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Abstract—The use of a combinatorial auction is believed to be
an effective way to distribute spectrum to buyers who have diver-
sified valuations for different spectrum combinations. However,
the allocation of spectrum with combinatorial auctions mainly
aims at optimizing over certain utility functions, e.g., social
welfare, but ignores individual preferences of buyers and sellers,
who have incentives to deviate from globally optimal allocation
results to improve their own utility. In this paper, we explore the
possibility of designing a new stable matching algorithm for com-
binatorial spectrum allocations. Starkly different from existing
efforts on spectrum matching mechanism design, our proposed
combinatorial spectrum matching framework not only allows
buyers to express preferences towards spectrum combinations
(rather than individual channels), but also computes the payment
that should be transferred from buyers to sellers. Payment deter-
mination, while essential in spectrum exchange, has never been
addressed in existing spectrum matching frameworks. We design
a novel algorithm to achieve a stable combinatorial spectrum
matching and to compute the corresponding payment profiles.
We conducted an extensive array of experiments to compare
the performance of stable combinatorial spectrum matching
with spectrum auctions. It is shown that the combinatorial
spectrum matching sacrifices little allocation efficiency in terms
of social welfare and spectrum utilization, but achieves a much
higher individual buyer utility, which will incentivize buyers to
participate and comply with the allocation results.

I. INTRODUCTION

The shortage of spectrum poses a significant obstacle to the
rapid development of the wireless communications industry.
The growing demand from wireless services and applications
is restrained by the limited supply of spectrum resources,
despite recent advances in wireless communication technolo-
gies. Traditional static spectrum allocation issues long-term
spectrum licenses to wireless service providers, resulting in
spectrum underutilization due to undulating traffic on different
networks. To improve spectrum utilization, dynamic spectrum
access has been proposed to redistribute spectrum resources so
that service providers with idle channels can trade with those
in need of additional channels [1], [2].

The use of auctions is deemed an effective way of resource
redistribution, and spectrum auction mechanism design has
been extensively studied. In the family of spectrum auctions,
we are particularly interested in combinatorial spectrum auc-
tions, which allow buyers to express diversified preferences
for different channel combinations. The valuation for a spec-
trum combination may be higher (or lower) than the sum of
valuations for individual channels in the combination. This is
especially true for spectrum, since channels with contiguous

frequencies are easier to operate on than those on non-
contiguous frequencies. However, the allocation of spectrum
with combinatorial auctions usually aims for maximizing
the social welfare [3], [4] globally, but ignores individual
preferences of buyers and sellers, who are rational and selfish
market participants and care more about their own utility rather
than the overall social welfare. Therefore, a globally optimal
spectrum allocation with combinatorial auctions may not be
implemented when buyers and sellers have incentives to defect
and seek for alternative opportunities to improve their own
utilities. To address this problem, in this paper, we explore
the possibility of utilizing stable matching theory to realize
combinatorial spectrum allocation.

Stable matching was first studied by Gale and Shapley for
college admission problems in their pioneering work [5]. Since
then, stable matching has been widely applied to resource
allocation in computer science, such as virtual machine man-
agement in the cloud [6], user association in small cells [7],
and spectrum sharing in device-to-device communication [8].
Unlike other common goods, the right of spectrum usage is
not exclusive, but is subject to interference relationship among
buyers. Due to transmission path loss, geographically distant
buyers can reuse the same channel as long as they are out of
the interference range of each other. While it is a promising
way to boost utilization, such spectrum reusability challenges
conventional matching frameworks, which feature fixed quotas
rather than graph-based interference constraints.

As a new paradigm of spectrum allocation, several spectrum
matching frameworks have been proposed. In [9], Chen et
al. proposed a two-stage deferred acceptance algorithm to
reach a stable matching, where every buyer has a maximum
quota on channel purchases. To address the issue that a mini-
mum number of channels may be needed for proper operation,
in [10], an extended deferred acceptance algorithm is designed
to achieve a stable matching while ensuring that the minimum
spectrum requirement is met for all buyers. In the context of
this work, perhaps the most closely related work is [11], a
many-to-many matching framework proposed for combinato-
rial spectrum allocation. The main distinction of our work lies
in the determination of payment from buyers to sellers, making
our new combinatorial spectrum matching framework more
applicable in real-world spectrum markets, where spectrum
trading cannot be accomplished without money transfer.

We summarize the challenges in designing our new combi-
natorial spectrum matching framework as follows:



1) Spatial reuse is what differentiates the design of either
auction or matching frameworks for spectrum and other
common goods.

2) Combinatorial expressiveness enables buyers to pursue
favourable spectrum combinations more aggressively.

3) Payment determination helps the matching framework to
close the deal in real-world spectrum markets.

4) Stability ensures that no buyers or sellers are willing to
deviate from the final spectrum allocation.

In this paper, we present the design of a new combina-
torial spectrum matching framework that addressed all four
challenges. A comparison of our design with conventional
matching, existing spectrum matching and combinatorial spec-
trum auctions is shown in Table I. More specifically, in
our matching framework, the buyers initiate their payment
profiles as sellers’ reserve prices, i.e., the minimum payment
sellers will accept for selling their channels. Then, every buyer
iteratively proposes to a combination of sellers who maximizes
her utility function, and every seller accepts a set of non-
interfering buyers with the highest aggregate payment. After
each iteration, each buyer adjusts her payment profile by aug-
menting the payments for sellers who reject her proposals, and
maintaining the payments for sellers who accept her proposals.
The adjustment of payment will alter buyers’ preferences for
spectrum/seller combinations, and the same is true for the
sellers. Such a process continues until all buyers’ proposals are
accepted, indicating that the matching is stable at the current
payment profiles.

We evaluate the performance of the proposed stable com-
binatorial spectrum matching framework by comparing it
with a well-known combinatorial auction mechanism, called
SMASHER [13], from a variety of perspectives, including
social welfare, total payment, buyer utility, and channel uti-
lization. Simulation results show that the gap of social welfare
and channel utilization between the combinatorial spectrum
matching and spectrum auctions is quite small, while the
combinatorial spectrum matching achieves a much higher
buyer utility, which will motivate buyers to participate and
abide by the final spectrum allocation results.

II. RELATED WORK

In this section, we briefly review related works on spectrum
auction and stable matching, as well as existing spectrum
matching frameworks.

Spectrum Auction. Auction mechanisms have long been
developed for spectrum allocation. The most common spec-
trum auction models include forward auction [14], double
auction [15], and online auction [16]. Combinatorial auction
differentiates from other auction models by allowing buyers
to bid on combinations of items [17]. However, this makes
it far more difficult (usually NP-hard) to realize an optimal
allocation that maximizes over certain metrics, e.g., social
welfare [18], [19], [20]. Combinatorial auction has been
applied to spectrum allocation. Dong et al. [21] leveraged
combinatorial auction for spectrum allocation in cognitive
radio networks, but they modelled the spectrum opportunity as

orthogonal time-frequency slots rather than considering spatial
reuse. Similarly, Yi et al. [4] utilized combinatorial auction
and Stackelberg game for spectrum sharing in cognitive radio
networks , but did not realize spectrum reuse. Zheng et.
at. [3] successfully tackled the problem of spectrum reuse
by transforming combinatorial spectrum auctions to classic
combinatorial auctions through virtual channel creation for
interfering buyers. As an extension, Cai et al. [22] further
incorporated reserve prices of sellers into the combinatorial
spectrum auction model. The objective of spectrum allocation
in auction is usually social welfare maximization, while we are
trying to attain a stable allocation where individual preferences
of buyers and sellers are accommodated.

Stable Matching. In their pioneering work [5], Gale and
Shapley studied the marriage and college admission problems,
and proposed deferred acceptance algorithm to achieve a stable
matching. As a useful tool for resource allocation, stable
matching has been applied to many areas in computer science.
For security protection, Bayat et al. [23] used the matching the-
ory to pair source-destination nodes with friendly jammers to
avoid eavesdropping. In wireless communications, the match-
ing framework is adopted for small cell user association [7],
and device-to-device resource sharing [8]. In cloud computing,
Xu et al. [6] matched jobs to virtual machines, adapting the
deferred acceptance algorithm to cater to heterogeneous job
sizes. Money transfer in matching framework was studied in
[24] for labor market, followed by many variants on matching
with contracts between two parties [25], [26].

Spectrum Matching. Different from common goods, spec-
trum allocation features spatial reuse. Matching framework
for spectrum allocation was first proposed by [12], where
a two-stage algorithm based on deferred acceptance was
proposed to realize spatial reuse and ensure stability. As an
extension, Chen et al. [10] proposed an extended deferred
acceptance algorithm to ensure both maximum spectrum quota
and minimum spectrum requirement of buyers. In [11], Jiang
et al. proposed a stable many-to-many matching framework
for combinatorial spectrum allocation. However, none of the
above spectrum matching frameworks could determine how
much buyers should pay sellers for acquiring the spectrum,
which is essential for the final deal in the spectrum market.

III. SYSTEM MODEL

In this section, we present the system model for the problem
of spectrum allocation, then formulate it as a combinatorial
spectrum matching framework, and formally define the con-
cept of stability under such frameworks.

A. Market Participants

Service providers with idle channels to lease are regarded as
sellers, and service providers seek to purchase extra channels
are regarded as buyers. Without loss of generality, we assume
that each seller owns one channel1 Let M = {1, 2, ...,M}

1If a seller owns multiple channels, we can create multiple dummy sellers,
each possesses one channel [27]. This transformation will not affect the
matching result.



TABLE I
OUR COMBINATORIAL SPECTRUM MATCHING FRAMEWORK VS. EXISTING SOLUTIONS: A COMPARISON.

Spatial Reuse Combinatorial Expressiveness Payment Determination Stability
Traditional matching 7 7 7 3

One-to-many spectrum matching [12] 3 7 7 3
Many-to-many spectrum matching [11] 3 3 7 3

Combinatorial spectrum auctions [13], [3] 3 3 3 7
Combinatorial spectrum matching 3 3 3 3

denote the set of sellers/channels2. Let N = {1, 2, ..., N}
denote the set of buyers. There is no limit on the number
of channels that a buyer can purchase, yet it will be bounded
by the buyer’s valuation for different spectrum combinations
and the corresponding payment.

B. Interference Relationship

Spectrum can be shared among non-interfering buyers.
To determine the interference relationship, we construct het-
erogeneous interference graphs for different channels [27].
Let {Gi = (N , Ei)}Mi=1 represent the interference graph of
channel i, in which the set of nodes are the set of buyers N .
If two buyers j and j′ are within the interference range of
each other when transmitting on channel i, there is an edge in
the interference graph, i.e., ej,j′ ∈ Ei. We made the simplified
condition that the interference relationship is symmetric, thus
the interference graph is undirected. In principle, the same
channel can be reused by an unlimited number of buyers who
are not linked on the interference graph.

C. Utility of Buyers and Sellers

Let pij denote the payment of buyer j to seller i for channel
i, and pj = (p1j , p2j , ..., pmj) is the payment profile of buyer
j. A buyer can purchase any combinations of channels, but
different combinations bring different utilities to the buyer.
Assume that buyer j is allocated the combination of channels
Cj ⊆M, and her valuation for this combination is V j(Cj). It
is obviously true that buyer j has zero valuation for an empty
combination, i.e., V j(∅) = 0. Buyer j’s utility uj(Cj ,pj) is
her valuation for the allocated combination minus the payment
for the combination:

uj(Cj ,pj) = V j(Cj)−
∑
i∈Cj

pij . (1)

Different from common goods that can only be exclusively
sold to a single buyer, a channel can be assigned to multiple
buyers as long as they do not interfere with each other. Let
Di ⊆ N denote the set of buyers that is matched to seller i,
and pi = (pi1, pi2, ..., piN ) denote the payment profile of seller
i. Seller i’s utility wi(Di,pi) depends on the interference
condition of buyer set Di and the received payment pi.

wi(Di,pi) = I∀j,j′∈Di,ei
j,j′

=0

∑
j∈Di

pij . (2)

2For simplicity, with a little abuse of notations, we use the same set to
represent both sellers and their channels

in which I∀j,j′∈Di,ei
j,j′

=0 = 1 if the interference constraint
∀j, j′ ∈ Di, eij,j′ = 0 is satisfied, otherwise, we impose a
prohibitive penalty I∀j,j′∈Di,ei

j,j′
=0 = −∞ to prevent sellers

from selling the same channel to interfering buyers.
We have the following assumptions regarding the utility

function of buyers and sellers.

• Reserve price. Each seller has a reserve price, repre-
senting the minimum payment the seller will accept for
the channel. Let ri denote the reserve price of seller i,
and we have ri = wi(∅,0) ≥ 0. The reserve price reflects
alternative options of a seller, for example, the seller may
use the channel herself even if the traffic of the network
is light.

• Positive gain. We assume that purchasing an additional
channel at its reserve price always brings positive gain to
a buyer. This is intuitively true, because no buyer would
purchase a channel of which the reserve price is higher
than its valuation. Therefore, We have:

V j(Cj∪{i})−V j(Cj)−ri ≥ 0,∀i ∈M, Cj ⊂M, i /∈ Cj .
(3)

• Gross substitute. Assume that channel i is in the com-
bination that maximizes buyer j’s utility. If the payments
for other channels increase but the payment for channel i
stays the same, then, there exists a combination contain-
ing channel i that maximizes the utility of buyer j. More
specifically, let Cj∗(pj) = argCj uj(Cj ,pj) denote the
combination that maximizes buyer j’s utility under the
payment profile pj . If i ∈ Cj∗(pj), then i ∈ Cj∗(p̃j),
where pij = p̃ij , pi′j ≥ p̃i′j ,∀i′ 6= i. The property of
gross substitute implies that the payment rise in other
channels will not cause a buyer to abandon a channel
whose payment is unchanged.

D. Stable Matching

We formally define a combinatorial spectrum matching
framework as follows.

Definition 1. (Combinatorial Spectrum Matching). Given the
set of sellers M and the set of buyers N , a combinatorial
spectrum matching is a function µ from M∪N to subsets of
M∪N , such that:

• For every buyer j ∈ N , µ(j) ⊆M;
• For every seller i ∈M, µ(i) ⊆ N ;
• For every seller i and buyer j, i ∈ µ(j) if and only if
j ∈ µ(i).



Now, we will characterize the stability of a combinatorial
spectrum matching.

Definition 2 (Individual Rationality). A combinatorial spec-
trum matching µ is individually rational if:

1) Every seller is matched to a set of non-interfering buyers,
and obtains a utility that is greater than her reserve price,
i.e., ∀j, j′ ∈ µ(i), eij,j′ = 0,

∑
j∈µ(i) pij ≥ ri,∀i ∈M;

2) Every buyer obtains a positive utility, i.e., uj(µ(j), sj) =
V j(µ(j))−

∑
i∈µ(j) pij ≥ 0,∀j ∈ N .

Being individually rational is the basis of a stable combina-
torial spectrum matching. It ensures that sellers prefer selling
their channels to alternative options (e.g., using the channel
themselves), and the benefit of purchased channels worth the
money paid by buyers.

Before defining stability, we first introduce the concept of
blocking pairs.

Definition 3 (Blocking Pair). Given a combinatorial spectrum
matching µ and the payment profile p, seller set C and buyer
j form a blocking pair (C, j), if there exists a payment profile
p̃j that satisfies the following conditions:

1) Buyer j prefers channel set C under payment profile p̃j

to her currently matched channel set under the current
payment profile pj .

2) Every seller in C prefers to include buyer j in their
matched buyer set under payment profile p̃j rather than
being matched to their currently matched buyer set under
payment profile pj .

Mathematically speaking, seller set C and buyer j form a
blocking pair (C, j), if there exists a payment profile p̃j , and:

1) uj(C, p̃j ∪ p−j) > uj(µ(j),p), in which p−j is the
payment profile of all other buyers except buyer j;

2) ∀i ∈ C,∃Di ⊆ µ(i), such that wi(Di∪{j}, p̃j ∪p−j) ≥
wi(µ(i),p).

The buyer and sellers in the blocking pair have incentives
to deviate from the matching result, and to be matched to each
other with improved utilities, thus making the matching result
unstable.

Definition 4 (Stable Combinatorial Spectrum Matching). A
combinatorial spectrum matching µ is stable if it is individual
rational and contains no blocking pairs.

IV. STABLE COMBINATORIAL SPECTRUM MATCHING

In this section, we first introduce the classic deferred ac-
ceptance algorithm for stable matching in traditional matching
frameworks, which inspires our design of a novel algorithm
for stable combinatorial spectrum matching. After a detailed
description of the proposed matching algorithm, we present
extensive theoretical analysis on its properties including con-
vergence and stability.

A. Algorithm Design

The traditional deferred acceptance algorithm is designed
to solve the college admission problem, where there is a set

of students to be admitted to a set of colleges, each with a
fixed quota [5]. In the first round, each student proposes to
her favourite college. Among all applicants, a college with a
quota q temporarily adds the top q students in the waiting
list, or all students if the number of applicants is smaller than
q, and rejects others. In the following rounds, each rejected
student applies to her most-preferred college which has never
rejected her before. Each college updates its waiting list by
selecting the top q students among the current applicants and
those in the previous waiting list. This process is repeated until
no students have colleges to propose to.

Similar to the deferred acceptance algorithm, our proposed
combinatorial spectrum matching algorithm lets buyers pro-
pose to preferred combinations of sellers, and sellers decide
whether or not to accept the proposal. But instead of selecting
buyers based on a fixed quota, sellers will resort to spectrum
reuse based on interference graphs. Furthermore, during the
matching process, buyers will gradually increase their pay-
ments for sellers who have rejected their proposals. Due to
the changes in payments, the utility of buyers and sellers will
change as well. A buyer will not cease proposing to a seller
because the seller has rejected her, but because the payment
for the seller has increased so much that it is not profitable to
buy the channel.

Let pij(t) denote the provisional payment of buyer j for
seller i at round t, and µ(t) denote the provisional matching
result at round t. As shown in Alg. 1, the detailed process of
the proposed algorithm works as follows.

• At round t = 0, the payment of every buyer to every
seller equals the reserve price, i.e., pij(0) = ri,∀i ∈
M, j ∈ N . Every buyer will propose to the combination
of sellers that maximize the buyer’s utility. According to
the positive gain assumption in Section III-C, at round
t = 0, every buyer will propose to all sellers. Each seller
will temporarily accept a set of non-interfering buyers
with the highest aggregate payment, and reject other
buyers. If there are multiple such non-interfering buyer
set, the seller will randomly choose one to accept. To find
the set of non-interfering buyers with the maximum total
payment is equivalent to finding the maximum weighted
independent set on the interference graph of channel i,
which is NP-hard. We adopts the approximate algorithm
in [28], which greedily picks the buyer with the highest
pij/(dGi(j) + 1) and eliminate her interfering neighbors
until the interference graph becomes empty . Note that
pij is buyer j’s payment for channel i, and dGi(j) is the
degree of buyer j on interference graph Gi.

• At round t ≥ 1,
– For every buyer, say buyer j, if a proposal to seller i at

round t− 1 is rejected, buyer j increases the payment
to seller i by δp, i.e., pij(t) = pij(t − 1) + δp. The
payments to other sellers, including those who accept
buyer j’s proposal and those to whom buyer j does
not propose, remain unchanged. The increment of δp
will result in non-continuous offered payment, but it



TABLE II
BUYERS’ VALUATION FOR DIFFERENT CHANNEL COMBINATIONS

Combination Buyer A Buyer B Buyer C
{1} 6 6 3
{2} 3 7 9
{3} 2 10 4
{4} 8 5 6
{1, 2} 10 15 13
{1, 3} 9 17 8
{1, 4} 15 13 10
{2, 3} 7 18 15
{2, 4} 12 13 16
{3, 4} 11 16 11
{1, 2, 3} 14 26 20
{1, 2, 4} 19 22 21
{1, 3, 4} 18 24 16
{2, 3, 4} 16 25 22
{1, 2, 3, 4} 24 33 27

conforms to the real-world case, for example, in the
ascending price auction, there is a minimum amount
by which the next bid must exceed the previous bid.

– Given the payment profile pj(t), buyer j will propose
to the combination of sellers Cj(t) that maximizes
uj(Cj(t),pj(t)). If there are multiple seller combi-
nations that maximize uj(Cj(t),pj(t)), the buyer will
randomly choose one combination to propose to. Note
that according to the gross substitute assumption in
Section III-C, buyer j will continue to propose to the
sellers who accept buyer j at round t − 1 since their
payment remains unchanged.

– Given the proposals from all buyers, each seller will
temporarily accept a set of non-interfering buyers
Di(t) with the highest aggregate payment and reject
others. If there are multiple such non-interfering buyer
set, the seller will randomly choose one set to accept.

• The process continues until proposals from all buyers are
accepted at the current payment profiles.

Toy Example. Assume that there are three buyers {A,B,C}
and four sellers {1, 2, 3, 4}. Buyers’ valuations for different
spectrum combinations are shown in Table II. We can see
that the valuation for a combination may not equal the sum
of valuations for individual channels in the combination. The
reserve prices for all channels are assumed to be [3, 3, 2, 5].
The interference graphs on every channel are shown in Fig. 1.
At round t = 0, as shown in Fig. 2(a), every buyer proposes to
all sellers at their reserve prices. Buyer A’s payments for seller
1 and 4 remain unchanged at round t = 1, since seller 1 and
4 accept buyer A at round t = 0. However, since buyer A is
rejected by seller 2 and 3, the corresponding payments increase
at round t = 1. Following the procedure of Alg. 1, we can
reach the final matching result as shown in Fig. 2(j), where
all the proposals from buyers are accepted by sellers. With
the final matching result, the utilities of buyers A,B,C can
be computed as 1, 12, 11, and the utilities of sellers 1, 2, 3, 4
are 8, 6, 6, 12.

Algorithm 1 Stable Combinatorial Spectrum Matching
Input: Buyer utility function uj(Cj ,pj),∀j ∈ N .

Seller utility function wi(Di,pi),∀i ∈M.
Payment adjustment step size δp.

Output: Matching result µ.
Payments pij ,∀i ∈M, j ∈ N .

1: t = 0.
2: for all i ∈M, j ∈ N do
3: µ(i) = ∅, µ(j) = ∅.
4: Calculate ri = ui(∅,0).
5: pij(t) = ri.
6: end for
7: for all Seller i ∈M do
8: Current buyer waiting list Li = ∅.
9: end for

10: flag = 1.
11: while flag do
12: t = t+ 1.
13: for all Buyer j ∈ N do
14: Find the channel combination that maximizes

uj(Cj(t),pj(t)), denoted by Cj∗(t).
15: for all seller i ∈ Cj∗ do
16: Propose to seller i.
17: Seller i adds buyer j to waiting list Li = Li∪{j}.
18: end for
19: end for
20: for all Seller i ∈M do
21: Find the buyer set Di∗(t) that maximizes

wi(Di(t),pi(t)).
22: Reject buyers j ∈ Li \Di∗(t).
23: Update the waiting list Li = Di∗(t).
24: end for
25: for all i ∈M, j ∈ N do
26: if Seller i has rejected buyer j’s proposal then
27: pij(t+ 1) = pij(t) + δp.
28: end if
29: end for
30: flag =

∑
ij(pij(t+ 1)− pij(t)).

31: end while
32: for all Seller i ∈M do
33: for all Buyer j ∈ Li do
34: µ(i) = µ(i) ∪ {j}, µ(j) = µ(j) ∪ {i}.
35: sij = sij(t).
36: end for
37: end for

B. Theoretical Analysis

Proposition 1 (Convergence). The proposed algorithm will
converge in finite time.

Proof. According to Alg. 1, if seller i accepts buyer j’s
proposal, the payment pij will stay unchanged; if seller i
keeps rejecting buyer j’s proposal, the payment pij will
keep increasing. Since V j(C) is finite, buyer j will finally
stop proposing to seller i. This is true for all buyers and
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Fig. 1. Heterogeneous interference graphs.

sellers. Eventually, each seller will lose all proposals but the
ones that she will accept, leading to the termination of the
algorithm.

Corollary 1 (Spectrum Utilization). Every channel will be
matched to at least one buyer, namely, at the final payment
profiles, all channels will be matched.

Proof. At round t = 0, when the payment profiles equal the
reserve prices of all channels, every buyer will propose to all
sellers. At round t ≥ 1, every seller accepts some of buyers,
whose payment for the seller will not change at round t+ 1.
According to the gross substitute assumption in Section III-C,
these accepted buyers will continue to propose to the seller.
Therefore, the set of buyers matched to the seller will not be
empty.

Proposition 2 (Individual Rationality). The matching result of
the proposed algorithm is individual rational.

Proof. For any seller, the starting payment of each buyer
equals her reserve price. Since the payment profiles keep
increasing during the iteration, the final payment received by
the seller will be greater than her reserve price.

For any buyer, at each round, the buyer will choose the
spectrum combination to maximize the utility uj(Cj ,pj).
Since the buyer can always choose to buy nothing, which leads
to a utility of uj(∅,pj) = V j(Φ) = 0, the final utility of the
buyer will be no less than zero.

Proposition 3 (Stability). The matching result of the proposed
algorithm is stable.

Proof. Given the final matching result µ and payment profile
p, assume that seller set C and buyer j form a blocking pair
with a payment profile p̃j , which satisfies 1) uj(C, p̃j∪p−j) >
uj(µ(j),p), and 2) ∀i ∈ C, ∃Di ⊆ µ(i), wi(Di ∪ {j}, p̃j) ≥
wi(µ(i),p).

For any seller i in set C, it must be true that buyer j
never proposes to seller i at payment p̃ij , otherwise, seller i
would have accepted buyer j (along with some of the currently
matched buyer Di), since wi(Di ∪ {j}, p̃j) ≥ wi(µ(i),p).
This means that ∀i ∈ C, p̃ij ≥ pij . Therefore, we have:

uj(C,p) ≥ uj(C, p̃j ∪ p−j) > uj(µ(j),p).

This indicates that under the payment profile p, the seller
combination that maximizes buyer j’s utility should be C but
not µ(j), which contradicts the process of Alg. 1. Therefore,
no blocking pair exists, and the matching result of the proposed
algorithm is stable.

In the traditional deferred acceptance algorithm, the match-
ing results favor the party who makes proposals3. In other
words, the matching result is at least as good for every
proposing entity as any other stable matching result. Define a
channel as p−affordable to a buyer if the channel is matched
to the buyer in a stable combinatorial spectrum matching. We
have the following proposition.

Proposition 4 (Buyer Bias). Given that there are no ties in
the utilities of buyers and sellers, and the interference graph is
complete on all channels, the matching result of the proposed
algorithm is buyer biased, i.e., if a seller is p−affordable for
a buyer, the seller will never reject the buyer with the payment
no less than p.

Proof. Consider seller i who is pij−affordable for buyer j.
Assume that before round t, no seller rejects any buyer with
a payment at which the seller is affordable for the buyer.
Then, at round t, seller i rejects buyer j at pij for another
buyer k whose payment is pik, meaning that wi({k}, pik) >
wi({j}, pij) (note that there is no tie in utility functions, and
that the interference graph is complete so that each channel
can only be sold to one buyer). Since in any stable matching
result, the payment profile of buyer k is at least as high as
the payment profile at round t, according to the assumption
of gross substitute, buyer k would like to add seller i to any
set of sellers in a stable matching at price pik.

Consider any stable matching µ with payment profile p,
where seller i is matched to buyer j with payment pij ,
we will show that buyer k and seller set µ(k) ∪ {i} form
a blocking pair with payment profile pik ∪ s−k. Firstly,
we have ∀i′ ∈ µ(k), wi

′
({k}, pik ∪ p−k) = wi

′
({k},p),

and wi({k}, pik) > wi({j}, pij). Then, we have uj(µ(k) ∪
{i}, pik ∪ p−k) > uj(µ(j),p), because buyer k would like
to add seller k to any set of sellers in a stable matching with
payment pik. Since in any stable matching that matches seller i
to buyer j, a blocking pair exists, seller i is not pij−affordable
for buyer j, which contradicts our hypothesis. Therefore, we
have proved the buyer bias of the matching result of our
proposed algorithm.

Unfortunately, we cannot prove that the matching result is
buyer biased when spectrum reusability is taken into consid-
eration. This is because whether a seller rejects or accepts a
buyer depends not only on the payment profile of this buyer
but also on the payment profiles of other buyers who can reuse
the channel with the buyer.

3In the traditional deferred acceptance algorithm, the roles of the party who
makes proposals and who decides acceptance can be switched, thus the bias
of the matching results may be changed. To alter the role of buyers and sellers
in the combinatorial spectrum matching framework is our future work.
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Fig. 2. A toy example of the stable combinatorial spectrum matching (Algorithm 1).

V. SIMULATION

In this section, we compare the performance of the proposed
stable combinatorial spectrum matching framework with the
benchmark combinatorial spectrum auction mechanism [3]
that achieves approximate maximum social welfare based on
a greedy algorithm.

We have implemented the stable matching and the com-
binatorial auction on a desktop an Intel Core CPU of 8-core
operating at 3.50 GHz processor and 32 GB RAM, and running
a Windows 10 operating system with Python 3.6.1.

The number of sellers varies from 4 to 9. Since the number
of possible channel combinations grow exponentially with the
number of available channels, we restrict that the size of
each combination is no more than three. Note that a buyer
can still buy more than three channels by joining different
combinations. The number of buyers varies from 50 to 100,
randomly distributed in a 2000m × 2000m area, and the
transmission range of a channel is drawn randomly from
the range [250m, 450m]. A buyer’s valuations for individual
channels are randomly chosen in the range (0, 100], and the
valuation for a channel combination is the sum of valuations
of individual channels in the combination plus a random value
in the range [0, 100]. We set the default value of number of
sellers, number of buyers, unit payment increment as 6, 80 and
1, respectively. All results are averaged over 100 runs.

For performance evaluation, we focus on the following four
metrics.
• Social welfare. Social welfare is defined as the sum of

utilities of all buyers and sellers [27].

• Average buyer utility. According to equation (1), a buyer’s
utility is her valuation for the purchased channel minus
the payment to sellers.

• Buyer payment. The payment from buyers to sellers does
not affect social welfare, as it merely transfers utility from
buyers to sellers.

• Channel utilization. Channel utilization is the average
number of buyers reusing the same channel.

A. Social Welfare

Fig. 3(a) and Fig. 4(a) shows the comparison of social
welfare. As the auction targets at (approximate) social welfare
maximization, its social welfare is higher than the proposed
matching framework, but the gap is very small (no more
than 13.2%). This indicates that combinatorial matching only
sacrifices a little allocation efficiency in order to achieve a
stable matching result.

It is obvious that as the number of buyers increases, social
welfare will also increase since there are more winning buyers,
but the growing rate is rather slow due to limited spectrum
resources. As the number of available channels increases,
buyers are more likely to obtain their preferred channel
(combinations), thus the social welfare also increases.

B. Buyer Payment

Fig. 3(b) and Fig. 4(b) shows the comparison of buyers’
payment. It can be seen that the payment in the matching
model is significantly lower than the payment in the auction
model, which means that less utility is transferred from the
buyer to the seller. As the matching framework lets buyers to
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Fig. 3. Comparison of combinatorial spectrum matching and combinatorial spectrum auction. The number of sellers is fixed as 6.
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Fig. 4. Comparison of combinatorial spectrum matching and combinatorial spectrum auction. The number of buyers is fixed as 80.

choose their favourite channels, they are more likely to spend
less on a few most preferred channels, rather than buying as
many channel as possible to maximize the social welfare. A
lower payment also indicates that the sellers obtain a lower
utility (recall that a seller’s utility is the total payment of non-
conflict matched buyers), confirming the Proposition 4 that the
matching result is biased towards buyers, since it is the buyers’
decision of which sellers to propose to.

When the number of buyers grows, there will be more
winning buyers, thus the total payment will increase. Similarly
if there are more channels, each buyer may have more choices,
and they will buy and pay more for the channels.

C. Average Buyer Utility

Fig. 3(c) and Fig. 4(c) shows the comparison of average
buyer utility. Since matching aims at stability (no buyer
or seller is willing to deviate from the result) rather than
social welfare maximization, individual buyer’s utility of the
matching is significantly higher than that of the auction. The
low utility of the auction result may discourage buyers to
participate or even cause buyers to disobey the allocation.

Naturally, average buyer utility will decrease as there are
more buyers competing for a fixed pool of channels. Inter-
estingly, if the number of available channels increases, auc-
tion and matching exhibit starkly different trends. Under the
matching framework, buyer utility will significantly improve
as buyers have more options, and thus are able to achieve a
higher utility. In comparison, buyer utility generally remains
the same under the auction framework, which indicates that
even though there are more channels, most of the benefit is
grabbed by the sellers through payment, while buyers obtain
more channels but the same even slightly lower overall utility.

D. Spectrum Utilization

Fig. 3(d) and Fig. 4(d) shows the comparison of spectrum
utilization. We can see that the channel utilization of matching
is slightly lower than that of auction, which shows that the
matching roughly maintains the allocation efficiency. It is
intuitively true that if there are more buyers, channel utilization
will go up as more buyers will reuse the same channel. The
reason is similar for a lower channel utilization when there
are more channels.

E. Impact of Discrete Payment Increment

The major parameter in the proposed stable combinatorial
spectrum matching algorithm is the payment increment δp
(see line 27 in Alg. 1). Ideally, δp is infinitesimal so that
buyers may gradually raise their payment for channels to seek
acceptance from the seller. In reality, δp is non-negligible,
and the payment increment is discrete. As shown in Table III,
we can see that, in general, with a smaller increment factor
δp, a higher allocation efficiency (social welfare and channel
utilization) and higher buyer utility can be achieved. But the
discrepancy under different δp is very small, which means
that the combinatorial matching algorithm is relatively robust
against the choice of δp.

VI. CONCLUSION

In this paper, we have presented a stable combinatorial
spectrum matching framework for spectrum allocation, which
renders buyers the flexibility to express diversified valuations
towards spectrum combinations. As opposed to combinatorial
spectrum auctions, our proposed matching framework fea-
tures stability instead of optimality, ensuring that no buyers
or sellers are willing to deviate from the matching results.



TABLE III
IMPACT OF DISCRETE PAYMENT INCREMENT

Social welfare Buyer utility

# of buyers 50 70 90 50 70 90
δp = 0.1 7505.9 8899.2 10130.3 70.2 45.8 35.0
δp = 1 7417.8 9005.1 9778.8 68.5 46.9 32.0
δp = 10 7137.9 8678.2 9520.2 66.3 43.7 31.2

Total payment Channel utilization

# of buyers 50 70 90 50 70 90
δp = 0.1 3998.9 5692.0 6977.5 12.6 14.1 15.9
δp = 1 3993.4 5724.5 6900.3 12.4 14.8 15.7
δp = 10 3822.5 5618.5 6707.9 12.0 14.2 15.2

The proposed matching framework also differentiates from
conventional ones by involving payment as a utility transfer
between buyers and sellers, which is indispensable for the
two parties to seal the deal of spectrum transaction. We have
developed a novel algorithm that converges to a stable com-
binatorial spectrum matching result with the corresponding
payment profile. We have conducted extensive simulations
to compare the performance of the proposed combinatorial
spectrum matching framework with combinatorial auctions.
The simulation results show that while spectrum auctions
have slightly higher social welfare and channel utilization,
combinatorial spectrum matching can achieve a higher buyer
utility, which confirms its stability for individual buyers to
abide by the spectrum allocation results.
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