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Network Coding Aware Dynamic Subcarrier Assignment in
OFDMA Based Wireless Networks

Xinyu Zhang, Baochun Li

Abstract—Orthogonal Frequency Division Multiple Access
(OFDMA) has been integrated into emerging broadband wireless
systems such as the 802.16 wirelessMAN. A critical problem
in OFDMA is to assign multiple frequency bands (called sub-
carriers) to different users. Taking advantage of the frequency
diversity and multiuser diversity in OFDMA systems, dynamic
subcarrier assignment mechanisms have shown to be able to
achieve much higher downlink capacity than static assignment.
A rich literature exists that proposes MAC and physical layer
schemes aiming at exploiting the diversity gain with low im-
plementation complexity. In this paper, we propose a cross layer
approach that explores the joint advantage of network coding and
dynamic subcarrier assignment. With network coding, it becomes
possible to assign the same subcarriers to different downlinks
without causing any interference. Consequently, our coding-
aware assignment scheme improves the bandwidth efficiency and
increases the downlink throughput by a substantial margin. In
designing the scheme, we identify a tradeoff between diversity
gain and the network coding advantage, which is critical to the
network performance in terms of throughput and fairness. To
explore the tradeoff, we formulate the coding-aware assignment
scheme as a mixed integer program, and design a polynomial time
approximation algorithm that can be used in practical systems.
We prove the asymptotic performance bound of the algorithm,
and demonstrate that it closely approximates the optimum under
realistic experimental settings.

Index Terms—Network coding, OFDMA networks,
WiMax/802.16

I. INTRODUCTION

THE emerging generation of wireless standards such as
802.16 [1] have identified OFDMA (Orthogonal Fre-

quency Division Multiple Access) as a promising technology
enabling broadband wireless access. In OFDMA systems,
the prescribed frequency band is divided into hundreds of
orthogonal subbands called subcarriers. The base station
(BS) assigns disjunctive sets of subcarriers to mobile stations
(MS) which multiplex the available downlink capacity. In
the original 802.16 PHY specification, subcarriers are either
statically or randomly allocated to the MSs, oblivious of their
diverse channel conditions. In reality, however, the path-loss
and fading profiles vary across the whole frequency band, and
even the same subcarrier experiences independent attenuation
when assigned to MSs at different locations. Such frequency
diversity and multiuser diversity have motivated dynamic
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Fig. 1. The motivating scenario for coding aware subcarrier assignment in
OFDMA wireless networks.

subcarrier assignment (DSA) mechanisms, which deliberately
match each downlink to the set of subcarriers supporting
higher throughput. It has been observed that an optimal DSA
algorithm can achieve up to twice higher downlink throughput
compared with static assignment schemes [2]. A large body
of work has also focused on suboptimal algorithms aiming
at achieving similar performance at lower implementation
complexity [2].

In this paper, we add a new dimension to the literature of
DSA, proposing a cross layer approach towards coding aware
dynamic subcarrier assignment (CADSA). Taking advantage
of network coding, our CADSA algorithm combines the
downlink data frames 1 heading towards different MSs, and
delivers them through the same set of subcarriers. As a result,
it improves the bandwidth efficiency of OFDMA systems by
a significant margin. As an intuitive justification, consider the
scenario in Fig. 1, where two MSs are exchanging information
with each other via the BS, creating an opportunity for
network coding (henceforth referred to as coding opportunity).
Traditional assignment algorithms will allocate disjoint sets
of subcarriers to the downlinks. In contrast, the CADSA
algorithm XORs the two uplink frames and multicasts the
combined frame via the two downlinks. The corresponding
MSs receive the same frame, but can decode different infor-
mation by XORing the combined frame with one that is known
a priori. For instance, through the operation B⊕(A⊕B), MS1

directly obtains frame A, which originated from MS2.
In an ideal case where all downlinks have coding oppor-

tunities and the subcarriers have uniform channel gains for
all MSs, it is straightforward that CADSA can save half of
the subcarriers, achieving a two-fold increase in capacity,
compared with traditional assignment algorithms. However,
the benefits of network coding diminish in case of high
multiuser diversity, when sharing the same subcarrier may
result in underutilized bandwidth. For instance, if MS1 in
Fig. 1 is farther to the BS than MS2 and has much lower
channel gain, the throughput of both downlinks is capped by

1We use the term “frame” and “packet” synonymously, to denote a group
of information bits transmitted through the wireless link.
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the achievable rate of the downlink to MS1. In such cases,
network coding may result in underutilized bandwidth, and it
is nontrivial to determine whether CADSA still outperforms
separate assignment in terms of total throughput.

To quantify the benefits of network coding in practical
wireless fading environment, we formulate an optimization
framework that provides upper bounds on the performance of
CADSA. In view of its high complexity, we propose an ap-
proximation algorithm that achieves similar downlink capacity
and fairness. We analyze the worst case approximation ratio
of the algorithm, and further verify its performance in realistic
simulation environment. Compared with traditional assignment
schemes, the CADSA algorithm demonstrates much higher
downlink rates, especially when the downlinks experience
uniformly high SNR. Towards pracitcal implementation of the
algorithm, we also design a scheduling and coding mecha-
nism to CADSA such that no additional overhead is induced
compared with existing dynamic mechanisms without network
coding.

The remainder of this paper is organized as follows. In
Sec. II, we review existing work on subcarrier assignment
algorithms as well as network coding protocols in wireless
networks. Sec. III introduces the PHY and MAC models, as
well as the scheduling and coding algorithm for CADSA.
In Sec. IV, we formulate the optimization framework, de-
sign our approximation algorithm and analyze its theoretical
performance bound. Sec. V presents our simulation results
that quantify the performance of the CADSA framework in
comparison with other related work. Finally, Sec. VI concludes
the paper.

II. RELATED WORK

Dynamic mechanisms for resource allocation in OFDMA
downlink have been extensively investigated in literature (see
[2] for a comprehensive survey). Existing algorithms are
centered around two optimization frameworks: maximizing
the sum capacity subject to power and fairness constraints,
or minimizing the power budget subject to per-link rate and
fairness constraints. Both optimization problems are essen-
tially mixed-integer programs which are NP-hard in general
[2]. Instead of tracking the optimal solution with exponential
complexity, many suboptimal algorithms have been proposed.
These algorithms generally involve two aspects: the subcarrier
assignment and the power allocation. Subcarrier assignment
schemes match each downlink with a set of subcarriers with
high channel gains (see, e.g., [3], [4]). Power allocation algo-
rithms adaptively assigns transmission power to each subcar-
rier, which adjusts its modulation type according to the SNR at
the receiver side. Existing work on adaptive power allocation
mostly assumes a continuous relation between achievable
rate and the SNR of each subcarrier [2]. In practical MAC
and PHY standard like 802.16 [1], however, the relation is
a stepwise function determined by the adaptive modulation
and coding (AMC) protocols. In addition, most of the above
algorithms reside in the MAC and PHY layers, instead of
employing the network level paradigms, such as the scenario
in Fig. 1. Our previous work [5] proposed a joint design and

optimization of network coding and subcarrier assignment, and
demonstrated its advantage through simulation experiments.
In the present paper, we not only design an approximation
scheme for CADSA, but also quantify its performance bound
with theoretical rigor. In addition, we evaluate the CADSA
scheme under the partial coding case (i.e., not all packets can
be encoded), instead of the ideal full-coding scenario.

Coding based information exchange was first proposed by
Wu et al. [6], and then exploited to improve the unicast
throughput of 802.11 based wireless mesh networks [7]. The
basic idea is to locally search for coding opportunities, and
XOR packets heading towards different next-hops, based on
prior knowledge of whether they can be decoded. Following
the seminal work, many other analysis and protocols have been
proposed. For example, [8] studied the joint design of network
coding and routing, and computed the optimal performance
using optimization software. [9] leveraged the MS’s self-
information to enable a joint design of network coding and
PHY interference cancellation. This line of research has mostly
focused on the 802.11 single-channel models. Some recent
works have also extended CADSA from different perspectives.
Xu et al. [10] analyzed the benefits of power-aware, coding-
aware subcarrier assignment. [11] further discussed the sce-
nario with multiple WiMax relays, and [12] takes into account
the relay selection problem in WiMax such networks. A survey
of how network coding is applied to various relay networks is
provided in [13].

III. SYSTEM MODELS

In this section, we introduce the underlying network models
for CADSA. In addition, we introduce the coding and schedul-
ing algorithm that enables network coding in OFDMA based
wireless networks.

A. Network Models

We consider a cell-like wireless switching network [9],
where the base station serves as an intermediate relay for
MSs located in the same cell. Frames are transmitted from
one MS (the source) to the BS through the uplink, and then
switched to another MS (the destination) via the downlink.
We refer to such an end-to-end network flow as a session. A
session may deliver an entire file or data stream consisting
of many frames. When multiple sessions (corresponding to
multiple source-destination pairs) co-exist, it becomes critical
to allocate subcarriers to the uplink and downlink of each
session, in order to maximize the total network throughput
while maintaining fairness. Such single-cell switching network
models can be seen as a decomposition of multi-hop multi-cell
OFDMA networks [9], such as 802.16j based wireless mesh
network and its extensions.

We model the wireless fading environment by large scale
path-loss and shadowing, along with small scale Rayleigh
fading effects. The resulting channel gain changes with time,
and varies across the whole frequency band for each MS.
The time variation and frequency selectivity are characterized
by the doppler spread and delay spread respectively, which
are associated with the velocity of the MS and the multipath
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effects caused by obstacles [14]. Due to frequency diversity
and multiuser diversity, the achievable rate of a subcarrier
depends not only on its fading profile, but also on which
link it is assigned to, and how much power it has been
allocated by the BS. It has been observed that dynamic power
allocation schemes achieve marginal performance gain [2],
[3]. Therefore, we only focus on the CADSA with equal
power allocation, i.e., all subcarriers equally share the power
budget, and perform adaptive modulation and coding (AMC)
according to the received SNR.

B. Frame Scheduling and Network Coding Algorithm for
CADSA

We assume the system is operating at TDD mode in 802.16,
i.e., the uplinks and downlinks are activated alternately. In
both uplink and downlink phase, the entire set of subcarri-
ers are allocated to all sessions. As in most existing work
[2], however, we only focus on subcarrier allocation for the
downlink. Specifically, before each downlink phase, the BS
performs subcarrier assignment and XOR network coding
simultaneously using the CADSA algorithm. The input to
the CADSA algorithm include the identity of each frame’s
destination MS and the channel gain of each subcarrier. The
destination identity can be found in the network layer header
field for each frame. The subcarrier’s channel gain on the
downlink is estimated at the MS using the built-in training
sequence in OFDMA systems [15], and then transmitted to the
BS through the uplink. To reduce the overhead, the feedback
information only contains the best modulation type that a
subcarrier can achieve given the current SNR.

Given the above information, the BS first searches for
potential coding opportunities between each pair of frames
heading towards different MSs. A coding opportunity exists
for frames A and B if DA = SB and DB = SA, where SK
and DK denote frame K’s source and destination, respectively.
In this case, the CADSA encodes A and B into one frame,
allowing the two links BS→ DB and BS→ DA to share the
same set of subcarriers. At the receiver side, the mobile station
DA extracts frame A through the operation B ⊕ (B ⊕ A).
Similar decoding algorithm applies for DB .

For successful decoding, each receiver must determine the
identities of the encoded sessions. Such information is implicit
in CADSA. Since exactly two sessions (if any) can be encoded,
the pairs of sessions that share the same downlink subcarriers
are exactly the encoded pairs. The subcarrier assignment
information can be found in the signaling field (DL-MAP
and UL-MAP [1]) in each downlink frame. In addition, the
receiver needs to determine the identity of the key frame that
can decode the encoded frame. When the BS always has no
more than one backlogged frames (a reasonable assumption
for TDMA-scheduled OFDMA systems like 802.16), then the
key is just the latest frame that the receiver sent out. Otherwise,
the receiver needs to maintain a historical frame queue, a FIFO
queue, to store the latest uplink frames it sent. To decode a
downlink frame that is encoded, the receiver needs to dequeue
one frame in the historical frame queue and use it as the key.
With the above measure, the CADSA frame becomes self-

contained — it introduces no additional overhead compared
with the general DSA without network coding.

Admittedly, a dynamic subcarrier allocation scheme (either
CADSA or general DSA) introduces non-negligible overhead
compared with static assignment, which is caused by the
feedback information from each MS to the BS indicating
the downlink modulation type. It has been observed that the
overhead may compromise the benefits of adaptive subcarrier
allocation, especially when a large number of subcarriers are
involved [15]. Fortunately, it can be significantly reduced by
coarse-grained adaptations, as demonstrated in existing DSA
algorithms [15]. Such overhead reduction techniques apply to
our CADSA algorithm as well.

IV. SUBCARRIER ASSIGNMENT ALGORITHMS

The subcarrier assignment algorithm is the core component
of CADSA. We formulate the optimal subcarrier assign-
ment scheme for CADSA as a mixed-integer linear program
(MILP), and then derive a suboptimal approximate solution
with polynomial time complexity. As a benchmark compari-
son, we also introduce the corresponding assignment problems
without network coding.

A. The optimal CADSA

Before formulating the optimization problem, we introduce
the following notations. Denote ζ, Ω, and φ as the set of
subcarriers, sessions, and coding opportunities, respectively.
Each element in φ is a two-element set {s, t}, indicating
that frames from session s and t satisfy the network coding
condition, and thus can be combined into one frame. In
addition, we define function R(c,m) as the achievable rate
of subcarrier c when assigned to mobile station m. Given
the feedback about modulation type, it can be obtained by
R = bmcr

Ts
, where bm is the number of bits in a modulated

symbol; Ts and cr are the symbol period and error control
coding rate, respectively.

Our main objective is to assign an appropriate set of
subcarriers to the downlink of each session, such that the
total downlink capacity (i.e., aggregate downlink throughput)
of the switching network is maximized while no session is
starved. To avoid starvation of weak sessions (i.e., sessions
with low average channel gain), we enforce the max-min
fairness constraint, which essentially minimizes the throughput
differences between the weak sessions and the strong sessions.
Denote the throughput of session s as λs, our objective can
be expressed as max mins λs, or equivalently:

max λ (1)
subject to: λ ≤ λs,∀s ∈ Ω (2)

The downlink traffic of each session s consists of two
classes: b{s,t}, which is the amount contributed by subcarriers
transmitting XORed frames for session s and t, ∀{s, t} ∈ φ;
and us, which is the amount of uncoded traffic carried by
subcarriers uniquely assigned to session s. Therefore, we have:

λs =
∑
t 6=s

b{s,t} + us,∀s ∈ Ω, {s, t} ∈ φ (3)
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If two downlinks share one subcarrier, then the subcarrier’s
rate must conform to the one with lower achievable rate,
i.e., the XORed traffic rate equals to the lower rate of the
two encoded sessions. Denote xcs as a 0-1 decision variable,
which is set to 1 if subcarrier c is assigned to the downlink of
session s, and 0 otherwise. Then, a subcarrier c is shared by
two sessions s and t if and only if xcs · xct = 1. Therefore,
∀{s, t} ∈ φ,

b{s,t} =
∑
c∈ζ

min(R(c,Ds), R(c,Dt)) · xcs · xct, (4)

where Ds is the destination MS for session s. The multi-
plication of two variables xcs and xct results in a nonlinear
constraint. To simplify the problem, we introduce an additional
variable yc{s,t} and reformulate the constraint into a linear one.
Let yc{s,t} ∈ {0, 1} and yc{s,t} = xcsxct, then for each pair
{s, t} ∈ φ, the constraint (4) is equivalent to:

b{s,t} =
∑
c∈ζ

min(R(c,Ds), R(c,Dt)) · yc{s,t}, (5)

yc{s,t} ≤ xcf ,∀c ∈ ζ, f ∈ {s, t} (6)

Furthermore, the amount of uncoded traffic can be obtained
by subtracting the coded traffic from the total rate allocated
to each session. Here we need to subtract the sum rate of all
subcarriers used for broadcasting coded frames, i.e., ∀s ∈ Ω
and {s, t} ∈ φ,

us =
∑
c∈ζ R(c,Ds)xcs −

∑
c∈ζ

∑
t6=sR(c,Ds)y

c
{s,t} (7)

Finally, except for those carrying coded traffic, one subcar-
rier can only be allocated to at most one session. Therefore,
we have the following constraint:∑

s∈Ω

xcs −
∑
{s,t}∈φ

yc{s,t} ≤ 1,∀c ∈ ζ (8)

If a subcarrier c is allocated to a session with no coding
opportunity, then the first sum in the above inequality equals
1, while the second equals 0. In contrast, if c is shared by
a pair of codable sessions {s, t}, then the first sum equals 2
while the second equals 1. In any case, the left hand side is
either 1 or 0, and thus the constraint (8) always holds. When
xcsxct = 1, constraint (8) also enforces that the session s and
t must be encoded via subcarrier c, i.e., ycst = 1. Hence it also
ensures the correctness of the linearization from constraint (4)
to (6).

In consequence, the CADSA optimization becomes a
mixed-integer linear program (MILP), with the objective (1),
subject to constraints (2), (3), (5), (6), (7) and (8).

B. The Approximate CADSA

The above CADSA mixed-integer program is NP-hard in
general. In effect, the NP-hardness can be proved following
the similar line of analysis in traditional OFDMA subcar-
rier assignment problem [2]. Conventional exact solutions to
MILP, such as branch and bound [16], can only handle small
scale problems with tens of sessions and subcarriers. Although
meta-heuristics like simulated annealing [16] may provide
acceptable approximate solutions to large scale problems, they

typically take a long time to converge, which is undesirable
since in practice the subcarrier allocation algorithm needs to be
called every few milliseconds. Here we propose a polynomial
time approximate algorithm that can be applied to the base
station of real wireless switching networks.

Our basic idea is to assign subcarriers to each session in a
round based manner. In each round, we employ an assignment
algorithm to maximize the downlink capacity, and a penalty
algorithm to ensure fairness.

In the assignment algorithm, we group the sessions into
those with coding opportunities, and those requiring a unique
set of subcarriers. For ease of exposition, we first formulate a
graphical model for the assignment mechanism for the former
group (graph A in Fig. 2). This graph contains three sets of
nodes: the set of sessions Ω, the coding opportunities φ and the
subcarriers ζ. A link assumes zero weight unless it is from φ to
ζ, where the weight equals to the achievable rate when the link
is matched to a specific coding opportunity. For instance, the
weight of P1 → C1 equals to min(R(C1, DS1

), R(C1, DS2
)).

All links have unity rate, since a link is either fully used or
discarded in the assignment within each round (note that these
links are different from the actual wireless links). Further, to
enhance fairness, a session can choose at most one coding op-
portunity (and correspondingly at most one subcarrier) within
each round. To represent this constraint, we add a virtual
source S in the graph A, which has a unit-capacity link to
each session. S does not represent any network link, subcarrier
or session. It is only used to complete the graphical modeling
of the assignment algorithm. An additional constraint in the
algorithm is that each subcarrier can be assigned to at most
one pair of sessions in φ. This constraint is represented by
adding a virtual sink T , which has unit-capacity link to each
subcarrier in ζ.

Given the above graphical setup, the objective of the as-
signment algorithm in each round is equivalent to pushing
the maximum units of flows from the virtual source S to
destination T , and choosing the paths in such a way that
maximizes the total link weights. Note that links from Ω to
φ are many-to-one, and only those from φ to ζ have non-
zero weights. In addition, one session can be encoded with at
most one other session, since information exchange happens
only for pairwise sessions. With such observations, we can
eliminate nodes representing sessions in graph A, and assign
subcarriers to coding opportunities directly. Consequently, we
transform the original problem into a max-weight max-flow
problem on graph B (Fig. 2).

For sessions without coding opportunities, the assignment
is a straightforward max-weight max-flow problem problem
that matches the sessions to the subcarriers directly (see
graph C in Fig. 2). To complete the assignment algorithm,
we merge the set φ in graph B with the set Ω in graph
C, allowing both the codable and uncodable sessions to be
matched to subcarriers. As a result, the assignment problem
becomes weighted bipartite matching (WBM) in graph D
(Fig. 2), which can be easily solved using existing network
flow algorithms such as the cost scaling algorithm [17]. Once
a subcarrier is occupied after the WBM procedure, it will be
permanently removed from ζ. The algorithm terminates when
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Fig. 2. The network flow model for the CADSA problem. (a) CADSA for
sessions with coding opportunities. (b) Simplify the CADSA for sessions with
coding opportunities. (c) CADSA for sessions without coding opportunities.
(d) Merge sessions with and without coding opportunities. The assignment
problem in each round is equivalent to weighted bipartite matching in the
graph D.

no more subcarriers can be assigned in a round.
In the penalty algorithm, we aim at providing a fair share of

bandwidth for each session. It is well known that the max-min
fairness constraint seeks to minimize the difference between
resource competitors. Naturally, in each round of resource
allocation, lower priority will be given to the strong sessions.
Therefore, we enforce the following penalty condition for
∀s ∈ Ω:

Th −
1

|Ω|
∑
r∈Ω

Tr > Rmin (9)

where Th is the downlink throughput of session s in the current
round. Rmin is the achievable rate of a subcarrier when using
the modulation type with the lowest rate. Sessions satisfying
the penalty condition are gaining advantages over the average,
and will be prohibited from the next-round’s assignment.

In summary, we describe the suboptimal CADSA in Al-
gorithm 1. The computational load of the algorithm is
dominated by the the WBM algorithm, whose complexity is
O(
√
nm log(n)), where n and m are the number of nodes

and links in the corresponding graph [17]. Since we call the
algorithm for at most |ζ| rounds, the overall complexity is:
O(d|ζ| ·

√
nm log(n)). Such a polynomial time algorithm is

well suited for implementation in the base station of real
OFDMA systems.

C. Asymptotic Performance Analysis

The intuitions of the above CADSA approximation originate
from the objective and constraints of the optimization frame-

Algorithm 1 The approximate Coding Aware Dynamic Sub-
carrier Assignment (CADSA) algorithm.

1. repeat
2. Assignment algorithm:
3. Construct the graph A and transform it into graph B.
4. Construct graph C and merge it with graph B.
5. Solve the corresponding WBM in graph D using the

cost scaling algorithm.
6. Penalty algorithm:
7. Enforce the penalty condition. Exclude sessions satis-

fying the penalty condition. Include all other sessions
in the next-round’s assignment.

8. until No subcarrier is allocated in the above round.

work in Sec. IV-A, but how well does it perform in comparison
with the optimum? In this section, we answer this question
with theoretical rigor by deriving the worst case performance
bound of the suboptimal CADSA. We then analyze the average
case performance of CADSA compared with the optimum.

1) Worst-case performance bound: Recall that Sec. I
posited a dilemma, asking whether it is preferable to employ
the coding opportunity (i.e., to assign the same subcarriers
to codable sessions) or the diversity advantage (i.e., to assign
subcarriers to codable sessions separately). In the approxima-
tion algorithm, we exploit all possible coding opportunities. In
practical OFDMA networks such as WiMax, each subcarrier
has a discrete set of modulation schemes to choose from,
corresponding to a discrete set of data rates. The difference
between maximum and minimum data rate is limited. By
encoding two sessions that have different achievable rates,
the session with a high rate may loose its advantage, com-
pared with separate subcarrier allocation. However, the saved
subcarrier can be allocated to an additional session, e.g., a
session that has low link quality. Therefore, network coding is
more preferable under our objective function, i.e., maximizing
the minimum throughput among all sessions. In the following
lemma, we first prove that the loss of diversity is bounded
when using network coding. Then we prove the approximation
ratio of the proposed algorithm.

Denote Rmax and Rmin as the achievable rate of a subcarrier
when using the modulation type with the highest rate and
lowest rate, respectively. Throughout the analysis, we assume
∀s ∈ Ω,∀k ∈ ζ,R(s, k) ≥ Rmin, i.e., each sessions is able
to support at least a data rate of Rmin for all subcarriers. In
practice, if a session rides on a weak link that cannot support
Rmin , then it may be rejected by the network level admission
control mechanism. Denote λn as the objective value gener-
ated by the optimal assignment algorithm corresponding to
the MILP in Eqn.(2), and λc as that generated by an optimal
assignment algorithm which exploits all coding opportunities.
Let M be the total number of rounds used in the CADSA
Algoirthm 1. Then we have:

Lemma 1. λn − λc ≤M(Rmax −Rmin).

Proof: Denote ζs as the set of subcarriers assigned to a session
s ∈ Ω. Suppose after an optimal assignment, ∃{s, t} ∈ φ, such
that ζs 6= ζt.
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There are two possible cases under this presumption. In
the first case, ∃a ∈ ζ, such that a ∈ ζs, but a /∈ ζt.
If we employ the coding opportunity and allow a ∈ ζt as
well, then the throughput of s increases by at least Rmin,
whereas the throughput of session t decreases by at most
(Rmax−Rmin). Since Algorithm 1 runs for at most M rounds,
and at least one subcarrier is assigned in each round, the
throughput loss of a single session in the approximate CADSA
(compared with the optimum) is at most M(Rmax − Rmin).
If t is the critical session that has the minimum throughput
among all sessions, then the objective λc only depends on the
throughput of t. Therefore, by encoding instead of separation,
the minimum downlink rate of all sessions is decreased by at
most M(Rmax −Rmin).

In the second case, ∃a ∈ ζ, such that a ∈ ζt, but a /∈ ζs.
With a symmetric argument, it is easy to observe that similar
result applies as in case 1. Lemma 1 follows directly after
summarizing these two cases. ut

With Lemma 1, we are now ready to present the theoretical
performance bound of the approximation algorithm. Define
approximation ratio as the minimum throughput of all sessions
of the CADSA divided by that of the optimal CADSA, then
we have:

Theorem 1. In the worst case, the approximation ratio of the
suboptimal CADSA is Rmin

2Rmax−Rmin
.

Proof: Due to the penalty constraint imposed by the approxi-
mate CADSA, in an arbitrary round, the maximum throughput
among all sessions exceeds the average throughput by at most
the rate of a single subcarrier. Also, in each round except the
final round, the rate of the weakest session is increased by one
and only one subcarrier, otherwise we can further increase the
total network throughput in the assignment algorithm without
violating the penalty condition in the penalty algorithm. In the
final round, there may not be enough subcarriers remaining to
be allocated to each session.

Following the above reasoning, the optimization objective
λ, i.e., the throughput of the weakest session satisfies: λ ≤M ·
Rmax and λ ≥ (M−1) ·Rmin. In addition, Algorithm 1 trades
at most M(Rmax−Rmin) throughput for coding opportunities
according to Lemma 1.

Denote the optimal objective as λ∗. Note that |ζ|/|Ω| is a
lower-bound to M since each session is allocated at most one
subcarrier in each round. In WiMax, ζ and Ω are chosen such
that each session is allocated at least 48 subcarriers. Therefore,
M ≥ |ζ|

|Ω| > 48 � 1 in practice. Consequently, we have
λ
λ∗ ≥

(M−1)Rmin

MRmax+M(Rmax−Rmin) ≈
Rmin

2Rmax−Rmin
. This completes

the proof. ut
It should be noted that in the special case of Rmin = Rmax,

the approximation ratio is M−1
M ≈ 1. In this case, it is

straightforward that all network coding opportunities should
be exploited (following the argument in the proof for Lemma
1). As a result, the original optimization problem becomes
a weighted bipartite matching problem, which has an exact
solution.

In addition, the above is just a worst case bound. According
to the 802.16 specification [1], Rmin

2Rmax−Rmin
= 3417

2×13176−3417 ≈

1
7 . In fact, however, we will show in the simulation exper-
iments that the CADSA achieves a performance level quite
close to the optimum. The main reason lies in the proof
for Lemma 1: in the second case, since t is allocated more
subcarriers than the set shared with s, t is usually the session
with lower downlink capacity, i.e., R(a,Ds) > R(a,Dt).
Therefore, by encoding these two sessions, the throughput of
t is maintained whereas that of s is increased. In other words,
no diversity loss happens in the common case.

2) Average case analysis: In typical cellular wireless net-
works, signal attenuation is dominated by large-scale path-
loss due to link distance, rather than small-scale fading due
to doppler spread or multipath reflection [14]. To pinpoint the
average case, we only consider large-scale fading effects. With
this simplification, the channel gain of different MSs depends
on their relative distance to the BS, and for each MS, the
channel gain remains stable over time and across different
subcarriers. Then we can prove:

Theorem 2. If channel gain only depends on link distance,
then the approximation ratio of the suboptimal CADSA is
M−1
M .

Proof: The proof follows a similar line of analysis to Lemma
1 and Theorem 1, but with the special assumption that channel
gain only depends on link distance, we first extend Lemma 1
and show λn = λc, i.e., coding opportunity should always be
exploited.

The analysis for the first case in Lemma 1 still holds.
Suppose in an optimal CADSA solution, ∃a ∈ ζ, such that
a ∈ ζt and a /∈ ζs. If we employ the coding opportunity
and allow a ∈ ζs as well, then the throughput of s increases,
whereas the throughput of session t decreases by (R′−Rmin),
where R′ > Rmin. This means t is the session with minimum
throughput but higher channel gain than s. By reallocating
one subcarrier from s to t without coding, we can improve the
throughput of t by (R′−Rmin), but only reduce the throughput
of s by Rmin. Since (R′−Rmin) > Rmin (due to the discrete
data rates in 802.16), the λn is improved via this reallocation,
which contradicts the optimality of the solution. Hence, the
existence of a is invalidated, i.e., CADSA achieves the same
performance as the optimum in one round.

Under the presumption in Theorem 2, the throughput of the
weakest session satisfies: λ ≤M ·Rmin, since all subcarriers
for this session has rate Rmin, and at most one subcarrier is
assigned to each session in a round. Furthermore, in the last
round of assignment, there may not be sufficient subcarriers
to assign to each session, thus we have λ ≥ (M − 1)Rmin.
Following similar line of reasoning in Theorem 1, we have
λ
λ∗ ≥

(M−1)Rmin

MRmin
= M−1

M . ut
Theorem 2 essentially justifies the intuition that when

channel gain is dominated by large-scale path-loss, the worst-
case in Theorem 1 rarely occurs, and the performance of the
heuristic CADSA approximates the optimum.

3) Extension to other fairness measure: Recall that the
above CADSA algorithms aim at providing max-min fairness.
Such an objective usually leads to similar performance among
all sessions. In case when the sessions have diverse traffic
demands and priority, the weighted max-min fairness claims to
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be a better metric. The corresponding objective is to maximize
the minimum normalized throughput, i.e.,

max λ

subject to: λs ≥ λ · ds

where ds denotes the traffic demand of session s; λ is the
minimum satisfied portion of throughput for all sessions.

To extend the suboptimal CADSA to a weighted max-min
fair algorithm, we revise the penalty mechanism, such that the
sessions with higher λs

ds
are punished. Denote dmin and dmax

as the minimum and maximum demand of all sessions, then
the corresponding penalty threshold equals Rmin

dmax
. Following

similar analysis to Theorem 1, we can prove that the worst
case approximation ratio is Θ( Rmindmin

2Rmaxdmax
).

The proposed CADSA can achieve max-min fairness or its
variants, because it enforces a penalty condition to balance the
throughput of all sessions. It cannot be straightforwardly used
to achieve other objectives such as proportional fairness due
to their non-linearity. The development of new algorithms to
achieve these objectives is an interesting direction and is left
for our future work.

D. The General DSA Algorithms

As a benchmark, we inspect the general DSA algorithm, i.e.,
the dynamic subcarrier assignment algorithm without network
coding. Such schemes have been extensively explored in the
literature. Here we consider the optimization based solution
with equal power allocation (see, e.g., [3], [4]), which is
formulated as:

max λ (10)
subject to: λ ≤ λs,∀s ∈ Ω (11)

λs =
∑
c∈ζ

R(c,Ds) · xcs,∀s ∈ Ω (12)∑
s∈Ω

xcs ≤ 1,∀c ∈ ζ (13)

The objective (10), together with the constraint (11), guar-
antees the max-min fairness for per-session throughput. Con-
straint (12) bounds the downlink throughput by the achievable
rate of all subcarriers allocated to it. Constraint (13) dictates
that one subcarrier can be assigned to at most one link of all
sessions.

Though the formulation is much simpler than CADSA,
finding the optimal solution is still an NP-hard problem [2].
Various approximations have been proposed for this problem.
A typical approach is the greedy algorithm [2]–[4] (henceforth
referred to as DSA heuristic) which selects one subcarrier with
the highest channel gain for each session iteratively, until no
more subcarriers can be assigned. We provide more extensive
evaluation of it together with the CADSA heuristic in the
following section.

V. PERFORMANCE EVALUATION

In this section, we investigate the performance of the
approximate CADSA Algorithm 1 in comparison with an up-
perbound to the the optimal solution, as well as the tranditional
non-coding schemes.

A. Experiment Setup

The key of our experiment settings is to derive the achiev-
able data rate of a subcarrier when it is allocated to an
arbitrary MS. This requires computing the corresponding
SNR value, and mapping the SNR to an achievable rate.
To generate realistic results, we adopt empirical parameters
to model the wireless fading environment, and configure the
OFDMA system according to the 802.16 specification [1].
We developed a C++ based simulator that models the mobile
fading environment. The channel model in our simulator is
built atop teh Chsim module in OMNeT++ [18], but with
configurations specific to the 802.16 OFDMA channel.

First, the signal attenuation due to large scale fading follows
the log-normal equation [14]:

Channel gain (dB) = K + 10α log(d) +X (14)

where d denotes the distance between the BS and the MS; K is
a constant equal to 46.7dB in 5GHz outdoor environment; the
path loss exponent α is set to 2.4; X is a zero-mean Gaussian
random variable with empirical standard deviation 5.4dB [15].
We assume that the shadowing loss varies on the time scale
of 0.1 second.

The small scale fading effects are caused by movement
of the MS in multipath environment, and modeled by the
Rayleigh fading process. The inherent frequency selective
property is characterized by an exponential power delay profile
with delay spread 15 µs. The time selective nature is captured
by the doppler spread, which depends on the MS’s speed
(throughout the simulation, the MSs are moving at pedestrian
speed 2m/s, according to the random waypoint model with
pause period 0.01s). The combined complex gain is generated
using an improved Jakes-like method introduced in [14], which
models the frequency correlation between adjacent subcarriers
and the time correlation for each subcarrier.

Without loss of generality, we choose the following set
of configurations from the 802.16d wirelessMAN-OFDMA
specifications [1]. The system bandwidth is 7 MHz, cen-
tered around the 5 GHz frequency, and equally shared by
all subcarriers. The maximum number of data subcarriers is
1536; subcarrier spacing is 3 29

32 kHz; symbol period Ts is
264µs; downlink frame length Tf is 2 ms. Available mod-
ulation schemes include QPSK 1

2 (error control coding rate),
QPSK 3

4 , 16QAM 1
2 , 16QAM 3

4 , 64QAM 1
2 , and 64QAM 3

4 . The
corresponding SNR thresholds are 6.0dB, 8.5dB, 11.5dB,
15dB, 19dB and 21dB [1]. When computing SNR, the BS
transmission power, noise temperature and noise figure are
1W, 290K and 7dB, respectively. Both the BS and the MSs
use omnidirectional single-antenna transceivers.

B. Experiment Results

We compare three subcarrier allocation schemes: the cod-
ing aware dynamic subcarrier assignment (CADSA) algo-
rithm, dynamic subcarrier assignment without network coding
(DSA), and the randomized subcarrier allocation mechanism
(referred to as RAND). Similar to the scheme in 802.16,
the RAND algorithm randomly allocates an equal number of
subcarriers to each downlink, and chooses the modulation for
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Fig. 3. The total downlink capacity as a function of time.
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Fig. 4. The fairness index of each scheme as a function of time.

each subcarrier according to its SNR value. Since the optimal
solution for CADSA and DSA cannot be obtained for large
scale scenarios using optimization software, we evaluate their
LP-relaxations instead. We relax the integer constraints on the
variables xcs and ycst, allowing them to be real numbers in
[0, 1]. The resulting linear-programming solution is infeasible
since it assumes subcarriers can be fractionally assigned. How-
ever, the LP-relaxation imposes an upper bound on the original
mixed-integer linear program (and thus a loose upperbound on
the suboptimal CADSA), since the solution space of the MILP
is a subspace of the LP. Therefore, the LP-relaxation is used
to understand the performance gap between the suboptimal
CADSA and the optimal solution.

1) Throughput comparison: We focus on the scenario
where 8 mobile MSs are moving in a circular cell with 0.6 km
radius. We randomly start 20 pairwise sessions with constant
bit rate traffic, assuming that the downlink of each session
always has data to transmit. Due to the limitation of our
linear programming software, we only use 256 data subcarriers
(consecutively located around the central frequency) of the
entire frequency band. We compute the downlink capacity,
i.e., the aggregate downlink throughput of all sessions, over
a period of one second.

As shown in Fig. 3, the performance gain of CADSA over
DSA keeps consistently around 75%. The downlink capacity
of the suboptimal CADSA approximates the optimum well.
Both CADSA and DSA outperform RAND by a significant
margin. Notably, the throughput of the heuristic DSA can
approach or even exceed the optimal values. This is at the
cost of fairness, i.e., there can be a certain gap between the
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Fig. 5. The minimum downlink throughput as a function of time.
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Fig. 6. The variation of per-subcarrier rate with the cell radius.

max and min throughput of all sessions when running the
heuristics. To quantify the difference in fairness, we compute
the Jain’s fairness index [19] for all the above schemes. Denote
the throughput of session i as Fi, then the fairness index
is F =

(
∑|Ω|

i=1 Fi)
2

|Ω|
∑|Ω|

i=1 F
2
i

. From Fig. 4, we see that the optimal
LP solutions tend to achieve full fairness (i.e., F = 1). The
intuition behind is that the optimal algorithm can reduce the
difference in throughput by switching subcarriers from high-
throughput sessions to low-throughput sessions. In contrast,
the heuristic DSA and RAND tend to deviate from the optimal
fairness index. Remarkably, the fairness of the approximate
CADSA is quite close to the optimum, owning to its penalty
mechanism. As a result, the minimum throughput of all
sessions remains around 90% of the optimal value (Fig. 5).

2) Influence of multi-user diversity: Generally, multi-user
diversity is reduced when we decrease the cell radius, since
the MSs’ difference in distances to the base station is reduced.
This is justified in Fig. 6, where we define the per-subcarrier
rate of an MS as the average rate over both time and fre-
quency domain. The evaluation stops at 1.6km since the BS’s
transmission range is around 1.5km in our experiment.

In Fig. 7 and Fig. 8, we explore the influence of multi-user
diversity on time-averaged downlink capacity and fairness. In
these and the experiments below, we have 512 subcarriers as-
signed to 40 random sessions that are running among 10 MSs.
As we increase the cell radius, the average channel condition
deteriorates, resulting in lower downlink capacity. Meanwhile,
the multi-user diversity becomes larger, making it harder for
the heuristic DSA and RAND to ensure fairness. With the
penalty mechanism, however, the approximate CADSA keeps
near-optimal fairness and yet much higher capacity, even under
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Fig. 7. Influence of attenuation spread on the downlink capacity.
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severe channel conditions.
In general, the dynamic subcarrier assignment algorithms

outperform RAND in the scenarios with large multi-user
diversity [15], i.e., the channel gains of different MSs vary
substantially. However, to exploit the network coding advan-
tage, it is preferable to encode the downlinks with similar
channel gains, and assign the same subcarriers to them.
Otherwise the downlink with a worse channel condition will
undermine the shared downlink rate. Obviously, there is a
trade-off between the diversity advantage and network coding
advantage, governed by the level of multi-user diversity.

To quantitatively explore this trade-off, we adopt the min-
imum throughput of all sessions as the performance metric,
which is essentially the optimization objective of DSA and
CADSA. We define diversity gain as the performance gain
of the optimal DSA over RAND (i.e., dynamic assignment
over the static assignment algorithm), and coding gain as
the performance gain of the optimal CADSA over DSA (i.e.,
coding aware assignment over non-coding based assignment
algorithm). Formally, let λX denote the minimum session
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Fig. 9. Influence of attenuation spread on performance gains.
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Fig. 10. Minimum throughput when the fraction of codable sessions varies.

throughput resulting from scheme X (X ∈ {DSA, RAND,
CADSA}), then:

Diversity gain =
λDSA
λRAND

, Coding gain =
λCADSA
λDSA

(15)

Fig. 9 illustrates the variation of diversity gain and coding
gain, as a function of the cell radius. We observe that with
small cell radius (hence less multi-user diversity), the coding
gain approaches the 100% bound. When the MSs experi-
ence considerably different channel conditions (hence larger
multi-user diversity), the coding gain diminishes, whereas the
diversity gain increases. By balancing a trade-off between
both schemes, the CADSA mechanism achieves up to 6x
performance improvement over the RAND. Different from
Fig. 7, the performance metric here is the minimum throughput
of all sessions, which implicitly accounts for fairness. RAND
tends to starve those sessions with small channel gain, thus
resulting in much lower performance than CADSA.

3) Partially codable sessions: Note that in the above exper-
iments, we assumed the sessions are paired so that each session
is interested in exchanging information with another one, thus
a coding opportunity exists for each session. In practice, not
all sessions may have coding opportunities, and therefore the
gains of network coding also depend on the fraction of sessions
that can be encoded.

To explore the influence of such practical factors, we
run CADSA with variable fraction of coding opportunities.
Specifically, we deploy 10 MSs and 40 random sessions in
a cell with 1km radius. We vary the number of codable
sessions from 0 to 40. Fig. 10 and Fig. 11 plot the minimum
throughput of all sessions and the corresponding performance
gains resulting from network coding and dynamic assignment.
Since the cell radius remains stable, the diversity gain does not
vary. However, the coding gain increases monotonically with
the fraction of codable sessions, and the overall performance
gain of CADSA depends a lot on the number of coding
opportunities available.

VI. CONCLUSION

In this paper, we have designed a cross layer scheme that
integrates network coding and dynamic subcarrier assignment
in OFDMA wireless networks. We have formulated the op-
timal coding aware subcarrier assignment scheme, and pro-
posed a polynomial time suboptimal algorithm with provably
good performance. Our simulations in the frequency selec-
tive fading environment and under 802.16-like settings have
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demonstrated that network coding can more efficiently utilize
the available subcarriers. The coding-aware scheme results
in considerably higher network throughput without causing
additional overhead when compared with adaptive assignment
algorithms without network coding. In addition, we identified
an important tradeoff between the coding advantage and the
diversity gain, which may need further exploration from an
information theoretic perspective.
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