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Abstract
Prototyping application-layer algorithms in wireless

networks is a lengthy and challenging process, involving
either programming within a specific simulation plat-
form, or deploying a real testbed that is neither flexible
nor scalable. In this paper, we present Drift, a high-
performance wireless emulation testbed that takes ad-
vantage of the benefits of both simulation and real imple-
mentation, while trying to avoid their drawbacks. As a
highly condensed emulation infrastructure, Drift makes
it possible to rapidly develop and validate large-scale
wireless network application-layer protocols within a
cluster computing environment. Unlike existing emula-
tion testbeds, Drift features a fully decentralized archi-
tecture, an efficient message processing unit, and more
accurate network models for mobile wireless nodes. It
balances the fundamental trade-off between scalability
and emulation accuracy, focusing on maximizing scal-
ability with minimal loss of accuracy. Through base-
line comparison and extensive experiments, we find that
Drift is able to accommodate thousands of emulated
nodes per server host (in contrast to only tens of nodes
typically seen in existing emulation tools), while main-
taining comparable accuracy to packet level simulators.
Drift will be released as an open source platform.

1. Introduction

It has long been the academic tradition to use sim-
ulation, emulation, or real-world experimental testbeds
to evaluate application-layer algorithms in wireless net-
works. Different experimental methodologies differ
significantly with respect to their scalability, accuracy
(when compared to reality), flexibility, as well as cost.
Simulations may deviate from reality, but they are less
costly, more flexible, and more scalable than real-world
experimental testbeds, which produce more realistic per-

∗This work was supported in part by LG Electronics, and by Bell
Canada through its Bell University Laboratories R&D program.

formance results. Emulation testbeds achieve the mid-
dle ground, and combine the advantages of both sim-
ulations and real-world testbeds by emulating wireless
transmissions over wireline networks, using real oper-
ating systems and network protocol stacks of the net-
worked hosts. Unfortunately, emulation methodologies
also inherit some of the drawbacks.

Contemporary wireless network emulators have lim-
ited scalability. They tend to adopt one or both of
the following paradigms. First, a centralized structure
[16, 21, 23], consisting of a dedicated controller and a
certain number of slave hosts. All the network events
(pairwise packet transmission, node position update,
etc.) have to be managed by the central controller. Obvi-
ously, such an arbitrator may become a communication
bottleneck, when intensive traffic is routed through it.
This is why such emulators fail to work under the load of
tens of nodes and several MBytes/second traffic, which
is far from enough to satisfy the growing scale and in-
network processing requirements in current wireless net-
works. Yet another paradigm is the single-node emula-
tion [9, 21], where each physical machine emulates one
wireless node, which apparently does not scale. Beside
lack of scalability, unduly simplified network models
and the complexity of configuring the OS kernel — as
required by most existing emulators — also upset po-
tential users.

In this paper, we seek to solve the above prob-
lems with Drift, a high-performance emulation testbed
which distinguishes itself with a fully distributed archi-
tecture, lightweight network models as well as other de-
sign choices that aim at scalable emulation of wireless
networks with minimal loss of accuracy. With Drift,
thousands of nodes can be conveniently deployed to a
server cluster, running customized application-layer al-
gorithms and protocols. The Drift infrastructure is in-
stalled as an application program and therefore needs no
configuration of the emulation hosts’ kernels. As a fun-
damental design objective, Drift is meant to scale well in
a clustered environment. It is able to support more than



one thousand nodes in a single host, which is already
beyond the capacity of centrally controlled emulators.
An even more invaluable property is that its scalabil-
ity increases linearly with the number of hosts, which
is achieved by minimizing the communication overhead
between hosts, and by localizing all the parameters of
an emulated node. With a fully distributed architec-
ture, we remove the potential capacity restrictions im-
posed by a central arbitrator, and distribute the compu-
tation load throughout each host in the cluster. We have
also planned to release Drift as an open source platform,
with the hope that it may become beneficial to other re-
searchers in the community.

Modeling the lower layers has been a formidable
barrier for the research community in wireless network
emulation. Existing emulators either avoid this obsta-
cle [21, 22] or try to provide lengthy details [23] at the
cost of efficiency. Drift balances the trade-off between
scalability and accuracy using an abstract MAC layer
that handles the transmission schedules of neighboring
nodes in the unit of groups, as well as an analytical MAC
layer model that is tailored for further accuracy require-
ments. As to the physical layer model, we feed empiri-
cal data into an accurate analytical model to capture the
path-loss effects. With these measures, Drift achieves
a level of fidelity comparable to detailed packet level
simulations, while leaving sufficient room for improv-
ing scalability.

The remainder of this paper is organized as follows.
In Section 2, we describe in detail the composition and
design highlights of Drift, including our model of the
wireless network stack, and our implementations that
enable the distributed architecture. Section 3 evaluates
the performance of Drift with respect to scalability and
realism through baseline comparisons and extensive ex-
periments. In Section 4 we compare our work with ex-
isting literature in wireless network emulation. Finally,
Section 5 concludes the paper.

2. Drift: Design and Implementation

As a cornerstone of Drift, scalability has been our
primary design objective from day one. Existing emula-
tion testbeds does not support more than tens of nodes
with heavy traffic, which is insufficient to understand the
behaviors of application-layer algorithms in large-scale
wireless networks [7]. To achieve high scalability, one
needs to minimize the overhead introduced by the em-
ulation infrastructure, and to be able to accommodate
complex algorithms — such as network coding — with a
light-weight testbed. Scalability, however, implies sim-
plicity, which does not bode well for accurately emulat-
ing reality. In order to be scalable but with sufficient
realism, we have to face the following challenges:
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Figure 1. An outline of the Drift framework.

Efficient implementation of a distributed architecture.
To represent the shared nature of the wireless environ-
ment, each emulated node must efficiently sense the ac-
tivities of neighboring nodes (possibly in different hosts)
without consulting a central authority. To enable dis-
tributed emulation, the lower layer models must also
be distributed and can be efficiently implemented. In
addition, pairwise transmissions and the corresponding
bandwidth constraint must be directly realized, without
going through a central host.
Modeling MAC layer. Although it generally produces
more reliable results, detailed packet-level simulation of
MAC protocols involves highly frequent message ex-
changes which, unlike that of simulators, costs consid-
erable communication overhead. We seek to avoid such
message exchanges , while still conforming to the gen-
eral behaviors of a real MAC.
Modeling physical layer effects. To model the path-loss
effects in a realistic manner, the emulator must remove
the assumption of perfect transmission within a circular
range, without degradation of scalability.
Coping with mobility and other network dynamics. To
ensure scalability, each node has to autonomously com-
pute their locations in real time, rather than resorting to
a central authority. On the other hand, node mobility
invites a significant level of network dynamics, such as
frequent connection failures and reset, which have to be
handled efficiently by the emulator.

In the following subsections, we present more details
on the design of Drift, which aims to solve the above
problems.

2.1. Drift architecture

Drift features a decentralized architecture, in which
multiple physical machines (i.e., emulation hosts) as-
sume equal roles and connect to other hosts through a
Gigabit Ethernet switch (Fig. 1). In each emulation host,
we create multiple instances of the Drift program, each
running as a single-process multi-thread entity. These
entities have the same IP address with the emulation
host, but differ in their range of port numbers. Each en-
tity can accommodate several hundred wireless nodes.



A node must have the same IP address as its entity and
its port numbers (including UDP control, UDP data, and
TCP listening port) are assigned according to the port
number range of the entity. In general, the emulation
host’s kernel restricts the number of open sockets (e.g.,
1024 in Linux) in each process. Since each node takes
up at least 3 ports, the maximum number of nodes in an
entity is quite limited (e.g., at most 341 in Linux). By
allowing multiple entities in one host, however, we can
fully explore the per-host computation and communica-
tion capacity.

Given a target wireless network topology, we map
the nodes to the Drift framework according to their ge-
ographical locations (Fig. 1). Specifically, we split the
topology into multiple subareas, each represented by a
single emulation host. A host’s topology can be further
split into multiple subareas, each containing multiple
nodes and emulated by a single entity. Note that differ-
ent host’s or entity’s area may not be equal. We assign
more entities to the area with high node density, if the
topology is prescribed and static. We are in the process
of designing a dynamic load balancing scheme for time-
varying topologies with highly unbalanced node distri-
bution.

The internal architecture of an emulation entity con-
sists of three parts (Fig. 2): the wireless algorithm, the
wireless network model, and the message switch. In a
general sense, each of them corresponds to the applica-
tion layer, MAC&PHY layer, and TCP/IP layer in the
OSI model. Specifically, the algorithm generates appli-
cation data, processes incoming packets, and tags them
with additional information. Processed packets are then
pushed into an outgoing buffer. The message switch
is responsible for transmitting and receiving packets in
the outgoing buffer through TCP/UDP sockets. Before
the actual transmission, each packet is subject to the
MAC scheduling and physical layer per-link bandwidth
constraint, which are managed by the wireless network
models.

In order to improve the efficiency of emulation, we
allow nodes in the same entity to share the message pro-
cessing unit. We observe that memory usage is not a
problem in most cases (Sec. 3), thus each node maintains
its own memory-demanding data structures, such as the
incoming buffer and outgoing buffers. Consequently,
an emulated node becomes a set of self-contained vari-
ables describing its status and properties, and all nodes
in the same entity share the same functions that regu-
late packet transmission/receptions, manage the incom-
ing and outing buffers and simulate the lower layer mod-
els. In the following sections, we provide more details
on these functionalities that are critical to the perfor-
mance of Drift.
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Figure 2. Internal architecture of an entity.

2.2. Wireless network models

In general, wireless network emulators take advan-
tage of the transport and IP protocols in the emulation
hosts themselves, but the MAC and PHY models are
still simulated. For centralized emulation systems (see,
e.g., [16,21–23]), it is possible to simulate the MAC and
PHY in the central controller using discrete event sim-
ulators like ns-2 and Qualnet [11]. Obviously, such an
approach does not apply for distributed emulation. To
allow the emulation hosts and entities to locally man-
age the lower layer behavior, Drift adopts two kinds of
MAC models: an abstract MAC and an analytical MAC.
The physical layer effects are simulated through an an-
alytical framework based on empirical parameters. We
also incorporate application-layer routing protocols and
a comprehensive class of mobility models, which are in-
troduced below.

2.2.1 The MAC layer models

Emulating the actual interactions of nodes under a real
MAC protocol will undoubtedly compromise the scal-
ability and even the real-time nature of an emulator,
because of the highly frequent message exchanges and
the different time scales between wireless and wire-
line transmissions. We avoid the complex message ex-
changes with two kinds of MAC models: the abstract
MAC which jointly manages each group of nodes shar-
ing the same channel, and the analytical MAC which
derives the per-link bandwidth (i.e., achievable rate)
through mathematical models.
Abstract model. The abstract model features a coarse-
grained simulation of the wireless MAC layer. The
key observation underlying this scheme is that the exact
trace of the MAC layer message exchanges is not im-
portant. What really matters is the estimation of achiev-
able throughput between any transmitter-receiver pairs
at any given time. To model the bandwidth allocation
between competing nodes by the MAC layer, we parti-
tion the network into groups centered around each active
transmitter. The group size equals to the interference
range. A node cannot receive packets if it falls in the
interference range of an interfering node and the total



incoming throughput of all group members must be less
than the channel capacity. The packet reception of each
member is enabled in a randomized round-robin fashion
(by the message switch) in order to enforce MAC layer
fairness. Such an abstract MAC model corresponds to
an ideal scheduling scheme in which interfering nodes
can optimally multiplex the channel.

As a general model that captures the wireless inter-
ference and bandwidth competition, the abstract MAC
is appropriate for the following cases. (1) Prototyp-
ing applications which are not sensitive to the lower
layer models [10], or algorithms that are based on ideal
scheduling models [15]. (2) Highly scalable emulation
where the number of nodes and computation efficiency
are of a higher-priority concern. A case in point is to un-
derstand the benefits of randomized network coding in
wireless mesh networks [4].
Analytical model. Occasionally, one may want to ex-
plore the influence of MAC layer settings on the tar-
get application. We therefore incorporate an analytical
MAC model which offers higher accuracy than the ab-
stract model without significant sacrifice of scalability.
The analytical MAC is based on existing work on mod-
eling the link throughput in 802.11 multi-hop wireless
networks [8]. This mathematical model acts as a plug-in
module in Drift. Whenever topology changes or a new
transmitter-receiver pair starts, the module re-computes
the MAC level bandwidth of each active link.

The analytical model eliminates the overhead due to
real MAC layer interactions, but it still involves complex
computations. The computation typically takes tens of
seconds, for a network with several hundred active links.
Apparently, the time scale of such computation must be
less than the time scale at which the topology changes.
Therefore, the analytical model is best applied to sce-
narios where nodes are static or moving at a low speed,
and where the flow structure does not change with high
frequency.

2.2.2 Physical layer model

Simply put, the physical layer model in Drift predicts
link bandwidth based on the distribution of Received
Signal Strength (RSS) at a certain distance. Empiri-
cal measurements have shown that RSS is a good pre-
dictor of link bandwidth, while the distribution of RSS
at a certain distance can be approximated by choosing
appropriate parameters for the log-normal shadowing
model [3]. Based on these observations, we develop
a light-weight analytical model that approximates link
bandwidth given the link distance. With the shadowing
model, we remove the assumption of perfect reception
within transmission range, which is commonly assumed
by existing emulators (e.g., [16,21]). Unlike the empiri-
cal measurement which is limited to fixed settings (data

rate, packet size, etc.), we take the following steps to
derive the link quality.

The RSS (in dBm) at a certain distance is given by
the well-known shadowing model:

P (d) = P (d0)− 10β log
( d

d0

)
+ X (1)

where d0 is a reference distance with known RSS; β is
the path-loss exponent; X is a Gaussion random variable
with zero mean and standard deviation σ. β and σ are
obtained from empirical measurements [3].

Denote T as the empirical RSS threshold, then the
physical layer reception probability can be derived from
(1) as:

Pr(P (d) > T ) =
1
2

erfc
(T + 10β log

(
d
d0

)
− P (d0)

√
2σ

)
where erfc denotes the complementary error function.
Since the shadowing time scale is usually much larger
than the duration of a packet transmission, it is reason-
able to assume the MAC layer ACK and DATA packets
have the same reception probability. Then the probabil-
ity of a transmission failure due to DATA or ACK packet
loss is given by:

p = 1− (Pr(P (d) > T ))2

Previous work [8] has modeled 802.11 link layer
throughput under collisions but without channel impair-
ment. Here we consider the link throughput with non-
ideal physical channels. In particular, under the 802.11
CSMA model, the probability of transmission at a time
slot is given by [8]:

τ =
2q(1− pm+1)

q(1− pm+1) + W0(1− (2p)(m+1)(1− p))
where q = 1 − 2p; m is the retransmission limit; W0

is the minimum back-off window size. Since the PHY
model only accounts for the bandwidth of a single link,
the channel is either idle or occupied by a transmission
attempt. Therefore the link bandwidth equals to the ex-
pected amount of traffic that is successfully delivered
within in unit time, i.e.,

Tp =
τ · (1− p) · PacketSize

τ · Ts + (1− τ) · SlotTime
where Ts is the duration of a successful transmission and
can be approximated with:

Ts =
Data Size + ACK Size + Header Size

Link Capacity
The notion Link Capacity denotes the maximum

throughput of a wireless link, e.g., 2MB/s in 802.11 ba-
sic mode. The gap between the link throughput Tp and
the link capacity is solely due to the packet losses caused
by channel impairment. From the perspective of higher
layer protocols, the direct consequence is random packet
losses, whose probability can be computed as the ratio
of Tp over link capacity.



The above physical layer model accounts for packet
losses caused by large-scale path-loss. Such per-link
losses are observed to be independent of each other [1].
However, the actual emulated per-link throughput in a
multi-hop network may be much lower than the achiev-
able link bandwidth, due to interferences between links,
which have been accounted for by the MAC layer mod-
els. In addition, our model can incorporate more realistic
channel behaviors by replacing the link-distance based
reception model with empirical traces.

2.2.3 Routing protocols

It is impossible to implement the large collection of ex-
isting application-layer routing protocols. For many ap-
plications, routing is not even a necessary component. In
view of this, we only support simple geographical rout-
ing protocol and link-quality based shortest path rout-
ing protocols [5] in Drift. Though we are in the process
of implementing other routing models, application de-
velopers may easily extend the default routing protocols
with the interface we provide. Here we emphasize again
that Drift aims to provide a light-weighted infrastructure
for prototyping new applications, rather than to exhaust
all protocols in literature.

2.2.4 Mobility models

We build a comprehensive class of mobility models, in-
cluding trace based and random trip models. In the for-
mer model, nodes’ location changes may be specified
in trace files following prescribed format. The latter in-
clude random waypoint, random walk with wrap, ran-
dom walk with reflection, random walk on general do-
main, and random walk in a city map. It has been proven
that constructing random-trip models in a naive way may
result in unrealistic models due to the “initial transition”
problem [2]. We therefore construct the whole class of
random trip models based upon theoretical work on the
perfect mobility simulation [2], which screens off such
effects in order to produce unbiased evaluation results.
To reduce computation intensity, mobile nodes update
locations in a periodical way, and the period can be con-
figured according to the granularity requirements of spe-
cific applications.

2.3. The message switch

The message switch provides an interface between
the wireless algorithm and the TCP/IP layers in the em-
ulation host’s kernel. It consists of two core components
called the network and engine, respectively. The net-
work serves as a high-speed packet transceiver which
accepts TCP/UDP connections from upstream nodes,

buffers incoming packets, and sends the processed pack-
ets to downstreams. The engine extracts packets from
the incoming buffers and switches them to the wireless
algorithm for further processing. After possibly com-
plex processes (e.g. packet encoding and decoding) by
the algorithm, the outcome is switched back into the out-
going buffers for transmission.

A major task of the message switch is to emulate
the bandwidth caps imposed by the MAC model and
the packet losses imposed by the PHY model. The
bandwidth emulation component lies within the network
module and is built atop the UNIX select() func-
tion. Within each emulation entity, all incoming and
outgoing TCP/UDP connections are monitored by a sin-
gle select() call with a specific timeout value. The
actual transmission or reception happens only when the
corresponding sockets is ready, and a socket is put into
the set of socket descriptors for select only when the
corresponding MAC layer bandwidth constraints are re-
laxed. Similar mechanism is applied to emulate the per-
link delay constraint. Packet losses due to channel im-
pairment are emulated by randomly dropping packets in
the outgoing queue, according to the loss probability ob-
served by higher layers (Sec. 2.2.2).

To facilitate the emulation of data sources in live ses-
sions, the message switch provides a testing data source,
which generates data from a regular file, the standard in-
put, or a stream of randomly generated bytes. The pro-
duced data are packetized and then enqueued into the in-
coming buffer on the source node, which then distributes
the content according to the protocol specification. Al-
ternatively, the application developers may opt to imple-
ment their own data sources based on the interfaces we
provide.

Notably, the entire message switch module has only
two threads (for network and engine, respectively), but
is able to handle hundreds of concurrent connections,
and switch incoming or outgoing packets immediately.
To reduce context switches, we allow all nodes within
each emulation entity to multiplex a single message
switch in a weighted round-robin fashion, with dynam-
ically tunable weights. Each entity runs only one en-
gine and one network, but is able to efficiently man-
age the connections and buffers of hundreds of nodes
with minimal CPU usage and memory footprint. Be-
side the routine task of switching packets and emulating
bandwidth, it also has a set of built-in utilities including
timers, throughput measurement, connection exception
handling, etc.

2.4. The mirror scheme

Two critical problems need to be handled for a dis-
tributed architecture. First, implementing the MAC
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layer model in a distributed manner requires each node
to be aware of the activities of its neighbors, even if the
neighbors are located in a different entity (i.e., a differ-
ent process). Second, a distributed architecture requires
seamless migration of nodes from one entity to another,
i.e., nodes’ identifications and status are kept intact even
after its migration. More importantly, it requires that a
node does not have to reset the existing TCP connec-
tions, even after it migrates to another entity and accord-
ingly changes its IP and port number.

To tackle the above problems, we design a novel
scheme called mirror. Simply put, we create copies of
the original node inside neighboring entities, when it has
the tendency of migration. For ease of exposition, we
introduce the notation of boundary area, i.e., the set of
locations whose distances to the edge of the geograph-
ical area represented by an entity are smaller than the
transmission range (Fig. 3). Once a node moves into
the boundary area, it sends mirror requests to neigh-
boring entities (3 at most, as is the case of node 3 in
Fig. 3). Based on the information piggybacked in the
request message, each neighboring entity creates a mir-
ror with the same properties (ID, location, clock, etc.)
as the original node. To save computation cost, mirror
nodes do not run their own mobility models. Rather,
their locations are updated according to the information
periodically sent from the original node. To keep the
continuity of TCP/UDP connections, we set up mirror
links immediately after the birth of mirror nodes, i.e., all
connections with the original nodes are cloned for the
mirrors and vice versa.

While a node resides in the boundary, its transmission
and interference range span over 2 or 4 entities. At this
time, all versions (one original node plus 1 or 3 mirrors)
of the node periodically exchange channel information,
so as to obtain a consistent view of the neighborhood’s

channel status. The frequency of such exchanges is a
tunable parameter that varies according to the raw stabil-
ity of throughput. Once the original node moves out of
the boundary area, the version corresponding to its cur-
rent location assumes its role, while all other versions
are deleted. With such a mirror scheme, all nodes in
Drift become localized and autonomous, except those in
the boundary area, which can be an arbitrarily small por-
tion as we reduce the ratio of boundary area to topology
size.

2.5. Other salient features

The basic infrastructure of Drift involves approxi-
mately 18,000 lines of code in C++. It can be compiled
on all UNIX variants without the tedious process of con-
figuring system kernel. It provides simple configuration
files with prescribed format so that an experiment can be
rapidly set up with a server cluster or even several com-
modity PCs on hand. It also supports interactive emula-
tion with an application called Observer, through which
users can query, monitor and control the emulated nodes
at run-time in a graphical user interface.

In Drift, an application is considered as a “message
processor” that handles incoming packets according to
a certain protocol specification. In general, develop-
ing new applications only involves modifications to a
message processor function (which lies in the algorithm
layer). For instance, an application layer routing proto-
col can be prototyped by dictating the responses of each
node upon route discovery messages. After a route is
established, incoming data packets are forwarded to the
best nexthop by calling a send function, which passes
the processed packets to lower layers for transmission.

3. Performance Evaluation

With the above design choices, we believe Drift is
able to achieve much higher performance than contem-
porary wireless network emulators. In this section, we
describe our experimentations on quantifying the scala-
bility and accuracy of Drift.

3.1. Scalability

We demonstrate Drift’s scalability in two aspects: ca-
pacity, in terms of the number of nodes or the amount of
traffic it can accommodate, and efficiency, in terms of its
usage of resources in the emulation hosts.

3.1.1 Single-host capacity and efficiency

We compare Drift’s capacity to the most scalable wire-
less emulator so far, MobiNet [16], within the same
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benchmark scenario. Specifically, a total of N nodes
are randomly deployed in a rectangular terrain and
N
2 single-hop UDP constant bit rate (CBR) flows are

started, with a rate of 256 Bytes/second and 64 Bytes
packet size. The experiments are running on a 2.0GHz
machine with 512MB memory, under Slackware Linux
10.2. We vary the value of N and monitor the CPU and
memory usage. We observe that Drift is able to support
up to 1600 nodes in a single machine (Fig. 4). With
the same application and 3 machines of the same hard-
ware configuration, however, MobiNet can only support
200 nodes at its full capacity [16]. This is because Drift
is a lightweight application layer emulation framework,
while MobiNet, as most existing wireless emulators, re-
sides in the kernel level. More importantly, all pair-
wise flows in MobiNet must be routed through the cen-
tral controller which enforces bandwidth and delay con-
straints, while Drift achieves the same objective using
a single local host and with efficient message switches
shared by hundreds of nodes. Note that the experi-
ment with Drift is based on the shadowing model and
the abstract MAC model. With the analytical MAC, the
throughput of each link only needs to be computed once
(since the flow structure is static), thus the CPU load will
be further reduced.

The above experiment is designed in accordance to
[16], so as to obtain a fair comparison between Drift
and MobiNet. Note that the node capacity and traffic
capacity are closely related. With lighter traffic, Drift is
able to support much more nodes. On the other hand,
the node capacity of Drift will decrease when the traf-
fic is heavy, and mobility is turned on. In Fig. 4, we also
demonstrate a scenario (CBR2k) with much heavier traf-
fic (2KB/second) than the above CBR application. In
this case, the node capacity of Drift reduces to around
1200. In another scenario (CBRmobile), each node
moves according to the random waypoint model with
a mean speed of 2 m/s while maintaining 2KB/second
CBR session with a randomly selected neighbor. As
shown in Fig. 4, the maximum node capacity is further
reduced to around 800. Note that at a large scale, CPU
becomes the bottleneck, hence we only focus on CPU
usage in the following tests.
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3.1.2 Benefits of distributed execution

The capacity and efficiency of Drift are best illustrated
in distributed execution — an emulation experiment in
Drift can be distributed to multiple entities if the max-
imum number of open sockets may exceed the kernel
limit on per-process socket set size; and to multiple hosts
if its CPU and memory consumption may exceed the ca-
pacity of a single host.

As a demonstration, we examine the node capacity
of Drift as a function of the number of emulation hosts.
We increase the number of nodes while keeping roughly
constant node density (4 neighbors per node). Each node
runs the neighbor discovery, i.e., a “hello” message is
broadcast to all neighbors every second, and a response
is sent back upon receiving the message. All nodes are
moving according to the random waypoint model, with
a mean speed of 2 m/s. We record the total number
of nodes when the CPU usage of each emulation host
reaches 100% (Fig. 5). With 32 2GHz hosts, Drift is able
to scale to a total of 43, 200 nodes! More importantly,
Drift’s node capacity increases linearly as more hosts are
added. The slope of the line (i.e., per-host capacity) may
vary depending on the computation and communication
intensity of the application protocol.

To test the traffic capacity of the distributed architec-
ture, we fix the number of nodes per-host to 500, and
let half of them transmit text files to a randomly se-
lected neighbor at a constant rate through TCP connec-
tion. We measure the achievable throughput (the aggre-
gate throughput when CPU usage reaches 100%) while
increasing the number of emulation hosts. Again, we
observe linear increase of the traffic as a function of the
number of hosts (Fig. 5). With 32 hosts, Drift is able to
accommodate more than 60 MBytes/second traffic. In
effect, the capacity of Drift can keep increasing, as long
as the aggregate throughput of the target network does
not exceed the capacity of the network switch that con-
nects all emulation hosts. By contrast, no matter how
many emulation hosts are used, MobiNet’s capacity is
upper-bounded at 5.7 MB/s [16], which is exactly the
traffic capacity of the central controller. Such traffic ca-
pacity is insufficient for large topologies with thousands
of links and several hundred KB/s traffic per-link.



Time Event
7.7 Source14 starts unicast to Node3 and Node15.

24.1 Source12 starts unicast to Node3.
43.9 Node3 moves into the area of Entity3, and

disconnects with Source11 and Source12.
67.1 Source9 starts unicast to Node3 and Node10.
96.5 Source7 starts unicast to Node8.
118.5 Source6 starts unicast to Node3.
120.0 Node3 moves into the area of Entity4. Source5

starts unicast to Node13.
137.3 Node3 moves to the bottom-right corner. All

connections with it are broken. The original
Node3 and the two mirrors are removed.

Table 1. Accuracy test scenario for the ab-
stract MAC

3.2. Accuracy

To evaluate the accuracy of Drift, we focus on its
MAC and physical layers since they are based on simu-
lated models.

3.2.1 MAC layer accuracy

Due to the difficulties of implementing the details of a
MAC protocol (Sec. 2.2.1), the accuracy of the simu-
lated MAC models in an emulator is upper-bounded by
the accuracy of a packet level discrete-event simulator.
Therefore, we compare the abstract and analytical MAC
models in Drift with a highly detailed simulator, Qual-
net [11], which is known to be able to capture the packet
level behavior of a real MAC. Specifically, we compare
with the 802.11b MAC in Qualnet 4.0 under its default
settings. To highlight the MAC layer functionalities, we
adopt UDP CBR transmissions with static routing, as-
suming the PHY link reception probability is 1, so that
throughput only depends on the competition among dif-
ferent links.
Accuracy of the abstract model. we consider the case
where node 3 in Fig. 3 roams around, and the flows in
its neighborhood vary over time (Table. 3.2.1). Fig. 6
plots the throughput variation of all versions (original
node and mirrors) of the mobile node 3, together with
the corresponding Qualnet simulation results. Through-
out the data session, Drift produces bandwidth dynamics
consistent with the detailed Qualnet simulation. Note
that its actual throughput has overestimations because
it assumes a perfect MAC protocol without any over-
head. According to real world measurement, the over-
head of 802.11 MAC takes up more than 25% of the
overall transmission time for a single link [20]. When
multiple links are contending for the channel, and the
RTS/CTS are turned on (as in our experiment with Qual-
net), the data throughput is even lower due to the imper-
fect scheduling and the control message overhead. This
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Figure 6. Throughput of a Drift mobile
node compared with Qualnet.

explains the gap between the detailed MAC model in
Qualnet and the abstract model in Drift.

Recall that a node in the boundary area needs to ex-
change channel status information periodically with its
mirror versions. A natural question might be whether
such interactions cause inconsistencies between differ-
ent versions of a node. From Fig. 6, we also observe that
all 4 versions of the node show consistent behavior, indi-
cated by throughput. Here we intentionally set the infor-
mation update period to a large value (6 seconds). With
more frequent interactions, different versions of a node
show more consistent behavior with each other. We note
that for understanding the general variation of through-
put, there is no need to perfectly synchronize the original
nodes and mirrors. Without going into the microsecond
level details, we can still well observe the general vari-
ation of throughput due to network dynamics such as
mobility.
Accuracy of the analytical model. We evaluate the ac-
curacy of the analytical model on a grid topology shown
in Fig. 7, where each node sets up a CBR session with
a randomly selected neighbor. We use the default pa-
rameters in the Qualnet MAC protocol and initialize the
analytical MAC with the same parameters. Since the
analytical model accurately identifies hidden terminal,
exposed terminal, and other flow starvation effects in
an 802.11-like MAC protocol [8], the resulting per-link
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Figure 7. A grid topology with random data
sessions.
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Figure 8. Per-link throughput (pack-
ets/sec.) of the grid topology (CBR
sessions, 11Mb/s data rate, 1KB packet).
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Figure 9. Link layer throughput
comparison between Drift and
real-world measurement.

throughput can approximate that of the detailed simu-
lation by Qualnet (Fig. 8). Though it is more accurate
than the abstract MAC, the analytical MAC has limited
flexibility, i.e., it cannot be applied to highly dynamic
scenarios where the node moves with high speed and
the flow structure varies at a time scale less than tens of
seconds.

3.2.2 Accuracy of the physical layer model

We use the PHY model in Drift to predict the link layer
throughput subject to path-loss effects. Specifically, the
input to Drift is the MAC layer settings and the empiri-
cal physical layer characteristics (σ, β and T ) measured
in [3]. The output is the average link layer throughput
(when transmitting UDP data) for different distances.
As a benchmark comparison, we take the average RSS
at each link distance in [3] (Section “backhaul link mea-
surement”), and trace the throughput of different links
with the same RSS. Fig. 9 shows the link layer through-
put of Drift in comparison with the measurement traces
sampled every 50 meters. Due to the site-specific na-
ture of the wireless environment, it is infeasible to accu-
rately determine the throughput of a link based on link
distance. However, the analytical PHY model in Drift
is still able to predict the general trend of throughput
degradation caused by large-scale path-loss effect, i.e.,
the shadowing effect.

3.2.3 Accuracy of bandwidth enforcement

Conventional wisdom has mostly focused on emulat-
ing wireless network stacks at the kernel level of the
wireline hosts [16, 21, 22]. Traffic is routed through a
central host that enforces bandwidth constraint of the
corresponding link. In contrast, the bandwidth con-
straint in Drift is enforced by the application level mes-
sage switch, which is decentralized and much more
lightweight. One may wonder whether such a scheme
can accurately perform bandwidth emulation. Our ex-
periments have validated that the emulation error in Drift
is within 0.1%, as long as the required bandwidth does
not exceed the traffic capacity. We omit details of the

experiments due to space constraints.

4. Related Work

Most existing wireless network emulators are based
on a centralized architecture. In MobiEmu [21], for
example, emulation hosts send packets to a dedicated
central controller, which determines packet loss, delay,
node mobility and other network dynamics using simu-
lation. MobiNet [16] adopts a similar mechanism, but
adds more network models including simple physical
layer, MAC and mobility models. Since all the com-
putations required by network models have to be done
at the central controller, and all traffic has to be routed
through it, such an approach restricts its scalability to
the capacity of a single host, i.e., the central controller.

An alternative approach is trace-based emulation
(see, e.g., [17]), which tries to replay real-world scenar-
ios based on the traces from existing wireless networks.
However, it is suitable for only end-to-end protocol eval-
uation, rather than testing large-scale multi-hop wireless
networks, whose traces are hard to obtain and replay.

Some emerging emulation platforms feature the in-
tegration of emulation, simulation and even physical de-
vices to support the evaluation of wireless networks. For
example, EmStar [9] uses real wireless sensors to pro-
vide the channel model for simulators. Simulated nodes
are mapped to a set of sensor motes that send and re-
ceive real packets. However, the one-to-one mapping
results in limited scalability. The TWINE [23] testbed
goes further by incorporating the Qualnet into an emu-
lation framework, while providing interfaces with real
network devices. It takes advantage of the fine-grained
simulations for MAC and physical layer protocols to en-
sure realism. However, with packet level granularity and
the fine time synchronization managed by a dedicated
controller, it only scales to around 4 wireless nodes in
each emulation host.

There are a relatively large number of experiment
platforms constructed by real wireless devices (see, for
example, [6,13,14,18]). They can provide accurate eval-
uation of network protocols. However, experimenting
with real wireless devices takes a considerable amount



of time, which is undesirable if protocol designers hope
to try out alternatives efficiently under a variety of set-
tings. Moreover, due to the cost of real mobile wire-
less nodes, it is sometimes infeasible to test networks
with more than dozens of nodes, subject to funding con-
straints.

Simulation platforms have also been widely used by
the research community. Since no real packets are trans-
mitted, it is easier to achieve scalability in simulators,
especially in distributed simulation engines [11,19]. The
common limitation of simulators, as noted above, is the
need for protocol re-implementation [16], when switch-
ing from a specific simulator to real operating systems.
The simulated transport and IP layer protocols may also
compromise the simulation results [12].

5. Conclusion

In this paper, we described Drift, a highly efficient
emulation platform for the development and validation
of application-layer algorithms in large scale wireless
networks. Drift is designed from scratch to support
scalable emulation within a cluster environment, where
thousands of nodes are running in each host, and nodes
can seamlessly migrate from one host to another. In
order to maximize scalability with minimal loss of ac-
curacy, Drift adopts abstract and analysis-based lower
layer models. Our extensive evaluations have demon-
strated the high performance of Drift in terms of scal-
ability and accuracy. We have planned to release Drift
as an open source platform, and as the full potential of
Drift is explored and more researchers adopt this emu-
lation framework, we believe it will become a valuable
tool to evaluate protocols—such as network coding—at
the application layer in large scale wireless networks.
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