 2 0 0 101 96 58 11 87 14 13 78 0 0 0
0 61 43 67 30 37 60 28 59 18 10 21 3 67 5 0 0 259 249 148 28 258 40 36 230 0 0 0

10 125 46 86 124 241 85 72 63 12 11 15 10 42 10 10 10 37 48 19 17 82 15 55 102 10 10 10
0 187.44599222 111.4764549131 221.0045248406 65.72670690062 91.24143795447 185.903200618 58.20652884342 168.9852064531 25.45584412272 12.64911064067 32.07802986469 1.732050807569 196.4484665249 4.472135955 0 0 1625.441170883 1514.854448454 705.6004535146 58.20652884342 1397.426921166 88.54377448471 78 1182.928569272 0 0 0

user2 0 0 10 2 2 0 2 2 14 90 50 34 80 38 38 0 84 98 54 171 46 9 101 16 16 78 0 1
0 0 27 5 5 0 5 5 35 225 125 85 223 95 95 0 213 245 139 471 126 25 298 43 43 230 0 3

10 10 27 11 17 10 11 14 36 128 85 68 115 70 91 10 125 35 26 60 79 12 121 71 18 115 10 134
10 125 46 86 124 241 85 72 63 12 11 15 10 42 10 10 10 37 48 19 17 82 15 55 102 10 10 10

0 9.372299611088 5.573822745657 11.05022624203 3.286335345031 4.562071897724 9.295160030898 2.910326442171 8.449260322655 1.272792206136 0.632455532034 1.603901493235 0.086602540378 9.822423326247 0.22360679775 0 0 81.27205854413 75.74272242269 35.28002267573 2.910326442171 69.87134605831 4.427188724236 3.9 59.1464284636 0 0 0
10 10 27 11 17 10 11 14 36 128 85 68 115 70 91 10 125 35 26 60 79 12 121 71 18 115 10 134

0 0 2.598076211353 0.22360679775 0.22360679775 0 0.22360679775 0.22360679775 4.14125584817 67.5 27.95084971875 15.6732255774 59.73273809227 18.51890925514 18.51890925514 0 61.29698198117 76.69713162824 31.83253053089 185.5566692415 25.81743596874 2.25 87.17651633324 5.245950819442 5.245950819442 59.1464284636 0 0.086602540378

X axis Time Slot 横坐标是1，2，3.。。
Y axis left: Rate right: Weighted number of requests
legend 看看能不能改成特殊符号
所有的字体尽量⼤大

W
eighted num

ber of requests

W
eighted num

ber of requests

(ω1)
1/2X1R1

0

40

80

120

200

0

50

100

150

200
R2 (ω2)

1/2X2

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19

R
at

e

Time Slot

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19

R
at

e

Time Slot

(b) User 2

Fig. 9: Experimental result of rate allocation.

Table 1

600 900 1200 1500 1800 2100 2400 2700

����	 ���	�
 ��		�� ������ ���	�� ��
��
 �
�� ����

�����
 �����	 �
�
�� ���� ������ �����	 ��
��
 �	���	

���	�� �	���� �����	 �
���� ������ �
���� ��
��� �����

������ ����	
 �����
 ��
��� �
���� ��
��� ������ ������

�	���� ������ �����
 ��	��
 ������ ������ �
���	 ����		

����
	 ����
� ��	��� �����	 �	���� ��
�	� ����	� �
����

32.7976143141153%33.5590496958568%34.3581996712134%30.5135844505923%31.1143404860553%32.2534989778267%36.2692684665419%30.2645974310142%

Ba
ck

en
d

C
ap

ac
ity

0

1500

3000

4500

6000

Average Demand
600 900 1200 1500 1800 2100 2400 2700

Loose Constraint Tight Constraint
No Clockwork

(a) Required backend capacity

Table 1

600 900 1200 1500 1800 2100 2400 2700

���%��� �
��	�� �
�
��� ���

�� �����
� �%���%� ���%�
� ���%���

������
	�����
����	�
%��	��
%�
�
�
%�%���
��%
��
%�����

%��	��� %	����� %���	�� %
����� %
�
��� %
�	�	� %	����� %
�����

����
�� ������� 	��	��� ������� ��%�

� ���
�
� �����%� �������

����%��
�
�%�� �����%� 	�%�� �����	� 	���
�� 	������ 	������

��	�
�� ���	��� ��		��� �����	� %������ ��	�		� ��	�%�� �������

52.8674195969322%55.50557402699%50.1787455313617%43.1196943238991%46.980341939503%47.8933120466456%57.3128074006996%45.4529625824874%

43.2044077538394%36.8934800775208%21.8651112669552%30.2978958834005%31.1639094621721%31.0207198139729%32.4117970844653%30.6287326101719%

C
ap

ac
ity

 U
til

is
at

io
n

0%

25%

50%

75%

100%

Average Demand
600 900 1200 1500 1800 2100 2400 2700

Loose Constraint Tight Constraint
No Clockwork

Backend capacity utilization

Fig. 10: Simulation result of backend capacity planning.
VI. PERFORMANCE EVALUATION

A. Experimental Result

We have developed the client-side of Clockwork as a third-
party framework (library) that can be readily used by mobile
application developers, using Swift on the iOS platform as a
proof-of-concept. It is implemented using Java on the Amazon
Web Service (AWS) platform. For the purpose of our real-
world experiments, we have also developed a social messaging
iOS application, using Facebook Parse (an MBaaS platform)
as its backend, supported by our third-party framework. We
identify 17 different kinds of requests, such as send a message,
send friend request, change username and so on. We divide
them into K = 3 types: type 3 requests are the most urgent
and type 1 requests are the most delay-tolerant.

To evaluate the performance of Clockwork, we carried out a
pilot trial with 15 iPhone users. We collected data for 20 hours.
Only the statistics regarding the request demand are logged,
but not message contents, in order to protect user privacy.

Rate allocation. We set α = 2 in the α−fair utility
function, and show the rate allocation results of two users in
Fig. 9. Generally speaking, a user will achieve a higher rate
if her weighted number of requests is larger. Nevertheless, the
allocated rate of a user also depends on the request demand of
other users. For example, there is a plunge in user 1’s request
demand at time slot 15, but the allocated rate is almost the
same as that of the previous time slot. This is because the
request demand of user 2 also falls dramatically at time slot
15, making the ratio of the two users’ request demand (i.e.,
(ω1)

1/2X1

(ω2)1/2X2
) in time slot 15 approximately the same as that in

time slot 14. Thus, at time slot 15, each user is assigned a rate
similar to that in the previous time slot.

Capacity planning. We use the collected data trace as inputs
to the optimization problem (1). We compare Clockwork and

TABLE I: Experimental Result of Capacity Planning

Hour 1 2 3 4 5
Cost reduction 67.7% 0.0% 21.9% 32.5% 5.5%

Utilization(baseline) 20.3% 23.2% 48.5% 45.9% 37.1%
Utilization(Clockwork) 63.0% 23.2% 62.0% 67.9% 39.2%

Hour 6 7 8 9 10
Cost reduction 31.3% 55.3% 21.4% 0.0% 40.6%

Utilization(baseline) 39.2% 23.5% 19.0% 11.8% 39.1%
Utilization(Clockwork) 57.0% 52.6% 24.2% 11.8% 65.8%

Hour 11 12 13 14 15
Cost reduction 63.0% 39.6% 75.2% 0.0% 56.6%

Utilization(baseline) 18.6% 32.2% 19.0% 17.4% 27.2%
Utilization(Clockwork) 50.3% 53.3% 76.8% 17.4% 62.8%

Hour 16 17 18 19 20
Cost reduction 23.4% 65.4% 50.7% 55.9% 24.0%

Utilization(baseline) 44.4% 20.9% 35.6% 24.6% 15.2%
Utilization(Clockwork) 57.9% 60.5% 72.3% 55.7% 20.0%

the baseline, where the backend capacity equals the peak
demand. The backend utilization is calculated as the ratio
of the average request demand to the backend capacity. The
results are shown in Table I. With Clockwork, the backend cost
for the developer can be reduced as much as 67.7%. Further-
more, Clockwork allows the developer to make a much better
use of backend resources. Without Clockwork, the backend
utilization is mostly below 50%, since the peak demand is
much higher than the average demand. With Clockwork, the
backend utilization can be increased by as much as 76.8%.

B. Simulation Result

We evaluate the proposed backend capacity planning opti-
mization model using a synthetic dataset generated as follows.
There is a total of 100 users, whose request generation pro-
cesses follow independent and identical Poisson distributions.
We assume that there are 3 types of requests. Type 3 requests
are most urgent, δ3ij = 0,∀i, j. No request is to be delayed
for more than 5 minutes, and the upper bounds for type 2 and
type 1 requests are ∀j − i ≤ 5, δ2ij = m − 0.02 ∗ (j − i),
and δ1ij = m − 0.01 ∗ (j − i), respectively. If m is higher,
more requests can be delayed, meaning that the constraint on
request delay is looser, vice versa.

It is shown in Fig. 10(a) that the backend capacity should
augment with the average demand, but Clockwork can cut
down the required backend capacity by as much as 36.3%.
The capacity reduction is more significant under loose de-
lay constraint (m = 0.4) than under tight delay constraint
(m = 0.1). As shown in Fig. 10(b), provisioning for the
peak demand will result in resource wastage as the backend
capacity is underutilized for around 55% at most of the time.
With request scheduling of Clockwork, the demand profile
becomes smoother, and the backend capacity can be utilized
more efficiently. The improvement in the backend capacity
utilization can be as high as 57.3% under loose constraint,
and 43.2% under tight constraint.

VII. RELATED WORK

Cloud Resource Provisioning. Many existing works have
proposed to use predicative auto-scaling for dynamic resource
provisioning in cloud computing. In [6], [7], a statistical model
is used to predict the demand of videos, based on which

the video service provider can dynamically book bandwidth
resources to match the fluctuated demand. In [8], [9], an epi-
demic model is built to forecast the viewing requests in a social
media application. Similar predictive auto-scaling models have
also been built for resource allocation [10]–[12] and power
consumption [13], [14] in cloud systems. In this paper, we
determine the backend capacity based on predicted request
demand, but our work distinguishes from previous works in
two aspects. First, there is a mismatch between timescales of
request demand fluctuations and backend capacity adjustment,
so that fine-grained auto-scaling is infeasible. Second, unlike
the rigid demand in existing models, we can exploit the delay
tolerance of requests to change the demand profile and help the
application developer cut cost. This is similar to [15], in which
pricing is used to incentivize users to shift their demand. But
rather than relying on users’ subjective decisions, our request
scheduling mechanism is directly controlled by Clockwork.

NUM-based Resource Allocation. The pioneering work of
Kelly et al. [16] first introduced the novel idea of Network
Utility Maximization (NUM) based resource allocation. A
nice survey of the research on network utility maximization
problem is given by [4]. Mo and Walrand [5] first intro-
duced the α-fair utility function to be used as the objective
function. NUM-based network resource allocation has been
widely applied to rate allocation in Internet congestion control
protocol [17], resource allocation in cellular networks [18],
and congestion control in wireless ad hoc networks [19]. We
build a similar model but relate it to request scheduling in
mobile applications. In particular, we leverage the model to
allocate rates to users according to the quantity and delay
tolerance of their requests.

VIII. CONCLUSION

Backend maintenance is essential for mobile application de-
velopers. However, the mismatch of the timescales between the
request demand variance and the backend capacity adaptation
makes it difficult to manage the resource and the cost of the
backend. To address this problem, we design a third-party
cloud service Clockwork, which plans the backend capacity on
a long timescale, and schedules requests on a short timescale.
To start with, Clockwork exploit machine learning algorithms
to predict future demand based on historical data. We show
that deep learning models are powerful in prediction but take
a much longer time to train than simpler models. Given
the estimated future demand, we help developers minimize
the backend cost with assurance of limited request delay.
Then, abiding by the backend capacity, Clockwork schedules
requests from all users with a fair and Pareto-optimal rate
allocation mechanism, enabling individual users to prioritize
their own requests, thus protecting user privacy. We have
implemented the server-side of Clockwork on Amazon Web
Service (AWS) platform, and the client-side on iOS-based
mobile devices. Our evaluation results confirm that Clockwork
can effectively help developers trim down backend cost and
make a better use of backend resources.

IX. ACKNOWLEDGEMENT

The co-authors would like to acknowledge the gener-
ous research support from a NSERC Discovery Research
Program and a NSERC Strategic Partnership Grant titled
”A Cloud-Assisted Crowdsourcing Machine-to-Machine Net-
working Platform for Vehicular Applications at the University
of Toronto.

REFERENCES

[1] Statistas, “Number of Mobile App Downloads Worldwide from 2009 to
2017 (in millions),” http://goo.gl/BqEVrK.

[2] A. Dogtiev, “App Revenue Statistics 2015,” http://goo.gl/MwJ5R1,
November 16, 2015.

[3] V. Mobile, “Developer Economics Q1 2015: State of the Developer
Nation,” http://goo.gl/Iq1EEI, February, 2015.

[4] Y. Yi and M. Chiang, “Stochastic Network Utility Maximisation-A
tribute to Kelly’s paper published in this journal a decade ago,” European
Transactions on Telecommunications, vol. 19, no. 4, pp. 421–442, 2008.

[5] J. Mo and J. Walrand, “Fair End-to-End Window-Based Congestion
Control,” IEEE/ACM Transactions on Networking, vol. 8, no. 5, pp.
556–567, 2000.

[6] D. Niu, Z. Liu, B. Li, and S. Zhao, “Demand Forecast and Perfor-
mance Prediction in Peer-Assisted On-Demand Streaming Systems,” in
IEEE International Conference on Computer Communications, mini-
conference, 2011.

[7] D. Niu, H. Xu, B. Li, and S. Zhao, “Quality-Assured Cloud Bandwidth
Auto-Scaling for Video-on-Demand Applications,” in IEEE Interna-
tional Conference on Computer Communications, 2012.

[8] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. Lau, “Scaling Social
Media Applications Into Geo-Distributed Clouds,” in IEEE International
Conference on Computer Communications, 2012.

[9] ——, “Scaling Social Media Applications Into Geo-Distributed Clouds,”
IEEE/ACM Transactions on Networking, vol. 23, no. 3, pp. 689–702,
2015.

[10] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A Scalable
Application Placement Controller for Enterprise Data Centers,” in ACM
International Conference on World Wide Web, 2007.

[11] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive Elastic Resource
Scaling for Cloud Systems,” in IEEE International Conference on
Network and Service Management, 2010.

[12] M. Wang, X. Meng, and L. Zhang, “Consolidating Virtual Machines with
Dynamic Bandwidth Demand in Cata Centers,” in IEEE International
Conference on Computer Communications, mini-conference, 2011.

[13] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang,
“Power and Performance Management of Virtualized Computing Envi-
ronments via Lookahead Control,” Cluster computing, vol. 12, no. 1,
pp. 1–15, 2009.

[14] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska, “Dynamic Right-
Sizing for Power-Proportional Data Centers,” IEEE/ACM Transactions
on Networking, vol. 21, no. 5, pp. 1378–1391, 2013.

[15] S. Ha, S. Sen, C. Joe-Wong, Y. Im, and M. Chiang, “TUBE: Time-
Dependent Pricing for Mobile Data,” ACM SIGCOMM Computer Com-
munication Review, vol. 42, no. 4, pp. 247–258, 2012.

[16] F. Kelly, A. Maulloo, and D. Tan, “Rate Control for Communication
Networks: Shadow Prices, Proportional Fairness and Stability,” Journal
of the Operational Research Society, pp. 237–252, 1998.

[17] M. Chiang, D. Shah, and A. Tang, “Stochastic Stability Under Network
Utility Maximization: General File Size Distribution,” in Proceedings of
44th Allerton Conference on Communication, Control and Computing.
Citeseer, 2006.

[18] A. L. Stolyar, “On the Asymptotic Optimality of the Gradient Scheduling
Algorithm for Multiuser Throughput Allocation,” Operations Research,
vol. 53, no. 1, pp. 12–25, 2005.

[19] M. J. Neely, E. Modiano, and C.-P. Li, “Fairness and Optimal Stochastic
Control for Heterogeneous Networks,” IEEE/ACM Transactions on
Networking, vol. 16, no. 2, pp. 396–409, 2008.

