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Abstract—Network coding is emerging as a promising alter-
native to traditional content distribution approaches in P2P
networks. By allowing information mixture in peers, it simplifies
the block scheduling problem, resulting in more efficient data
delivery. Existing protocols have validated such advantages as-
suming altruistic and obedient peers. In this paper, we develop
an analytical framework that characterizes a coding based P2P
content distribution market where peers selfishly seek for individ-
ual payoff maximization. Through virtual monetary exchanges,
agents in the market buy the coded blocks from others and resell
their possessions to those in need. We model such transactions as
decentralized strategic bargaining games, and derive the equilib-
rium prices between arbitrary pairs of agents when the market
enters the steady state. We identify the traditional P2P content
distribution approach as a special case of network coding, and
characterize the relations between coding complexity and market
performance metrics, including agents’ entry price and expected
payoff, thus providing operation guidelines for a real P2P market.
Our analysis reveals that the major power of network coding lies
in its ability to maintain stability of the market with impatient
and selfish agents, and to incentivize agents with lower price and
higher payoff, at the cost of reasonable coding complexity.

I. I NTRODUCTION

P2P content distribution systems are built atop the basic
premise of voluntary resource contribution by participating
peers. Two critical problems are inherent in this presumption:
the scheduling decision of individual peers (i.e., choosing which
data blocks to share) and the incentives for sharing.

Existing P2P content distribution systems tackled the
scheduling problem using random or rarest-first strategies. Such
heuristic local algorithms tend to result in suboptimal uploading
or downloading decisions that waste network resources [1].Net-
work coding circumvents the scheduling problem by allowing
each peer to encode and deliver a random linear combination
of the data on hand. As long as one block is fresh, the entire
encoded block is useful to the requester with high probability.
Therefore, the risk of uploading duplicate information canbe
significantly reduced without sophisticated scheduling. Existing
protocols (see,e.g., [1]) have identified network coding based
content distribution as a workable idea, but without rigorous
theoretical quantification of its advantages. They have also
assumed altruistic resource sharing among peers, which is
inconsistent with the greedy and selfish behavior that dominates
real-world P2P systems [2].

In this paper, we analyze the performance of network coding
based P2P content distribution protocols from an economic and
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game theoretic perspective. We envision the P2P system as a
decentralized content distribution market. Each peer actsas a
market agent, namely a seller and buyer. Before entering the
market, a peer must pay an initial service fee (referred to as
entry price) that is used to obtain at least one block. Afterwards,
he can resell the blocks he already possesses and purchase
additional blocks with the money on hand. Whenever a seller
and a buyer meet, they bargain over the blocks of interest
for a consensus price. Both sides of the bargaining game take
into account the availability of alternative sellers and buyers,
and the potential resale value of the good once the transaction
succeeds. Such a model resembles an exchange economy for
digital information goods, and sheds lights on the deployment
and evolution of practical P2P markets.

We classify peers in the market according to their posses-
sions, i.e., the availability of blocks on them. By modeling
the transactions between peers as noncooperative games, we
derive the equilibrium pricing strategies for different types of
peers. We find that unlike traditional centrally managed market
economy, no uniform price exists under strategic bargaining.
Instead, the price depends on not only the availability of the
goods, but also the valuation of each type of peer on each
good. Furthermore, we extend the game to a market scale, and
characterize a market equilibrium in which individual peers
adopt stationary strategies, and no one can profit more by
deviating over time. We then approximate the evolution of such
a market using a system of differential equations, and derive
the availability of goods when the market enters steady state.

The above theoretical framework results in closed-form equa-
tions that quantify the impact of various design parameterson
the stable operations of the market. Through these equations,
we observe that the fundamental advantage of network coding
lies in maintaining the availability of data blocks even when
peers are highly impatient and even in the absence of content
servers. Translated into market terms, coding based protocols
induce a higher level of competition among content sellers,
thereby avoiding the monopoly or oligopoly scenarios in which
a limited number of content holders force up the price. Further-
more, network coding incentivizes the peers by increasing their
expected payoff, and reasonable coding complexity is sufficient
to harvest such an advantage. Unfortunately, we also find that
network coding is against the interests of content servers as
their profit decreases with increasing coding complexity.

The remainder of the paper is organized as follows. In
Sec. II we contrast our work with existing analyses of P2P
systems, especially those with network coding and from an



economic perspective. We then give a brief introduction to
practical network coding protocols and our system models in
Sec. III. Sec. IV analyzes the decentralized bargaining game
and characterizes its equilibrium and the corresponding market
equilibrium. Sec. V models the evolution of goods availability,
and then presents a comprehensive analysis on the market’s
properties at steady state. Finally, Sec. VI concludes the paper.

II. RELATED WORK

Since the pioneering work by Hoet al. [3], randomized
network coding has received substantial attention from P2P
protocol designers. The Avalanche [1] system implemented a
primitive form of random linear code that encodes all data
blocks in a file. However, when the file size exceeds a few
hundred blocks, such a full-coding scheme causes intolera-
ble computational overhead even for modern processors [4].
More recent protocols have extended the idea ofsegment-
based network coding[5], which splits the file into multiple
segments, each allowing for efficient encoding and decoding.
This approach has demonstrated its effectiveness in not only
file sharing, but also elastic content distribution systemslike
P2P streaming [6].

Despite its wide applications, the fundamental benefits of
network coding in such systems have not been fully explored
with theoretical rigor. Chiuet al. [7] abstracted a P2P system as
a staticstar topology, and claimed that coding does not increase
the network capacity compared with routing. Through mean-
field analysis of a dynamic P2P system, Niuet al. [4] claimed
that network coding can alleviate the imbalance of block dis-
tributions in traditional content distribution protocols, thereby
improving the resilience to network dynamics. Both analytical
works, as well as the existing system implementations, have
relied on the premise of cooperative peers, while measurement
of real P2P systems exhibits a dominant portion of selfish free-
riders [2], [8]. In this paper, we aim at quantifying the funda-
mental advantages of network coding in such non-cooperative
environment.

Our work is partly inspired by Rubinstein [9], who analyzed
the impact of strategic price settings on the equilibrium of
a market economy. Traditional market economy has assumed
agents leaving the market after a successful transaction, with the
buyer owning the goods while the seller earning the payment.In
contrast, P2P systems featurecopiableand resalableproducts
that propagate their values over time, thus requiring the support
of a brand new model.

Game theoretic analysis of peer behaviors has been widely
employed (see [2] for a survey). This line of research has
mostly focused on designing incentives that encourage coop-
eration and lead the peers towards a socially optimal point.
The results have inspired commercial P2P systems to adopt
incentive mechanisms (e.g., virtual payment) that motivate
peers’ willingness to share [10]. We are less concerned with
designing such payment protocols, and instead, more focused
on the equilibrium analysis assuming a virtual payment scheme
is available. Our work differs from existing game theoretical
framework not only in an emphasis on network coding, but also

in its equilibrium analysis under adecentralized marketsetting.
We consider not just the strategic behavior of individual peers,
but also how their self-interested pricing strategies influence the
content distribution market as a whole.

Economic models, in particular the market models for P2P
systems have been explored by the MMAPPS project [11],
which proposed market management techniques to encour-
age cooperation. Within MMAPPS, Antoniadiset al. [12]
developed a theoretical framework that abstracted the shared
content as public goods. Assuming that peers’ valuation of the
goods follows uniform distribution, a social planner determines
incentive-compatible prices and services for them. However,
the mechanism lacks a support for network dynamics and a
concrete modeling of the peers’ valuations.

Aperjis et al. [13] proposed a comprehensive exchange
economy model that captures the optimal equilibrium price
in a content distribution market. They analyzed a one-shot
exchange market without resale, and without discriminating
goods according to their availability. The economic implication
of network coding has been discussed in recent work [14],
focusing on centralized cellular networks with price-taking
agents. To our knowledge, there does not exist any previous
work on the power of network coding in a decentralized P2P
content distribution market with strategical participants.

III. C ODING BASED P2P CONTENT DISTRIBUTION

MARKET

In this section, we first introduce the widely used segment-
based network coding protocol for P2P content distribution.
When running such a protocol, peers purchase and resell the
coded data blocks, thus forming a content distribution market.
We specify the various elements of such a P2P market economy,
including the classification of peers and the price formation.

A. P2P Content Distribution with Network Coding

Existing coding based P2P content distribution protocols
have mostly adopted the following segment based scheme.
Before transmission, the original data file is grouped into
segments, each containingK blocks of sizeE bytes.K andE

are termedsegment sizeandblock size, respectively.The coding
operations are performed within each segment. We represent
each segment as a matrixB, a K × E matrix, with rows
being theK blocks, and columns the bytes (integers from
0 to 255) of each block. The encoding operation produces a
linear combination of the original blocks in this segment by
X = R ·B, whereR is a K ×K matrix composed of random
coefficients in the Galois fieldGF (28). Thecoded blocks(rows
in X), together with thecoding coefficients(rows in R), are
packetized and delivered to other peers.

The decoding operation at each peer is the matrix multi-
plication B = R−1 · X, where each row ofX represents
a coded block and each row ofR represents the coding
coefficients accomplished with it. The successful recoveryof
the original segmentB requires that the matrixR be of full
rank, i.e., each peer must collectK independent coded blocks
for this segment. However, a peer can upload coded blocks



even if the segment is not ready to decode yet. It produces a
new block byre-encodingexisting blocks it has collected in
this segment. The re-encoding operation replaces the coding
coefficients accomplished with the original coded packets with
another set of random coefficients. For instance, consider the
existing coded packets as rows in the matrixY , which from the
viewpoint of the source was obtained usingY = Ry · B (B is
the original uncoded packets andRy is the random coefficients).
Then the current holder may produce a new code block by re-
encoding existing packets asY ′ = R′ · Ry · B = R′

y · B. As
a result, the original coefficientsRy are replaced byR′

y. The
re-encoding operation circumvents the block-level scheduling
problem in traditional content distribution protocols, because
by randomly mixing information from all existing blocks, a
newly generated coded block is innovative to the downstream
peer with high probability [4].

Although randomized network coding solves the block se-
lection problem within a segment, a scheduling algorithm must
be in position to decide which segment to upload or download.
We assume each peer adopts a push-based random scheduling
protocol, which randomly selects a segment, generates a coded
block, and then upload it to his partner. This assumption does
not limit the generality of our major analysis, as our game
theoretical models conclude with pricing strategies that adapt
to general scheduling policies.

Note thattraditional non-coding scheme can be considered
as a special case of segment-based network coding whereK =
1, i.e., each segment has a single data block. By contrast, the
Avalanche [1] protocol corresponds to the other polar,i.e., the
full-coding case, where the entire file is encoded into a single
segment.

B. The Decentralized Market

We envision the existence of an online market place where
peers act as theagentswho purchase and sell coded data blocks
originated from a single file. The file consists ofF blocks and
is grouped intoM segments,i.e., the segment sizeK = F

M
.

Since all data blocks within each segment are equally usefulto
the buyers,each segment corresponds to one type of good, i.e.,
the total types of goods circulating in the market equalsM .
A virtual currency, such as the lightweight currency in [15],
serves as the medium of transaction. Whenever a buyer and a
seller meet, they initiate a pairwise bargaining process over the
segment of mutual interest. If both peers agree upon a certain
price, then the seller uploads a coded block from the segment
of interest, and the buyer will pay the money in return. An
agent may act as a seller and buyer simultaneously, resulting
in an exchange transaction, as illustrated in Fig. 1. If on the
other hand the negotiation ends with a disagreement, then both
peers have to switch to alternative partners.

Without loss of generality, we mainly discuss the pricing ofa
single good. We classify the market agents into(K +1) types.
A type-i agent (0 ≤ i ≤ K) possesses a total number ofi

coded blocks of the good. Obviously, A type-0 agent can only
purchase goods, while a type-K agent who has fulfilled the
segment only sells goods to others.
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Fig. 1. The pairwise transaction in a coding based P2P market with M = 5

segments and segment sizeK = 6. Agents A and B randomly select a good
(segment 2) for bargaining and transaction.

As in a real-world market, the outcome of any pairwise
bargaining depends on the current market condition,i.e., the
availability of the goods. If a good is abundant in the market,
the buyer can easily find an alternative seller, and the buyer
may be better-off searching for alternative providers if the price
proposed by the current seller is too high. Conversely, scarce
goods will be charged higher prices than abundant ones. As the
market evolves, we can expect that an equilibrium exists that
specifies a stationary per-block price for each good. Once the
market evolves to a steady-state, all peers agree upon a common
set of prices and no actual negotiation takes place (Sec. IV). We
will formalize the equilibrium point in the following section.

IV. T HE DECENTRALIZED BARGAINING GAME

In this section, we describe the elemental transaction pro-
cedure on the P2P market,i.e., the pairwise bargaining game.
We rigorously characterize the equilibrium pricing strategies of
each type of agents, and then extend the pairwise bargaining
to a market setting.

A. The Rules of Bargaining

We model the P2P market as a discrete time system. The
duration of a period equals the time needed to transmit a
single block. To capture the market dynamics, we assume an
agent is impatient, remaining in the market in each period with
probability θ, i.e., the churn rate (peer join and departure rate)
µ = 1 − θ. Agents have homogeneous upload and download
bandwidth, which equals 1 block per period. We abstract the
peer selection as a matching process in which an agent is
randomly matched to another agent in each period. Upon
matching, the pair of agents select one good of mutual interest
and propose toexchange one blockof the good ( agents are only
allowed to exchange blocks of the same good because different
goods may experience different availability and distinct prices).
The outcome of the matching depends on two factors: the
usefulness of the block, and the bargaining result.

First, before transaction, both agents need to make sure they
can provide at least one useful block to each other. This can
be trivially satisfied if they are of typei and j, respectively,
where0 < i, j < K. If one of them is of type 0 orK, then
the transaction becomes a unilateral sale, instead of bilateral
exchange. Note that even in a unilateral sale, the bandwidthis
not wasted because two goods may be simultaneously on sale.

The second and most critical factor in the transaction is
whether the bargaining between the pair of agents results in



an agreement. Since the agents may have different valuations
of the good, the one who gain more has to pay for the other.
To avoid unfair advantages of the initiator, one agent (referred
to as proposer) is randomly selected to propose a price. The
opposite agent (referred to asresponder) responds by either
accepting or rejecting the proposal. In case of rejection, both
agents continue to the next period, looking for new partners.
The ability to switch to alternative partners enhances the agents’
bargaining power, since they can threat to abandon the current
partner, thus making it a “take-it-or-leave-it” offer. Therefore,
whether the bargaining results in agreement or disagreement
depends on the availability of alternative partners on the market.

As the market evolves to a steady-state, each type of agents
adopt stationary strategies. To be specific, astationary strategy
implies that each type of proposer or responder maintains the
same reservation prices when facing the same type of partners.
The reservation pricesof a type-i agent include a proposer
price p∗ij , the optimal price he can bid that is acceptable to
a type-j agent; and a responder priceq∗ij , the optimal price
that is proposed by his partnerj and is acceptable to him. For
consistency, the subscriptij always indicates the price thati
should pay toj, hencepij = −qji. With stationary strategies,
whenever an agenti is matched to agentj, he proposesp∗ij
to agentj if he is selected as the proposer; and he accepts
a proposalqij from j if and only if qij ≤ q∗ij . Hence, the
negotiation procedure is no longer needed in a steady-state
market. In what follows, we characterize the reservation prices
p∗ij and q∗ij corresponding to the unique stationary strategy
that satisfies subgame-perfectness. We further justify that it is
not profitable for an agent to use non-stationary strategiesat
equilibrium.

B. The Subgame-Perfect Nash Equilibrium in Pairwise Trans-
actions

The classic concept ofNash equilibrium in game theory
characterizes the strategy profiles in which no players can
profit more by unilaterally deviating from his current strategy.
However, Nash equilibrium strategies may includeincredible
threats, which the threatener himself does not prefer to issue,
but which may still deter the actions of the one under threat.In
the above bargaining game, the stationary strategy that rejects
all transactions constitutes a Nash equilibrium, since every
agent receives payoff 0 and no one can profit more than 0
by changing his own strategy. However, threatening to resort to
such strategies are incredible since the agents are aware that any
alternatives that encourage transactions can be more benefitial.
The concept of Subgame-Perfect Nash Equilibrium (SPNE) [9]
refines Nash equilibrium by ruling out such incredible threats.

Specifically, asubgamein the above bargaining is a game
starting from an arbitrary proposer and lasts one time slot,
ending up with either a disagreement or a successful trans-
action. Thestrategy for an agenti in the subgame are the
pricing proposal (pij or qij) and a response (accept or reject).
The payoff in each single transaction equals the utility minus
cost. More precisely, for a transaction between proposeri and
responderj, the payoff equalsSij−pij for agenti andTij +pij

for agentj. HereSij is theutility of the payeri, which equals
to the number of blocks (either 0 or 1)i downloads fromj in
the transaction. Similarly,Tij is the number of blocks the payee
j downloads fromi, henceSij = Tji. Note that theexpected
payoff depends not only on the payoff in a single transaction,
but also the potential payoff he can gain by reselling the blocks
he gets, and the possibility of switching to alternative partners.

Given the above elements of the game, a strategy profile
constitutes aSubgame-Perfect Nash Equilibrium(SPNE) if it
induces a Nash equilibrium in every subgame, each correspond-
ing to a possible round of negotiation. In what follows, we
establish the necessary and sufficient condition for a stationary
SPNE strategy in Lemma 1 and Lemma 2, respectively. We
summarize the results concerning the existence and uniqueness
of the SPNE in Theorem 1.

Lemma 1. Any stationary SPNE strategy must satisfy:

p∗ij =







−ηj−K − 1, if i > 0 and0 < j ≤ K,

0, if i = 0,
−Vx − 1, if j = 0.

(1)

and: q∗ij =−p∗ji (2)

whereη = 1 +
2
θ
−2

ρ−α0
; αi is the probability of meeting a type-i

agent.ρ =
∑K

i=0 αi = 1
M

, and

Vx = (
2

θ
+ θ + ρ − 4)−1(ρ − αK −

K−1
∑

i=1

αi

ηK−i
−

ρ − α0

ηK−1
)

Proof: Let Ui be the expected equilibrium payoff of a type-i

agent that is unmatched,i.e., he has no partner that can provide
the good of interest in the current time slot. DenoteMij as the
equilibrium payoff of a type-i agent when he is matched with
a type-j agent.

For a unmatched agenti, all payoff begins only from the
next time slot, where with probabilityµ = 1− θ, he leaves the
market and gets zero payoff. Conditioned on the event that he
remains in the market, he may either be matched to an agent of
type-j with probabilityαj (0 ≤ j ≤ K), or remains unmatched
with probability (1 − ρ). Therefore, the expected equilibrium
payoff for a unmatched type-i agent is:

Ui = (1 − θ) · 0 + θ · [
K

∑

j=0

αjMij + (1 − ρ)Ui] (3)

For a matched agenti, the equilibrium payoff consists of the
payoff in the current transaction, plus the expected payoffin
the forthcoming time slots. The current payoff equals his utility
minus the expected cost:Sij −

1
2 (pij + qij). If he obtains one

block in the current transaction, then he becomes type-(i + 1)
beginning from the next period and the expected payoff equals
to Ui+1. Otherwise ifj = 0, i.e., he is matched to an agent with
zero blocks, then his future payoff remains to beUi. Therefore,
the expected equilibrium payoff for a type-i agent with a type-j
partner is:

Mij =

{

Sij −
1
2 (pij + qij) + Ui, if j = 0.

Sij −
1
2 (pij + qij) + Ui+1, otherwise.

(4)

Note that wheni = K, i.e., the agent collects a full set of
blocks for the good, then he remains in type-K until leaving



the market. In equation (4) and what follows, we equate a type-
(K + 1) agent with a type-K agent.

We proceed to characterize the SPNE prices which are
closely related with the above payoff functions. Consider any
subgame with agenti being the proposer, who bids pricepij

for the transaction. Ifi > 0, then the total expected payoff of
agentj from current and future payoff is(Tij + pij + Uj+1).
Subgame perfection requires agenti to propose a price which
gives agentj no less payoff than if he rejects the proposal and
remains in type-j, i.e., (Tij + pij + Uj+1) ≥ Uj . However, if
(Tij + pij + Uj+1) > Uj , agenti can gain more by proposing
a price that is less thanpij but still acceptable by agentj.
Therefore, we must have(Tij +pij +Uj+1) = Uj . For the case
i = 0, agentj remains to be typej after the transaction, and
thus (Tij + pij + Uj) = Uj . In consequence,

Uj =

{

Tij + pij + Uj , if i = 0.
Tij + pij + Uj+1, otherwise.

(5)

Using a symmetric argument (with roles ofi andj reversed),
we can obtain the SPNE price wheni is the responder:

Ui =

{

Sij − qij + Ui, if j = 0.
Sij − qij + Ui+1, otherwise.

(6)

In summary,any stationary SPNE strategy must necessarily
satisfy(3), (4), (5) and (6). This necessary condition involves
K + 1 + 2(K + 1)2 linear equations and the same number
of variables, includingUi,Mij , pij and qij , (0 ≤ i ≤ K, 0 ≤
j ≤ K). By solving this system of equations, we obtain the
equilibrium pricesp∗ij , q

∗

ij and the corresponding equilibrium
payoff. Due to space constraint, interested readers are referred
to [16] for details of the solution procedure. ⊓⊔

Lemma 2. The stationary strategy with reservation prices
defined in(1) and (2) is a SPNE strategy for every pairwise
bargaining game.

Proof: To prove that the threshold based stationary strategy
is SPNE, it is sufficient to show that in an arbitrary subgame,
either proposer in the matched pair is willing to adopt the
prices p∗ij and q∗ij , and cannot profit more by unilaterally
deviating from such equilibrium prices. The latter condition is
straightforward following the equilibrium argument in proving
Lemma 1, thus we only prove the former condition.

To verify that the proposerj indeed has the incentive to
propose priceq∗ij , we need to ensure that the profit from this
proposal is no less than if he remains inactive and wait for the
next transaction,i.e.,

Tij + q∗ij ≥ 0, if j = 0. (7)

Tij + q∗ij + Uj+1 ≥ Uj , if j > 0 (8)

For brevity, we only present the general cases wherej > 0
and 0 < i < K (see [16] for a complete proof). Equation (8)
is equivalent to:

Tij + (Ui+1 − Ui) + Sij + (Uj+1 − Uj) ≥ 0 (9)

From Lemma 1, we haveUi+1 − Ui = −ηi−K , (0 < i <

K − 1), where η = 2a−α0−ρ
ρ−α0

= 1 + 2(θ−1
−1)

ρ−α0
. Recall that

ρ =
∑K

i=0 αi ≥ α0. Therefore, we haveη ≥ 1 and subse-
quently−1 ≤ Ui+1 −Ui ≤ 0. Similarly −1 ≤ Uj+1 −Uj ≤ 0.

Since in this caseTij = 1, equation (9) follows directly. By a
symmetric argument, we can also prove that the proposeri has
the incentive to propose pricep∗ij , thus completing the proof
for Lemma 2. ⊓⊔

Lemma 1 establishes that (1) and (2) are the necessary
condition for an SPNE strategy, while Lemma 2 justifies the
sufficiency of the condition. Since the systems of equations
corresponding to the condition has a unique solution, we have
the following result.

Theorem 1. The unique stationary subgame perfect Nash
equilibrium strategy is the threshold based strategy with reser-
vation prices defined in(1) and (2).

From (1) and (2), we conclude that the SPNE price depends
on the coding complexity (reflected in segment sizeK), avail-
ability of the good (reflected inαi), as well as the degree of
market dynamics (reflected inµ). The intricate relations implied
by the above theorem will be further clarified in Sec. V.

C. The Market Equilibrium and Its Stability

The analyses above have revolved around the strategically
stable configurations,i.e., the SPNE of each pairwise “take-
it-or-leave-it” bargaining game. In this subsection, we extend
the equilibrium to a temporally stable configuration, claiming
that the equilibrium is insensitive to strategical manipulations
of any individual agent over time.

Towards this end, we define theexpected payoffof an
agent asR(h) =

∑

∞

t=0 R(h(t)), whereR(h(t)) is the payoff
within time slot t when the agent adopts strategyh. Assume
agents are expected payoff maximizers, then following the
microeconomics literature [9], we definemarket equilibrium
as a stationary strategy profileh∗ that is adopted by all agents
and that maximizes the expected payoff of each agent. More
precisely, for each agentΥ, R(h∗

Υ, h∗

−Υ) ≥ R(hΥ, h∗

−Υ) for
all possible strategiesh, whereh∗

−Υ indicates that all agents
other thanΥ adopt the same stationary strategy. Essentially,
in a market equilibrium all agents adopt the same stationary
strategy, and no single agent can gain more by strategically
vary his proposals and responses during his lifetime. With this
concept, we have:

Theorem 2. In the P2P content distribution market, the
threshold based strategies with reservation prices definedin
(1) and (2) constitute a market equilibrium.

Proof: Consider an agentΥ entering the market with zero
blocks of the good. In searching for a payoff-maximizing
policy, Υ essentially faces a Markov decision process (Fig. 2).
The state space includesPi, Ai, Zi, and leave. Zi denotes that
Υ has evolved to typei and has no partner yet.Pi denotes that
the agent has evolved to typei and has been selected as the
proposer in a bargaining game. Each statePi includes a subset
of statesPij(0 ≤ j ≤ K), indicatingΥ is matched to a partner
of type j. Similar definition applies forAi, where the agent
has been selected as the responder.

When all other agents adopt the same stationary strategies
defined in Lemma 1,Υ only has two policies in each stateAij

and Pij . He either choosesagreementby proposingp∗ij and
acceptingq∗ij , or choosesdisagreementby proposingpij > p∗ij
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Fig. 2. The state transition diagram of an agent, assuming he adopts the
disagreementpolicy in every stateAi and agreementin every statePi. Each
stateAi includesK substates. SubstateAij is reached with probabilityαj .
Similar definition applies forPi. Leaveis an absorbing state that can be reached
from any other state with probabilityµ.

and rejectingqij ≤ q∗ij . His policies have no impact on the
statesZi and leave.

Denote Xa and Xd as the expected payoff in stateX
when choosingagreementanddisagreement, respectively. The
expected payoff in each state and for each policy equals the
payoff gained within the state plus the expected payoff after the
policy is taken. More specifically, when the agreement policy
is taken in statePij , the expected payoff is:

P a
ij = Sij − p∗ij + θ[

K
∑

k=0

αk

2
(P ∗

(i+1)k + A∗

(i+1)k) + (1 − ρ)Ui+1]

In this equation,(Sij − p∗ij) represents the average payoff
within statePij and when the agreement policy is enforced.
P ∗

(i+1)k and A∗

(i+1)k are the corresponding optimal payoff in
the next period when the agentΥ is selected as the proposer
and responder, respectively. The agentΥ obtains payoffUi+1

if this good is not selected for transaction in the next period,
which happens with probability(1 − ρ).

In a similar vein, we can derive the expected payoff when
enforcing the disagreement policy, which is independent ofj.

P d
ij = θ[

K
∑

k=0

αk

2
(P ∗

ik + A∗

ik) + (1 − ρ)Ui]

Consequently, the payoff difference for the two policies is:

P a
ij − P d

ij = Sij − p∗ij + θ[

K
∑

k=0

αkM(i+1)k + (1 − ρ)Ui+1]

− θ[
K

∑

k=0

αkMik + (1 − ρ)Ui]

= Sij − p∗ij + Ui+1 − Ui = Sij − p∗ij + q∗ij − Sij ≥ 0

The last inequality follows from the definition of the equi-
librium prices in Lemma 1. An intuitive explanation can be
derived by contradiction. Supposeq∗ij < p∗ij , then agentj can
proposeq′ij such thatp∗ij > q′ij > q∗ij , which contradicts the
optimality of q∗ij . Similarly, we can justify the optimality of the
agreement policy in each stateAij . Given that the agreement
action is optimal for every state, it constitutes a stationary
policy that solves the following revenue-maximizing Bellman
equations in a dynamic control problem [17]:

J∗(Pij) = max{P d
ij , P

a
ij}, J

∗(Aij) = max{Ad
ij , A

a
ij} (10)

Following Proposition 7.2.1 in [17], it can be easily verified
that the stationary policy of agreement is the optimal policy for

the payoff-maximizing problem corresponding to the market
equilibrium. ⊓⊔

V. THE EQUILIBRIUM PRICE AND PAYOFF

In this section, we analyze the steady state distribution of
goods availability in the coding based P2P market, and then
integrate it with the previous game theoretic analysis. This leads
us to a comprehensive understanding of the relation between
the scarcity of goods and the equilibrium price, and the market
power of network coding in this context.

A. Availability of Goods at Steady State

Our basic approach is a continuous time approximation to the
evolution of the market using differential equations. We focus
on a steady state of the peer population, in which the total
number of agentsN remains roughly constant. Assume the
peers join and depart the market following a Poisson process,
then the arrival rate equals the departure rate, and corresponds
to the departing probabilityµ in the game model. Suppose the
goods (segments) arerandomly selectedfor downloading upon
the encounter of two agents. Then one could expect that each
good experiences a similar level of availability. In the following
analysis, we only focus on the block distribution of a single
good. We will justify the above modeling assumptions using
simulations.

Denotesi as the number of agents having at mosti blocks
of the good, andni as the number of agents holding exactly
i blocks. Consider the evolution of the market during a short
period∆t. The increase ofsi within ∆t equals the number of
departing peers each holding at least(i + 1) blocks, and each
subsequently replaced by a new peer with zero block, which

amounts to:µN∆t
PK

j=i+1
nj

N
.

The decrease ofsi equals to the total number of peers that
have i blocks and download one more block. The probability
that such a peer is chosen equalsni

N
, while the probability that

a segmenti is chosen isρ = 1
M

. The total decrease ofsi thus
equals:∆t

∑K
j=1 nj

ni

NM
.

As ∆t → 0, the following system of differential equations
captures the evolution of the market:

dsi(t)

dt
= µN

∑K
j=i+1 nj

N
−

K
∑

j=1

nj ·
ni

NM
(11)

ds0(t)

dt
= µN

N − n0

N
− (N − n0)

n0

NM
(12)

Solving for the steady state, and letφ = n0

N−n0
, we have:

n0 = µNM,nK =
n0

φ(1 + φ)K−1
, (13)

ni =
n0

(1 + φ)i
, (0 < i < K). (14)

To evaluate the accuracy of the above model, we have
developed a C-based P2P network simulator. We simulate a
dynamic P2P market following the random peer selection and
segment selection policy with populationN = 104 and file
sizeF = 1000. The simulation lasts for 6000 periods. A server
is online in the beginning and leaves after 1000 periods. The
results are sampled after the market evolves to a steady state,
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Fig. 3. The availability among different goods (left) and availability of a
single good over time(right), reflected by the number of type-i (0 ≤ i ≤ K)
agents on the market. Segment sizeK = 100 and churn rateµ = 0.003.

which usually takes around several hundred periods. Fig. 3 plots
the steady-state availability of goods on the market.

The availability demonstrates little variation over time and
across different goods, and the model is able to capture
the average number of each type of agents. More detailed
experiments in [16] reveal that the variation of availability
across goods generally increases with smaller segment size
K. However, even in the extreme case whereK = 1, the
variation is still negligible, especially when considering αi =

ni

NM
. Therefore, in the forthcoming analysis, we equate the

availability value predicted by the differential equationmodel
with the availability of each good. Note that in a streaming
system such as [6], the segments are prioritized in sequence,
and demonstrate considerable variation. The pricing analysis
in previous section still applies to such systems, where theαi

value can be determined online by localized probing or steady-
state analysis. Such extensions are beyond the scope of our
current paper.

For the case withcontent servers(i.e., agents who hold the
entire file and never leave the market), the decrease ofsi in
∆t is (N + Ns − n0) · ni∆t

NM
, where Ns is the number of

servers online. The corresponding steady-state solutionsto ni

can be easily derived similar to the case without servers, and
are omitted in this paper. Interested readers are referred to [16]
for detailed analysis and simulation results.

B. Equilibrium Properties of the Steady-State Market

We proceed to integrate the SPNE and market equilibrium
analysis in Sec. IV with the steady state model. Our emphasisis
on how network coding affects the equilibrium properties ofthe
market. We use asymptotic approximations to derive theoretical
insights, and use exact numerical simulations to crystalize such
effects. We focus on three metrics:entry price, lifetime payoff
and seeder’s payoff, which will be defined below. The former
two metrics are closely related with agents’ incentive to join
in a market economy, while the latter is closely related witha
seeder’s incentive to serve others after he obtains all the goods,
and with the server’s incentive to keep the market online.

1) Entry Price: When entering the market, an agent has
no blocks to exchange with others, and thus must bring an
initial capital that allows him to buy one block of a certain
good. The amount of initial capital needed to start transacting
a good is referred to as theentry priceof that good. For the
steady state market with SPNE strategies, the entry price equals
max{p∗01, p

∗

02 · · · p
∗

0K , q∗01, q
∗

02, · · · , q
∗

0K}. Sincep∗0j = 0 for all
0 ≤ j ≤ K, we only need to focus onq∗0j .

From Lemma 1, we knowq∗0j = 1 + Vx, and q∗0j is
independent ofj. By integrating with the steady state analysis
in Sec. V-A, and noting thatαi = ni

NM
, we have:

Vx =
1

2
θ

+ θ + ρ − 4
[ρ −

1

φ(1 + φ)K−1

−
µ(η1−K − (1 + φ)1−K)

1 + φ − η
− η1−K(ρ − µ)]

=
1

2
1−µ

− 2 + ρ − 2µ
[ρ − ρ(1 −

µ

ρ
)K −

(2µ + 2 − 2
1−µ

)(ρ − µ + 2 + 2
1−µ

) − µρ1−K

2 + µ − 2
1−µ

(ρ − µ)−K
] (15)

To avoid more complex exposition, we mainly focus on the
closed form solutions to two extreme cases, namely the non-
coding and full-coding case. We evaluate the general partial
coding cases through numerical simulation. For the non-coding
case (i.e., K = 1,M = F ), the above can be reduced to:

Vx =
2µ − ρ

2
1−µ

− 2 − (2µ − ρ)
(16)

Considering that the file sizeF is usually very large, the
entry price equation can be further reduced by ignoring the
second order terms ofµ:

q∗0j = 1 + Vx =
2 − 2(1 − µ)

2 − 2(1 − µ) + 1−µ
M

− 2µ(1 − µ)

≈
2µM

1 − µ
≈ 2µM (17)

Therefore, for the non-coding case, when file size is fixed,
entry price increases approximately linearly with the churn rate,
namely the impatience of agents.

For the full-coding case, the entire file is a single segment
(i.e., M = 1,K = F ), andVx can be reduced to:

Vx ≈
1

2
1−µ

− 1 − 2µ
(1 − (1 − µ)K −

(1 − µ)K+1

1 + µ
)

=
1

2
1−µ

− 1 − 2µ
(1 −

2(1 − µ)K

1 + µ
)

Whenµ is close to 0, the above can be simplified toVx ≈
1− 2(1− µ)K . Whenµ is close to 1, we can ignore theK-th
order terms, and obtain the Taylor series ofVx at µ = 1:

Vx = −
1

2
(µ − 1) +

3

4
(µ − 1)2 + O((µ − 1)2) (18)

which is a decreasing function whenµ approaches 1. Therefore,
for full-coding, the entry price has distinct properties intwo
regions roughly defined with respect to churn rate. In thelow
churn rate region(µ close to 0), entry price increases with
churn rate and decreases with file size. However, in thehigh
churn rate region(µ close to 1), file size is irrelevant, and entry
price decreases with churn rate. We proceed to numerically
justify these intuitions with more accuracy and for the partial
coding case.

Fig. 4 plots the curves derived directly from (15). As can be
induced from the figure and the steady-state analysis, a content
distribution protocol is stable only if the churn rateµ is less than
1
M

, otherwise the agents holding zero blocks will eventually
dominate the market and the good will vanish. Therefore, under
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. A protocol is stable only ifµ ≤ 1

M
.

a fixed file sizeF (F = 1000 in all our numerical simulation),
higher coding complexity (largerK) corresponds to smallerM ,
allowing for larger churn rateµ. This means thata P2P content
distribution market is more tolerant to agents’ impatiencewhen
using network coding, especially the full-coding protocol.

SinceF = M for the non-coding protocol, it is only stable
for µ ∈ (0, 1

F
). In this region, the full-coding protocol has

the lowest entry price as it results in the highest availability
level. Entry price increases as the coding complexity decreases,
meaning thatlower entry price is obtained at the cost of coding
complexity. Whenµ is sufficiently large, however, using smaller
segment size may result in lower entry price. This is because
the resale value of goods is degraded in the high churn rate
region. With smallerK, the resale value is shared by a larger
number of goods, hence the per-good value decreases, resulting
in lower entry price. In the extreme caseµ = 1, a good has no
resale value, and its entry price equals the utility value 1.

We remark that a real-world P2P market tends to survive in
the low churn rate region. The following back-of-the-envelop
calculation, based on the measurements in [8], may be con-
vincing. Consider a file withF = 1000 blocks, each of size
1 MB. Suppose peer upload/download bandwidth is 0.5 MB/s,
then the duration of a period in our discrete model is 2 seconds.
According to [8], an agent’s average lifetime equals 60 minutes,
corresponding to 1800 periods, thusµ = 1

1800 ≈ 5 × 10−4,
which is obviously in the low churn rate region.

2) Lifetime Payoff:We definelifetime payoffas an agent’s
expected payoff when he enters the steady-state market. Ini-
tially, an agent holds zero block, hence his expected payofffor
each good equalsU0, and the lifetime payoff equals toMU0

asM represents the total number of goods on sale.
From the equilibrium analysis established when proving

Lemma 1, we haveU1 − U0 = Vx and

(
1

1 − µ
+ ρ − 1)U0 = α0U0 +

1

2
(U0 + U1 + 1)(ρ − α0)

By solving these two equations, we obtain:

U0 =
1

2
((1 − µ)−1 − 1)−1(ρ − µ)(1 + Vx) (19)

For the full-coding case, by expandingVx, we have the
following approximation:

U0 ≈
1

2
µ−1(1 − µ)2, 0 < µ < 1 (20)

For non-coding, we have:

U0 ≈ (1 − µ)(1 − µM) ≈ 1 − µM, 0 < µ <
1

M
(21)

We conclude from (20) and (21) that the lifetime payoff
monotonically decreases as churn rate increases from 0 to1

M
.

(A) Lifetime payoff vs. churn rate
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Fig. 5. The lifetime payoff as a function of churn rate and coding complexity.

The rate of decreasing is approximately linear for non-coding
and approximately sublinear (for0 < µ < 1) for full-coding.
Therefore,network coding can alleviate the market’s instability
facing churns, and can expand the region in which the agents
have positive payoff and are motivated to join.

From the general cases plotted in Fig. 5(A), we can see
that higher coding complexity always induces higher level of
payoff. For any configuration, payoff approaches 0 as churn rate
approaches1

M
. As churn rate approaches 0, all configurations

approach the highest possible payoff, which equals to the file
sizeF . In summary,the advantages of network coding are best
demonstrated in a dynamic market with impatient agents, and
such advantages diminish as the agents become more patient.

Fig. 5(B) characterizes the tradeoff between lifetime payoff
and coding complexity. In general, payoff increases with coding
complexity, namely the segment sizeK. However, the increase
is negligible whenK is beyond a small threshold that decreases
with churn rate. This implies thatencoding a small number
of blocks is sufficient to harvest the major benefit of network
coding.

3) The Seeder’s Payoff:We refer to an agent who has
collected all blocks of all goods as aseeder. At the moment an
agent has fulfilled a single good, his expected payoff duringthe
residual lifetime isUK . Therefore, after he becomes a seeder,
the expected payoff equalsMUK .

From the proof of Lemma 1, we have:

UK = (UK − U1) + (U1 − U0) + U0

=
K−1
∑

k=1

(Uk+1 − Uk) + Vx + U0 =
(1 − η1−K)

1 − η
+ Vx + U0

For non-coding, we have:MUK = M(Vx + U0) ≈ µM2.
When file size is fixed, the seeder’s payoff is approximately
linearly increasing with churn rate. For the full-coding case,
we can easily verify, following the approximations in the above
subsections, that the seeder’s payoff demonstrates different
characteristics depending on the churn rate. However, we only
present the numerical results due to space limitation.

From Fig. 6, we observe that the seeder’s payoff increases
monotonically with churn rate in the low churn rate region.
Lower coding complexity results in higher revenue for the
seeders, but at the cost of a lower level of tolerance to churns.
The intuition behind is that with low coding complexity, the
agent’s impatience problem becomes more threatening, thusa
seeder who holds all the goods has higher bargaining power on
the market, and harvests more profit through the decentralized
bargaining. In the high churn rate region, similar to entry price,
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Fig. 6. The seeder’s expected payoff on the steady-state market.
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Fig. 7. The lifetime payoff in the presence of servers.

seeder’s payoff decreases due to the dominant decrease of resale
value.

4) Equilibrium with Servers:Due to space constraint, we
only present numerical results for the case with servers. Fig.
7 plots the lifetime payoff when 100 servers facilitate104

downloaders. Here all possible churn rate within(0, 1) is
supported by the market because the servers ensure that each
good is constantly online. However, the lifetime payoff forlow-
complexity coding protocols and the non-coding protocol suffer
from a steep decrease with churn rate, implying that agents are
less motivated to join the market.

If we deem each server as a special seeder, who refreshes his
life with probability µ every period, then the seeder’s payoff
is equivalent to the time-average payoff of the server, which
is termedper-server payoff. The per-server payoff decreases
as more servers join the market (Fig. 8). This is because the
competition among servers reduces the individual bargaining
power, thus reducing the revenue from each pairwise bargaining
game. In addition, in the low churn rate region, non-coding
has a much higher level of payoff than high-complexity coding
protocols. This implies in a real-world P2P market, it is more
beneficial for the servers to not use network coding, though
the expected payoff of downloaders decreases with low coding
complexity. Therefore, the two forces — content servers and
downloaders — may need an additional bargaining game over
the coding complexity to be employed.

VI. CONCLUSION

In this paper, we develop a theoretical framework that
quantifies the market power of network coding in a non-
cooperative P2P content distribution system. We model the
network participants as market agents who purchase and resell
goods (data segments), and strategically set prices according to
availability of the goods. We then rigorously characterizethe
pricing strategies that constitute a subgame perfect Nash equi-
librium, as well as a market equilibrium which is proof against
individual temporal deviations. Combined with a steady-state
modeling of the goods availability, this analysis allows usto
derive closed-form solutions that capture the effects of network
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Fig. 8. The per-server payoff for varying churn rate (µ) and number of servers
(Ns).

coding in a dynamic market. In particular, network coding
improves the market’s resilience to impatient agents, at the
cost of high coding complexity. More importantly, it enhances
the agents’ incentive to join by lowering the entry price,
and by increasing their expected payoff. Notably, such coding
advantages diminish as the agents become more patient,i.e.,
when the market experiences lesser dynamics. We have focused
on a steady-state market in which agents adopt stationary
strategies. An interesting future avenue is to understand the
transient properties of the market and implement distributed
pricing algorithms that lead the market to the stationary regime.
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