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On the Market Power of Network Coding
in P2P Content Distribution Systems

Xinyu Zhang, Baochun Li

Abstract—Network coding is emerging as a promising alternative to traditional content distribution approaches in P2P networks. By
allowing information mixture and randomized block selection, it simplifies the block scheduling problem, resulting in more efficient
data delivery. Existing protocols have validated such advantages assuming altruistic and obedient peers. In this paper, we develop
an analytical framework that characterizes a coding based P2P content distribution market where rational agents seek for individual
payoff maximization. Unlike existing game theoretical models, we focus on a decentralized resale market — through virtual monetary
exchanges, agents buy the coded blocks from others and resell their possessions to those in need. We model such transactions
as decentralized strategic bargaining games, and derive the equilibrium prices between arbitrary pairs of agents when the market
enters the steady state. We further characterize the relations between coding complexity and market properties including agents’
entry price and expected payoff, thus providing guidelines for strategic operations in a real P2P market. Our analysis reveals that the
major power of network coding lies in maintaining stability of the market with impatient agents, and incentivizing agents with lower
price and higher payoff, at the cost of reasonable coding complexity. Since the traditional P2P content distribution approach is a
special case of network coding, our model can be generalized to analyze the equilibrium strategies of rational agents in decentralized
resale markets.
Index Terms—network coding, P2P, pricing, decentralized market, economics, game theory
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1 INTRODUCTION

P2P content distribution systems are built atop the basic
premise of voluntary resource contribution by partic-
ipating peers. Two critical problems are inherent in
this presumption: the scheduling decision of individual
peers (i.e., choosing which data blocks to share) and the
incentives for sharing.

Existing P2P content distribution systems tackled the
scheduling problem using random or rarest-first strate-
gies [1]. Such heuristic local algorithms tend to result
in suboptimal uploading or downloading decisions that
waste network resources [2]. Network coding circum-
vents the scheduling problem by allowing each peer
to encode and deliver a random linear combination of
the data on hand. As long as one block is fresh, the
entire encoded block is useful to the requester with
high probability. Therefore, the risk of uploading du-
plicate information can be significantly reduced with-
out sophisticated scheduling. Existing protocols (e.g.,
Avalanche [2]) have identified network coding based
content distribution as a workable idea, but without
rigorous theoretical quantification of its advantages.
They have also assumed altruistic resource sharing
among peers, which is inconsistent with the greedy
and rational behavior that dominates real-world P2P
systems [3].

In this paper, we analyze the performance of net-
work coding based P2P content distribution protocols
from an economic and game theoretic perspective. We
envision the P2P content distribution network as a
decentralized resale market. Each peer acts as a market
agent, namely a seller and buyer. Before entering the
market, a peer must pay an initial service fee (referred

• Xinyu Zhang is a Ph.D. student at the University of Michigan. This
work was completed while he was a research associate at the University
of Toronto. E-mail: xyzhang@eecs.umich.edu

• Baochun Li is a Professor at the University of Toronto. Email:
bli@eecg.toronto.edu

to as entry price) that is used to obtain at least one block.
Afterwards, he can resell the blocks he already pos-
sesses and purchase additional blocks with the money
on hand. Whenever a seller and a buyer meet, they
bargain over the blocks of interest for a consensus price.
Both sides of the bargaining game take into account the
availability of alternative sellers and buyers, and the
potential resale value of the good once the transaction
succeeds. Such a model resembles an exchange econ-
omy for digital information goods, and sheds lights on
the deployment and evolution of practical P2P markets.

We classify peers in the market according to their
possessions, i.e., the availability of blocks on them.
By modeling the transactions between peers as non-
cooperative games, we derive the equilibrium pricing
strategies for different types of peers. We find that
unlike traditional centrally managed market economy,
no uniform price exists under strategic bargaining.
Instead, the price depends on not only the availability
of the goods, but also the valuation of each type of
peer on each good. Furthermore, we extend the game to
a market scale, and characterize a market equilibrium
in which individual peers adopt stationary strategies,
and no one has the incentive to deviate over time.
We then approximate the evolution of such a market
using a system of differential equations, and derive the
availability of goods when the market enters steady-
state.

The above theoretical framework results in closed-
form equations that quantify the impact of various
design parameters on the stable operations of the
market. Through these equations, we observe that
the fundamental advantage of network coding lies in
maintaining the availability of data blocks even when
peers are highly impatient and even in the absence of
content servers. Translated into market terms, coding
based protocols induce a higher level of competition
among content sellers, thereby avoiding the monopoly
or oligopoly scenarios in which a limited number of
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content holders force up the price. Furthermore, net-
work coding incentivizes the peers by increasing their
expected payoff, and reasonable coding complexity is
sufficient to harvest such an advantage. Unfortunately,
we also find that network coding is against the interests
of content servers as their profit decreases with increas-
ing coding complexity.

In summary, our main contributions of this work
include:
• A decentralized resale market model for P2P content

distribution systems.
• A game theoretical framework for analyzing the equi-

librium price and goods availability in a network
coding based P2P network.
• Characterization of the fundamental advantage of

network coding in P2P content distribution systems
with rational (payoff-maximizing) peers.

2 RELATED WORK
Since the pioneering work by Ho et al. [4], randomized
network coding has received substantial attention from
P2P protocol designers. The Avalanche [2] system im-
plemented a primitive form of random linear code that
encodes all data blocks in a file. More recent protocols
have adopted segment-based network coding [5], which
splits the file into multiple segments, each allowing
for efficient encoding and decoding. This approach has
been applied to file sharing, as well as P2P streaming
systems.

Despite its wide applications, the fundamental ben-
efits of network coding in such systems have not been
fully explored with theoretical rigor. Chiu et al. [6]
abstracted a P2P system as a static star topology, and
claimed that coding does not increase the network
capacity compared with routing. Through mean-field
analysis of a dynamic P2P system, Niu et al. [1] claimed
that network coding can alleviate the imbalance of
block distributions in traditional content distribution
protocols, thereby improving the resilience to network
dynamics. Both analytical works, as well as the existing
system implementations, have relied on the premise
of cooperative peers, while measurement of real P2P
systems exhibits a dominant portion of selfish free-
riders [3], [7]. In this paper, we aim at quantifying
the fundamental advantages of network coding in such
non-cooperative environment.

Our work is partly inspired by Rubinstein et al. [8],
who analyzed the impact of strategic price settings on
the equilibrium of a market economy. Traditional mar-
ket economy has assumed agents leaving the market
after a successful transaction, with the buyer owning
the goods while the seller earning the payment. In con-
trast, P2P systems feature copiable and resalable products
that propagate their values over time, thus requiring the
support of a brand new model.

Game theoretic analysis of peer behaviors has been
widely employed (see [3] for a survey). This line of

research focused on designing incentives to encourage
cooperation. For instance, mechanism design can pro-
vide strong incentive for rational peers and lead the
them towards a socially optimal point, but it requires
the support of trusted servers. Virtual payment mech-
anisms allow peer to trade directly via virtual money,
hence it is more amenable for implementation, and has
been proposed in commercial P2P systems [9]. In this
paper, however, we are less concerned with designing
such incentive protocols, and instead, more focused on
the equilibrium analysis assuming a virtual payment
scheme is available. Our work differs from existing
game theoretical framework not only in an emphasis
on network coding, but also in its equilibrium analysis
under a decentralized market setting. We consider not
just the strategic behavior of individual peers, but also
how their self-interested pricing strategies affect the
P2P market as a whole.

Economic models, in particular the market models
for P2P systems have been explored by the MMAPPS
project [10], which proposed market management tech-
niques to encourage cooperation. Within MMAPPS,
Antoniadis et al. [11] developed a theoretical framework
that abstracted the shared content as public goods.
However, the mechanism lacks a support for network
dynamics and a concrete modeling of the peers’ valua-
tions of goods. The economic implication of network
coding has been discussed in recent work [12], yet
focusing on centralized cellular networks with price-
taking agents. To our knowledge, there does not exist
any previous work on the power of network coding
in a P2P content distribution market with strategical
participants. Our work is also the first that establishes
a decentralized resale market model to analyze the
equilibrium of P2P systems, and can be generalized to
other markets consisting of resalable digital information
goods.

3 CODING BASED P2P CONTENT DISTRIBU-
TION MARKET

In this section, we introduce the widely used segment-
based network coding protocol for P2P content distri-
bution. When running such a protocol, peers purchase
and resell the coded data blocks, thereby forming a
content distribution market. We specify the various
elements of such a P2P market economy, including the
classification of peers and the formation of price.

3.1 P2P Content Distribution via Network Coding
Existing coding based P2P content distribution proto-
cols have mostly adopted the following segment based
scheme. Before transmission, the original data file is
grouped into segments, each containing K blocks of
size E bytes. K and E are termed segment size and
block size, respectively. The coding operations are performed
within each segment. We represent each segment as a
matrix B, a K × E matrix, with rows being the K
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blocks, and columns the bytes (integers from 0 to 255)
of each block. The encoding operation produces a linear
combination of the original blocks in this segment by
X = R ·B, where R is a K×K matrix composed of ran-
dom coefficients in the Galois field GF (28). The coded
blocks (rows in X), together with the coding coefficients
(rows in R), are packetized and delivered to other peers.

The decoding operation at each peer is the matrix
inversion B = R−1 · X , where each row of X repre-
sents a coded block and each row of R represents the
coding coefficients accomplished with it. The successful
recovery of the original segment B requires that the
matrix R be of full rank, i.e., each peer must collect K
independent coded blocks for this segment. However,
a peer can upload coded blocks even if the segment is
not ready to decode yet. It produces a new block by re-
encoding existing blocks it has collected in this segment.
The re-encoding operation replaces the coding coeffi-
cients accomplished with the original coded packets
with another set of random coefficients. For instance,
consider the existing coded packets as rows in the
matrix Y , which from the viewpoint of the source was
obtained using Y = Ry · B (B is the original uncoded
packets and Ry is the random coefficients). Then the
current holder may produce a new code block by re-
encoding existing packets as Y ′ = R′ ·Ry ·B = R′y ·B. As
a result, the original coefficients Ry are replaced by R′y .
The re-encoding operation circumvents the block-level
scheduling problem in traditional content distribution
protocols, because by randomly mixing information
from all existing blocks, a newly generated coded block
is innovative to the downstream peer with high prob-
ability [1].

Although randomized network coding solves the
block selection problem within a segment, a scheduling
algorithm is still needed to decide which segment to
upload or download. We assume each peer adopts a
push-based random scheduling protocol, which ran-
domly selects a segment, generates a coded block, and
then upload it to his partner. This assumption does not
limit the generality of our major analysis, as our game
theoretical models conclude with pricing strategies that
adapt to general scheduling policies.

Note that traditional non-coding scheme can be consid-
ered as a special case of segment-based network coding where
K = 1, i.e., each segment has a single data block. By
contrast, the Avalanche [2] protocol corresponds to the
other polar, i.e., the full-coding case, where the entire
file is encoded into a single segment. Also note that
simply segmenting the whole file without encoding
(i.e., information mixing) does not bring any coding
advantage, because the blocks within each segment are
still sequenced and scheduled separately.

3.2 The Decentralized Market

We focus on a P2P market place where peers act as
the agents who purchase and sell data blocks (goods).

Peers can directly trade with each other through a
virtual currency, such as the lightweight currency in
[13]. Such a currency is not tied to real-world money,
but can still reflect peers’ valuation of the goods. Just
as the currency in real markets, a virtual currency
can incentivize the transaction between peers, thereby
enhancing the resource sharing in P2P networks. Real
P2P systems, such as Kazaa, have already used such
virtual currency as implicit incentives [13].

In such a P2P market, agents can set the price of data
blocks via bargaining. Whenever a buyer and a seller
meet, they initiate a pairwise bargaining process over
the data of mutual interest. If both peers agree upon
a certain price, then the seller uploads a data block,
and the buyer will pay the money in return. An agent
may act as a seller and buyer simultaneously, resulting
in an exchange transaction. If on the other hand the
negotiation ends with a disagreement, then both peers
have to switch to alternative partners.

We assume network coding is performed over a file
shared among peers. The file consists of F blocks and is
grouped into M segments, i.e., the segment size K = F

M .
Since all data blocks within each segment are equally
useful to the buyers, each segment corresponds to one
type of good, i.e., the total types of goods circulating
in the market equals M . Fig. 1 illustrates a typical
transaction between two peers, which randomly select a
good for bargaining after meeting each other. Without
loss of generality, we focus on pricing a single good.
We classify the market agents into (K + 1) types. A
type-i agent (0 ≤ i ≤ K) possesses a total number of
i coded blocks of the good. Hence, A type-0 agent can
only purchase goods, while a type-K agent who has
fulfilled the segment only sells goods to others.

As in a real-world market, the outcome of any
pairwise bargaining depends on the current market
condition, i.e., the availability of the goods. If a good
is abundant in the market, the buyer can easily find
an alternative seller, and the buyer may be better-off
searching for alternative providers if the price proposed
by the current seller is too high. Conversely, scarce
goods will be charged higher prices than abundant
ones. Similar to a real-world market with material
goods, as the P2P market evolves, we can expect that
an equilibrium exists that specifies a stationary per-
block price for each good. Once the market evolves
to a steady-state, all peers agree upon a common set
of prices and no actual negotiation takes place (Sec. 4).
We will formalize the equilibrium point in the following
section.

4 BARGAINING GAME IN THE MARKET

In this section, we describe the elemental transaction
procedure on the P2P market, i.e., the pairwise bargain-
ing game. We first characterize the equilibrium pricing
strategies of agents, and then prove that such individual
transaction behaviors result in a globally stable market.
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Fig. 1. The pairwise transaction in a coding based P2P
market with M = 5 segments (goods) and segment size
K = 6.
4.1 The Rules of Bargaining
We model the P2P market as a discrete time system. The
duration of a period equals the time needed to transmit
a single block. To capture the market dynamics, we
assume an agent is impatient, remaining in the market
in each period with probability θ, i.e., the churn rate
(peer join and departure rate) µ = 1 − θ. Agents
have homogeneous upload and download bandwidth,
which equals 1 block per period. We abstract the peer
selection as a matching process in which an agent is
randomly matched to another agent in each period.
Upon matching, the pair of agents selects one good
of mutual interest and propose to exchange one block of
the good. We restrict the exchange of blocks within the
same good because different goods may have different
availability and distinct prices. The outcome of the
exchange depends on two factors: the usefulness of the
block, and the bargaining result.

Before the transaction, both agents need to make sure
they can provide at least one useful block to each other.
This can be trivially satisfied if they are of type i and
j, respectively, where 0 < i, j < K. If one of them is of
type 0 or K, then the transaction becomes a unilateral
sale, instead of bilateral exchange. Remarkably, even in
a unilateral sale, the bandwidth is not wasted because
two goods may be simultaneously under transaction.

The second and most critical factor in the transaction
is whether the bargaining between the pair of agents
results in an agreement. Since the agents may have
different valuations of the good, the one who gain more
has to pay for the other. To avoid unfair advantages
of the initiator, we dictate that one agent (referred to
as proposer) is randomly selected to propose a price
for the exchange. The opposite agent (referred to as
responder) responds by either accepting or rejecting the
proposal. In case of rejection, both agents continue to
the next period, looking for new partners. The ability
to switch to alternative partners enhances the agents’
bargaining power, since they can threat to abandon
the current partner, thus making it a “take-it-or-leave-
it” offer. Therefore, whether the bargaining results in
agreement or disagreement depends on the availability
of the good on the market.

As the market evolves to a steady-state, each type
of agents adopt stationary strategies, similar to a real
market economy [8]. To be specific, a stationary strategy

implies that each type of proposer or responder main-
tains the same reservation prices when facing the same
type of partners. The reservation prices of a type-i agent
include a proposer price p∗ij , the optimal price he can
bid that is acceptable to a type-j agent; and a responder
price q∗ij , the optimal price that is proposed by his
partner j and is acceptable to him. For consistency, the
subscript ij always indicates the price that i should pay
to j, and therefore pij = −qji and qij = −pji. With
stationary strategies, whenever an agent i is matched
to agent j, he proposes p∗ij to agent j if he is selected
as the proposer; and he accepts a proposal qij from j if
and only if qij ≤ q∗ij . In what follows, we characterize
the reservation prices p∗ij and q∗ij corresponding to
the unique stationary strategy that satisfies subgame-
perfectness. We further justify that it is not profitable for
an agent to use non-stationary strategies at equilibrium.

4.2 The Subgame-Perfect Nash Equilibrium in Pair-
wise Transactions
The classic concept of Nash equilibrium in game theory
characterizes the strategy profiles in which no play-
ers can profit more by unilaterally deviating from his
current strategy. However, Nash equilibrium strategies
may include incredible threats, which the threatener
himself does not prefer to issue, but which may still
deter the actions of the one under threat. In the above
bargaining game, the strategy of a type-i agent with
pij < 0 and qij > 1 constitutes a Nash equilibrium, since
every agent receives payoff 0 and no one can profit
more than 0 by changing his own strategy. However,
threatening to resort to such strategies are incredible
since the agents are aware that any alternatives with
0 < pij < 1 and 0 < qij < 1 can be more benefi-
cial. The notion of Subgame-Perfect Nash Equilibrium
(SPNE) [14] refines Nash equilibrium by ruling out such
incredible threats.

Specifically, a subgame in the above bargaining is a
game starting from an arbitrary proposer and lasts one
time slot, ending up with either a disagreement or a
successful transaction. The strategy for an agent i are
the pricing proposal pij and a response to proposed
price qij , both relating to his partner j. The payoff in
each single transaction equals the utility minus cost.
More precisely, for a transaction between proposer i
and responder j, the payoff equals Sij − pij for agent
i and Tij + pij for agent j. We use Sij to denote the
utility of the proposer i, which equals to the number
of blocks (either 0 or 1) i downloads from j in the
transaction. Similarly, Tij is the number of blocks the
responder j downloads from i. Here the pij is not the
actual monetary value of a block. Instead, it represents
a virtual currency that maps the monetary value to the
usefulness of a block. Alternatively, we can define the
utility to be a function of Sij that translates the number
of purchased blocks into the corresponding monetary
value. The equilibrium price may be different for dif-
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ferent definitions, but it does not affect the market’s
trends, e.g., the relation between equilibrium price and
market stability (churn rate).

Given the above elements of the game, a strategy
profile constitutes a Subgame-Perfect Nash Equilibrium
(SPNE) if it induces a Nash equilibrium in every sub-
game. For each subgame, the expected payoff depends
not only on the payoff in a single transaction, but also
potential payoff he can gain by reselling the blocks
he gets, and the possibility of switching to alternative
partners. In what follows, we establish the necessary
condition and sufficient condition for a stationary SPNE
strategy in Lemma 1 and Lemma 2, respectively. We
summarize the results concerning the existence and
uniqueness of the SPNE in Theorem 1.

Lemma 1. Any stationary SPNE strategy must satisfy:

p∗ij =

 ηj−K − 1, if i > 0 and 0 < j ≤ K,
0, if i = 0,

−Vx − 1, if j = 0.
(1)

q∗ij =

 1− ηi−K , if j > 0 and 0 < i ≤ K,
0, if j = 0,

Vx + 1, if i = 0.
(2)

where η = 1 +
2
θ−2

ρ−α0
; αi is the probability to meet a type-i

agent. ρ =
∑K
i=0 αi. Vx is:

Vx = (
2

θ
+ θ + ρ− 4)−1(ρ− αK −

K−1∑
i=1

αi
ηK−i

− ρ− α0

ηK−1
)

Proof: See Appendix A.
Lemma 2. The stationary strategy with reservation prices

defined in (1) and (2) is a SPNE strategy for every pairwise
bargaining game.

Proof: See Appendix B.
Lemma 1 establishes that (1) and (2) are the necessary

condition for an SPNE strategy, while Lemma 2 justifies
the sufficiency of the condition. Since the systems of
equations corresponding to the condition has a unique
solution, we have the following result.

Theorem 1. The unique stationary subgame perfect Nash
equilibrium strategy is the threshold based strategy with
reservation prices defined in (1) and (2).

From (1) and (2), we conclude that the SPNE price
depends on the coding complexity (reflected in K),
availability of the good (reflected in αi), as well as the
degree of market dynamics (reflected in µ). The intricate
relations will be further clarified in Sec. 5.

The analyses above have centered around the strate-
gically stable configurations. In Appendix C, we further
extend the equilibrium to a temporally stable setting,
proving it is insensitive to strategical manipulations of
any individual agent over time.

5 THE EQUILIBRIUM PRICE AND PAYOFF
In this section, we analyze the steady state distribution
of goods availability in the coding based P2P market,
and then integrate it with the previous game theoretic
analysis. This leads us to a comprehensive understand-
ing of the relation between the scarcity of goods and

the equilibrium price, and the market power of network
coding in this context.

5.1 Availability of Goods at Steady State
We consider a discrete time Markov chain model de-
scribing agents’ behavior in the market. Without loss
of generality, we focus on the availability evolution of
one good. Similar to the model in deriving Theorem
2, The number of blocks an agent holds represents his
state. The state space also includes “leave” where this
agent departs. A direct calculation for the evolution of
the Markov chain is intractable since it involves a state
space of size NK+2. Hence, we seek for a deterministic
approximation to the evolution of the market using
differential equations.

We focus on a steady state of the peer population,
in which the total number of agents N is large and
remains roughly constant. Assume the peers join and
depart the market following a Poisson process, then the
arrival rate equals the departure rate, and corresponds
to the departing probability µ in the game model.
Suppose the goods (segments) are randomly selected for
downloading upon the encounter of two agents. Then
one could expect that each good experiences a similar
level of availability. These modeling assumptions will
be justified using simulations.

Denote ni as the number of agents holding exactly
i blocks. Consider the evolution of the market during
a short period ∆t. The increase of ni within ∆t equals
the number of peers each holding at least (i−1) blocks,
and downloading one more block. The probability that
such a peer is chosen equals ni

N , while the probability
that a segment (good) i is chosen equals 1

M when using
the random scheduling policy. Note that only (N − n0)
peers have non-zero blocks and can provide this good
for others. The total increase of ni thus equals: ∆t(N −
n0) ni

NM .
The decrease of ni happens in two cases. First, a peer

holding i blocks departs, and is subsequently replaced
by a new peer with zero block. The total number of
such peers equals µNδt · niN , which is the total number
of departing peers times the probability that a random
peer is of type i. Second, a peer holding i blocks
downloads one more block and subsequently becomes
type-(i+1). Similar to the above analysis for type-(i−1).
The total number of such peers equals ∆t(N −n0)ni−1

NM .
Then, the evolution of ni in ∆t is:
ni(t+ ∆t) = ni(t) + ∆t(N − n0)

ni
NM

− µN∆t · ni
N

−∆t(N − n0)
ni−1

NM
For those peers having zero blocks, the total num-

ber of increase in population equals the number of
departing peers holding non-zero blocks which are sub-
sequently replaced by type-0 peers. The total decrease
equals the number of type-0 peers who download one
more block. Therefore, the evolution of type-0 popula-
tion is:
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n0(t+ ∆t) = n0(t) + µN∆t
N − n0

N
−∆t(N − n0)

n0

NM
As ∆t → 0, the following system of differential

equations captures the evolution of the market:
dni(t)

dt
= (N − n0)

ni
NM

− µN ni
N
− (N − n0)

ni−1

NM
(3)

dn0(t)

dt
= µN

N − n0

N
− (N − n0)

n0

NM
(4)

Solving for the steady state, and let φ = n0

N−n0
, we

have:
n0 = µNM,nK =

n0

φ(1 + φ)K−1
, (5)

ni =
n0

(1 + φ)i
, (0 < i < K). (6)

The above result also applies for a difference equation
with ∆t = 1 and t→∞. In Appendix D, we establishes
that this deterministic differential/difference equation
model indeed converges to the Markov chain represent-
ing the system states.

Our detailed simulation results in Appendix E justi-
fies that the mean-field model can accurately capture
the availability of goods. In addition, we show that
the market agents can accurately estimate the global
availability of goods by inspecting local information
within the neighborhood. Hence the bargaining game
can be realized in a decentralized manner. Appendix
E also includes the corresponding model for the case
with content servers.

5.2 Equilibrium Properties of the Market

We proceed to integrate the SPNE and market equilib-
rium analysis in Sec. 4 with the steady state model. Our
emphasis is on how network coding affects the equi-
librium properties of the market. We use asymptotic
approximations to derive theoretical insights, and use
exact numerical simulations to crystalize such effects.
We focus on three metrics: entry price, lifetime payoff
and seeder’s payoff, which will be defined below. The
former two metrics are closely related with agents’
incentive to join in a market economy, while the latter is
closely related with seeder’s incentive to serve others
after he obtains all the goods, and with the server’s
incentive to keep the market online.

5.2.1 Entry Price
When entering the market, an agent has no blocks to ex-
change with others, and thus must bring a initial capital
that allows him to buy one block of a certain good. The
amount of initial capital needed to start transacting a
good is referred to as the entry price of that good. For the
steady state market with stationary strategies, the en-
try price equals max{p∗01, p

∗
02 · · · p∗0K , q∗01, q

∗
02, · · · , q∗0K}.

Since p∗0j = 0,∀j : 0 ≤ j ≤ K, we only need to focus on
q∗0j .

From Lemma 1, we know that q∗0j is independent of
j, and q∗0j = 1+Vx. Since αi = ni

NM , by integrating with
the steady state analysis in Sec. 5.1, we have:

Vx =
1

2
1−µ − 2 + ρ− 2µ

[ρ− ρ(1− µ

ρ
)K

−
(2µ+ 2− 2

1−µ )(ρ− µ+ 2 + 2
1−µ )− µρ1−K

2 + µ− 2
1−µ (ρ− µ)−K

] (7)

To avoid more complex exposition, we mainly focus
on the closed form solutions to two extreme cases,
namely the non-coding and full-coding case. We evalu-
ate the general partial coding cases through numerical
simulation. For the non-coding case (K = 1), the above
can be reduced to: Vx = (2µ− ρ)[ 2

1−µ − 2− (2µ− ρ)]−1.
Considering the file size F = M , and is usually very
large, the entry price can be further reduced by ignoring
the second order terms:

q∗0j = 1 + Vx =
2− 2(1− µ)

2− 2(1− µ) + 1−µ
M − 2µ(1− µ)

≈ 2µM

1− µ
≈ 2µM

Therefore, for the non-coding case, when file size is
fixed, entry price increases approximately linearly with
the churn rate, namely the impatience of agents.

For the full-coding case, the entire file is a single
segment (i.e., M = 1,K = F ), hence:

Vx ≈
1

2
1−µ − 1− 2µ

(1− (1− µ)K − (1− µ)K+1

1 + µ
)

=
1

2
1−µ − 1− 2µ

(1− 2(1− µ)K

1 + µ
) (8)

When µ is close to 0, the above can be simplified to
Vx = 1− 2(1− µ)K . When µ is large, we can obtain the
Taylor series of Vx at µ = 1:

Vx = −1

2
(µ− 1) +

3

4
(µ− 1)2 +O((µ− 1)2) (9)

which is a decreasing function when µ approaches 1.
Therefore, for full-coding, the entry price has distinct
properties in two regions roughly defined with respect
to churn rate. In the low churn rate region (µ close to 0),
entry price increases with churn rate and decreases with
file size. However, in the high churn rate region (µ close
to 1), file size is irrelevant, and entry price decreases
with churn rate. We proceed to numerically justify these
intuitions with more accuracy and for the partial coding
case.

Fig. 2 plots the curves derived directly from (7). As
can be induced from the figure and the steady-state
analysis, content distribution protocol is stable only if
the churn rate µ is less than 1

M , otherwise the agents
holding zero blocks will eventually dominate the mar-
ket and the good will vanish. Therefore, under a fixed
file size F (F = 1000 in all our numerical simulation),
higher coding complexity (larger K) corresponds to
smaller M , allowing for larger churn rate µ. This means
that a P2P content distribution market is more tolerant to
agents’ impatience when using network coding, especially the
full-coding protocol.

Since F = M for the non-coding protocol, it is only
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Fig. 2. The entry price under different coding complexity
and churn rate. K and F are segment size and file size,
respectively. Number of segments M = F

K . A protocol is
stable only if µ ≤ 1

M .

stable for µ ∈ (0, 1
F ). In this region, the full-coding

protocol has the lowest entry price, which increases as
the coding complexity decreases, meaning that lower
entry price is obtained at the cost of coding complexity.
When µ is sufficiently large, using smaller segment size
may result in lower entry price. This is because the
resale value of goods is degraded in the high churn
rate region. With smaller K, the resale value is shared
by a larger number of goods, hence the per-good value
decreases, resulting in lower entry price. In the extreme
case µ = 1, a good has no resale value, and its entry
price equals the utility value 1. We remark that a real-
world P2P market tends to survive in the low churn
rate region since the average peer life time is on the
order of hours [7].
5.2.2 Lifetime Payoff
We define lifetime payoff as an agent’s expected payoff
when he enters the steady-state market. Initially, an
agent holds zero block, hence his expected payoff for
each good equals U0, and the lifetime payoff equals to
MU0 as M represents the total number of goods on sale.

From the equilibrium analysis established when
proving Lemma 1, we have U1 − U0 = Vx and

(
1

1− µ
+ ρ− 1)U0 = α0U0 +

1

2
(U0 + U1 + 1)(ρ− α0)

where α0 = n0

NM = µ. By solving these two equations,
we obtain:

U0 =
1

2
((1− µ)−1 − 1)−1(ρ− µ)(1 + Vx) (10)

For the full-coding case (M = 1), we have the
following approximation:

U0 =
(1− µ)2

2µ
(1 + Vx) ≈ 1

2
µ−1(1− µ)2, 0 < µ < 1 (11)

For non-coding, we have:

U0 ≈ (1− µ)(1− µM) ≈ 1− µM, 0 < µ <
1

M
(12)

We conclude from (11) and (12) that the lifetime
payoff monotonically decreases as churn rate increases
from 0 to 1

M . The rate of decreasing is approximately
linear for non-coding and approximately sublinear (for
0 < µ < 1) for full-coding. Therefore, network coding
can alleviate the market’s instability facing churns, and can
expand the region in which the agents have positive payoff
and are motivated to join.
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Fig. 3. The lifetime payoff as a function of churn rate
and coding complexity. The region where payoff is larger
than 30 in the right figure is truncated for clarity.
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Fig. 4. The tradeoff between coding complexity and
lifetime payoff.

From the general cases plotted in Fig. 3, we can
see that higher coding complexity always induces
higher level of payoff. For any configuration, payoff
approaches 0 as churn rate approaches 1

M . As churn
rate approaches 0, all configurations approach the high-
est possible payoff, which equals to the file size F .
In summary, the advantages of network coding are best
demonstrated in a dynamic market with impatient agents,
and will diminish as the agents become more patient.

To clarify the tradeoff between coding complexity
and the lifetime payoff, we characterize their relations
in Fig. 4. In general, payoff increases with coding com-
plexity, namely the segment size K. However, the in-
crease is negligible when K is beyond a small threshold
that depends on churn rate. This implies that encoding
a small number of blocks is sufficient to harvest the
benefit of network coding.

5.2.3 The Seeder’s Payoff

We refer to an agent who has collected all blocks of all
goods as a seeder. At the moment an agent has fulfilled a
good, his expected payoff during the residual lifetime is
UK . Therefore, after he becomes a seeder, the expected
payoff equals MUK .

From the proof of Lemma 1, we have:
UK = (UK − U1) + (U1 − U0) + U0

=

K−1∑
k=1

(Uk+1 − Uk) + Vx + U0 =
(1− η1−K)

1− η
+ Vx + U0

For non-coding, we have: MUK = M(Vx + U0) ≈
µM2. When file size is fixed, the seeder’s payoff is
approximately linearly increasing with churn rate. For
the full-coding case, we can easily verify, following
the approximations in the above subsections, that the
seeder’s payoff demonstrates different characteristics
depending on the churn rate. However, we only present
the numerical results below.
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Fig. 5. The seeder’s expected payoff on the steady-state
market.

From Fig. 5, we observe that the seeder’s payoff
increases monotonically with churn rate in the low
churn rate region. Lower coding complexity results in
higher revenue for the seeders, but at the cost of a lower
level of tolerance to churns. The intuition behind is
that with low coding complexity, the agent’s impatience
problem becomes more threatening, thus a seeder who
holds all the goods has higher bargaining power on the
market, and thus harvests more advantage through the
decentralized bargaining. In the high churn rate region,
similar to entry price, seeder’s payoff decreases due to
the dominant decrease of resale value. Similar analysis
can be observed for the case with content servers (see
Appendix F for details).

6 CONCLUSION

In this paper, we develop a theoretical framework
that quantifies the market power of network coding
in a non-cooperative P2P content distribution system.
We model the network participants as market agents
who purchase and resell goods (data segments), and
strategically set prices according to availability of the
goods. We then rigorously characterize the pricing
strategies that constitute a subgame perfect Nash equi-
librium, as well as a market equilibrium which is proof
against individual temporal deviations. Combined with
a steady-state modeling of the goods availability, this
analysis allows us to derive closed-form solutions that
capture the effects of network coding in a dynamic
market. In particular, network coding improves the
market’s resilience to impatient agents, at the cost of
high coding complexity. More importantly, it enhances
the agents’ incentive to join by lowering the entry
price, and by increasing their expected payoff. Notably,
such coding advantages diminish as the agents become
more patient, i.e., when the market demonstrates lesser
dynamics. We have focused on a steady-state market in
which agents adopt stationary strategies. An interesting
future avenue is to understand the transient properties
of the market and implement distributed algorithms
that lead the market to the stationary regime.
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APPENDIX A
PROOF FOR LEMMA 1

Let Ui be the expected equilibrium payoff of a type-
i agent that is unmatched, i.e., he has no partner that
can provide the good of interest in the current time slot.
Denote Mij as the equilibrium payoff of a type-i agent
when he is matched with a type-j agent.

For a unmatched agent i, all payoff begins only from
the next time slot, where with probability µ = 1− θ, he
leaves the market and gets zero payoff. Conditioned
on the event of remaining in the market, he may either
be matched to an agent of type-k with probability αk
(0 ≤ k ≤ K), or remains unmatched with probability
(1 − ρ). Therefore, the expected equilibrium payoff for
a unmatched type-i agent is:

Ui = (1− θ) · 0 + θ · [
K∑
k=0

αkMik + (1− ρ)Ui] (13)

For a matched agent i, the equilibrium payoff con-
sists of the payoff in the current transaction, plus the
expected payoff in the forthcoming time slots. The cur-
rent payoff equals his utility minus the expected cost:
Sij − 1

2 (pij + qij). If he obtains one block in the current
transaction, then he becomes type-(i+1) beginning from
the next period and the expected payoff equals to Ui+1.
Otherwise if j = 0, i.e., he is matched to an agent with
zero blocks, then his future payoff remains to be Ui.
Therefore, the expected equilibrium payoff for a type-i
agent with a type-j partner is:

Mij =

{
Sij − 1

2 (pij + qij) + Ui, if j = 0.
Sij − 1

2 (pij + qij) + Ui+1, otherwise . (14)

Note that when i = K, i.e., the agent collects a full set
of blocks for the good, then he remains in type-K until
leaving the market. In equation (14) and what follows,
we equate any type-(K + 1) agent with type-K agent.

We proceed to characterize the SPNE prices which
are closely related with the above payoff functions.
Consider any subgame with agent i being the proposer,
who bids price pij for the transaction. If i > 0, then
the total expected payoff of agent j from current and
future payoff is (Tij + pij + Uj+1). Subgame perfection
requires agent i to propose a price which gives agent
j higher payoff than if he rejects the proposal and
remains in type-j, i.e., (Tij +pij +Uj+1) ≥ Uj . However,
if (Tij + pij + Uj+1) > Uj , agent i can gain more by
proposing a price that is less than pij but still acceptable
by agent j. Therefore, we have (Tij + pij +Uj+1) = Uj .
For the case i = 0, agent j remains to be type j after
the transaction, and thus (Tij + pij + Uj) = Uj . In
consequence,

Uj =

{
Tij + pij + Uj , if i = 0.
Tij + pij + Uj+1, otherwise . (15)

Using a symmetric argument (with roles of i and j
reversed), we can obtain the SPNE price when i is the
responder:

Ui =

{
Sij − qij + Ui, if j = 0.
Sij − qij + Ui+1, otherwise . (16)

In summary, any stationary SPNE strategy must nec-
essarily satisfy (13), (14), (15) and (16). This necessary
condition involves K + 1 + 2(K + 1)2 linear equations
and the same number of variables, including Ui,Mij , pij
and qij , ∀0 ≤ i ≤ K, 0 ≤ j ≤ K.

To solve the above system of equations, we first apply
the equilibrium prices in (15) and (16) to the payoff of
a matched agent (14), and obtain:

Mij =
1

2
(Ui − Uj) +

1

2
(Ui+1 + Uj+1) +

1

2
(Sij + Tij),

∀i 6= 0, j 6= 0 (17)

M0j =
1

2
(U0 + U1 + 1) (18)

Mi0 = Ui +
1

2
(U1 − U0 + 1) (19)

Applying these equations to Ui (i 6= 0), we have:
K∑
k=0

αkMik = α0(Ui +
1 + U1 − U0

2
) +

K∑
k=1

[(Ui − Uk)

+ (Ui+1 + Uk+1) + (Sik + Tik)] (20)

= α0(Ui +
1

2
) +

Ui + Ui+1

2

K∑
k=1

αk+

1

2

K∑
k=0

αk(Uk+1 − Uk) +
1

2

K∑
k=1

αk(Sik + Tik) (21)

Notice that Sik = Tki and:

Sik =

{
0, if k = 0.
1, otherwise . (22)

Let a = 1
θ − (1 − ρ), and S0 =

∑K
k=0 αk(Uk+1 − Uk),

we have:
aU0 = α0U0 +

1

2
(U0 + U1 + 1)(ρ− α0) (23)

aUi =
1

2
α0 + α0Ui +

1

2
(Ui + Ui+1)(ρ− α0) +

1

2
S0

+
1

2
(2ρ− 2α0 − αk), 0 < i < K (24)

aUK =
1

2
α0 + α0UK +

1

2
(UK + UK)(ρ− α0) +

1

2
S0

+
1

2
(ρ− α0 − αk) (25)

Based on the above equations for Ui, we obtain:

UK − UK−1 =
α0 − ρ

2a− α0 − ρ
= −η−1 (26)

where η = 2a−α0−ρ
ρ−α0

. Similarly, we have:

Uj+1 − Uj = −ηj−K ,∀j = 1, 2, · · · ,K − 1. (27)

Notice that:

S0 =

K∑
k=0

αk(Uk+1 − Uk) = α0(U1 − U0)−
K−1∑
k=1

αkη
K−k
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Applying Eqs. (24) and (23), we obtain:

a(U1 − U0) =
1

2
α0 + α0(U1 − U0)

+
1

2
(ρ− α0)(U1 − U0) +

1

2
(ρ− α0)(U2 − U1)

− 1

2
(ρ− α0) +

1

2
S0 +

1

2
(2ρ− 2α0 − αK)

Combined with (28), and let Vx = U1 − U0 we have:

Vx = (
2

θ
+ θ + ρ− 4)−1(ρ− αK −

K−1∑
i=1

αi
ηK−i

− ρ− α0

ηK−1
)

Now we are ready to present the equilibrium prices.
First, based on (15), we have:
p∗ij = Uj − Uj+1 − Tij = ηj−K − 1,∀0 < j ≤ K (28)

Similarly,

q∗ij = Ui+1 − Ui + Sij = −ηi−K + 1,∀0 < i ≤ K (29)

For the edge case where i = 0, we have p∗ij = 0; and
for j = 0, p∗ij = −Vx − 1. Similarly, we can obtain the
result for q∗ij in such cases, and thus completing the
proof for Lemma 1. ut

APPENDIX B
PROOF FOR LEMMA 2
Proof: To prove that the threshold based stationary
strategy is SPNE, it is sufficient to show that in an
arbitrary subgame, either proposer in the matched pair
is willing to adopt the prices p∗ij and q∗ij , and cannot
profit more by unilaterally deviating from the strategy.
The latter is straightforward following the equilibrium
argument when proving Lemma 1, thus we focus on
the former condition.

To verify that the proposer j indeed has the incentive
to propose price q∗ij , we need to ensure that the profit
from this proposal is no less than if he remains inactive
and wait for the next transaction, i.e.,

Tij + q∗ij ≥ 0, if j = 0. (30)
Tij + q∗ij + Uj+1 ≥ Uj , if j > 0 (31)

Equation (30) is straightforward since Ti0 = 1 and
q∗i0 = 0. So we focus on the general cases where j > 0.
Equation (31) is equivalent to:

Tij + (Ui+1 − Ui) + Sij + (Uj+1 − Uj) ≥ 0 (32)

From Lemma 1, we have Ui+1−Ui = −ηi−K , (∀i : 0 <

i < K−1), where η = 2a−α0−ρ
ρ−α0

= 1+ 2(θ−1−1)
ρ−α0

. Recall that
0 ≤ θ ≤ 1 and ρ =

∑K
i=0 αi ≥ α0. Therefore, we have

η ≥ 1 and subsequently −1 ≤ Ui+1 − Ui ≤ 0. Similarly
−1 ≤ Uj+1 − Uj ≤ 0. Since in this case Tij = Sij = 1,
equation (32) can be established directly.

By a symmetric argument, we can also prove that the
proposer i has the incentive to propose price p∗ij , thus
completing the proof for Lemma 2. ut

APPENDIX C
THE MARKET EQUILIBRIUM AND ITS STABIL-
ITY

The analyses in Sec. 4 have centered around the strate-
gically stable configurations, i.e., the SPNE of each
pairwise “take-it-or-leave-it” bargaining game. In this
subsection, we extend the equilibrium to a temporally
stable setting. We claim that the equilibrium is insensi-
tive to strategical manipulations of any individual agent
over time.

Towards this end, we define the expected payoff of an
agent as R(h) =

∑∞
t=0R(h(t)), where R(h(t)) is the

payoff within time slot t when the agent adopts strategy
h. Assume agents are expected payoff maximizers, then
following the microeconomics literature [8], we define
market equilibrium as a stationary strategy profile h∗

that is adopted by all agents and that maximizes the
expected payoff of each agent. More precisely, for each
agent Υ, R(h∗Υ, h

∗
−Υ) ≥ R(hΥ, h

∗
−Υ) for all possible

strategies h, where h∗−Υ indicates that all agents other
than Υ adopt the same stationary strategy. Essentially,
in a market equilibrium all agents adopt the same
stationary strategy, and no single agent can gain more
by strategically varying his proposals and responses
during his lifetime. In looking for a market equilib-
rium we restrict attention to the case where all agents
employ stationary strategies. Without this assumption
each agent faces a dynamic game with incomplete
information, which is not possible to solve in the de-
centralized P2P market with a large population. With
the definition of market equilibrium, we have:

Theorem 2. In the P2P content distribution market, the
threshold based strategies with reservation prices defined in
(1) and (2) constitute a market equilibrium. Proof: Consider
an agent Υ entering the market with zero blocks of
the good. In searching for a payoff-maximizing policy,
Υ essentially faces a Markov decision process (Fig. 6).
The state space includes Zi, Pi, Ai, and leave. Zi denotes
that Υ has evolved to type i and has no partner yet. Pi
denotes that the agent has evolved to type i and has
been selected as the proposer in a bargaining game.
Each state Pi includes a subset of states Pij(0 ≤ j ≤ K),
indicating Υ is matched to a partner of type j. Similar
definition applies for Ai, where the agent has been
selected as the responder.

When all other agents adopt the same stationary
strategies defined in Lemma 1, Υ only has two policies
in each state Aij and Pij . He either chooses agreement by
proposing p∗ij and accepting q∗ij , or chooses disagreement
by proposing pij > p∗ij and rejecting qij ≤ q∗ij . His
policies have no impact on the states Zi and leave.

Denote Xa and Xd as the expected payoff in state X
when choosing agreement and disagreement, respectively.
The expected payoff in each state and for each policy
equals the payoff gained within the state plus the ex-
pected payoff after the policy is taken. More specifically,
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when the agreement policy is taken in state Pij , the
expected payoff is:

P aij = Sij − p∗ij + θ[

K∑
k=0

αk(
1

2
P ∗(i+1)k +

1

2
A∗(i+1)k)

+ (1− ρ)Ui+1] (33)

In this equation, 1
2 (Sij − p∗ij) represents the average

payoff within state Pij and when the agreement policy
is enforced. αk is the probability of meeting a partner of
type-k; P ∗(i+1)k and A∗(i+1)k are the corresponding opti-
mal payoff when the agent Υ is selected as the proposer
and responder, respectively. The agent Υ obtains payoff
Ui+1 if this good is not selected for transaction in the
next period, which happens with probability (1− ρ).

In a similar vein, we can derive the expected payoff
in all other possible states and policies:

P dij = θ[

K∑
k=0

αk(
1

2
P ∗ik +

1

2
A∗ik) + (1− ρ)Ui] (34)

Aaij = Sij − q∗ij + θ[

K∑
k=0

αk(
1

2
P ∗(i+1)k +

1

2
A∗(i+1)k)

+ (1− ρ)Ui+1] (35)

Adij = θ[

K∑
k=0

αk(
1

2
P ∗ik +

1

2
A∗ik) + (1− ρ)Ui] (36)

Observe that Adij is independent of j. If in a state Adij
is optimal, then it is optimal to choose disagreement
for every j (0 ≤ j ≤ K). The same is true for P dij .
Consequently, if Adij

⋃
P dij are chosen, Υ will remain in

type-i permanently, which is obviously not optimal.

On the other hand, note that:

P aij − P dij = Sij − p∗ij + θ[

K∑
k=0

αk(
P ∗(i+1)k +A∗(i+1)k

2
)

+ (1− ρ)Ui+1]− θ[
K∑
k=0

P ∗ik +A∗ik
2

+ (1− ρ)Ui] (37)

= Sij − p∗ij + θ[

K∑
k=0

M(i+1)k + (1− ρ)Ui+1]

− θ[
K∑
k=0

Mik + (1− ρ)Ui] (38)

= Sij − p∗ij + Ui+1 − Ui (39)
= Sij − p∗ij + q∗ij − Sij = q∗ij − p∗ij ≥ 0 (40)

The step from (37) to (38) is based on the definition
of Mij , as in the proof for Lemma 1. The last inequality
follows from the definition of the equilibrium prices in
Lemma 1. An intuitive explanation can be derived by
contradiction. Suppose q∗ij − p∗ij < 0, then agent j can
propose q′ij such that p∗ij > q′ij > q∗ij , which contradicts
the optimality of q∗ij .

Now consider the state when agent Υ is selected as
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Fig. 6. The state transition diagram of an agent, assum-
ing he adopts the disagreement policy in every state Ai
and agreement in every state Pi. Each state Ai includes
K substates. Substate Aij is reached with probability αj .
Similar definition applies for Pi. Leave is an absorbing
state that can be reached from any other state with
probability µ.
the responder, then:

Aaij −Adij = Sij − q∗ij + θ[

K∑
k=0

αk(
P ∗(i+1)k +A∗(i+1)k

2
)

+ (1− ρ)Ui+1]− θ[
K∑
k=0

P ∗ik +A∗ik
2

+ (1− ρ)Ui] (41)

= Sij − q∗ij + θ[

K∑
k=0

M(i+1)k + (1− ρ)Ui+1]

− θ[
K∑
k=0

Mik + (1− ρ)Ui] (42)

= Sij − q∗ij + Ui+1 − Ui (43)
= Sij − q∗ij + q∗ij − Sij = 0 (44)

Therefore, the agreement strategy ensures that the
agent Υ cannot profit more by rejecting the proposal
q∗ij from his partner.

Given that the agreement action is optimal for every
state, it constitutes a stationary policy that solves the
following revenue-maximizing Bellman equations in a
dynamic control problem [15]:

J∗(Pij) = max{P dij , P aij}, J∗(Aij) = max{Adij , Aaij} (45)

Following Proposition 7.2.1 in [15], it can be easily
verified that the stationary policy of agreement is the
optimal policy for the payoff-maximizing problem cor-
responding to the market equilibrium. ut

APPENDIX D
PROOF FOR PROPOSITION 1
Proposition 1. Let M(t) denote the vector representing the
population of each type of peers at time t, and n(t) denote
the vector of peer populations in the deterministic system (3),
(4). As N →∞, M(t) converges to n(t) almost surely.

Proof: The proof follows a recent result from Boudec
et al. [16]. Specifically, the deterministic approxima-
tion n(t) represents a mean field limit of the stochastic
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Fig. 7. The goods availability, reflected by the number of
type-i (0 ≤ i ≤ K) agents on the market.

process M(t) almost surely, if the transition matrix
corresponding to M(t) converges to a deterministic
vector independent of N . Denote KN

ij as the probability
that a type-i peer transits to type-j when the total
population is N . Then j equals either 0 or (i+ 1). Since
KN
i0 = µ, and:

lim
N→∞

KN
i(i+1) =

ni
NM

=
n0

(1 + φ)iNM

=
µ

( N
N−n0

)i
= µ(1− µM)i (46)

Therefore, the transition matrix converges to a deter-
ministic value as N → ∞. Following Theorem 4.1 in
[16], M(t) converges to n(t) almost surely. ut

APPENDIX E
SIMULATION VALIDATION OF THE MEAN-FIELD
MODEL FOR GOODS AVAILABILITY

We simulate a dynamic P2P network following the ran-
dom peer selection and segment selection policy. The
download/upload bandwidth equals one block per unit
time. By default, the file size F = 1000, segment size
K = 100, and churn rate µ = 0.003. The simulation lasts
for 6000 periods. A server is online in the beginning
and leaves after 1000 periods. The results are sampled
after the market evolves to a steady state, which usually
takes around several hundred periods.

Fig. 7 plots the goods availability when using net-
work coding. The availability demonstrates little vari-
ation over time and across different goods, and the
model is able to capture the average number of each
type of agents. Our experiments also reveal that the
variation of availability over goods generally decreases
with the segment size K. However, even in the extreme
case where K = 1, the variation is still negligible,
especially when considering αi = ni

NM .
Fig. 8 illustrates the goods availability for such non-

coding case, with both random segment selection and
the rarest-first segment selection policy in BitTorrent-
like systems. The rarest-first strategy can alleviate im-
balanced segment distribution, resulting in less varia-
tion of availability compared with random selection.
However, the reduction in variation amounts to only
around 0.01 fraction of the peer population. In addition,
even for random selection, the variation is only around
0.02 fraction, which is negligible. Notably, when seg-
ment size K becomes close to 1, the above differential
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Fig. 8. The goods availability in a P2P market without
network coding using (A) local-rarest first segment se-
lection and (B) random segment selection. Both result
in around 0.77 fraction of sellers for each good. The
steady-state model results in 0.83 fraction of sellers in
this case.

(A) (B)

Fig. 9. The differences between global goods availability
and local goods availability (A) in a P2P file sharing
system. The availability is reflected by the fraction of
sellers on the market. (B) in a P2P streaming system.
File size F = 300. Segment size K = 1. Average peer
lifetime is 1200.

equation model results in deviations from the actual
goods availability, which is reflected by the fraction
of sellers on the market. This is because the model
idealizes the efficiency of the corresponding P2P sys-
tem, assuming that peers’ upload bandwidth can be
fully explored in each time period. In such cases, it is
more preferable to allow agents to estimate the global
availability of goods by inspecting the local availability
within their neighborhood.

To justify such an estimation approach, we allow
an agent to sample the goods availability of 20 ran-
domly selected neighbors and average over 10 samples
at steady-state. Fig. 9(A) plots the results of global
availability minus local availability, which consistently
remain within 1%. This indicates that local availability
is a good predictor of global availability, and can be fit
into our game theoretic model in Sec. 4 to determine
the equilibrium price on the market.

Note that in a streaming system, the segments are
prioritized in sequence, and demonstrate considerable
variation. However, the goods availability, i.e., the αi
values can still be determined online by localized
probing. As a justification, we implement a smallest-
index first segment selection strategy, i.e., when multiple
segments are available for download, the one with
the lowest index is selected. Fig. 9(B) illustrates the
resulting local availability and global availability, which
obviously exhibit little difference. The pricing analysis
in previous section still applies to such P2P streaming
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Fig. 10. Variation of goods availability over time and
across segments. 1000 servers are online throughout
the simulation.

systems, based on goods availability information from
such local probing or steady-state modeling. Such ex-
tensions are out of the scope of our current work.

For the case with content servers (i.e., agents who hold
the entire file and never leave the market), the decrease
of si in ∆t is (N+Ns−n0)·ni∆tNM , where Ns is the number
of servers online. Similar to the case without servers,
the following set of differential equations captures the
evolution of the market.

dni(t)

dt
= (N +Ns − n0)

ni
NM

− µN ni
N

− (N +Ns − n0)
ni−1

NM
(47)

dn0(t)

dt
= µN

N +Ns − n0

N
− (N +Ns − n0)

n0

NM
(48)

Solving equation (48), we get:

n0 =
1

2
[(µNM +N +Ns)± ((µNM +N +Ns)

2

− 4µN2M)
1
2 ]

Since n0 ≤ N +Ns, the only feasible solution is:

n0 =
1

2
[(µNM +N +Ns)− ((µNM +N +Ns)

2

− 4µN2M)
1
2 ] (49)

Combined with (47), and let φs = µNM
Ns+N−n0

, we have:

ni =
n0

(1 + φs)i
,∀i : 0 ≤ i < K (50)

nK =
n0

φs(1 + φs)K−1
(51)

Fig. 10 illustrate the variation of goods availability
over 10 sample periods and across 10 segments with
K = 100. There are 104 downloaders, excluding 1000
servers who are constantly online. In this case, the
above model still captures the average goods availabil-
ity on the market. Compared with the case without
servers, the market enjoys a higher level of availability,
as manifested by a larger fraction of seeders and smaller
fraction of agents with zero blocks.

APPENDIX F
THE EQUILIBRIUM WITH SERVERS
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Fig. 11. The lifetime payoff in the presence of servers.
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Fig. 12. The per-server payoff for varying churn rate (µ)
and number of servers (Ns).

F.0.1 Equilibrium with Servers
We proceed to the numerical results for the case
with servers. Fig. 11 plots the lifetime payoff when
100 servers facilitate 5000 downloaders. When servers
present, all possible churn rate within (0, 1) is sup-
ported by the market. However, the lifetime payoff for
low-complexity coding protocols and the non-coding
protocol suffers from a steep decrease in the high churn
rate region, implying that agents are less motivated to
join the market.

If we deem each server as a special seeder, who
refreshes his life with probability µ every period, then
the seeder’s payoff is equivalent to the time-average
payoff of the server, which is termed per-server payoff.
The per-server payoff decreases as more servers join the
market (Fig. 12). This is because the competition among
servers reduces the individual bargaining power, thus
reducing the revenue from each pairwise bargaining
game. In addition, in the low churn rate region, non-
coding has a much higher level of payoff than high-
complexity coding protocols. This implies that when
agents are patient enough, it is more beneficial for the
servers to not use network coding, though the expected
payoff of downloaders decreases with low coding com-
plexity. Therefore, the two forces — content servers
and downloaders — may need an additional bargaining
game over the coding complexity to be employed.


