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Abstract—Network coding is emerging as a promising alter- game theoretic perspective. We envision the P2P system as a
native to traditional content distribution approaches in P2P  decentralized content distribution market. Each peer asta
networks. By allowing information mixture in peers, it simplifies market agent, namely a seller and buyer. Before entering the
the block scheduling problem, resulting in more efficient data ’ I C
delivery. Existing protocols have validated such advantages as- market,_a peer_must pay an _|n|t|al service fee (referred to as
Suming altruistic and obedient peers. In this paper, we deve|op entry prICQ that is used to obtain at least one block. AfterWardS,
an analytical framework that characterizes a coding based P2P he can resell the blocks he already possesses and purchase
content distribution market where peers selfishly seek for individ- gdditional blocks with the money on hand. Whenever a seller
ual payoff maximization. Through virtual monetary exchanges, and a buyer meet, they bargain over the blocks of interest

agents in the market buy the coded blocks from others and resell ; Both sid fthe b .. tak
their possessions to those in need. We model such transactions a§°f a consensus price. botn sides or the bargaining game take

decentralized strategic bargaining games, and derive the equilib- INt0 account the availability of alternative sellers and/dms,
rium prices between arbitrary pairs of agents when the market and the potential resale value of the good once the traosacti
enters the steady state. We identify the traditional P2P content sycceeds. Such a model resembles an exchange economy for

distribution approach as a special case of network coding, and i~ital ; ; aym
characterize the relations between coding complexity and market digital Informatlon goqu, and sheds lights on the depl €
and evolution of practical P2P markets.

performance metrics, including agents’ entry price and expected ’ : . .
payoff, thus providing operation guidelines for a real P2P market. ~ We classify peers in the market according to their posses-
Our analysis reveals that the major power of network coding lies sions, i.e., the availability of blocks on them. By modeling
in its ability to maintain stability of the market with impatient  the transactions between peers as noncooperative games, we
ﬁi“dhesf”'Sh ?fger;tfﬁ and tto 'Pce“t""zebf‘ge”fjs. with 'OWler Ft’”ce and gerive the equilibrium pricing strategies for differenpes of
gher payotl, &t the cost of reasonable coding complexity. peers. We find that unlike traditional centrally managedkeiar
|. INTRODUCTION economy, no uniform price exists under strategic bargginin

o . Instead, the price depends on not only the availability &f th
PZI.D content distribution systems gre_bunt atop t.h? basg'SOds, but also the valuation of each type of peer on each
premise of voluntary resource contribution by participati

" ; S . . Furthermore, we extend th m mark le, an
peers. Two critical problems are inherent in this presuompti good. Furthermore, we extend the game to a market scale, and

: e LU . . .1 characterize a market equilibrium in which individual peer
the scheduling decision of individual peerg( choosing which adopt stationary strategies. and no one can profit more b
data blocks to share) and the incentives for sharing. P y gtes, P y

. AN deviating over time. We then approximate the evolution @hsu
Existing P2P content distribution systems tackled the g bp

scheduling problem using random or rarest-first strate§esh & market using a system of differential equations, and deriv
auiing p . 9 . ) § N ihe availability of goods when the market enters steady stat
heuristic local algorithms tend to result in suboptimalaguling

. i The above theoretical framework results in closed-formaequ
or downloading decisions that waste network resource: . tions that quantify the impact of various design parameters

work coding circumvents the scheduling problem by allowin e stable operations of the market. Through these equation

e?;r: pgetr to er;]cocée znc: deliver a rakr;ld orl?'llnfearhcotrrl:blna:wreq observe that the fundamental advantage of network coding
0 3 dat?l onk nan 'f Istort]r? as one " oc _t'ﬁ hr_ers] » the ET [&s in maintaining the availability of data blocks even whe
encoded block is useful to the requester with high proly IIpeers are highly impatient and even in the absence of content

T-here.fore, the risk of gploading QUpIicate informaltio.n dzen servers. Translated into market terms, coding based mistoc
significantly reduced without ;oph!s_tlcated scheduh_n:gstﬁqg jnduce a higher level of competition among content sellers,
protocols .(se_ee._g, [1]) have |dent|f|e_d network c;odmg pase hereby avoiding the monopoly or oligopoly scenarios inahhi
content dlstrlbuthr_l as a wor_kable idea, but without rigro a limited number of content holders force up the price. Farrth
theoretical quantification of its advantages. They have alﬁnore, network coding incentivizes the peers by increagieq t

T e o, AT, Dest, T elbected payor and ressonsbie codng complexty s s
: : Wi 9 Y ! Vi to harvest such an advantage. Unfortunately, we also find tha

real-world P2P systems [2]. network coding is against the interests of content servers a

In this paper, we a’_‘a'Yze _the performance of network COd"PIgeir profit decreases with increasing coding complexity.
based P2P content distribution protocols from an economndc a The remainder of the paper is organized as follows. In

This work was supported in part by LG Electronics, and by E#inada Sec. Il we Cont_raSt our Worl_( with existing E_malyses of P2P
through its Bell University Laboratories R&D program. systems, especially those with network coding and from an



economic perspective. We then give a brief introduction fa its equilibrium analysis under@ecentralized marketetting.
practical network coding protocols and our system models We consider not just the strategic behavior of individuadrse
Sec. lll. Sec. IV analyzes the decentralized bargaining egarout also how their self-interested pricing strategies arike the
and characterizes its equilibrium and the correspondingketa content distribution market as a whole.
equilibrium. Sec. V models the evolution of goods availi&il Economic models, in particular the market models for P2P
and then presents a comprehensive analysis on the markeystems have been explored by the MMAPPS project [11],
properties at steady state. Finally, Sec. VI concludes #pep which proposed market management techniques to encour-
age cooperation. Within MMAPPS, Antoniadist al. [12]
] ) ) ] developed a theoretical framework that abstracted theedhar
Since the pioneering work by Het al. [3], randomized content as public goods. Assuming that peers’ valuatiomef t
network coding has received substantial attention from P%Bods follows uniform distribution, a social planner detgres
protocol designers. The Avalanche [1] system implementedentive-compatible prices and services for them. Howeve
primitive form of random linear code that encodes all daige mechanism lacks a support for network dynamics and a
blocks in a file. However, when the file size exceeds a feypncrete modeling of the peers’ valuations.
hundred blocks, such a full-coding scheme causes intolera-AperjiS et al. [13] proposed a comprehensive exchange
ble computational overhead even for modern processors [él:onomy model that captures the optimal equilibrium price
More recent protocols have extended the ideasegment- iy g content distribution market. They analyzed a one-shot
based network codingp], which splits the file into multiple exchange market without resale, and without discrimimatin
segments, each allowing for efficient encoding and decodir*g;bodS according to their availability. The economic imation
This approach has demonstrated its effectiveness in ngt ogf network coding has been discussed in recent work [14],
file sharing, but also elastic content distribution systdike focusing on centralized cellular networks with price-taki
P2P streaming [6]. agents. To our knowledge, there does not exist any previous
Despite its wide applications, the fundamental benefits (RE)rk on the power of network coding in a decentralized P2P

network coding in such systems have not been fully explore@ntent distribution market with strategical participgnt
with theoretical rigor. Chiet al.[7] abstracted a P2P system as

II. RELATED WORK

astaticstar topology, and claimed that coding does not increase !ll. CODING BASED P2P (ONTENT DISTRIBUTION
the network capacity compared with routing. Through mean- MARKET
field analysis of a dynamic P2P system, Niual. [4] claimed  |n this section, we first introduce the widely used segment-

that network coding can alleviate the imbalance of block digased network coding protocol for P2P content distribution
tributions in traditional content distribution protocpthereby \When running such a protocol, peers purchase and resell the
improving the resilience to network dynamics. Both anaBlti coded data blocks, thus forming a content distribution miark
works, as well as the existing system implementations, hawg specify the various elements of such a P2P market economy,
relied on the premise of cooperative peers, while measuremgcluding the classification of peers and the price fornmatio
of real P2P systems exhibits a dominant portion of selfisi&-fre o ) )
riders [2], [8]. In this paper, we aim at quantifying the fard A. P2P Content Distribution with Network Coding
mental advantages of network coding in such non-cooperativ Existing coding based P2P content distribution protocols
environment. have mostly adopted the following segment based scheme.
Our work is partly inspired by Rubinstein [9], who analyzed®efore transmission, the original data file is grouped into
the impact of strategic price settings on the equilibrium afegments, each containidg blocks of sizeE’ bytes. K and £
a market economy. Traditional market economy has assunad termedegment sizandblock sizerespectivelyThe coding
agents leaving the market after a successful transactitinftve operations are performed within each segmane represent
buyer owning the goods while the seller earning the payntent.each segment as a matri¥, a K x E matrix, with rows
contrast, P2P systems featuwrepiableand resalableproducts being the K blocks, and columns the bytes (integers from
that propagate their values over time, thus requiring tippst 0 to 255) of each block. The encoding operation produces a
of a brand new model. linear combination of the original blocks in this segment by
Game theoretic analysis of peer behaviors has been widély= R - B, whereR is a K x K matrix composed of random
employed (see [2] for a survey). This line of research hasefficients in the Galois field' F'(2®). Thecoded blockgrows
mostly focused on designing incentives that encourage-coap X), together with thecoding coefficientg§rows in R), are
eration and lead the peers towards a socially optimal poipacketized and delivered to other peers.
The results have inspired commercial P2P systems to adopThe decoding operation at each peer is the matrix multi-
incentive mechanismse(g, virtual payment) that motivate plication B = R~! - X, where each row ofX represents
peers’ willingness to share [10]. We are less concerned wih coded block and each row aR represents the coding
designing such payment protocols, and instead, more fdcuseefficients accomplished with it. The successful recowafry
on the equilibrium analysis assuming a virtual payment sehe the original segmenf3 requires that the matrix® be of full
is available. Our work differs from existing game theoretic rank,i.e., each peer must colledt independent coded blocks
framework not only in an emphasis on network coding, but aldor this segment. However, a peer can upload coded blocks



even if the segment is not ready to decode yet. It produces a Indexiof goods

new block byre-encodingexisting blocks it has collected in 5 | | | | | | l 5
this segment. The re-encoding operation replaces the godin 4 4
coefficients accomplished with the original coded packeth w Monetary

another set of random coefficients. For instance, constuer t 8 | | | payment l 8
existing coded packets as rows in the maifixwhich from the 2 . Block 2
viewpoint of the source was obtained usikig= R, - B (B is 1 | | | Eexc"a”g? 1
the original uncoded packets afy is the random coefficients). LI S

Then the current holder may produce a new code block by k85 1. The pairwise transaction in a coding based P2P maritet\ = 5
encoding existing packets &' = R'- R, - B = R; - B. As segments and segment si&e = 6. Agents A and B randomly select a good
a result, the original coefficient®, are replaced byz!. The (Segment 2) for bargaining and transaction.
re-encoding operation circumvents the block-level sciegu  As in a real-world market, the outcome of any pairwise
problem in traditional content distribution protocols,cease bargaining depends on the current market conditian, the
by randomly mixing information from all existing blocks, aavailability of the goods. If a good is abundant in the market
newly generated coded block is innovative to the downstreane buyer can easily find an alternative seller, and the buyer
peer with high probability [4]. may be better-off searching for alternative providers & fiice
Although randomized network coding solves the block sg@roposed by the current seller is too high. Conversely,cscar
lection problem within a segment, a scheduling algorithmsimugoods will be charged higher prices than abundant ones.és th
be in position to decide which segment to upload or downloagharket evolves, we can expect that an equilibrium exists tha
We assume each peer adopts a push-based random schedsjiegifies a stationary per-block price for each good. Onee th
protocol, which randomly selects a segment, generatesedcogharket evolves to a steady-state, all peers agree upon a@emm
block, and then upload it to his partner. This assumptiorsdoget of prices and no actual negotiation takes place (Sec\We)
not limit the generality of our major analysis, as our gamgill formalize the equilibrium point in the following sectn.
theoretical models conclude with pricing strategies trdepa
to general scheduling policies.
Note thattraditional non-coding scheme can be considered In this section, we describe the elemental transaction pro-
as a special case of segment-based network coding wkiere cedure on the P2P markete, the pairwise bargaining game.
1, i.e,, each segment has a single data block. By contrast, ¥ rigorously characterize the equilibrium pricing stgas of
Avalanche [1] protocol corresponds to the other pdlar, the each type of agents, and then extend the pairwise bargaining
full-coding case, where the entire file is encoded into a singte a market setting.
segment.

IV. THE DECENTRALIZED BARGAINING GAME

A. The Rules of Bargaining

B. The Decentralized Market We model the P2P market as a discrete time system. The
We envision the existence of an online market place whederation of a period equals the time needed to transmit a
peers act as thagentswho purchase and sell coded data blocksingle block. To capture the market dynamics, we assume an
originated from a single file. The file consists Bfblocks and agent is impatient, remaining in the market in each pericth wi
is grouped intoM segmentsj.e., the segment sizé( = % probability ¢, i.e., the churn rate (peer join and departure rate)
Since all data blocks within each segment are equally usefulx = 1 — 6. Agents have homogeneous upload and download
the buyersgach segment corresponds to one type of goeqd bandwidth, which equals 1 block per period. We abstract the
the total types of goods circulating in the market equels peer selection as a matching process in which an agent is
A virtual currency, such as the lightweight currency in [15randomly matched to another agent in each period. Upon
serves as the medium of transaction. Whenever a buyer anchaching, the pair of agents select one good of mutual istere
seller meet, they initiate a pairwise bargaining process tve and propose texchange one bloakf the good ( agents are only
segment of mutual interest. If both peers agree upon a nertallowed to exchange blocks of the same good because differen
price, then the seller uploads a coded block from the segmeobds may experience different availability and distinites).
of interest, and the buyer will pay the money in return. Aithe outcome of the matching depends on two factors: the
agent may act as a seller and buyer simultaneously, regultirsefulness of the block, and the bargaining result.
in an exchange transaction, as illustrated in Fig. 1. If om th First, before transaction, both agents need to make suye the
other hand the negotiation ends with a disagreement, thén bean provide at least one useful block to each other. This can
peers have to switch to alternative partners. be trivially satisfied if they are of typeé and j, respectively,
Without loss of generality, we mainly discuss the pricingaof where0 < 4,5 < K. If one of them is of type O oix, then
single good. We classify the market agents itfo+ 1) types. the transaction becomes a unilateral sale, instead ofetslat
A type-< agent ( < ¢ < K) possesses a total number ©f exchange. Note that even in a unilateral sale, the bandwsdth
coded blocks of the good. Obviously, A type-0 agent can onhot wasted because two goods may be simultaneously on sale.
purchase goods, while a tyg€-agent who has fulfiled the The second and most critical factor in the transaction is
segment only sells goods to others. whether the bargaining between the pair of agents results in



an agreement. Since the agents may have different valsatidor agentj. Here.S;; is theutility of the payeri, which equals
of the good, the one who gain more has to pay for the oth&w.the number of blocks (either O or 1)downloads fromyj in
To avoid unfair advantages of the initiator, one agent (rete the transaction. Similarlyi;; is the number of blocks the payee
to asproposej is randomly selected to propose a price. Th¢ downloads fromi, hencesS;; = T);. Note that theexpected
opposite agent (referred to assponde) responds by either payoffdepends not only on the payoff in a single transaction,
accepting or rejecting the proposal. In case of rejectiath b but also the potential payoff he can gain by reselling thekdo
agents continue to the next period, looking for new partnetse gets, and the possibility of switching to alternativetipens.
The ability to switch to alternative partners enhances tents’ Given the above elements of the game, a strategy profile
bargaining power, since they can threat to abandon therdurreonstitutes aSubgame-Perfect Nash Equilibriu(@PNE) if it
partner, thus making it a “take-it-or-leave-it” offer. Teéore, induces a Nash equilibrium in every subgame, each correspon
whether the bargaining results in agreement or disagreemiziy to a possible round of negotiation. In what follows, we
depends on the availability of alternative partners on theket. establish the necessary and sufficient condition for aostaty

As the market evolves to a steady-state, each type of ageBRNE strategy in Lemma 1 and Lemma 2, respectively. We
adopt stationary strategies. To be specifistationary strategy summarize the results concerning the existence and uregaen
implies that each type of proposer or responder maintaies tf the SPNE in Theorem 1.
same reservation prices when facing the same type of partner Lemma 1. Any stationary SPNE strategy must satisfy:
The reservation pricesof_a type+ age_nt inclu_de a proposer K _1,if i>0and0 < j <K,
price p;;, the optimal price he can bid that is acceptable to x _ 0 ifi—0 (1)
a typej agent; and a responder prigg;, the optimal price t v ;1 if j— 0’
that is proposed by his partngrand is acceptable to him. For * ’ '

consistency, the subscripj always indicates the price that and: g;; = —pj; )
should pay toj, hencep;; = —g;;. With stationary strategies, 2.9 . . )
whenever an agent is matched to agenf, he proposeg, wheren =1+ i aiis the probability of meeting a type-

. . K
to agent; if he is selected as the proposer; and he acce@@ent.p=>;_,a; = . and
a proposalg;; from j if and only if ¢;; < ¢;;. Hence, the ) . a; p — Qo
negotiation procedure is no longer needed in a steady—staﬂéC = (5 +0+p—4) (p—ax - Z pK—i  pK-1 )
market. In what follows, we characterize the reservatidogsr =1 .
p}; and ¢;; corresponding to the unique stationary strategy Proof: Let U; be the expected equilibrium payoff of a type-
that satisfies subgame-perfectness. We further justifyitia agent that is unmatchete., he has no partner that can provide

not profitable for an agent to use non-stationary strategiesthe good of interest in the current time slot. Dendfg; as the
equilibrium. equilibrium payoff of a type-agent when he is matched with

L a typej agent.

B. The Subgame-Perfect Nash Equilibrium in Pairwise Trans- go. 5 unmatched agent all payoff begins only from the
actions next time slot, where with probability = 1 — 6, he leaves the

The classic concept oNash equilibriumin game theory market and gets zero payoff. Conditioned on the event that he
characterizes the strategy profiles in which no players cegmains in the market, he may either be matched to an agent of
profit more by unilaterally deviating from his current ségy. type- with probability «; (0 < j < K), or remains unmatched
However, Nash equilibrium strategies may includeredible with probability (1 — p). Therefore, the expected equilibrium
threats which the threatener himself does not prefer to issugayoff for a unmatched typeagent is:
but which may still deter the actions of the one under thrigat. K
the above bargaining game, the stationary strategy thettee] Ui=(1-0)-0+0-> a;M;+ (1— p)U] 3)
all transactions constitutes a Nash equilibrium, sinceryeve =0 .
agent receives payoff 0 and no one can profit more than oFOr @ matched agent the equilibrium payoff consists of the
by changing his own strategy. However, threatening to teeor payoff in the current transaction, plus the expected payoff

such strategies are incredible since the agents are avedrapn e forthcoming time slots. Th? current payoff equals hiktyit
alternatives that encourage transactions can be more tiginefihinus the expected cos§,; — 5 (pi; + gi;). If he obtains one
The concept of Subgame-Perfect Nash Equilibrium (SPNE) [810CK in the current transaction, then he becomes typed)
refines Nash equilibrium by ruling out such incredible thsea P€9iNNing from the next period and the expected payoff equal
Specifically, asubgamein the above bargaining is a gameto U;11. Otherwise ifj = 0, i.e., he is matched to an agent with

starting from an arbitrary proposer and lasts one time sIé€™ blocks, then_his_future payoff rema'ins tol]@e_'l’herefort.a,
ending up with either a disagreement or a successful trafis® €xpected equilibrium payoff for a typexgent with a typer

action. Thestrategyfor an agenti in the subgame are thePartneris:

pricing proposal i;; or ¢;;) and a response (accept or reject). ;, _ { Sij — 3(pij + ai;) + Ui, if j= 0. (@)
The payoffin each single transaction equals the utility minus Sij — 3(pij + ¢ij) + Uis1,  otherwise.

cost. More precisely, for a transaction between propéserd Note that wheni = K, i.e., the agent collects a full set of
respondeyj, the payoff equals;; —p;; for agenti andT;;+p;; blocks for the good, then he remains in tyfeuntil leaving

K-1




the market. In equation (4) and what follows, we equate a-typ8ince in this casd’; = 1, equation (9) follows directly. By a
(K + 1) agent with a typeX agent. symmetric argument, we can also prove that the propobkes

We proceed to characterize the SPNE prices which dtee incentive to propose pricg;, thus completing the proof
closely related with the above payoff functions. Considey afor Lemma 2. ad
subgame with agent being the proposer, who bids prige; Lemma 1 establishes that (1) and (2) are the necessary
for the transaction. 1§ > 0, then the total expected payoff ofcondition for an SPNE strategy, while Lemma 2 justifies the
agentj from current and future payoff i§T;; + p;; + U;+1).  sufficiency of the condition. Since the systems of equations
Subgame perfection requires agértb propose a price which corresponding to the condition has a unique solution, we hav
gives agent no less payoff than if he rejects the proposal anhe following result.
remains in typet, i.e, (T3 + pi; + Uj1) > U;. However, if Theorem 1. The unique stationary subgame perfect Nash
(Ti; + pi; + Ujy1) > Uj, agenti can gain more by proposing equilibrium strategy is the threshold based strategy wetber-
a price that is less thap,; but still acceptable by agent vation prices defined in(1) and (2).
Therefore, we must havd’;; +p;; +U,11) = U;. For the case  From (1) and (2), we conclude that the SPNE price depends
+ = 0, agent;j remains to be typg after the transaction, andon the coding complexity (reflected in segment sigg avail-

thus (T;; + pi; + U;) = U;. In consequence, ability of the good (reflected imv;), as well as the degree of
£ market dynamics (reflected ). The intricate relations implied

v,={ TutpitU, Hi=0. (5) by th g tlh ( '||?f thI I| 'f'd'IS val

J T,; +pij + Ujp1,  otherwise. y the above theorem will be further clarified in Sec. V.

Using a symmetric argument (with rolesoénd; reversed), C. The Market Equilibrium and Its Stability

we can obtain the SPNE price whens the responder: The analyses above have revolved around the strategically
U — { Sij —qi; + U, if 7 =0. ©6) stable configurations,e., the SPNE of each pairwise “take-
’ Sij — qij +Uiy1, otherwise. it-or-leave-it” bargaining game. In this subsection, weeexi
In summary,any stationary SPNE strategy must necessaritjie equilibrium to a temporally stable configuration, cleaig
satisfy (3), (4), (5)and (6). This necessary condition involvesthat the equilibrium is insensitive to strategical mangtiains
K + 1+ 2(K + 1)? linear equations and the same numbef any individual agent over time.
of variables, including’;, M;;,p;; andg;;, (0 < i < K,0 < Towards this end, we define thexpected payofbf an
j < K). By solving this system of equations, we obtain thagent ask(h) = 3,7, R(h(t)), where R(h(t)) is the payoff
equilibrium pricesp;;, ¢f; and the corresponding equilibriumwithin time slot¢ when the agent adopts stratefly Assume
payoff. Due to space constraint, interested readers agereef agents are expected payoff maximizers, then following the
to [16] for details of the solution procedure. 0O microeconomics literature [9], we defimaarket equilibrium
Lemma 2 The stationary strategy with reservation priceis a stationary strategy profite' that is adopted by all agents
defined in(1) and (2) is a SPNE strategy for every pairwiseand that maximizes the expected payoff of each agent. More
bargaining game. precisely, for each agenf, R(h%,h*y) > R(hy,h* ) for
Proof: To prove that the threshold based stationary strateglf possible strategies, whereh” . indicates that all agents
is SPNE, it is sufficient to show that in an arbitrary subgamether thanY adopt the same stationary strategy. Essentially,
either proposer in the matched pair is willing to adopt thi@ a market equilibrium all agents adopt the same stationary
prices pj; and ¢;;, and cannot profit more by unilaterallystrategy, and no single agent can gain more by strategically
deviating from such equilibrium prices. The latter coratitis Vvary his proposals and responses during his lifetime. Wit t
straightforward following the equilibrium argument in piog  concept, we have:
Lemma 1, thus we only prove the former condition. Theorem 2. In the P2P content distribution market, the
To verify that the proposey indeed has the incentive tothreshold based strategies with reservation prices defimed
propose pricey;;, we need to ensure that the profit from thigl) and (2) constitute a market equilibrium.
proposal is no less than if he remains inactive and wait fer th Proof: Consider an agerl’ entering the market with zero
next transactioni.e., blocks of the good. In searching for a payoff-maximizing
Ty +q;, >0, if j=0. @ _r;(rnllicy, T essentia}lly faces a Markov decision process (Fig. 2).
. e e state space includd3, A;, Z;, andleave Z; denotes that
Tij + ¢ij + U1 2 Uy, i 5 >0 (8) T has evolved to type and has no partner yeB; denotes that
For brevity, we only present the general cases where() the agent has evolved to typeand has been selected as the
and0 < ¢ < K (see [16] for a complete proof). Equation (8)proposer in a bargaining game. Each st8téncludes a subset
is equivalent to: of statesP;;(0 < j < K), indicating is matched to a partner
Ty + (Uisr — Us) + Sij + (Usg1 — U;) >0 ©) of type j. Similar definition applies ford;, where the agent
P ) has been selected as the responder.
From Lemma 1, we havé/i,; — U 2:0,_1771 (0 <i< When all other agents adopt the same stationary strategies
K — 1), wheren = 2020—f — 1 4 ﬁ- Recall that defined in Lemma 17 only has two policies in each statt;,
p = Zfio a; > ag. Therefore, we have) > 1 and subse- and P;;. He either chooseagreementby proposingp;; and
quently —1 < U1 — U; < 0. Similarly —1 < U;11 —U; < 0. acceptingg;;, or chooseslisagreemenby proposingp;; > p;;



the payoff-maximizing problem corresponding to the market
equilibrium. ad

V. THE EQUILIBRIUM PRICE AND PAYOFF

In this section, we analyze the steady state distribution of
goods availability in the coding based P2P market, and then
integrate it with the previous game theoretic analysissTéwds
us to a comprehensive understanding of the relation between
the scarcity of goods and the equilibrium price, and the etark
power of network coding in this context.

Fig. 2. The state transition diagram of an agent, assumingdoets the o
disagreemenpolicy in every stated; and agreemenin every stateP;. Each A. Availability of Goods at Steady State

state A; includes K substates. Substaté;; is reached with probabilityy;. . . . . . .

Similar definition applies fof?;. Leaveis an absorbing state that can be reached Our. basic approach ISa Fom'r_]uous t_'me apprpxmatlon to the
from any other state with probability. evolution of the market using differential equations. Weu®

on a steady state of the peer population, in which the total
number of agentsV remains roughly constant. Assume the

peers join and depart the market following a Poisson process

when choosingagreementnd disagreementrespectively. The then the arrival rate equals the departure rate, and camesp
expected payoff in each state and for each policy equals feth® departing probability. in the game model. Suppose the
payoff gained within the state plus the expected payoff afte goods (segments) arandomly selectefbr downloading upon

policy is taken. More specifically, when the agreement golidh€ encounter of two agents. Then one could expect that each
is taken in stateP;;, the expected payoff is: good experiences a similar level of availability. In thddaling
1) .
K

analysis, we only focus on the block distribution of a single
" a " « P . . . .
Sij — vl + 9[2 7(P(i+1)k- + A(i+1)k) + (1= p)Uis] gpod. We will justify the above modeling assumptions using
k=0 simulations.
In this equation,(S;; — pf;) represents the average payoff Denotes; as the number of agents having at mpskﬂocks
within state P,; and when the agreement policy is enforced’ the good, andr; as the number of agents holding exactly
Piiyy and A7, are the corresponding optimal payoff in blp%kz. C_I?r:]s@er the ev;lutl_orr:_ ogthe malrke;t] durlngba shfort
the next period when the agefft is selected as the proposeP€rodAt. The increase of; within At equals the number o
and responder, respectively. The agéhbbtains payoffU;. , departing peers each holding at leést- 1)_blocks, and each_
if this good is not selected for transaction in the next mérioSubsequently repIaZcKed b}!_ a new peer with zero block, which
which happens with probabilityl — p). amounts tou N At ==+,
In a similar vein, we can derive the expected payoff when The decrease of; equals to the total number of peers that
enforcing the disagreement policy, which is independent. of havei blocks and download one more block. The probability
K that such a peer is chosen equgds while the probability that
Ok, s « ! )
P = 9[2 7( i + Ai) + (1= p)Ui] a segment is chosen isp = ;. The total decrease of thus
equals:At Z]K:l nj AT
As At — 0, the following system of differential equations

and rejectingg;; < ¢;;. His policies have no impact on the
statesZ; andleave
Denote X¢ and X? as the expected payoff in stat&

a _
P =

k=0
Consequently, the payoff difference for the two policies is
K

P — pi«; = Sij —p}; + g[z ap M1y, + (1= p)Uisi] captures the evolution of th}g market: p
P o dsi(t) N2j=¢+1 "y Z” n (11)
= NZ=I= - j
- H[Z apMi, + (1 = p)Ui] dt N j=1 NM
* k=0 * * d t N —
= Sij — Pij + Ui""l —U,; = Sij — Pij + q;; — Sij >0 SO; ) =ulN NnO — (N — no)]\?& (12)
The last inequality follows from the definition of the equi- S°Iving for the steady state, and ft: Ny WE have:
librium prices in Lemma 1. An intuitive explanation can be no = uNM,ng = ﬁ, (13)
derived by contradiction. Supposg¢; < p;;, then ageny can n ¢(1+¢)
proposeg;; such thatp;; > g;; > ¢;;, which contradicts the ni = 0 - (0 <i < K). (14)
optimality of ¢;;. Similarly, we can justify the optimality of the (1+9)

agreement policy in each statg;. Given that the agreement To evaluate the accuracy of the above model, we have
action is optimal for every state, it constitutes a statignadeveloped a C-based P2P network simulator. We simulate a
policy that solves the following revenue-maximizing Beflm dynamic P2P market following the random peer selection and
equations in a dynamic control problem [17]: segment selection policy with populatioN = 10* and file
J*(Py;) = max{P%, P}, J*(Ay;) = max{A{;, A%} (10) size F = 1000. The simulation lasts for 6000 periods. A server
Following Proposition 7.2.1 in [17], it can be easily verifie is online in the beginning and leaves after 1000 periods. The
that the stationary policy of agreement is the optimal golar results are sampled after the market evolves to a steady, stat
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500l — Model 500, — Mode From Lemma 1, we knowgy;, = 1+ V,, and gj; is

independent ofj. By integrating with the steady state analysis

8400 . .
5300 in Sec. V-A, and noting that; = 47, we have:
g 1 1
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E] V., = _
. =100 ‘ §+9+p—4[p p(1 4 @)1
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0 Nuniger of kjgcks wi?hoin seq?noents 10 0 Nurﬁger of tﬁgcks wi?f?in segments 100 — u(n (1 + ¢> ) — nl_K(p — /.LH
Fig. 3. The availability among different goods (left) and itadzility of a 1+¢—n
single good over time(right), reflected by the number of tyge-< : < K) 1 [N
agents on the market. Segment si¥e= 100 and churn rate: = 0.003. =3 9 9 [p—p(1—=)" =
i, 2t —2p P
which lly tak roun veral hundr riods. Figpt -
C usuayaesqou__dseea undred periods. Fitpt3 p (2u+2_ﬁ)(p_#+2+1zﬂ)_up1K
the steady-state availability of goods on the market. 5 — ] (@5)
The availability demonstrates little variation over timeda 24+ n—15(p—p)

across different goods, and the model is able to captureTo avoid more complex exposition, we mainly focus on the
the average number of each type of agents. More detailggsed form solutions to two extreme cases, namely the non-
experiments in [16] reveal that the variation of availdbili coding and full-coding case. We evaluate the general partia

across goods generally increases with smaller segment sigfling cases through numerical simulation. For the noringpd
K. However, even in the extreme case whédfe = 1, the case K_e_’ K = LM — F), the above can be reduced to:

variation is still negligible, especially when consideyin; = 21— p
i Therefore, in the forthcoming analysis, we equate the Ve == (16)
NM - ' g ysIs, q E_Q_(Qlu_p)

availability value predicted by the differential equatiorodel Considering that the file sizé& is usually very large, the

with the availability of each good. Note t.ha.t. in a streamingntry price equation can be further reduced by ignoring the
system such as [6], the segments are prioritized in sequenggond order terms of:

and demonstrate considerable variation. The pricing amaly . 2-2(1—p)

in previous section still applies to such systems, wherenthe Qoj =1+ Ve = 2 2(1— )+ £ —2u(1— p)
value can be determined online by localized probing or stead 9 uM a M a s
state analysis. Such extensions are beyond the scope of our =~ 1“7 ~ 2uM a7

current paper.

For the case witltontent servergi.e., agents who hold the
entire file and never leave the market), the decrease; df
At is (N + Ny — ng) - 2L, where N, is the number of
servers online. The corresponding steady-state solutmmns

can be easily derived similar to the case without serverd, a

Therefore, fgr the non-coding case, when file size is fixed,
entry price increases approximately linearly with the chate,
namely the impatience of agents.

For the full-coding case, the entire file is a single segment
i,e, M =1,K = F), andV, can be reduced to:

_  N\K+1
are omitted in this paper. Interested readers are refeorgtbi Ve & — 1 1—0—-pk - %)
for detailed analysis and simulation results. 12 T+u
- . 1 2(1— )™
. - = 1—
B. Equilibrium Properties of the Steady-State Market 2 QM( 1+ )

We proceed to integrate the SPNE and market equilibriumWhenuli;“dose to 0, the above can be simplifiedifp ~

analysis in Sec. IV vyith the steady stat_e_m_odel. Our er_npﬁmsisl —2(1 - p)X. Wheny is close to 1, we can ignore thg-th

on how network coding af_fects the _eqU|I_|br|um propertle_ﬂm‘ order terms, and obtain the Taylor serieslofat i = 1:

market. We use asymptotic approximations to derive thaalet 1 3 ) )

insights, and use exact numerical simulations to crystalizch Vo=—5(u=1+ 2(n =17+ 0((p - 1)) (18)

effects. We focus on three metriasntry price lifetime payoff which is a decreasing function wherapproaches 1. Therefore,

and seeder’s payoffwhich will be defined below. The former for full-coding, the entry price has distinct properties timo

two metrics are closely related with agents’ incentive tm jo regions roughly defined with respect to churn rate. Inldve

in a market economy, while the latter is closely related veith churn rate region(u close to 0), entry price increases with

seeder’s incentive to serve others after he obtains alltleely churn rate and decreases with file size. However, inhigéa

and with the server’s incentive to keep the market online. churn rate region close to 1), file size is irrelevant, and entry
1) Entry Price: When entering the market, an agent hagrice decreases with churn rate. We proceed to numerically

no blocks to exchange with others, and thus must bring arstify these intuitions with more accuracy and for the iahrt

initial capital that allows him to buy one block of a certaircoding case.

good. The amount of initial capital needed to start transgct Fig. 4 plots the curves derived directly from (15). As can be

a good is referred to as thentry priceof that good. For the induced from the figure and the steady-state analysis, @&ibnt

steady state market with SPNE strategies, the entry prigaleq distribution protocol is stable only if the churn ratés less than

max{pg1, Poe * * Por» 901502 » Qo |- Sincepg,; = 0 for all ﬁ otherwise the agents holding zero blocks will eventually

0 <j < K, we only need to focus og;. dominate the market and the good will vanish. Thereforegund
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and F' are segment size and file size, respectively. Number of segmerﬁ{g' 5. The lifetime payoff as a function of churn rate and ogdtomplexity.

K

_ F H H 1
M= jc. A protocolis stable only fj: < ;- The rate of decreasing is approximately linear for non4ecgdi
and approximately sublinear (fér < p < 1) for full-coding.
Therefore network coding can alleviate the market’s instability
facing churns, and can expand the region in which the agents
have positive payoff and are motivated to join

From the general cases plotted in Fig. 5(A), we can see
that higher coding complexity always induces higher leviel o
payoff. For any configuration, payoff approaches 0 as chaten r
approachesj\%. As churn rate approaches 0, all configurations
2 . . approach the highest possible payoff, which equals to tke fil
level. Entry price increases as the coding complexity desws, size F. In summarythe advantages of network coding are best

meaning thatower entry price is obtained at the cost of COdm%emonstrated in a dynamic market with impatient agents, and

complexity When. is sufficiently large, however, using Smallers:uch advantages diminish as the agents become more patient

segment size may result in_ lower entry price. This s becauseFig. 5(B) characterizes the tradeoff between lifetime fiayo
the resale value of goods is degraded in the high churn r%trt]ad coding complexity. In general, payoff increases witting
region. With smallerk, the resale value is shared by a larger ) '

. omplexity, namely the segment sizZ& However, the increase
number of goods, hence the per-good value decreasesjngsu - .
. : IS negligible whenk is beyond a small threshold that decreases
in lower entry price. In the extreme cage= 1, a good has no

resale value, and its entry price equals the utility value 1. with churn rate. This implies thatncoding a small number

We remark that a real-world P2P market tends to survive rl;)f blocks is sufficient to harvest the major benefit of network

n .
the low churn rate region. The following back-of-the-eel coding

calculation, based on the measurements in [8], may be con-l?l’) Ihg ﬁi?delis ]I?aﬁoffWg refer t(;) aAnttz;\]gent whot has
vincing. Consider a file with" = 1000 blocks, each of size coflected all DIocks of all goods assaeder € moment an

e gent has fulfilled a single good, his expected payoff duttirg
1 MB. Suppose peer upload/download bandwidth is 0.5 I\/lB/%’sidual lifetime isUx. Therefore, after he becomes a seeder,

then the duration of a period in our discrete model is 2 semonﬁf ted . AR
According to [8], an agent’s average lifetime equals 60 r@ap T:expetcr:] e pa);o ¢ iqu f ' have:
corresponding to 1800 periods, thus= 5 ~ 5 x 1074, rom the proot of Lemma 1, we have:

a fixed file sizeF' (F' = 1000 in all our numerical simulation),
higher coding complexity (largell’) corresponds to smallév/,
allowing for larger churn ratg. This means thaa P2P content
distribution market is more tolerant to agents’ impatiendasen
using network coding, especially the full-coding protocol
Since ' = M for the non-coding protocol, it is only stable
for p € (O,%). In this region, the full-coding protocol has
the lowest entry price as it results in the highest avaigbil

which is obviously in the low churn rate region. Uk = (Uk —U1) + (U1 = Uo) + Uy
2) Lifetime Payoff:We definelifetime payoffas an agent’s K1 (1—n=K)
expected payoff when he enters the steady-state market. Ini= Z (Upt1 = Ux) + Ve +Up = T Ve + U
tially, an agent holds zero block, hence his expected pdgoff k=1 g
each good equal&,, and the lifetime payoff equals t&/U, For non-coding, we haveM Uy = M (V, + Uy) ~ uM?2.
as M represents the total number of goods on sale. When file size is fixed, the seeder’s payoff is approximately
From the equilibrium analysis established when provinghearly increasing with churn rate. For the full-codingsea
Lemlma 1, we havé/; — Uy = ‘l/x and we can easily verify, following the approximations in theoa®
(r— +p—DUo = aolo + 5 (Uo + U1 + 1)(p — ao) subsections, that the seeders payoff demonstrates afiffer
1—p 2 characteristics depending on the churn rate. However, We on

By solving these two equations, we obtain: : Lo
y g q present the numerical results due to space limitation.

Uo=5((1~ Wt =1 - w1+ Vi) (19 From Fig. 6, we observe that the seeder’s payoff increases
For the full-coding case, by expanding,, we have the monotonically with churn rate in the low churn rate region.
following approximation: Lower coding complexity results in higher revenue for the
Uy ~ llfl(l — )2 0<p<1 (20) Seeders, but at the cost of a lower level of tolerance to ehurn

The intuition behind is that with low coding complexity, the
1 agent's impatience problem becomes more threatening,ahus
Up~ (1= p)(l—pM)~1—pM,0<p<—7  (21) seeder who holds all the goods has higher bargaining power on
We conclude from (20) and (21) that the lifetime payofthe market, and harvests more profit through the decerddaliz
monotonically decreases as churn rate increases fromj\]{;.to bargaining. In the high churn rate region, similar to entrige,

For non-coding, we have:
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on a steady-state market in which agents adopt stationary
seeder’s payoff decreases due to the dominant decreassatd restrategies. An interesting future avenue is to understéied t
value. transient properties of the market and implement disteithut
4) Equilibrium with Servers:Due to space constraint, wepricing algorithms that lead the market to the stationagyme.
only present numerical results for the case with servers. Fi
7 plots the lifetime payoff when 100 servers facilitate*
downloaders. Here all possible churn rate withiiy 1) is
supported by the market because the servers ensure that eps
good is constantly online. However, the lifetime payoff liow-
complexity coding protocols and the non-coding protocdfiesu
from a steep decrease with churn rate, implying that ageBts a  ~g 01 and Computing2003.
less motivated to join the market. [4] D. Niu and B. Li, “On the Resilience-Complexity Tradeoff bletwork
If we deem each server as a special seeder, who refreshes hjsCoding in Dynamic P2P Networks,” iRroc. of IEEE IWQ052007.

. . L . ) [5] P. A. Chou, Y. Wu, and K. Jain, “Practical Network Codihip Proc. of
life with probability , every period, then the seeder’s payoff™ ,qron 2003.

is equivalent to the time-average payoff of the server, twhic[6] M. wang and B. Li, “R2: Random Push with Random Network ®od
is termed per-server payoffThe per-server payoff decreases in Live Peer-to-Peer StreamindEEE JSAC vol. 25, no. 9, 2007.

! : I 7] D. M. Chiu, R. W. Yeung, J. Huang, and B. Fan, “Can Netword®
as more servers join the market (Fig. 8). This is because thd Help in P2P Networks?” iProc. of NetCod2006, o

competition among servers reduces the individual bamg@ini [8] S. Saroiu, P. K. Gummadi, and S. Gribble, “A Measurement \Btofl
power, thus reducing the revenue from each pairwise bargpin __ Peer-to-Peer File Sharing Systems,"Rroc. of MMCN 2002.

S . . [9] M. Osb d A. Rubinstei ini d Markets Academi
game. In addition, in the low churn rate region, non-codin ! Presss fégg_an ubinstelrfargaining and Markets - Academic

has a much higher level of payoff than high-complexity cgdin[10] K. Hosanagar, P. Han, and Y. Tan, “Diffusion Models f@APContent
protocols. This implies in a real-world P2P market, it is mor__ Distribution,” to appear in Information Systems Research
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d load d dditi I b . . 13] C. Aperjis and R. Johari, “A Peer-to-Peer System As aoharge Econ-
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the coding complexity to be employed. and Networks (GameNet006.
[14] E. Ahmed, A. Eryilmaz, A. Ozdaglar, and M. Medard, “EconorAspects
of Network Coding,” inProc. of Allerton 2006.

. . 5] D. Turner and K. Ross, “A Light Weight Currency Paradidon the P2P
In this paper, we develop a theoretical framework thgt Resource Market,” inProc. of International Conference on Electronic

quantifies the market power of network coding in a non- Commerce2004.

i iotribiiti ] X. Zhang and B. Li, “On the Market Power of Network Coding
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network participants as market agerjts who pur'Chas? antl rese techreports/CodMart.pdf.” Dept. of ECE, University of @ato, Tech.
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. . . Athena Scientific, 2005.
pricing strategies that constitute a subgame perfect Ngsh e
librium, as well as a market equilibrium which is proof agdin
individual temporal deviations. Combined with a steadjtest
modeling of the goods availability, this analysis allowstas
derive closed-form solutions that capture the effects ofvoek
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