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Abstract—Network coding has been a prominent approach to a
series of problems that used to be considered intractable with tra-
ditional transmission paradigms. Recent work on network coding
includes a substantial number of optimization based protocols,
but mostly for wireline multicast networks. In this paper, we
consider maximizing the benefits of network coding for unicast
sessions in lossy wireless environments. We propose Optimized
Multipath Network Coding (OMNC), a rate control protocol that
dramatically improves the throughput of lossy wireless networks.
OMNC employs multiple paths to push coded packets to the
destination, and uses the broadcast MAC to deliver packets
between neighboring nodes. The coding and broadcast rate is
allocated to transmitters by a distributed optimization algorithm
that maximizes the advantage of network coding while avoiding
congestion. With extensive experiments on an emulation testbed,
we find that OMNC achieves more than two-fold throughput
increase on average compared to traditional best path routing,
and significant improvement over existing multipath routing
protocols with network coding. The performance improvement is
notable not only for one unicast session, but also when multiple
concurrent unicast sessions coexist in the network.

I. INTRODUCTION

The prevalence of low-quality links in real-world wireless
mesh networks [1] has posed a fundamental challenge for
mesh network designers, i.e., to maintain network performance
under unsatisfactory and lossy conditions. Using measured
reception probability in path selection, loss-aware single-path
routing protocols [2], [3] have demonstrated remarkable effec-
tiveness in maintaining end-to-end throughput. Such protocols
adopt the average link reception probability as the distance
metric when running the shortest-path algorithm. Traditional
multipath routing protocols [4]–[6] can be used to improve
fault tolerance by delivering redundant packets through mul-
tiple paths. Opportunistic mulitpath routing further improves
throughput by exploiting the wireless broadcast nature and the
overhearing capability of neighboring nodes. For example, the
ExOR [7] protocol allows all neighboring nodes that are closer
to the destination to serve as potential forwarders, and uses
delicate scheduling policies to reduce duplicate transmission.
To apply its scheduling algorithm in a harsh wireless envi-
ronment, however, ExOR needs nontrivial control overhead.
In addition, it does not guarantee full reliability — end-to-
end retransmissions are required to compensate for missing
packets.

To address such deficiencies, Chachulski et al. [8] proposed
an opportunistic multipath network coding protocol, MORE,
which augmented randomized network coding upon oppor-

tunistic routing. MORE allows the source node to continu-
ously send coded packets through multiple opportunistic paths
until the destination collects a sufficient number of packets
for decoding. With random mixing of overheard packets,
each intermediate relay can generate and forward linearly
independent packets with high probability, thereby avoiding
the complicated negotiation that determines which packets to
transmit. In addition, MORE achieves 100% packet delivery
ratio, since it continues transmission until an entire chunk of
file is correctly decoded by the destination.
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Fig. 1. An example scenario in multipath network coding where credit based
algorithms [8] are ineffective.

Although the problem of which packet to transmit is cir-
cumvented by network coding, a scheduling algorithm must
still be in position to determine when to transmit. Intuitively,
relays along efficient paths should be allowed to generate and
transmit coded packets more frequently, while other relays
are employed opportunistically. MORE adopts a credit based
heuristic algorithm that centrally prescribes for each relay how
many incoming packets it should wait before generating a
new coded packet. However, this approach does not account
for the bandwidth resource competition among neighboring
forwarders having new packets to transmit. As a result, relays
in congested hotspots may generate more coded packets than
the network can accommodate, rendering the credit algo-
rithm ineffective. The problem is especially pronounced when
multiple unicast sessions (i.e., end-to-end flows) are running
simultaneously.

As justification, consider the scenario in Fig. 1 with two
concurrent unicast sessions, represented as source-destination
pairs (S, T ) and (S′, T ′). The relay nodes u and v assist
both sessions, while w does not forward packets for S as the
reception probability of link (S, w) is negligible. Also, since
w is further away from S′ than the other two relays, it will
be assigned less credit according to MORE. However, in case
when both sessions are heavily loaded, it is advantageous for



S′ to employ w more as it causes less interference to other
nodes and is less affected by the congestion. In addition to the
above problem, it remains unknown how many coded packets
each source node has to transmit so as to save redundant
transmissions while ensuring decodability at the destination.
Since a source node has an indefinite number of packets to
transmit, it will inevitably congest the network without proper
control of the encoding and transmission rate.

In this paper, we propose Optimized Multipath Network
Coding (OMNC), an optimization based network coding proto-
col that controls the end-to-end transmission of coded packets
in a lossy wireless environment. Similar to the opportunistic
network coding protocol MORE, end-to-end transmissions in
OMNC are carried by coded packet streams flowing through
multiple paths that are formed by overhearing forwarders.
However, unlike the credit algorithm in MORE, OMNC is
built upon an optimization framework that jointly optimizes
multipath routing and rate control. Instead of determining the
number of packets, it assigns specific encoding and broadcast
rate to the source and intermediate forwarders, taking into ac-
count the congestion caused by competing flows, and seeking
for optimized bandwidth usage.

To derive an optimized rate for each node, we model the
coding, routing and broadcast MAC constraints that are spe-
cific to a network coding based opportunistic routing protocol,
with the objective of improving the end-to-end throughput
for a single unicast in lossy mesh networks, and maximizing
the aggregate network throughput while guaranteeing fairness
when multiple unicast sessions are running. By solving the
optimization framework using mathematical decomposition
[9], we design a set of decentralized algorithms that match
the coding and broadcast rate of each node with its channel
status, so as to avoid congestion, to fully explore the path
diversity, and to reduce the generation of redundant packets.

To validate the OMNC protocol, we implement and test it
on a wireless emulation testbed that is designed for compu-
tationally intensive experiments like network coding. Experi-
ments on large random networks demonstrate that OMNC can
achieve a 245% throughput improvement on average over a
loss-aware single-path routing scheme with high-throughput
metric [2], which is significantly higher than the performance
of MORE. Besides, OMNC is always able to keep the highest
aggregate network throughput when compared with existing
unicast network coding protocols [8], [10], no matter how
many concurrent unicast transmissions are undergoing. Our
experimental results also validate the intuition that an un-
optimized network coding protocol tends to produce coded
packets greedily, oblivious of the channel congestion effect,
hence resulting in degraded performance.

The remainder of this paper is organized as follows. In
Sec. II, we present a literature review of existing work,
including multipath routing and network coding protocols.
Sec. III overviews the OMNC operations and highlights the
rate control algorithms with diverse objectives. In Sec. IV,
we address practical issues and further optimizations on the
implementation of OMNC. In Sec. V, we evaluate the perfor-

mance of OMNC, in comparison with related work. Finally,
Sec. VI concludes the paper.

II. RELATED WORK

Multipath routing has been extensively explored in wireless
networks for the purpose of energy efficiency and fault toler-
ance. In traditional multipath routing, packets are duplicated
[6] or erasure-coded [5] and routed through several paths
in parallel. Existing research in this direction focused on
optimally distributing data flows to available paths, so as
to increase the probability of successful decoding at the
destination node. Multipath routing has also been used to
sidestep congested hotspots or alleviate long-term congestion
[11] in networks with reliable links and known geographical
information. All the above protocols are built atop the unicast
MAC protocol and explicit path selection algorithms such
as link-disjoint routing [12]. By contrast, in an opportunistic
routing protocol [7], [13], [14], paths are implicitly formed:
all potential forwarders that overhear a packet can contribute
to the unicast, and the best relay is dynamically selected after
sophisticted negotiation among them.

With opportunistic routing, each data session runs more
aggressively, since more nodes are involved in the unicast.
Therefore, the resource optimization problem becomes more
important than in traditional multipath routing. Despite its
remarkable performance advantage, the modeling and op-
timization of opportunistic routing remains a challenge, in
contrast with the vast literature of cross-layer optimization
[15], which are mostly focused on single best-path routing.
In [16], optimal multipath routing is formulated as a utility
maximization problem, but without considering the broadcast
nature and interference constraint of wireless networks. Re-
cent work by Zeng et al. [14] extended the conflict graph
model to account for the opportunistic reception of broadcast
packets. End-to-end throughput is optimized based on a linear
programming model, which can only be centrally solved
using optimization packages. In addition, they do not consider
the bandwidth allocation among multiple unicast sessions,
which has a large impact on the throughput performance of
opportunistic routing.

Our work further differs from the above line of research in a
focus on opportunistic multipath network coding. In particular
, we are interested in modeling the propagation of information
flows when relays are allowed to mix packets using random
linear code [17]. In addition, we derive simple models for
the broadcast MAC and multipath routing which, combined
with the coding model, results in an optimization framework
and decentralized algorithms that is amenable to practical
implementation.

Optimization based approaches to network coding have
been extensively studied, but mostly confined to multicast
networks without interference constraints (see e.g. [18]). This
is because the optimized flow structure in such networks can
be easily mapped to actual topology, where overlapping flows
of different multicast trees are directly encoded. Lun et al.
[19] pointed out that network coding may also improve energy



efficiency for unicast sessions in wireless networks. They
proposed a min-cost problem to determine the transmission
rate of each node. The results were subsequently applied to
an unpublished system implementation, i.e., the preliminary
version of MORE [20]. However, their formulation has no rate
control mechanism and does not well exploit path diversity,
which are critical to the performance of network coding for
unicast transmissions (further justifications are provided in
Sec. V).

In [21], Radunovic et al. addressed resource allocation
problem for network coding based on a stochastic network
optimization approach. They extended the optimal backpres-
sure algorithm for network coding based multicast [22] to the
unicast case. The backpressure algorithm assumes that each
intermediate forwarder has the queue size information at all
downstream nodes, which is infeasible due to the difficulty of
real-time feedback in a lossy wireless network. Such queuing
information is not required in OMNC.

Our previous work [23] adopted an optimization approach
towards multipath network coding, in order to alleviate the
congestion when neighboring relays serve for a single source-
destination pair. When multiple unicast sessions co-exist, the
greedy nature of multipath network coding becomes a more
critical problem, since each session fully utilizes all possible
opportunities to maximize throughput, oblivious of the interest
of other concurrent sessions. In this paper, we resolve the
conflict of interest among competing flows using a more
general optimization framework that maximizes the aggregate
network throughput. Correspondingly, we design an OMNC
algorithm for multiple unicast sessions, which is decentralized
with respect to not only each session, but also to each node. We
observe that OMNC achieves much higher performance than
existing network coding and routing protocols, even when the
max-min fairness constraint is enforced.

III. OMNC: HIGHLIGHTS OF THE PROTOCOL

In this section, we first introduce the basic idea of a
multipath network coding protocol (exemplified by MORE
[8]), and then continue to present an overview of OMNC. In
designing OMNC, we emphasize the formulation and design
of its rate control mechanism, which can be tailored to perform
optimized operations with different objectives and for different
scenarios.

A. Background: Multipath Network Coding

Multipath network coding (henceforth referred to as MNC),
first implemented in [8], is designed for long lasting unicast
sessions in lossy wireless networks. In MNC, the source node
first divide the original data file into trunks called genera-
tions. It then continuously produces packet streams from a
generation using random linear code (RLC). Coded packet
streams flow through multiple paths towards the destination.
Intermediate forwarders can refresh the packet streams by re-
encoding existing packets and broadcasting the coded packets
to downstream nodes. Once a sufficient number of packets
accumulates at the destination, the original group of data

blocks can be recovered. Thereafter, an uncoded ACK is
sent back to the source (preferably using traditional routing),
allowing it to start operating on a new generation of data
blocks.

When performing random linear network coding, both the
encoding and decoding operations can be regarded as matrix
multiplication over a Galois field. Specifically, each generation
is split into data blocks. One generation can be represented
as a matrix B, an n × m matrix, with rows being the n
blocks of the generation, and columns the bytes (represented
as integers from 0 to 255) of each data block. The encoding
operation produces a linear combination of the original blocks
by X = R · B, where R is an n × n matrix composed of
randomly selected coefficients in the Galois field GF (28). The
coded blocks (rows in the X matrix), together with the coding
coefficients (rows in R), are packetized by the source and flow
as packet streams towards the destination.

The decoding operation at the destination node, in its
simplest form, is the matrix multiplication B = R−1·X , where
each row of X represents a coded block and each row of R
represents the coding coefficients accomplished with it. The
successful recovery of the original data blocks B requires that
the matrix R be of full rank, i.e., the destination must collect
n independent coded blocks.

The major task of intermediate forwarders is to refresh
the packet streams, i.e., to re-encode incoming packets and
broadcast the resulting packets to downstream nodes. The
ability of re-encoding enables forwarders to avoid the severe
packet redundancies in store-and-forward routing protocols,
since a coded packet carries information from not only the
newly coming packet, but also existing ones that were oppor-
tunistically received. To further reduce futile transmissions,
an incoming packet is accepted only if it is independent of
existing received ones, i.e., it is innovative. This ensures that
if a node accepts a new packet, it is also able to produce and
contribute an independent coded packet to the packet streams.

B. OMNC: An Overview of the Protocol Operations

The very nature of randomized network coding enables
MNC to guarantee full reliability even under severe losses,
since the probability of decoding failure approaches 0 as more
and more packets accumulate at the destination [17]. However,
it is a nontrivial task to tailor network coding for efficient
unicast, given the possible redundancy induced by linearly
dependent packets, and congestion caused by competing nodes
even for the single unicast case. The key contribution of our
OMNC protocol lies in its ability to manage the encoding,
broadcasting and multipath routing in an optimized manner, in
order to maximize the performance of lossy wireless networks.
This is mainly achieved by its rate control algorithm.

Fig. 2 illustrates the flow of operation at an intermediate
node that is running the OMNC rate control mechanism.
Whenever a packet is overheard and buffered, it first undergoes
innovative check which determines whether it is linearly
independent of existing packets. If so, it will be put into an
innovative packet queue. All outgoing packets are generated
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Fig. 2. The control flow of OMNC protocol at an intermediate forwarder.

by re-encoding packets in this queue, at a rate specified by
the rate control algorithm. Some intermediate nodes, espe-
cially those close to the source, may collect a whole gener-
ation of independent blocks prior to the destination. These
nodes no longer accept fresh packets from upstream nodes
since all incoming packets will be non-innovative. However,
they continue re-encoding packets and broadcasting them to
downstreams at the specified rate, until current generation is
decodable at the destination. At that time, the source node
receives an ACK sent by the destination (along the shortest
path), and continues to the next generation. Either an ACK
or a coded packet with a higher generation ID will dictate the
intermediate nodes to discard packets belonging to the expired
generation. The key objective of rate control is to match the
encoding rate with the allowable broadcast rate, which depends
on the channel congestion status in the neighborhood.

For the case of multiple unicast sessions, a relay main-
tains separate innovative packet queues for each session.
Correspondingly, the rate control mechanism assigns specific
encoding rate to each queue. Operations at the source node
also follow Fig. 2, except that all incoming packets are from
the original data file. Note that a credit algorithm like MORE
[8] tends to cause congestion at the source side, since it can
keep on incrementing its credit by obtaining packets from
the data file whose size is indefinite. By contrast, OMNC
constrains the coding and broadcasting rate of the source in
an optimized manner, such that neighboring relays have the
chance to forward the packets they have produced.

In what follows, we introduce the design of the core
component in OMNC, i.e., the rate control algorithm which
assigns encoding rate to each transmitter in the network.

C. The Optimization Framework for A Single Unicast Session

For ease of exposition, we begin with the case for a single
unicast session. Even in this case, the congestion problem
is nontrivial, as multiple neighboring nodes still contend for
the bandwidth resource. Before running OMNC, the source
node needs to perform a shortest path algorithm with the ETX
metric (exptected number of transmissions needed to deliver
a packet) [2], and a node selection operation, which reduces
the topology size by pruning those relays further away from
the destination than their predecessors in terms of ETX. For
instance, the relay w in Fig. 1 will be pruned by source S after
node selection (More practical aspects of the node selection
procedure are discussed in Sec. IV-B).

Denote the source and destination as S and T , and the
resulting topology graph after node selection as G(V,E),
where V is the set of selected nodes involved in the unicast and
E is the set of directed links. We first set up a broadcast MAC
model as an optimization constraint by extending existing
models for unicast MAC protocols.

Broadcast MAC model. For a unicast MAC, it is
known that characterizing the necessary-sufficient condition
for feasible MAC schedules is an NP-hard problem [24].
A sufficient condition for feasible schedules is [25]: fij

Cij
+∑

(k,l)∈I(i,j)
fkl

Ckl
≤ 1, where fij is the unicast rate on link

(i, j); Cij is the link capacity; I(i, j) is the set of links
that may interfere (i, j). A necessary condition is fij

Cij
+∑

(k,l)∈Q(i,j)
fkl

Ckl
≤ 1, where Q(i, j) is the clique in the

conflict graph that involves link (i, j) [24]. In this paper, we
extend the unicast MAC model to obtain a necessary condition
for feasible broadcast schedules. Different from the traditional
unit-disk graph model that assumes perfect reception within
transmission range, we define transmission range as the dis-
tance where packet reception probability is below a certain
threshold. For simplicity, we assume the threshold is small
enough, such that the transmission range and interference
range can be considered the same (referred to as range).
Beyond the range, the probability of successful reception can
be ignored, and the interference is also negligible.

We model an ideal time-slotted broadcast MAC where
competing transmitters can optimally multiplex the channel
without any collisions. Let Bi[t] be the decision variable
indicating whether node i is transmitting in slot t. Then a
schedule is collision free iff:

Bi[t] +
∑

j∈N(i)

Bj [t] ≤ 1,∀i ∈ V \S, (1)

i.e., in each time slot, any receiver i allows the broadcast
transmission from at most one transmitter within its range.
N(i) denotes the set of all transmitters within its range
(including itself). Note that the source node S is excluded
because all nodes in V are receivers except S. Denote T as
the period of a schedule, and bi as the rate at which node i
broadcasts packets to its downstream nodes, then we have:

bi = lim
T→∞

1
T

T∑
t=1

Bi[t], (2)

Apply (2) to (1), we obtain:

bi +
∑

j∈N(i)

bj ≤ C,∀i ∈ V \S (3)

where C = 1
T is the MAC layer capacity, which equals to the

maximal broadcast rate of a node when no interferer presents.
In consequence, for any feasible broadcast schedule, (3) must
be necessarily satisfied.

We emphasize that the above model represents a neces-
sary but insufficient condition for collision free broadcast
schedules, as we transformed an integer variable Bi[t] into
a continuous one bi by averaging. However, it can serve
as a common ground for comparing application layer cod-
ing/routing protocols. For unicast MAC, it has been observed



that rescaling the transmission rate of each link can generate
feasible schedules [26]. Similar technique can be applied to the
case for broadcast MAC. An alternative approach to represent
a broadcast MAC is to extend the clique graph model, as
in [14]. The clique model is also a necessary condition for
collision free broadcast, but computing the cliques in a graph
is NP-hard [24]. Hence it is not applicable to a practical
optimization based algorithm like OMNC.

Coding model. In addition, we need to model how coded
information is broadcast along all paths in G(V,E), which
is the key difference between multipath network coding and
opportunistic routing [14]. Denote pij as the one-way recep-
tion probability of link (i, j). Consider a basic single-unicast
scenario where source S pushes the coded packet streams to
T through two paths, each containing one forwarder, denoted
as u and v which cannot overhear each other (i.e., u /∈ N(v)).
This is exactly the case for the session (S, T ) shown in
Fig. 1. We observe that if u, v have different set of linearly
independent packets from S, then they can generate linearly
independent packets for T with high probability. Furthermore,
when links are lossy, the probability for u, v to have the same
set of linearly dependent packets is as low as (pSu · pSv)q,
where q is the sequences of packets broadcast from S, and
pSu is the reception probability of link (S, u). Thus we
assume u and v can independently contribute information to
T . However, it is infeasible for u and v to determine whether
the information is independent of existing packets received
by T , and to compute the corresponding optimal broadcast
rate. As an attempt to derive a distributed but not necessarily
optimal solution, we adopt the following formulation instead.
Denote the information flow rate on link (i, j) as xij , which is
the average injection rate of innovative packets on link (i, j),
then the broadcast rate of i must be able to support xij even
in the face of packet losses: bipij ≥ xij . This means that the
links with high qualities will be favored, while those that may
opportunistically receive packets and contribute to the packet
streams are involved as well.

Multipath opportunistic routing model. Though OMNC
integrates network coding with multipath opportunistic rout-
ing, it does not violate the flow conservation constraint.
At each intermediate forwarder, the outgoing rate of fresh
information flows must equal the incoming rate of innovative
packets. Reflected in its actual operations (Fig. 2), OMNC
encodes a new packet only upon a newly coming packet that
is innovative. A dependent packet does not contribute to the
information flow and is not counted in. Consequently, we can
derive the following flow conservation constraint to represent
the routing model in OMNC:∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = π(i),∀i ∈ V.

where, denoting γ as throughput, π(i) is defined as:

π(i) =

 γ if i = S,
−γ if i = T,
0 otherwise.

The sUnicast problem. Given the above models, and the
non-negative constraint on information flows, we formulate the
throughput-maximization problem for a single unicast session
as follows:

sUnicast: max γ, subject to:∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = π(i),∀i ∈ V (4)

xij ≥ 0,∀(i, j) ∈ E (5)

bi +
∑

j∈N(i)

bj ≤ C,∀i ∈ V \S (6)

bipij ≥ xij ,∀i ∈ V \T, j ∈ N(i) (7)

One noteworthy point is that the throughput γ may be less
than the actual information flow rate, due to the possible
dependence of different packet streams arriving at the des-
tination, which has been omitted in the approximated coding
constraint (7). Nevertheless, the essential objective of sUnicast
is to derive a rate allocation vector b that takes advantage
of multiple opportunistic paths and takes into account the
competition among neighboring nodes, rather than to compute
the absolute optimal throughput value. More importantly, it
translates into a practical algorithm, which performs much
better than existing heuristic solutions.

D. A Distributed Rate Control Algorithm

The above sUnicast problem is a linear program with size
proportional to the number of nodes in V , and thus can be
solved in polynomial time. Optimization decomposition [9]
is well-suited for solving such a problem in a decentralized
manner. Peculiar to the sUnicast problem, we propose the
following dual-decomposition procedure [9] that leads to
a distributed rate control algorithm. Simply put, we relax
the constraint (7) that entangles two primal variables – the
broadcast rate vector b and the information rate vector x
– and then solve for these two variables separately in two
subproblems. The corresponding dual problem is iteratively
solved, in parallel with the primal one.

First, we relax the complicating constraint (7) with a La-
grange multiplier vector λ (i.e., the dual variable) and obtain
the Lagrangian function:

L(b,x,λ) = γ +
∑

(i,j)∈E λij(bipij − xij) (8)

According to the duality theory [27], the original optimization
problem sUnicast is equivalent to the relaxed problem:

min
λ

max
x,b

L(b,x,λ) (9)

The corresponding Lagrangian multiplier problem (i.e., the
dual problem) can be solved with the subgradient method [9]:

λij(t + 1) = [λij(t)− θ(t)(bipij − xij)]
+ (10)

where [·]+ denotes the projection onto the non-negative or-
thant. t is the index of the iterative steps of update. θ(t) is
the step size for the iteration t. Here we adopt diminishing
step sizes that guarantee convergence regardless of the initial



value of λ. Specifically, θ(t) = A
B+C·t , where A, B and C

are tunable parameters that regulate convergence speed.
In addition, the corresponding primal problem

maxx,b L(b,x,λ) can be decomposed into two separate
subproblems:

SUB1: max
x

γ −
∑

(i,j)∈E λijxij (11)

subject to constraints (4) and (5), and

SUB2: max
b

∑
(i,j)∈E λijpijbi (12)

subject to constraint (6).
Owning to the above decomposition, we obtain a modular-

ized optimization of two subproblems: the multipath oppor-
tunistic routing problem (SUB1), and the broadcast/encoding
rate allocation problem (SUB2). These two problems are
solved separately and coordinated by the Lagrange multiplier,
i.e., the dual variable λ.

Problem SUB1 assumes a structure similar to the well
known min-cost flow problem [28]. However, the flow rate on
each link has no upper bound (since we relaxed the constraint
(7)) and the throughput γ appears in the objective function.
Considering such differences, we adopt an alternative approach
to the problem. First, we transform the original throughput
maximization problem into an utility maximization problem,
where the utility U(γ) is a monotonically increasing and
strictly concave function. The ln(γ) function is well suited
for this purpose. Such a transformation can achieve the same
optimal solution to x and b as the original problem. The
transformed problem is:

min
x

∑
(i,j)∈E λijxij − U(γ) (13)

subject to constraints (4) and (5).
With respect to the vector x, this is just a shortest path

problem with well-established decentralized solutions [28].
Assuming the cost of a unit flow is pmin (obtained by adding
up the link cost λij along the shortest path), if we send γ
units of traffic through it, the total cost is γpmin. To achieve
the minimal value of the objective function, i.e., to take
minimal cost, the first-order optimality condition [27] must
hold: d

dγ [γpmin − U(γ)] = 0, from which we obtain:

γ = U ′−1(pmin) (14)

Consequently, problem (13) requires us to send U ′−1(pmin)
units of traffic through the shortest path in each optimization
iteration. By taking the Hessian of the objective function (11),
it can be seen that the objective is not strictly convex, which
implies the possible loss of a primal feasible solution. In view
of this, we adopt the primal recovery method [29] to retain the
feasibility of the primal problem. Instead of applying the result
from (14) directly to per-link flow rate, we take an equally-
weighted average of the resulting flow rate in each iteration:

xij(t) =
1
t

t∑
k=1

xk
ij (15)

where xk
ij is the result for link (i, j) in iteration k. Note that the

shortest path may change with the link cost λij throughout the
process of iterative optimization. Within each iteration, only
a single shortest path is selected. However, with (15), we not
only obtain a primal feasible solution, but also a multipath
routing scheme that assigns appropriate rate to all links.

Next, we proceed to solve problem SUB2 using Lagrangian
relaxation. The Lagrangian form of SUB2 is:

min
β

max
b

∑
i∈V wibi − βi(bi +

∑
j bj − C) (16)

where wi =
∑

j λijpij , ∀(i, j) ∈ E; βi is the Lagrange
multiplier, whose concrete meaning is the congestion price
charged on node i for its violation of the channel capacity.
Such congestion price can be generated by a MAC protocol
itself [30]. This again justifies the practical implications of
the OMNC formulation, although its scheduling constraint (6)
does not perfectly model a real MAC protocol.

And again, the Lagrangian multiplier problem for SUB2 can
be solved using the subgradient method:

βi(t + 1) =
[
βi + θ(t)(bi(t) +

∑
j bj − C)

]+

(17)

where we adopt the same step size θ(t) as in (10). The
Lagrangian subproblem for (16) can be linearized as:

max
b

∑
i∈V (wi − βi −

∑
j βj)bi + βiC (18)

Since this problem is linear, the Lagrange multiplier method
does not necessarily generate a primal solution bi [27]. Thus
we adopt the proximal method [28] and add a quadratic term
to make it strictly convex:

max
b

∑
i∈V (wi − βi −

∑
j βj)bi − φ||b− b(t)||2 + βiC

Then we update bi with:

bi(t + 1) = bi(t)−
wi − βi −

∑
βj

2φ
(19)

where φ is an arbitrarily small positive constant that enables
the above update to be arbitrarily close to the optimal value
of bi. To ensure boundedness of the iterations, we add loose
lower and upper bounds to the broadcast rate bi, i.e., 0 ≤
bi ≤ C, which is consistent with the constraints in the original
problem. Since the vector b is also a primal variable in the
primal problem (8), we apply the primal recovery method to
guarantee a primal optimal solution, in a similar way to (15):

bi(t) =
1
t

t∑
k=1

bk
i (20)

In summary, we describe the distributed rate control mech-
anism for a single unicast session in Table. I. It is straightfor-
ward to see that the problems SUB1 and SUB2 have unique
solutions following the above procedure. In addition, the
primal recovery method ensures that the optimal dual solution
of the main framework (9) converges to a primal optimal
solution. Therefore, the distributed rate control algorithm is
guaranteed to converge. A formal proof of uniqueness and



TABLE I
DISTRIBUTED RATE CONTROL ALGORITHM

1) Initialize parameters. Set elements in b, x to small
positive numbers. Initialize the dual variables to zero.

2) For all node (link) involved in the transmission, itera-
tively repeat the following operations until convergence.

3) Solve the main framework (9).
a) Solve problem SUB1. Find the shortest path in a

distributed manner, with link cost λij . Update the
conceptual unicast rate xij according to (14)(15).

b) Solve problem SUB2.
i) Update the primal variable bi with (19)(20).

ii) Update the congestion price βi with (17). Send
the updated βi and bi to all neighbors.

4) Update the Lagrange multiplier λij with (10).

convergence follows directly from the results for subgradient
and decomposition method [9], [27] and is omitted in this
paper. To obtain an intuitive view of the convergence property
of the algorithm, we showcase the iterative evolution of the
node broadcast rate for the sample topology in Fig. 3. From
the results, we observe that the broadcast rate converges to the
optimal solution within a few rounds of iterations. For more
complex topologies, the convergence speed may vary with the
number of nodes and links.

E. Extension to Multiple Unicast Sessions

When multiple unicast sessions are running, each runs the
node selection algorithm separately, and they may share relays
along the paths. Therefore, the congestion problem becomes
even more critical. In this case, OMNC can assign encoding
rate to each node, so as to alleviate congestion and to maximize
the aggregate network throughput. Denote the session index
as k,the set of concurrent sessions as K, the corresponding
optimization problem is formulated as:

mUnicast: max
∑

γk subject to: (21)∑
j xk

ij −
∑

j xk
ji = π(i, k), (22)

xk
ij ≥ 0, (23)∑

k bk
i +

∑
k

∑
j bk

j ≤ C, i 6= Sk (24)

bk
i pij ≥ xk

ij , i 6= T k (25)

where i ∈ V k, (i, j) and (j, i) ∈ Ek, k ∈ K, and

π(i, k) =

 γk if i = Sk,
−γk if i = T k,

0 otherwise.

Unlike the single unicast case, a session index k is attached
to each variable. Because of this new complication, the origi-
nally independent variables become coupled and the previous
approach to the single unicast problem cannot be applied
straightforwardly. Instead, we use the primal decomposition
method [9]. By fixing bk

i in the constraint (25), a primal
decomposition of the mUnicast problem can be obtained :

max
∑

k∈K γk (26)

S

T

0.7 0.7

F2F1

F3 F4

0.8 0.8

0.8 0.6

0 10 20 30 40 50 60

Number of iterations

0

1x104

2x104

3x104

4x104

5x104

B
ro

a
d

c
a

s
t 
ra

te
 (

b
y
te

s
/s

e
c
o

n
d

)

S
F1
F2
F3
F4

Fig. 3. The convergence speed of the distributed algorithm. Step size is
chosen as: A = 1, B = 0.5, C = 10. F denotes forwarders. Channel capacity
is 105 bytes/second. The reception probability is marked on each link.

subject to constraints (22), (23) and (25). This is a simple
max flow problem that is decomposable with respect to k.
In particular, we relax the constraint (25) and apply the
subgradient method together with the primal recovery, in a
similar manner to the solution of the problem SUB1.

With the primal decomposition, the corresponding master
primal problem is:

max
b

f(b) (27)

subject to constraint (24), where f(b) is the optimal value
of the original objective as a function of the vector b. Note
that the analytical form of the function f(b) is unavailable.
However, it is convex and its subgradient equals to the
Lagrange multiplier in problem (26) (for a general proof, see
Sec. 6.5.3 in [27]). Therefore, we can apply the subgradient
method again and update b using:

bk
i (t + 1) =

[
bk
i (t) + θ(t)vk

i (t)
]
P (28)

where vk
i is the subgradient of the function f(b) with respect

to b. Obviously, it is equivalent to the Lagrange multiplier
associated with constraint (25) in the problem (26). [·]P
denotes the projection onto the domain P:{

b :
∑
k∈K

bk
i +

∑
k∈K

∑
j

bk
j ≤ C, i ∈ V k\Sk, (i, j) ∈ Ek

}
(29)

Assume we obtain a vector b0 after the non-projected update
in (28), then the projection process is equivalent to:

min ||b− b0||2 (30)
subject to A · b ≤ C (31)

The inequality (31) corresponds to the matrix form of the
domain P , where we stack the bk

i to form a row vector b.
Then we apply Lagrangian relaxation again and obtain the
Lagrangian subproblem:

min
b

bT b− 2bT b0 +
∑

i αi(
∑

j Aijbj − C) (32)

where αi is the Lagrange multiplier and can be updated in a
similar way to (17). Then each element of b can be obtained
by bn = b0n− 0.5

∑
m αm, where m denotes the index of the

rows with non-zero Ami. Note that the non-zero elements of
each row in A only involve nodes in the same neighborhood,
thus the problem can still be solved in a distributed manner
with a few rounds of message passing. The convergence of the



above algorithm follow the general convergence properties of
subgradient and decomposition method [9], [27].

As the mUnicast problem seeks to maximize the aggregate
throughput, it may be applied to admission control of multiple
concurrent sessions, i.e., to decide whether a newly joined ses-
sion will compromise the social welfare of the entire network.
However, it does not guarantee fairness among all sessions.
Some sessions may be suppressed in order to maintain the
total throughput. Hence we propose an alternative problem
mfUnicast that imposes max-min fairness:

mfUnicast: max min
k∈K

γk (33)

subject to constraints (22), (23), (24) and (25). This problem
is equivalent to the following linear program:

max γ (34)

subject to γ ≤ γk(∀k ∈ K), plus constraints (22), (23),
(24) and (25). In this paper, we only numerically solve this
mfUnicast problem, and leave the decentralized solution to
future work.

IV. OMNC: PRACTICAL ISSUES

Aside from the rate control mechanism, it is also necessary
to optimize the design of OMNC from the following practical
aspects.

A. Coding Operations
Progressive decoding. Implementing the random linear code
in a naive way may induce heavy computation load on the
wireless nodes and even result in delayed transmissions [20].
A salient feature in our implementation of OMNC is the
progressive decoding using Gauss-Jordan elimination, which
keeps the decoding matrix in its reduced row-echelon form.
A non-innovative packet will produce an all-zero row in the
reduced matrix and will be discarded immediately. On the
other hand, Gauss-Jordan elimination enables the destination
node to perform independence check and decoding on-the-
fly, rather than waiting until all n independent packets in a
generation are gathered and then decoded at once. Once the
destination gathers n independent packets, the left part of the
reduced matrix becomes an identity matrix and the right part
is exactly the original uncoded blocks from the source node.
Such an implementation is important for alleviating the delay
effects caused by network coding, which can be translated into
throughput improvement in practice.
Accelerated network coding. To further optimize the net-
work coding implementation, we have designed an accelerated
framework for both the encoding and progressive decoding
process using x86 SSE2 instructions. Instead of the traditional
lookup-table approach [8], we perform the matrix multipli-
cation on-the-fly using a loop based approach in Rijndael’s
finite field. The loop based multiplication makes it possible
to process two bytes of a row within one execution facilitated
by the SSE2 instructions. Compared with a baseline imple-
mentation without acceleration, the coding efficiency of our
framework can be 3 to 5 times higher, depending on the size
of a generation and a data block.

B. Node Selection and Multipath Construction

Recall that each data session needs a node selection opera-
tion to select potential forwarders. During the node selection
procedure, each node computes its distance to the destination
using the shortest path algorithm, using the expected transmis-
sion count (ETX) [2] as a path metric. Then the source node
broadcasts a packet containing distance information, and the
receivers are selected and continue the broadcasting if they are
closer to the destination. This operation continues iteratively
and terminates at the destination. To obtain deterministic
information about the proximity, the node selection procedure
uses the pseudo-broadcast proposed by Katti et al. [10], which
ensures reliable broadcast to each neighboring node with
minimal cost.

The path metric (i.e., the expected transmission count (ETX)
[2]) estimates the total number of transmissions needed to
deliver a packet over a specific link, and is computed by
ETX = 1

pij
for link (i, j). The reception probability pij

is measured by broadcasting probing packets, and taking the
ratio of correctly received packets over the number that are
sent [2]. Similar to existing opportunistic routing protocols
[7], OMNC is based on the presumption that the link qualities
in the target network are relatively stable over time. Real
world measurements observed that the link qualities in static
wireless networks experience noticeable variations only on a
daily basis [31]. Such experiments justify our extensive use of
link reception probability to model the target lossy networks.
In cases where link qualities change significantly, the node
selection and rate allocation have to be re-initiated, which
brings a certain amount of overhead. Considering the large
performance gains, however, it is still more preferable than
traditional routing, especially for long lived unicast sessions.

After node selection, the paths to the destination are con-
structed implicitly — all selected forwarders contribute to the
unicast by re-encoding and rebroadcasting existing innovative
packets, following the rate assigned to it ( in the vector b).
Unlike the traditional multipath routing protocols [5], [11],
[12], no explicit node-joint or link-disjoint paths need to be
identified.

C. Packet Management

In OMNC, each packet contains the coded data block, the
corresponding coding coefficients, and other protocol specific
overhead. Note that the coding coefficients cause a certain
amount of transmission overhead. However, the size of the
coding coefficients is negligible when compared to the coded
blocks. For example, in our experiment, we set the generation
size n to 40 and block size m to 1000 bytes. Thus the
overhead is only 4%, which is reasonable considering the
overall benefits of network coding. As for the computation
cost, it has been observed that the encoding, decoding and
independence check takes negligible time when compared with
the time scale of MAC scheduling in current wireless mesh
networks [20].



Transport and IP 
layer protocol stack

wireless applications

incoming 
packets

processed 
packets

MAC & PHY 
models

 Application layer 
algorithms and

protocols

Emulation host's 
OS kernel

Receive from 
upstreams

Send  to  
    downstreams

outgoing 
buffers

Incoming 
buffers

Gigabit 
Ethernet

packet processor

Fig. 4. The internal architecture of Drift.

V. EVALUATION OF OMNC
In this section, we first introduce Drift, the emulation testbed

that we use to implement and validate the OMNC protocol.
We then present our extensive experiments on the performance
of OMNC, with respect to network throughput.

A. Experimental Environment — The Drift Emulation Testbed

Drift is a high performance emulation testbed that we
designed for prototyping and validating application layer
protocols in large-scale wireless networks. Compared with
existing emulators (e.g. [32]), the main feature of Drift is
a better trade-off between scalability and accuracy, which
rests on its distributed architecture, efficient packet processing
unit and analysis based lower layer models. Running in a
server cluster, Drift is able to accommodate hundreds of nodes
and several MBytes/second traffic in a single server host.
More importantly, its node capacity and traffic capacity grow
almost linearly with the number of emulation hosts. Such
advantages enable Drift to operate efficiently even for those
computationally intensive algorithms such as network coding.

The architectural design of Drift is illustrated in Fig. 4.
As in existing wireless emulation testbeds, application algo-
rithms developed in Drift run in real-time and real operating
systems. Drift directly employs the IP and transport layer
protocol stacks in the emulation hosts, simulates the wireless
PHY and MAC with specific models, and emulates wireless
transmissions over a Gigabit Ethernet. Its core component is
an efficient packet processor that bridges the emulation host’s
kernel and the application layer algorithms, while enforcing
the bandwidth constraints imposed by lower layer models.
The lower layer models consist of a PHY model that captures
the lossy nature of the actual wireless environment, and a
MAC model that captures the channel competition among
neighboring nodes. We next provide more details of both
models and justify their sufficiency for the purpose of evalu-
ation. Interested readers are referred to [33] for more detailed
architectural level design and evaluation of the Drift testbed.
PHY model. To model the opportunistic reception in a lossy
wireless environment, the widely used unit-disk graph model,
which assumes perfect reception within transmission range,
no longer holds. Instead, we use a PHY model based on real-
world traces from [34], which empirically maps link distance
to the reception probability.
MAC model. To model the unicast channel access, we adopt
an ideal scheduling scheme in which interfering nodes (nodes
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within range of each other) can optimally multiplex the chan-
nel. A node cannot receive packets if it falls in the range of an
interfering node. Note that the broadcast MAC in Sec. III is
just a variant of this model. Although the ideal MAC does not
model protocol details such as RTS/CTS, it provides insights
for the general performance of an application-specific protocol
when it is subject to MAC level competitions.

The above models in Drift serve as the foundation for
predicting the performance trends, and ensuring a fair compar-
ison among various application-specific protocols. Since Drift
emulates real higher layer network stacks and applications,
the functionality of the OMNC protocol (encoding, decoding,
independence check, rate control, etc.) can be validated at real
time, and on real networked machines. We now proceed to
present the experimental results obtained from Drift.

B. Performance of OMNC for a Single Unicast Session

To evaluate the performance of the OMNC protocol, we
have implemented it within Drift, together with its counterpart
MORE [8], [20], and the high-throughput single-path routing
protocol with the ETX metric [2] (henceforth referred to as
ETX routing). For the ETX routing, we assume that reliability
is guaranteed by MAC layer re-transmissions, which is more
efficient than the end-to-end re-transmission [19].

First of all, we quantify the improvement of end-to-end
throughput owning to the OMNC protocol for a single uni-
cast session. The target topology consists of 300 randomly
deployed nodes with density 6, i.e., each node has on average
5 neighbors within its range (defined as the distance where
reception probability is 0.2). Most links have intermediate
qualities (average reception probability is 0.58), in consistence
with measurements of the mesh network in [1]. To guarantee
a fair comparison, we choose the same coding parameters for
OMNC and MORE. Specifically, each generation contains 40
data blocks and each data block is of 1 KB. Both protocols
share the same encoding and decoding modules, i.e., the
computation efficiency is identical. We adopt throughput gain
as the metric of comparison, which is defined as the throughput
of each network coding protocol divided by that of the ETX
routing. The source and destination of each unicast session
are randomly chosen, with a path length constraint of 4 to 10
hops. We run 300 UDP constant bit rate (CBR) sessions in
total, each lasting 800 seconds. The CBR rate is set to half
of the channel capacity. Throughput is calculated immediately
after the source receives the “successfully decoded” ACK from
the destination, and then averaged over the entire session. The
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resulting distribution of throughput gains is plotted in Fig. 5.
As expected, OMNC has a much higher throughput gain

than MORE in general. The average throughput gain of
OMNC amounts to 2.45, while that of MORE is only 1.67 (this
result is consistent with the evaluation in [8], which further
justifies the realism of our experiments). That is, OMNC can
achieve 47% higher throughput than MORE. The preliminary
version of MORE [20] (referred to as oldMORE) experiences
even lower throughput gain, which is only 1.12 on average.

Recall that OMNC jointly optimizes routing and rate control
by taking into account the channel congestion status, while
MORE has no rate control mechanism. As an intuitive expla-
nation of such differences and the consequence, we monitor
the channel congestion status of both protocols while they are
running in the testbed. Specifically, we sample the broadcast
queue size, take the time average, and then calculate the
average queue size of all nodes involved in the transmission.
The resulting distribution of average queue size is illustrated
in Fig. 6. For most of the sessions, the per-node time-averaged
queue size in OMNC is smaller than 1 (the overall average is
0.63), implying that it can match the encoding and broadcast
rate of a node to its channel status. By contrast, the overall
average queue size of MORE is 22. Therefore, although the
heuristic in MORE tells each node how many packets it should
generate, it is not aware of whether the packets can be sent out.
In summary, injecting the packet streams at a low rate may
not fully utilize the channel resources, while a higher rate may
cause congestion. MORE does not address this fundamental
trade-off, hence leading to the performance degradation.

The oldMORE protocol does not have any rate control
mechanism, either. An additional defect is that it does not
explore path diversity well. This can be illustrated by its
node utility ratio (the actual number of nodes involved in the
transmission divided by the total number of selected nodes),
and path utility ratio (the total number of paths involved in
the transmission divided by the total number of available paths
after the node selection procedure), as shown in Fig. 7. The

oldMORE protocol tends to prune a large number of nodes
associated with low quality links, and fails to explore path
diversity well, which is critical for increasing throughput. In
contrast, OMNC takes advantage of all nodes that may over-
hear packets and contribute to the unicast, and its throughput
gains are consistently higher than oldMORE. Such contrast
mainly comes from the broadcast constraint (7) in OMNC, and
the corresponding one in [19], [20] which favors high-quality
paths. Noticeably, the new version of MORE has similar node
utility ratio and path utility ratio with OMNC.

One additional observation is that the benefits of OMNC are
best demonstrated in lossy networks, owning to its resilience
to packet losses and the saved transmissions with the broadcast
MAC. In a network with high link qualities, the throughput
gains are marginal due to packet dependencies. For instance,
Fig. 8 illustrates the experiment results from the same topology
and data sessions as in Fig. 5, but the transmission power
of each node is intentionally increased such that the average
reception probability rises to 0.91. In this case, the average
throughput gain of OMNC is 1.12, while MORE and old-
MORE actually perform worse than the ETX routing — the
average gains are 0.79 and 0.63, respectively. Nevertheless,
the case where most links have intermediate qualities is more
prevalent in reality, due to the severe path-loss and multipath
fading typically seen in realistic wireless mesh networks [1].

We have also observed that the actual emulated throughput
of OMNC tends to be lower than the optimized throughput
computed by the sUnicast framework, especially for the non-
lossy case. This is straightforward as we noted that the
constraint (6) only approximates the actual propagation of
innovative flows under lossy environment (Sec. III-C). Regard-
ing the convergence of the distributed rate control algorithm
derived from sUnicast, we observe that most sessions can
obtain the optimized rate vector with an acceptable number of
iterations. The average number of iterations required for the
experiments in Fig. 5 is 91. Beside the shortest path algorithm,
the only step that needs message passing is in equation (17)
and (19), where each node sends its rate and congestion price
to its neighbors. And the node selection process significantly
reduces the number of nodes involved in the rate control
algorithm. Moreover, the rate control mechanism only has to
be run once for each unicast, and re-initiated only if the link
qualities change. Overall, the sUnicast algorithm can serve
as a lightweight application layer protocol that improves the
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throughput of lossy wireless mesh networks.

C. Performance of OMNC for Multiple Unicast Sessions

We explore the potential of OMNC for multiple unicast
sessions in comparison with the ETX routing [2], the MORE
[8] and COPE protocol [8]. COPE represents another family of
network coding protocols, i.e., inter-session network coding.
It allows intermediate forwarders to opportunistically XOR
incoming packets heading towards different destinations, based
on prior knowledge of the decodability at the intended next-
hops. The encoding nodes broadcast the coded packets to all
next-hops, thereby reducing the number of transmissions com-
pared with traditional routing. Since COPE encodes packets
belonging to different source-destination pairs, it only applies
to the case with multiple-unicast sessions. By contrast, OMNC
and MORE belong to the family of intra-session network
coding, which encodes packets belonging to the same source-
destination pair and can be used for both single-unicast and
multiple-unicast sessions.

Our experiments are performed on a 50-node random topol-
ogy with node density 6 (an average of 5 neighbors per node).
The reception probabilities range from 0.22 to 0.95, with an
average of 0.58. The channel capacity is 104 bytes/second. All
other parameters are the same as in the single-unicast experi-
ment. We consider five protocols: the ETX routing, the COPE

protocol [10], the MORE protocol, OMNC with the mUnicast
and mfUnicast optimization, respectively. When implementing
COPE, we assume that each node has precise knowledge of
the overheard packets in all its neighbors, thereby giving a
slightly optimistic evaluation of its performance.

Fig. 9 illustrates the aggregate network throughput as a
function of traffic load (the number of randomly selected
concurrent sessions). For the former four protocols, throughput
increases with the traffic load in the beginning. As more
sessions join, the channel becomes congested and the total
throughput suffers. Since the MORE protocol does not take
into account the competition between neighboring nodes and
different sessions, the throughput gain suffers substantially,
especially when the channel is congested. Compared with
MORE, the OMNC with mfUnicast can achieve 2.2 times
higher throughput, while OMNC with mUnicast retains an
almost constant high throughput regardless of how many
sessions are running concurrently. The COPE protocol always
performs better than ETX routing, owning to the inter-session
coding which reduces queue size and alleviates congestion.
However, its performance dependends on the availability of
coding opportunities, which are rare in lossy networks. There-
fore, the performance gains are much less than OMNC.

We also consider the case when all links in the network have
high qualities in Fig. 10. In this case, the MORE protocol per-
forms worse than ETX routing when few sessions are present.
This is because MORE suffers from more severe congestion
as more transmitters are involved than in single-path routing.
When MORE and single-path routing have similar levels of
congestion, the former can achieve higher throughput owing
to its extensive use of the broadcast MAC. The COPE protocol
still performs better than single-path routing, and even better
than in a lossy network, since it sees more coding opportunities
now, and its coded packets can be more reliably broadcast to
each set of downstream nodes. Again, the OMNC protocol
with mUnicast and mfUnicast perform consistently better than
MORE, COPE and ETX routing. But the advantage is not as
significant as the lossy case. This is because OMNC results in
more redundant transmissions in non-lossy environment, i.e.,
each node tends to receive more linearly dependent data blocks
from its predecessors.

Beside aggregate throughput, fairness among concurrent
sessions is also an important performance metric. To evaluate
the fairness of the protocols, we adopt the well-known Jain’s
fairness index [35], computed as F = (

PS
i=1 Ti)

2

S
PS

i=1 T 2
i

, where Ti

is the throughput of session i and S is the total number of
sessions. Fig. 11 plots the fairness index of different schemes
when running in the same lossy network as in Fig. 9. We
observe no significant difference when only a few sessions
coexist. However, as the traffic demand increases, mfUnicast
demonstrates a much higher level of fairness than all other
schemes. Without the fairness mechanism, sessions in MORE
have diverse throughput, thus lower fairness. However, it still
performs better than single-path protocols including COPE
and ETX routing, since it takes advantage of alternative paths
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to balance the welfare of concurrent sessions. Notably, the
mUnicast framework results in unfairness, as it aggressively
allocates bandwidth to more capable sessions, in order to
maintain the total network throughput.

VI. CONCLUSION

In this paper, we introduced the design and implementation
of the OMNC protocol and evaluated its performance. OMNC
fully explores the wireless broadcast nature and path diversity,
while taking advantage of network coding to adapt to the
lossy environments. These salient properties are reflected in
a set of distributed algorithms that allocate the encoding and
broadcasting rate to all transmitters. With such properties,
OMNC achieves significant throughput improvement over
traditional routing and existing network coding protocols, for
both the single-unicast and multiple-unicast scenarios. As the
rate control framework can be flexibly extended, we believe
OMNC marks an important step towards optimization based
protocol design for network coding in unicast networks.
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