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Abstract—The ever-growing of Internet of Things (IoT) data
and the new spectrum of data applications have stimulated IoT
clients to outsource their data to cloud servers or datacenters.
Apart from storage service, the IoT clients also desires the servers
to execute functional operations per client’s request. In this paper,
we aim to design the secure mechanisms that allow the IoT clients
to outsource their encrypted data to geographically distributed
servers while supporting homomorphic computation functions.
We leverage the distributed index framework to disassemble
and spread data evenly across geographically distributed servers
while employing the key–value store as the underlying structure
for fast data retrieval. To support computing over encrypted
data, we customize Shamir’s secret sharing into our mechanisms
to design a tunable scheme for the adaption of different IoT appli-
cation scenarios. In particular, we design three tunable protocols
to achieve the effective additive homomorphic computations while
approaching efficiency in terms of servers utilization, computa-
tion, and storage overhead. Even the designs focus on the additive
computation, we show that it can be readily extended to other
types of homomorphic computations as well as verifying the cor-
rectness of stored data. Based on the proposed protocols, we
design system prototypes, deploy them in Amazon Web services,
and evaluate our construction experimentally. Through experi-
mental results, we show that our designs can achieve the efficiency
in various perspectives.

Index Terms—Cloud computing security, homomorphic com-
putation, Internet of Things (IoT), key–value (KV) store.

I. INTRODUCTION

THE application spectrum of Internet of Things (IoT) has
been extensively spread to wide areas, such as health-

care, smart cities, intelligent transportation systems, and so
forth [1], [2]. Accompanying with these applications is the
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rapid growth of the IoT data volumes, which have been explo-
sively increasing year by year. However, IoT devices are
typically small and portable with limited storage and com-
putation capabilities. To handle the rapid growth of the data
volumes and their applications, IoT devices themselves have
reached a bottleneck which prevents the efficient data appli-
cations to enhance their functionalities. On the other hand,
the prominent features of the cloud have attracted more IoT
clients’ interest to outsource their data storage and analyti-
cal services to the geographically distributed servers. These
features, including high scalability and powerful computation
resources, can provide much stable and efficient analytical ser-
vices than a single IoT device [3]–[7]. Thus, outsourcing the
IoT data and its applications into the remote cloud servers have
been a promising method to extend the new IoT application
ranges.

However, storing sensitive data over the remote servers has
been inevitably raising concerns on data privacy and confiden-
tiality. Before outsourcing, data should be initially encrypted
with the appropriate algorithm so that data leakage can be min-
imized when reacting to clients’ data analytical request. The
general category of searchable symmetric encryption (SSE)
has been proposed to enhance data privacy while preserving
the efficient search privileges, such as keyword search and
range search. But the design of SSE does not focus on the
flexible data management on distributed servers. And also,
one of the most popular general data analytics, i.e., homomor-
phic computation, has not been well explored in this category.
To perform homomorphic computation, many designs (Yao’s
Garbled circuit [8], fully homomorphic encryption (FHE) [9],
Paillier system [10], BGN [11]) based on the asymmetric
homomorphic encryption have been proposed and applied
to achieve secure computation over the encryption domain.
However, the underlying algorithms in these designs are essen-
tially based on public-key cryptographic mechanisms, which
have been known with high computation complexity. Thus,
these existing works cannot satisfy the efficiency requirements
for computation over large volumes of data.

In this paper, we consider an IoT client wishes to store
its data on distributed servers while performing the efficient
homomorphic computation over these servers in a distributed
manner. The design goals are toward the fast data retrieval and
efficient computation with security guarantee at the distributed
server sides. For distributing data, the distributed index frame-
work (i.e., key–value (KV) store [3], [4], [12]–[14]) has been
a flexible and effective solution to spread data evenly across
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geographically distributed servers, thus will be employed to
serve as the underlying structure for data outsourcing in our
design. The exemplary designs with distributed index frame-
work have achieved the efficient search and strong security
notions, but their functionalities are only limited to the simple
query [13] and rich queries [14]. But, data analytic solutions,
such as homomorphic computations, have not been well stud-
ied yet. The reason of these limitations is that the values
are encrypted with standard encryption algorithms, i.e., AES,
which does not hold the homomorphic computation properties.

The goal of this paper is to design new mechanisms to
support distributed homomorphic computations by leveraging
the distributed index framework and primitives cryptographic
algorithms to adapt a much broader range of data appli-
cations. The Shamir’s threshold secret sharing method with
homomorphic computation properties will be employed as the
underlying cryptographic algorithm to protect data privacy. We
customize its design into our mechanism to implement homo-
morphic computation functions while satisfying the security
and efficiency requirements. Due to the complexity of secure
computations over encrypted domain, we cannot expect a sin-
gle protocol to meet the satisfaction of all users, but multiple
designs with the tradeoff in various perspectives seem to be
a plausible approach so as to provide tunable solutions for
users. Therefore, we will design multiple solutions with the
tradeoff on storage overhead, communication overhead, and
client’s computation complexity.

Particularly, we design three protocols to achieve the trade-
off in different perspectives. We take the additive computation
as a sample example to motivate our designs. Other homo-
morphic computations, such as subtraction and comparison,
will be discussed later. Specifically, in Protocol I, for each
data value (also called a secret), the client generates one
share (based on Shamir’s secret sharing) corresponding to each
server. This enables fast data locating while computations can
be performed on the respective server directly without the
intercommunication among servers. All additive computation
will be solely done at the server sides. Thus, Protocol I brings
both less communication overhead and client side computation
complexity. However, Protocol I has a hard requirement on the
number of shares for each secret to be equal to the number of
servers. This design will bring unnecessary storage overhead.
In Protocol II, we allow client to generate an arbitrary num-
ber of shares and these shares will be randomly distributed
to servers with a balanced distribution. In this protocol, since
the required additive shares are randomly located on different
servers, we enable two stages of additive computations. The
first stage is on the servers, where the respective shares can be
found and added together while the remaining shares will be
sent to the client. The client will then perform the second stage
computation once it receives all remaining shares. Obviously,
this problem has less storage overhead and communication
overhead, but brings the client side computation overhead. In
Protocol III, we employ the same shares generation and dis-
tribution methods with less storage overhead. In addition, we
remove the assistance of the client while all computations are
solely done at the server sides in a fully distributed manner.
We assume a search token will pass among all servers to find

the corresponding shares for computation and only the aggre-
gated results will be returned to the client. This will release the
client side computation, but brings the communication over-
head among distributed servers. In summary, the Protocol I
achieves less communication overhead and client side compu-
tation complexity, but high storage overhead. The Protocol II
achieves less storage and communication overhead but high
client side computation complexity. The Protocol III achieves
less storage overhead and client side computation complexity
but higher interserver communication overhead. To validate
the performance of our designs, we develop the system pro-
totypes, deploy them on Amazon Web Services (AWS) EC2,
and evaluate our constructions experimentally.

The remainder of this paper is organized as follows. In
Section III, we introduce the background knowledge with
primitive cryptographic concepts and algorithms that will be
used in this paper. Section II discusses related work and
Section IV describes our problem and system model of this
paper. In Section V, we discuss different application scenar-
ios and propose three corresponding protocols to adapt their
applications. We extend our discussion into other types of
homomorphic computation such as subtractive and compar-
ison operations. Section VI presents the implementation and
performance evaluation of our construction and Section VII
concludes this paper.

II. RELATED WORKS

A. Encrypted Data Stores

In the literature, data stores that support querying over
encrypted data draw much attention. CryptDB [15] proposed
by Popa et al. is one of the first representative encrypted
databases. It implemented a set of encryption schemes to sup-
port different SQL queries, respectively. Then Tu et al. [16]
improved CryptDB by developing a customized query planner.
After that, Pappas et al. [17] proposed BlindSeer to sup-
port arbitrary encrypted boolean queries. They proposed an
encrypted B-tree index, where each query is encoded and
evaluated via a garbled circuit-based secure two-party com-
putation protocol. To address recent attacks (also known as
inference attacks [18]) in this area, Poddar et al. [19] devised
Arx which includes a range query protocol with the protec-
tion of data orders. Papadimitriou et al. [20] devised Seabed
with a dedicated padding schema to hide the relations of data
values. Recently, Yuan et al. [14] designed an encrypted KV
store which can be deployed in a cluster and support parallel
query processing. However, those systems consider a central-
ized or logically centralized server setting, which is unlike our
setting. That is, all servers are individual computing and stor-
age devices, which are not maintained by a central service
provider.

B. Search Over Encrypted Data

Search as a ubiquitous function of data utilization is inten-
sively studied in the encrypted domain. Searchable encryp-
tion [21] and order-preserving/revealing encryption [22], [23]
are proposed to enable keyword search and range search,
respectively. Those primitives only focus on the functions of
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search, and do not consider the computation after locating the
matched encrypted data. Our design leverages the similar tech-
niques of the above primitives for data search, i.e., secure
one-way functions to protect the contents of search requests.

C. Homomorphic Encryption

Homomorphic encryption allows the server to compute
directly over the encrypted data. In [9], the first FHE is
constructed to enable arbitrary computations on ciphertexts.
To improve efficiency, somewhat homomorphic encryption
(SHE) is proposed to support limited numbers of computa-
tions [24]. However, FHE and SHE are still too heavy to
be deployed in practice. Partially homomorphic encryption
(PHE) like Paillier system [10] is widely adopted because
of its efficiency, but it only supports singular operations. To
further speedup, a symmetric-key-based PHE is implemented
in [20] to replace Paillier for fast aggregation. However, this
scheme is suitable for a static database, because the random-
nesses involved in encryption/decryption need to be preset to
achieve performance gains. When new data is added, affected
data should be re-encrypted to preserve the efficiency.

D. Secure Multiparty Computation

There is a line of work on secure multiparty com-
putation (SMC). As surveyed in [25], generic SMC
can be classified into three directions, i.e., circuit-based,
homomorphic encryption-based, and secret sharing-based
schemes. Our design is related to secure sharing-based SMC
schemes [26]–[28] (just to list a few). Note that existing
schemes focus on the improvement the overall performance
of SMC [26], applications in network analytics [27], or algo-
rithms in high-dimensional data aggregation [28]. Unlike
prior designs, our design leverages SMC to enable secure
database queries. Besides, we consider several practical appli-
cation scenarios and customize the protocols to serve different
requirements.

III. BACKGROUND KNOWLEDGE

In this section, we will give an overview of the crypto-
graphic primitives that will be used in this paper.

A. Encrypted KV Store

We follow the construction of encrypted KV stores as
proposed in [13], where the encrypted datasets can be stored
as the KV pairs. We assume the client has a set of data value
v while each data has an attribute l. The attribute and value
pair (l, v) is considered as one KV pair, where attribute l is
the search attribute. This KV pair should be protected when
outsourcing to the remote servers. The search attribute l is
kept safe by the secure pseudo-random function (PRF) which
is denoted as l∗. The value v is encrypted via symmetric
encryption and denoted as v∗. Then the entry of KV store
is defined as

<l∗, v∗> = <P(Kl, l), Enc(Kv, v)> (1)

where P(·) is PRF function, Kl and Kv are the private keys.
The consistent hashing function [29] could be employed with

the input l∗ to find the target server for 〈l∗, v∗〉. With consistent
hashing, all documents can be stored across multiple servers
with a balanced distribution.

B. Shamir’s Threshold Secret Sharing

Shamir’s (t, n) threshold secret sharing is a cryptographic
algorithm to divide a secret value S into n shares in such a
way that: 1) any t or more pieces of shares can recover S and
2) any t − 1 or fewer shares cannot recover S.

To generate n shares, a random t − 1 degree polynomial F
will be chosen in the following form:

F(x) = S + a1x + a2x2 + · · · + at−1xt−1 (2)

where a1, a2, . . . , at−1 are distinct nonzero elements chosen
independently from real number set R with uniform dis-
tribution. The input of the randomly uniform distributed x
chosen from R will differentiate the shares. For example,
to generate n shares for a secret S, we can randomly cho-
sen {a1, a2, . . . , at−1} to form the t − 1 degree polynomial
function as shown in (2). A set of {x1, x2, . . . , xn} will be ran-
domly chosen as the entries of above polynomial function to
output F(x1), F(x2), . . . , F(xn). Here, F(x1), F(x2), . . . , F(xn)

are called the n shares respecting to the set of {x1, x2, . . . , xn}.
With any t of {F(x1), F(x2), . . . , F(xn)}, we can use the
Lagrange interpolation method to recover the S, i.e.,

S =
t∑

i=0

F(xi)

j �=i∏

1≤j≤t

xj

xj − xi
. (3)

The advantages of Shamir’s threshold secret sharing method
can be summarized as follows.

1) Any adversary cannot recover the original secret if it can
only get at most t − 1 shares.

2) The original secret can still be recovered if at most n− t
shares are lost.

C. Homomorphic Computation

Homomorphic computation is a form of arithmetic calcula-
tions over encrypted information without decrypting the corre-
sponding ciphertext. The computation results, when decrypted,
should be the same as the calculation performed on the plain-
text. For example, we have two ciphertexts Enck(m1) and
Enck(m2) corresponding to plaintext m1 and m2, respectively.
The additive homomorphic computation is shown as follows:

Enck(m1 + m2) = Enck(m1) + Enck(m2). (4)

When decrypted

Deck(Enck(m1) + Enck(m2)) = Deck(Enck(m1 + m2))

= m1 + m2. (5)

IV. PROBLEM STATEMENT

We consider that the IoT clients have a set of data values and
applications. Due to the storage and computation limitations,
IoT clients would like to outsource their data to remote servers
and will leverage their powerful computation capabilities to
perform the IoT data analytics. There are a set of key factors
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Fig. 1. System architecture.

that should be considered when outsourcing the data and its
application to the remote servers, including but not limited
to privacy, scalability, efficiency, overhead, and among others.
The goal of this paper is to design scalable mechanisms, secure
encryption schemes, and computation protocols to carry out
efficient homomorphic computation for IoT data applications.

A. System Model

Our system architecture is shown as in Fig. 1. In this
architecture, the IoT client has a private database consist-
ing of a set of sensitive data values. Due to the computation
and storage limitation, this client would like to outsource its
database and computation to the geographically distributed
servers. To better manage the database, we assume it is in
the form of KV structure,1 i.e., (key, value), where the key
is a search attribute while the value is a corresponding data
value. To distribute data across geographically located servers,
this client will employ the distributed index framework (i.e.,
KV store) as the underlying structure to index sensitive data
and build the local encrypted database for each target server.
The local encrypted database on each server will be stored in
the form of the encrypted index and value structures. With the
local encrypted database, we will design various protocols to
support the remote homomorphic computations.

There are three concerns at the client when outsourcing IoT
data applications to the remote servers. First, this user does not
wish to leak any sensitive information of the original database
to remote servers or other adversaries. The confidentiality has
to be preserved against the potential attackers. Namely, data
has to be stored in a certain encryption form to achieve this
goal. Second, the outsourced data, even in encrypted form,
should be capable of supporting the analytical operations, such
as additive, subtractive, sum, comparison, and so on, without
leaking any sensitive information. Moreover, the outsourced
data should tolerate the failure of the partial servers to maintain
the completeness of the sensitive database.

To address above concerns, suitable secure encryption
schemes need to be employed when outsourcing data into dis-
tributed servers, while efficient computation protocols should
be designed to process user’s data applications request. In
our design, two cryptographic primitives, i.e., encrypted KV
store and Shamir’s secret sharing, will serve as the underlying
structures to achieve our goal. We customize their character-
istics into our design to meet the requirements on security,
scalability, computation efficiency, and fault tolerance.

1If the data set is not in the KV structure, based on [13], we can transform
it into the key and value format.

B. Threat Model

In this paper, the client’s sensitive database is the target that
should be protected. The client should never expose its encryp-
tion keys and encryption structure to the distributed servers or
any other adversaries. We consider that the threats are from the
semi-honest adversaries, who are interested in the database, but
cannot delete or modify the database intentionally. Moreover,
we assume the servers cannot collude with each other or be
comprised by some adversaries to learn the encrypted data.
However, they can monitor query and homomorphic computa-
tion protocols to learn the query attributes and the computation
results. We do not consider the case where attackers can access
the background information, i.e., the statistic information of
the database, or the contents of query and computation results,
thus the inference attack [18] and leakage-abuse attack [30]
will not be considered in this paper. Moreover, we assume that
the communication channels are authenticated and encrypted
against eavesdropping.

V. PROPOSED CONSTRUCTIONS

In this section, we describe our designs of homomorphic
computation protocols in support of the IoT data applications.
We take additive computation as an example to design the data
outsourcing and computation protocols.

A. Overview

To outsource the sensitive data, we leverage the distributed
index structure to encrypt the search attributes. The distributed
index structure has the property of building local index which
can help to locate data in a fast manner. To support additive
homomorphic computation, there are several popular crypto-
graphic primitives, such as Pallier Crypto, Gentry’s Crypto,
Shamir’s secret sharing, and so on. Among these cryptographic
primitives, the Shamir secret sharing is the most efficient one
since it only includes additive operations rather than exponen-
tial and multiplicative (e.g., public-key encryption) as used
in other systems. In our design, we customize the design of
Shamir’s secret sharing and distributed index framework into
our protocols.

In particular, we consider three usage scenarios and design
the corresponding protocols to adapt their applications. The
first scenario is that the IoT client is a small portable device
which has low memory and does not support large data com-
putation. The storage service at the servers is cheap and the
price charge is based on the number of servers that are running.
The client can use all servers for storage but only a necessary
number of machines instead of all of them while performing
computation. The second scenario is that the storage service
on the cloud servers are expensive and the client has the delay-
sensitive applications. Thus, the client aims to minimize the
data storage size on the servers, but would like to optimize the
utilization of the servers with parallel computation to reduce
the total computation latency. The third scenario is that the
client’s application is not sensitive to the latency and it does
not have powerful computation capability.

With these scenarios, we design the corresponding protocols
to adapt their applications. The Protocol I is a simple design,
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Fig. 2. Procedure of index building and data encryption in Protocol I.

Fig. 3. Search and computation procedure in Protocol I.

which generates one share corresponding to each server. In this
design, the IoT client can quickly locate shares and aggregate
the related shares together on each server, but it requires the
number of shares generated for each secret to be equal of the
number of servers even some of them will not be used for
computation. The serious storage overhead will be caused by
this protocol. In Protocol II, we allow the user to generate
an arbitrary number of shares and these shares will be ran-
domly distributed to servers with the balanced distribution. In
this protocol, since the required additive shares are randomly
located on different servers, two stages are enabled for additive
computations. The first stage is on the server sides. Once the
servers find the respected shares, they can add them together
and send the remaining shares to the user. The user will then
perform the second stage computation once it receives all
remaining shares. Finally, we design the Protocol III, which
achieves the same space efficiency as in Protocol II, but the
computation protocol is fully distributed. In the computational
protocol, we remove the client’s assistance and let the search
token to pass among servers to find the corresponding items
for computation. Besides, only the computation results will
be returned to the client. In the following of this section, we
present the details of each proposed protocol.

B. Protocol I: Basic Design

We now describe our first protocol to adapt the first appli-
cation scenario. As mentioned earlier, a distributed index
framework will be utilized to index the search attributes and
Shamir’s secret sharing will be advocated to encrypt the
respective values to protect data confidentiality and privacy.
We assume the data is in the form of KV pair. For each
KV pair (C, V), we randomly select a xi value correspond-
ing to each server i, and employ Shamir’s threshold secret
sharing [i.e., (2)] to generate N shares, i.e., V1, V2, . . . , VN ,
where N is the number of servers and each Vi correspond-
ing to one xi. In this process, we set t as the threshold
for recovering the original secret. With each Vi, we use the
distributed index framework to encrypt its search attributes.
To distinguish each Vi from the same secret, an incremen-
tal number ci is padded to the search attributes, i.e., ci
is incremented from 1 to N respected to each share Vi.
With the search attribute, the search token will be generated
by masking it with a one-way cryptographic hash func-
tion as F(K, C||c1), F(K, C||c2), . . . , F(K, C||cN) correspond-
ing to V1, V2, . . . , VN , respectively, where K is the private key.
Each KV pair, i.e., (F(K, C||ci), Vi) for i = 1, 2, . . . , N will
be distributed to its target server i. Note here, shares from
different secrets that are corresponding to the same x store
on the same server. This storage strategy can help each server
locally perform additive homomorphic computation since they
are corresponding to the same x. Fig. 2 depicts the details of
data outsourcing procedure, including index building and data
encryption.

1) Additive Homomorphic Computation Protocol: Based
on our designed encryption protocol, we now discuss the cor-
responding computation protocol. To simplify our explanation,
we use two values m1 and m2 as an example to introduce our
computation protocol. We assume C1 and C2 are the search
attributes of m1 and m2, respectively. To perform the additive
homomorphic computation for m1 and m2, the client generates
the search tokens (F(K, C1||ci), F(K, C2||ci)) corresponding
to each server 1 ≤ i ≤ N by using the one-way hash func-
tion F(·). Each search tokens and computation request will
be sent to the respective server i. Upon receiving the search
token and computation request, each server i performs the
search operation to find the corresponding values V1

i and V2
i .

Based on our outsourcing protocol, the V1
i and V2

i are corre-
sponding to the same x on the same server. This enables each
server to perform the additive computation for V1

i and V2
i (i.e.,

Vi = V1
i + V2

i ) and the computational results will be returned
to the client. With all received additive results V1, V2, . . . , VN ,
this client can recover m1 + m2 with the interpolation
method [see (3)].

In this protocol, since any t shares are enough to recover
the original secret, it is not necessary to send the computa-
tion request to all servers. It is enough for a client to generate
any t search token for m1 and m2 and send them to t corre-
sponded servers to perform the additive computation. As seen,
this design can tolerate the failure of at most N−t servers since
the shares on any of the remaining servers (at least t) are suffi-
cient to recover the original data or perform the homomorphic
computation. Fig. 3 shows the details of Protocol I.



3758 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

Fig. 4. Build index and encrypt data in Protocol II.

The advantages of this protocol is that the shares from dif-
ferent secrets corresponding to the same x can be quickly
located since they are storing on the same sever. The computa-
tional operations can be directly performed on the same server
without the interserver communication, which will cause less
communication overhead and client computation complexity.
But, this protocol obviously brings huge storage overheard due
to that the number of shares for each secret has to be the same
as the number of servers. This overhead will linearly increase
with the number of servers.

C. Protocol II: Client-Assisted Space-Efficient Scheme

In this protocol, we design a client-assisted space efficient
scheme with the aim to remove the hard requirement of the
number of shares from N to an arbitrary number q. That
is, we allow the client to generate an arbitrary number of
shares for each secret instead of N as shown in Protocol I.
To balance the distribution, we employ the consistent hash-
ing function at the client side to route data evenly across all
servers. Note here, shares that are corresponding to the same
x will be distributed across all servers. The challenge arising
here is, to perform homomorphic computation, how to locate
the shares corresponding to the same x. In our design, we grant
the client assisting to identify the shares corresponding to the
same x.

The index building and data encryption protocol is similar
to Protocol I (see Fig. 2) with the differences that this pro-
tocol only generates q (can be an arbitrary number less than
N but greater than 2) shares for each secret. This q num-
ber of shares will be routed to target servers based on the
consistent hashing function with the input of the encrypted
index. The detailed designs of the index building and data
encryption procedure are shown in Fig. 4. Note here, the
number of shares can be an arbitrary value, thus this pro-
tocol is flexible to reduce the storage space which achieves
higher space efficiency when comparing to Protocol I as shown
in Section V-B.

1) Additive Homomorphic Computation Protocol: In this
protocol, since the shares are distributed across different
servers, the main difficulty is to identify the shares that are cor-
responding to the same x value. In our design, we grant client
to assist the computation procedure. We also take m1 and m2 as

Fig. 5. Search and computation procedure in Protocol II.

an example for ease of explanation. The client generates two
groups of search tokens S1 = {((F(K, C1||ci), mask(xi))|1 ≤
i ≤ q}, and S2 = {((F(K, C2||ci), mask(xi))|1 ≤ i ≤ q} and
send them to the respective servers. For search tokens cor-
responding to each xj, client will initialize a value Ej = 0.
This value is used to aggregate the shares corresponding to
the same xj.

Search tokens S1 and S2 will be sent to all servers in parallel.
Each server i will find the search results R1

i and R2
i correspond-

ing to S1 and S2, respectively, and also identify the search
results with the same x by checking the value of mask(x). For
the ease of expression, we define R1

i (x) ⊕ R2
i (x) as the set of

additive results from the items in R1
i and R2

i corresponding
to the same x. Each server i will perform the computation
of Ri(x) = R1

i (x) ⊕ R2
i (x) and remove related items from

R1
i and R2

i after that. The additive results Ri(x) as well as R1
i

and R2
i will be sent back to the client. After receiving the

Ri(x), R1
i , and R2

i , the client will perform the computation
Ej = Ej + ∑N

i=1(Ri(xj) + R1
i (x) ⊕ R2

i (xj)) for R values that
are corresponding to the same xj. Till now, E1, . . . , Ek are the
aggregated results of q shares. With E1, E2, . . . , Ek, client can
recover the m1 +m2 with the interpolation method in (3). The
detailed protocol design is shown in Fig. 5.

From this design, we can see this protocol removes the
hard requirement of the shares number (which is equaling
to the server numbers), which thus relieves the storage over-
head at the servers side, but brings some level of computation
complexity at the client side.
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D. Protocol III: Fully Distributed Space-Efficient Scheme

In Protocol I, there is a hard requirement for the number
of shares generated for each secret, i.e., the number of shares
of each secret should be equal to the number of servers. In
Protocol II, we allow the client to generate an arbitrary number
of shares for each secret instead of the N (N is the number
of servers). However, it requires the client to perform some
level of computation which brings the computation burden to
client.

In this protocol, we consider the scenario that a client does
not have enough power to assist the computation and the
distributed operation is required at the servers side but the
efficient storage overhead is still required. We aim to design
a fully distributed computation protocol to complete the com-
putation procedure. This protocol allows all computations to
be done at the servers side in a distributed manner. The chal-
lenge here is similar as that in the Protocol II. That is, how
to locate the shares corresponding to the same x, since they
may be stored across different servers in order to achieve the
balanced distribution. To address this challenge, we assume
search tokens will be passed among all servers following a
token ring to find the items corresponding to the same x for
addition. The index building, data encryption, and outsourcing
stages are the same as in Protocol II as shown in Fig. 4.

1) Additive Homomorphic Computation Protocol: To per-
form the computation, our protocol has to identify two search
tokens corresponding to the same x. The client first sends
x along with search tokens to each server so that it can
check whether two searched results are corresponding to the
same x. To protect the privacy of xi, we use one-way cryp-
tographic hash function to mask xi, i.e., mask(xi). Similarly
as in the Protocol II, client also generates two groups of
search tokens S1 = {((F(k, C1||ci), mask(xi))|1 ≤ i ≤ q} and
S2 = {((F(k, C2||ci), mask(xi))|1 ≤ i ≤ q} for secrets m1
and m2, respectively. The client will divide S1 and S2 into
the subset of groups Si

1 and Si
2, respectively, for 1 ≤ i ≤ N,

based on the servers that search token will be routed to. After
receiving a subgroup of search token, each server i performs
parallel search operations to find the set of shares, assuming
R1

i and R2
i . Each server i will perform R1

i (x)⊕R2
i (x) to find the

additive results for the items in R1
i (x) and R2

i (x) correspond-
ing to the same x, and also remove all relevant items from
R1

i (x) and R2
i (x).

To perform the computation for remaining items in R1
i and

R2
i that do not contain items corresponding to the same x, we

assume all servers form a token ring and a token will be gen-
erated at one server [31]. Such a token will be passed from
this server to others one by one along the token ring. That is,
the first server sends R1

1 and R2
1 to the second server. The sec-

ond server (assume server 2) will perform the computation on
R1

1(x)⊕R2
2(x) and R1

2(x)⊕R2
1(x), send results to the client, and

remove all relevant items from R1
1(x), R1

2(x), R2
1(x), and R2

2(x).
Then, we let R1

2(x) := R1
1(x)∪R1

2(x) and R2
2(x) := R2

1(x)∪R2
2(x).

After that, the second server sends R1
2(x) and R2

2(x) to the next
server along the token ring and repeats the same process till
the last server. At each server, the following checking proceed
will be executed: mask(xi−1) − mask(xi) = 0 or not, assum-
ing one item in Ri−1 has mask(xi−1) and one item in Ri has

mask(xi), where xi represents the x in Ri. If it is zero, the
server adds the respected shares together, sends it back to the
client, and removes the respective items in both Ri−1 and Ri.
Otherwise, these two shares do not correspond to the same
x. This procedure terminates if Ri−1 is an empty set; other-
wise, we let Ri := Ri−1 ∩ Ri, and send it to the next server.
Obviously, this protocol needs less storage overhead and low
client computation complexity, but requires the intercommu-
nication among servers, which thus bring high communication
overhead.

The designs in Protocols I, II, and III are only for the addi-
tive homomorphic computation of two values, but they can
be easily applied to more than two values. We omit their
discussions here to conserve space.

E. Discussion

1) Security: The security in our proposed protocols
includes two parts: a) search security and b) data security.
We assume distributed servers are semi-honest adversaries and
the designed protocols should be against potential attacks from
them. For search security, since we use the one-way hash func-
tion to mask the search keys, there do not exist probabilistic
polynomial-time distinguishers to derive the search key. Thus,
search tokens are strongly protected to guarantee the search
security.

For data security, we use Shamir’s secret sharing to encrypt
data, thus the data security strength depends on the number of
shares that can be learned by a server. In Protocols I and II,
each server can only obtain one share of each data which
will not leak any sensitive information of the original secret.
Thus, both Protocols I and II can protect the data security
well. In Protocol III, the aggregation of shares can be passed
to next sever till the last server. This will bring potential risk
where the last server may get all t aggregated shares and reach
the required threshold to recover additive result. Compared to
Protocols I and II, Protocol III will leak more data information.
However, even with t aggregated shares, the servers still cannot
recover the additive results since the x values are kept as the
secret keys at the client. To avoid this leakage and be robust
to the case of occasionally leaking the x values, we can mask
the original secret. That is, instead of storing shares of the
original secret m1, we will mask it with F(D), where D is a
constant private value and F(·) is a one-way hash function.
Thus, the stored share at the server side will be m1 + F(D).
This F(D) will be held at the client as a private key and will
never be exposed to others. Even if in the worse case, the last
server can recover m1 + m2 + F(D), but it still cannot remove
F(D) to learn m1 + m2. But for the client, once it receives
shares, it can first recover m1 + m2 + F(D) and then cancel
F(D) to get the m1 + m2.

2) Extensions: The above design can be easily extended
to comparison or subtraction operations for any two values.
To support the subtractive operation in above three protocols,
servers can perform subtraction over the shares corresponding
to the same x after receiving search tokens. A minor change is
needed in Protocols I, II, and III by replacing all additive into
subtraction operations. The comparison operation can follow
the same procedure as in the subtraction protocol. That is,
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after we recover the results from subtraction protocol, we can
compare it with zero to check which one is larger.

3) Verification: Verification [32] is important to check the
integrity of shares that are stored on each server to guarantee
the correctness of original data. After data is outsourced to
remote servers, we should periodically verify the integrity of
the original data. The Paul Feldman’s verification scheme [33]
is a plausible solution and can be embedded into our design to
support verification. In the data encryption stage, we choose
a generator g belonging to a cyclic group G as a private
system parameter. In order to verify the correctness of the
stored shares on one server, client will generate additional
items stored on servers for verification.

Accompanying with index building and data encryption as
shown in Section V-C, the client also generates sequences of
verifiable values, f (ai), corresponding to each coefficient in the
polynomial function of Shamir’ secret sharing [i.e., (2)], i.e.,
f (ai) = gai . All these verifiable values will be stored on servers
accompanying with each key, i.e., (F(K, C1||ci), {f (ai)|i =
1, . . . , q}, Vi). The private parameter g will be stored at client
for verification. To verify the integrity of one share corre-
sponding to one x, client can perform the search to find
the {f (ai)|i = 1, . . . , q} and Vi. Then it compares gVi with
f (a0) ∗ f (a1)

x ∗ f (a2)
x2 · · · f (aq)

xt
to check the equality. The

client can perform the following computation: F(x) = f (a0) ∗
f (a1)

x ∗ f (a2)
x2 · · · f (aq)

xt = ∏t
j=0 g((aj)xj) = g

∑t
j=0 ajxj

. It is
easy to see that if the stored share is correct, then gVi = F(x),
since we have Vi = ∑t

j=0 ajxj from (2).

VI. EXPERIMENTAL EVALUATION

A. Implementation Environment

In this section, we conduct experiments to evaluate the
performance of our computation protocols as proposed in
Section V. Especially, we will focus on data storage and addi-
tive computational time costs under Protocols I, II, and III.
We design system prototypes for the proposed protocols and
implement them in AWS for performance evaluation. In our
experiments, one AWS t2-small and a cluster of AWS m4-
xlarge instances are created where the t2-small instance serves
as the client and all other m4-xlarge instances serve as the dis-
tributed servers. For both t2-small and m4-xlarge instances,
the Ubuntu Server 16.04 LTS is installed. The configura-
tions of t2-small instance includes 1vCPUs (2.4 GHz, Intel
Xeon E5-2676v3), 2 GB RAM memory and 8 GB SSD while
the configurations of m4-xlarge instances include 4 vCPUs
(2.4 GHz, Intel Xeon E5-2676v3), 16 GB RAM memory and
8 GB SSD. The bandwidth between any two instances is
1 Gb/s. To support both the remote data retrieval and com-
putation between any two instances, the software framework
Apache Thrift (v0.9.3) is employed to implement the remote
procedure call. OpenSSL (v1.0.2a) is used for the crypto-
graphic build blocks, in which HMAC-SHA2 is called to
implement the one-way hash function. Redis 3.2.0 is installed
on each instance to store the data (keys and values). Based
on this experimental environment, we will conduct various
experiments to show the performance of proposed protocols

TABLE I
COMPUTATION TIME OF SHAMIR’S METHOD AND PAILLAR

CRYPTOSYSTEM WITH VARIOUS DATA SIZES

by varying share amounts, threshold value, dataset size, and
server numbers.

B. Comparison of Shamir’s Method and Paillier
Cryptosystem

Before conducting our experiments, we show the compari-
son of the computation cost between Shamir’s secret sharing
method and Paillier cryptosystem to provide the powerful
argument of advocating Shamir’s method in term of computa-
tion efficiency in our protocols. We implement both Shamir’s
method and Paillier cryptosystem in a single server and con-
duct experiments of additive homomorphic computation with
various data sizes, i.e., 1 × 104, 1 × 105, 1 × 106, and 1 × 107

data records. Table I shows the computation time (including
both the homomorphic computation time and decryption time)
of Shamir’s method and Paillier cryptosystem. The first col-
umn represents the number of data records which varies from
1 × 105 to 1 × 107. The second and third columns represent
the computation time under the Shamir’s method and Paillier
cryptosystem, respectively. From this table, we conclude that
Shamir’s method has much higher computation efficiency than
Paillier cryptosystem. This demonstrates the advantages of
using Shamir’s method in our protocols.

C. Comparison of Storage Overhead

We now compare the storage overhead caused by our
Protocols I, II, and III. One instance is launched as the client
who randomly generates a set of data including 1 × 105 data
records, and another eight instances are launched as the dis-
tributed servers which store the encrypted data and perform the
necessary computation per user’s request. Our proposed pro-
tocols are implemented and deployed on these instances. We
set the Shamir’s threshold as 3. With the input of 1×105 data
records, the generated shares will be distributed to respective
servers. Since the encryption protocol and storage methods
are same as in Protocols II and III, here we only compare the
storage overhead between Protocols I and II.

In Protocol I, since this protocol has a hard requirement to
have the number of shares be equal to the number of servers,
the number of shares for each data is 8. The storage overhead
is 8.61 Megabytes on each server. In Protocol II, we monitor
the storage overhead by varying the number of shares. Table II
shows the storage sizes on each server with the shares amounts
varying from 3 to 8. By comparing Protocol I (storage size is
8.61 MB), we can see the storage sizes in Protocol II can
be much smaller than that in Protocol II. In addition, it also
has a great advantage of adjusting share amounts to reduce
storage size. For example, when the share number is set to 3,
the storage overhead is only in the range of [3.32M, 3.36M]
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TABLE II
STORAGE OVERHEAD ON EACH SERVER BY VARYING THE NUMBER OF

SHARES UNDER PROTOCOL II. “SN ” REPRESENTS “SERVER N”

Fig. 6. Total storage overhead over all eight servers by varying the number
of shares under Protocols I and II.

on each server, which can save more than 60% storage space
when comparing to Protocol I.

To show that our results are consistent with various data
volumes, we randomly generate 100 group of data, and each
group includes 1 × 105 data records. We calculate the total
storage overhead over all servers under Protocols I and II.
Fig. 6 shows the total storage overhead among all servers with
various amounts of shares. The white bars and black bars rep-
resent the total storage overhead on all eight servers under
Protocols I and II, respectively. From this figure, we conclude
that Protocol II is flexible to adjust storage overhead by setting
appropriate share amounts.

D. Comparison of Computation latency

Now we compare the computation latency among Protocols
I, II, and III by varying the threshold values, data sizes, and
server amounts, respectively. Here, the computation latency
consists of the search time, additive homomorphic computa-
tion time, data decryption time, and network delay.

1) Varying the Threshold Value: We first consider the
impact of the threshold on computation latency in each pro-
tocol. One client and eight servers are launched in this
experiments. The client randomly generates 100 groups of data
with each one includes 1 × 105 data records.

Fig. 7 shows the average time cost (i.e., computation
latency) over 100 groups of 1×105 data records by varying the
threshold from 2 to 8 under Protocols I, II, and III. In this fig-
ure, the dashed line represents the computation latency under
the Protocol I. As shown, the time cost is 3.9 s in this protocol
and this value does not change with the varieties of threshold
values. The reason is that the number of data volumes on
each server are same which thus leads to the same search and
computation time cost on each server. Since search and com-
putation operations among all servers are parallel, even we

Fig. 7. Comparison of the computation latency among Protocols I, II, and III
by varying the number of shares.

increase the threshold (equal to the number of servers to per-
form additive computation), the time cost is still determined
by a single server, which will not impact the total time cost.

The solid line represents the additive homomorphic compu-
tation latency in Protocol II. The computation latency increases
from 1.48 s to 6.22 s when varying the threshold value from
2 to 8. The reason is that Protocol II can always utilize
computation resources of all distributed servers and perform
parallel operations. Thus, the computation load on each server
in Protocol II is lower than that in Protocol I, which leads to
smaller computation latency. This demonstrates the importance
of appropriate design of homomorphic computation protocol
over distributed servers, which has the significant impact on
the computation latency.

The dotted line shows the computation latency from
Protocol III, which increases from 33.04 s to 131.36 s when
varying the threshold from 2 to 8. We can see the time cost in
this protocol is much higher than that from both Protocols I
and II. The reason is that search and computation operations
in Protocol III sequence among all servers while paralleling
in Protocols I and II. Thus, the time cost in Protocol III can-
not compete with Protocols I and II due to that the interserver
communications disable the parallel operations.

2) Varying the Data Size: We now compare the computa-
tion latency in Protocols I, II, and III by varying the data sizes.
In this experiment, we set the threshold to 3 while the data
records are increasing from 1 × 105 to 1 × 106. For each data
size, we randomly generate 100 groups of data to calculate
the average computation latency.

Fig. 8(a)–(c) shows the average computation latency in
Protocols I, II, and III, respectively. From these figures, we
can see the computation time increases linearly with the data
sizes of each protocol.

3) Varying the Number of Servers: We vary the server
amounts from 3 to 8 to show their impacts on the com-
putation latency. The data size and threshold are fixed to
1 × 105 and 3, respectively. Fig. 9 shows the computation
latency under three protocols, where the dashed line, solid line,
and dotted line represent the Protocols I, II, and III respec-
tively. From this figure, we can see that the increasing of
server amounts has no impact on the computational latency
in Protocol I. The reason is that the computation latency is
determined by the data size and the computational capability
of three servers. This is because Protocol I can only utilize
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(a) (b) (c)

Fig. 8. Computation latency with various data records. (a) Protocol I. (b) Protocol II. (c) Protocol III.

Fig. 9. Comparison of time cost with various number of servers.

three servers which is the same as the threshold value. The
computation latency in Protocol II decreases with the incre-
ment of server amounts from 3 to 8, since the computation
load will decrease on each single server. Thus, the compu-
tation time which is determined by a single server due to
the parallel computation will decrease. On the other hand, the
computation latency from Protocol III increases with the num-
ber of servers due to the sequence operation among all servers.
With the increase of server amounts, this protocol needs to
traverse more servers where on each single server, it needs to
search the entire database to find the respective data stored
on this server and perform the necessary computation. Thus,
comparing Protocols I and II, Protocol III causes higher delay.

VII. CONCLUSION

In this paper, we designed secure homomorphic compu-
tation protocol to enable IoT clients to outsource their data
and computation services to the geographically distributed
servers. We employed the distributed index framework and
Shamir’s secret sharing to design three protocols to adapt
various application scenarios while achieving efficiency in
different perspectives, i.e., server utilization, computation effi-
ciency, and storage overhead. Specifically, the Protocol I is
simple and easy to be implemented. It achieves less commu-
nication overhead and client side computation complexity, but
high storage overhead. The Protocol II achieves less storage
and communication overhead but high client side computation
complexity. The Protocol III achieves less storage overhead
and client side computation complexity but high interserver
communication overhead. These three protocols are formed
into a tunable mechanism to adapt different IoT application
scenarios. All these designs can satisfy the security guarantee

and also can be readily extended to other types of homomor-
phic computations. The proposed protocols were implemented
on Amazon EC2 to evaluate their performance experimentally.
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