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Abstract—Crowdsourcing leverages the collective intelligence of the massive crowd workers to accomplish tasks in a cost-effective
way. On a crowdsourcing platform, it is challenging to assign tasks to workers in an appropriate way due to heterogeneity in both tasks
and workers. In this paper, we explore the problem of assigning workers with various skill levels to tasks with different quality
requirements and budget constraints. We first formulate the task assignment as a many-to-one matching problem, in which multiple
workers are assigned to a task, and the task can be successfully completed only if a minimum quality requirement can be satisfied
within its limited budget. Different from traditional task assignment mechanisms which focus on utility maximization for the
crowdsourcing platform, our proposed matching framework takes into consideration the preferences of individual crowdsourcers and
workers towards each other. We design a novel algorithm that can generate a stable outcome for the many-to-one matching problem
with lower and upper bounds (i.e., quality requirement and budget constraint), as well as heterogeneous worker skill levels. Through
extensive simulations, we show that the proposed algorithm can greatly improve the success ratio of task accomplishment and worker
happiness, when compared with existing algorithms.

Index Terms—Task Assignment, Crowdsourcing, Quality Requirement.
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1 INTRODUCTION

Crowdsourcing has provided an open, voluntary, and reliable

environment for crowdsourcers and individuals to cooperate in

achieving a cumulative result. On crowdsourcing platforms, in-

dividual workers can choose and contribute to tasks that are

published by crowdsourcers. Combining efforts from numerous

workers, many crowdsourcing tasks can be accomplished with

high quality and low costs, such as the collection of environmental

data and the design and evaluation of new products.

Task assignment is one of the most essential problems in

crowdsourcing. There is an abundance of existing works [1],

[2], [3], [4], [5], [6], [7] proposing task assignment algorithms

in order to fulfill a certain design objective. In [2], a two-phase

exploration-exploitation algorithm is presented to assign workers

with different skill levels to tasks with limited budgets, aiming

at maximizing the profit of the crowdsourcer. Geographical and

temporal requirement of tasks and the mobility and active time

period of workers have been considered in [3], [4], [5], [7] to

ensure that tasks are finished within the deadline, and with enough

coverage. The uncertainty of user mobility has been studied in

[4], [7]. Most of the existing works focus on maximizing the

total utility of the crowdsourcing platform, but disregard the

preferences of individual crowdsourcers and workers towards each

other. However, in an open crowdsourcing platform without tight

enforcement, a task assignment will be unstable if there exists a

pair of crowdsourcer and worker who prefer each other but are not

assigned together.

To address this issue, in this paper, we formulate the problem

of assigning tasks to workers as a many-to-one matching problem,

taking into consideration the preference profiles of both workers

and crowdsourcers. As shown in Fig. 1, workers are heterogeneous

in their skill levels due to their diversity in experience, capabilities,

and proficiency. Workers with higher skill levels will ask for a

higher compensation, while workers with lower skill levels are

cheaper to hire. Due to the nature of crowdsourcing, the more

workers engaged in a task, the better results can be achieved. On

the one hand, it is vital to recruit enough workers to reach a certain

quality requirement, below which a task cannot be successfully

completed. On the other hand, crowdsourcers are constrained by

their budgets, thus cannot employ too many workers. This adds up

to the lower bound (quality requirement) and upper bound (budget

constraint) for the many-to-one matching problem.

Rather than optimality, stability is the main objective of our

task assignment framework to address the conflicting interests

among stakeholders on crowdsourcing platforms. An optimal but

unstable task assignment will be disturbed by those workers and

crowdsourcers who have incentives to deviate from the assignment

result to pursue a higher utility. Unfortunately, existing stable

algorithms for many-to-one matching problem with both lower

and upper bounds cannot be applied here, since they assume that

agents are homogeneous in terms of their “size”, and thus unable

to handle the heterogeneity in worker skill levels and their required

payments. Such heterogeneity brings in great difficulties, because

different combinations of workers lead to different quality levels

and incur different costs. To tackle this problem, as a highlight

in this paper, we design a novel algorithm that can efficiently

converge to a stable task assignment. Through an extensive ar-
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Fig. 1. The architecture of our proposed task assignment framework for
crowdsourcing platforms.

ray of simulations, we compare the proposed algorithm with a

benchmark algorithm for many-to-one matching problem with

heterogeneous agents but no lower bounds. We show that our

proposed matching algorithm can greatly improve the success ratio

of completed tasks and worker happiness, at the expense of a slight

increase in running times.

Our original contributions in this paper are two-fold. First,
we propose a new many-to-one matching framework to model

task assignment for crowdsourcing platforms, resolving conflict-

ing interests between workers and crowdsourcers. Second, in

the context of our new framework, we develop a novel stable

matching algorithm for many-to-one matching with a lower bound

(quality requirement), an upper bound (budget constraint), and

heterogeneous agents (workers). We have conducted an extensive

array of simulations to validate the effectiveness of our proposed

algorithm and evaluate its performance, showing its benefits to

both crowdsourcers and workers.

The remainder of this paper is organized as follows. We

introduce the system model in details in Section 2. In Section 3,

we describe the proposed task assignment algorithm, and prove the

stability of the matching result. Simulation results are presented in

Section 4. We survey the related works in Section 5. Finally, we

conclude this paper in Section 6.

2 SYSTEM MODEL

We consider a crowdsourcing platform that consists of a set S
of workers. Worker s ∈ S has a quality level of rs, which

reflects how good her response to a task is.1 Different workers have

different quality levels due to their diversity in skills, experience

and proficiency. We assume that the workers’ quality levels are

known to the crowdsourcers. To achieve this, the crowdsourcing

platform simply keeps a reputation system to update the quality

level of each worker based on their past performance. A worker

with a higher quality level will ask for a higher compensation for

performing a task. This is reasonable, since those workers usually

spend more time and energy in training, and crowdsourcers are

willing to pay more for a more reliable result. We use f(rs)
to denote the payment that worker s requires for completing a

task. f(·) is a monotonically increasing function, and we have

f(0) = 0.

1. In this paper, we make the simplifying assumption that a worker’s quality
level rs is the same for all tasks. In our future work, we will consider the case
where a worker’s performance across tasks may be different.

We assume that there is a set T of crowdsourcers on the

crowdsourcing platform, each publishing a specific task. In prac-

tice, a crowdsourcer is allowed to publish multiple tasks on

the crowdsourcing platform. In this case, we can regard such a

crowdsourcer as multiple virtual crowdsourcers, each with a single

task. Under this circumstance, with a little abuse of notations, we

use T to denote the set of tasks as well. Since crowdsourcing tasks

rely on the wisdom of the crowd, a task can only be successfully

accomplished if the crowdsourcer can recruit enough workers. Let

qt denote the quality requirement of task t ∈ T . We make the

simplifying assumption that a set A of workers can achieve a total

quality level of
∑

s∈A rs when cooperating on the same task.

Therefore, the crowdsoucer of task t must ensure that she can

attract enough workers to fulfill the quality requirement. If the

aggregate quality level of workers assigned to task t is greater

than its quality requirement, i.e.,
∑

s∈A rs ≥ qt, task t can be

finished with acceptable results; otherwise, task t will fail.

Even though a larger number of workers means a higher

quality level, each crowdsourcer is bounded by her budget, which

limits the number of workers she can hire. Let bt denote the

budget of crowdsourcer t. Hence, it must be conformed that∑
s∈A f(rs) ≤ bt. In this paper, we make the simplifying

assumption that f(rs) = rs. In the future work, we will study

more general forms of function f(·). Combining the quality

requirement and the budget constraint, we have the condition for

the assignment for a task to be successful: qt ≤
∑

s∈A rs ≤ bt.

Each worker has a preference list over all the tasks. Let �s

denote the complete, reflexive and transitive preference relation of

worker s. t �s t′ indicates that worker s is more willing to work

on task t than task t′. For example, if two crowdsourcers aim to

collect traffic information at two different locations, a worker may

prefer the location near her residence than the location that is far

away. Due to worker diversity, their preference lists are different

from each other.

Similarly, each crowdsourcer has a preference list over all

the workers, depending on the workers’ quality levels. Let �t

denote the complete, reflexive and transitive preference relation

of crowdsourcer t. Naturally, a crowdsourcer will prefer a worker

with a higher quality level. Therefore, the preference lists of all

crowdsourcers are the same, since we assume that each worker

has the same quality level towards all the tasks. Furthermore, we

assume that all the preference lists are fixed and known to all the

participants (workers and crowdsourcers) of the crowdsourcing

platform. Without loss of generality, we assume that all the tasks

are acceptable to every worker. If a worker is reluctant to do some

of the tasks, she can simply insert an empty task in the preference

list, and put all the unacceptable tasks behind the empty task. We

summarize major parameters and their definitions in Table 1.

In this paper, we impose the restriction that each worker

can only focus on one task, but each task can involve multiple

workers. The objective of the crowdsourcing platform operator is

to realize a stable task assignment that takes into consideration

the preferences of workers and crowdsourcers, as well as quality

requirements and budget constraints of all tasks. We formulate the

task assignment for a crowdsourcing platform as a many-to-one

matching problem with a hard upper bound (budget constraint)

and a soft lower bound (quality requirement), as follows.

Definition 1 (Task Assignment). A task assignment μ for the
crowdsourcing platform is a mapping μ : S ⋃ T → 2S

⋃ T ,
which satisfies:
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TABLE 1
Key Parameters

Parameter Definition
S set of workers
T set of tasks
rs quality level of worker s
qt quality requirement of task t
bt budget constraint of task t
xs,t whether worker s is assigned to task t
μ task assignment matching result

p(s) the set of tasks that have not rejected worker s yet
QA total quality of workers in set A
ΔQ total quality requirement that has not been fulfilled
ΔR total skill level of unassigned workers

1) μ(s) ∈ T for all s ∈ S;

2) μ(t) ⊆ S for all t ∈ T ;

3) For any s ∈ S and t ∈ T , we have μ(s) = t if and only if
s ∈ μ(t), where μ(t) is the set of workers matched to task t.

4) Hard upper bound (budget constraint).
∑

s∈μ(t) rs ≤ bt for
all t ∈ T ;

5) Soft lower bound (quality requirement). Let T̃ = {t|t ∈
T ,

∑
s∈μ(t) rs ≥ qt} denote the set of tasks whose quality

requirements are satisfied. Define success ratio as |˜T |
|T | ×

100%, in which | · | is the number of elements in a set. The
success ratio evaluates the extent to which the task assign-
ment μ fulfills the quality requirements of all crowdsourcing
tasks.

Most of the existing many-to-one matching models do not

impose a lower bound constraint as in our model, which involves

the quality requirement of crowdsourcing tasks that rely heavily

on joint efforts. We pose a soft lower bound on the task assignment

μ, since it is difficult to decide whether there exists a task

assignment that attains a 100% success ratio. In the existing

many-to-one matching models that do consider lower bounds, it

is assumed that agents are homogeneous in “size”, that is, each

worker has a uniform quality level of rs = 1, ∀s ∈ S . Under

this simplified model, a task assignment that fully satisfies the

lower bounds exists if and only if the total quality level of all

workers is greater than the total quality requirement of all tasks,

i.e.,
∑

s∈S rs ≥
∑

t∈T qt.

Unfortunately, when workers have heterogeneous quality lev-

els,
∑

s∈S rs ≥ ∑
t∈T qt no longer guarantees that the quality

requirement of every task can be satisfied. For example, if we have

two workers with quality levels as 0.3 and 0.7, respectively, and

two tasks with quality requirements as 0.4 and 0.5, respectively.

We have 0.3 + 0.7 > 0.4 + 0.5, but no task assignment can

simultaneously meet the quality requirements of the two tasks.

Let xs,t be the task assignment indicators, and xs,t = 1 if

μ(s) = t; otherwise xs,t = 0. To validate the existence of a task

assignment with a 100% success ratio is equivalent to checking

whether the following integer linear programming problem has a

feasible solution:

max
xs,t

∑
s∈S

∑
t∈T

xs,t, (1)

subject to
∑
t

xs,t ≤ 1, ∀s, (2)

qt ≤
∑
s

xs,trs ≤ bt, ∀t, (3)

xs,t ∈ {0, 1}, ∀s, t. (4)

Instead of solving the integer linear programming problem, we

only have to verify whether the feasible region is empty or not,

because we only care about the existence of a task assignment

with a 100% success ratio. Even so, the problem is NP-hard.

Therefore, in this paper, we only treat quality requirements as soft

lower bounds, but will try to improve the success ratio as much as

possible.

A task assignment is stable if no worker or crowdsourcer

have the incentive to deviate from the assignment result. Workers

and crowdsourcers are selfish and rational individuals who will

break off from the task assignment if they have better choices.

On a crowdsourcing platform where workers can freely choose

tasks and crowdsourcers can freely hire or sack workers, a task

assignment can be implemented only if it is stable. A stable task

assignment features individual rationality, fairness, and nonwaste-
fulness.

Definition 2 (Individual Rationality). A task assignment μ is
individually rational if:

1) Every worker prefers being assigned to the current task to
being unassigned;

2) Every crowdsourcer prefers the current set of assigned work-
ers to any subset of these workers.

Being individually rational is the basic property of a task

assignment. It ensures that workers are not reluctant to perform

crowdsourcing tasks and crowdsourcers are willing to accomplish

their tasks in the form of crowdsourcing. To define fairness [8],

we have to introduce the concept of type I blocking pair.

Definition 3 (Type I Blocking Pair). Given a task assignment μ,
worker s and task t form a type I blocking pair (s, t), if there exists
a non-empty subset of workers, denoted by A, who are matched
to task t, i.e., A ⊆ μ(t), and satisfy the following conditions:

1) Worker s prefers task t to her current assignment μ(s).
Crowdsourcer t prefers worker s to any worker in A, and
crowdsourcer t prefers worker s to the whole worker set A.

2) Worker s can displace the workers in A without violating the
budget constraint of task t.

3) The leaving of worker s will not violate the quality require-
ment of her currently assigned task μ(s).

Mathematically speaking, worker s and task t form a type I block-
ing pair, if there exists a non-empty subset of workers A ⊆ μ(t),
and:

1) t �s μ(s), s �t s
′, ∀s′ ∈ A, and rs ≥

∑
s′∈A rs′ ;

2) rs +
∑

s′∈μ(t)\A rs′ ≤ bt;
3)

∑
s′∈μ(μ(s)) rs′ − rs ≥ qμ(s).

The type I block pair makes a task assignment unstable

because the worker in concern has the chance to shift to a more

preferred task by replacing some of the less-preferred workers who

have been assigned to that task. The definition of type I blocking

pair is simpler in many-to-one matching problems without lower
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bounds. In particular, condition 3) is not entailed. However, in

our proposed framework, condition 3) is needed to suppress the

violation of quality requirements.

Definition 4 (Fairness). A task assignment μ is fair if and only if
there are no type I blocking pairs.

A fair task assignment indicates that it is fair for a worker

to be assigned to her current task because she cannot replace the

workers assigned to her more-preferred tasks. Apart from the type

I blocking pairs, we also have the type II blocking pair.

Definition 5 (Type II Blocking Pair). Given a task assignment μ,
worker s and task t form a type II blocking pair (s, t), if:

1) Worker s prefers task t to her current assignment μ(s).
2) Add worker s to task t will not violate the budget constraint

of task t.
3) The leaving of worker s will not violate the quality require-

ment of her currently assigned task μ(s).
Mathematically speaking, under the task assignment μ, worker s
and task t form a type II blocking pair, if:

1) t �s μ(s).
2) rs +

∑
s′∈μ(t) rs′ ≤ bt.

3)
∑

s′∈μ(μ(s)) rs′ − rs ≥ qμ(s).

The type II blocking pair makes a task assignment unstable

because a crowdsourcer has enough budget to hire one more

worker who is willing to work for her.

Definition 6 (Nonwastefulness). A feasible task assignment μ is
nonwasteful if and only if there are no type II blocking pairs.

Nonwastefulness [8] ensures that crowdsourcers make the best

use of their budget in recruiting workers. The difference between

type I and type II blocking pairs is whether a worker can take the

budget paid to some of the workers currently assigned to a task. In

a type II blocking pair (s, t), only the remaining budget of task t
is considered to cover the payment to worker s; whereas in a type

I blocking pair (s, t), the budget for task t’s currently assigned

workers can be reclaimed for compensating worker s.

3 STABLE TASK ASSIGNMENT

In this section, we propose a new algorithm to compute a stable

task assignment that satisfies hard budget constraints and improves

task success ratio regarding quality requirements.

Our proposed algorithm is based on the Deferred Acceptance

(DA) algorithm, a conventional way to produce stable matching

results for many-to-one matching problems with upper bounds. A

direct application of DA to our problem would run as follows. At

the beginning, all workers propose to her favorite task, and each

crowdsourcer will select an optimal set of workers among those

who propose to her. The total quality of the selected workers is the

highest possible under the budget constraint. The crowdsourcer

puts the selected workers in her waiting list and rejects all the

other workers. After that, each unassigned worker will propose to

her most preferred task that has not rejected her before, and every

crowdsourcer will again select an optimal set of workers among

the new proposers and those in her waiting list. The iterations

continue until no workers have any tasks to propose to.

Nevertheless, the direct application of the DA algorithm has

two drawbacks. Firstly, it is proved that when the agents have

heterogeneous sizes — i.e., heterogeneous quality levels of work-

ers in our model — the matching result of DA is unstable [9].

Secondly, the DA algorithm does not consider lower bounds, i.e.,

quality requirements of the tasks, and will lead to a low success

ratio.

To address these problems, we propose a new task assignment

algorithm as shown in Algorithm 1. In this algorithm, we first

initialize the task assignment to be empty. For worker s, we keep

a list of tasks that have not rejected her, denoted by p(s). Worker

s can propose to tasks in p(s), but not the tasks outside p(s).
In each iteration, we choose an unassigned worker with a non-

empty p(s). We find the worker’s most preferred task in p(s), e.g.,

task t. Let QA denote the total quality level of workers in a certain

set A, i.e., QA =
∑

s∈A rs. If the quality requirement of task t
has not been satisfied, i.e., Qμ(t) < qt, we use algorithm ReDA

in Algorithm 2 to determine whether worker s will be assigned

to task t. If the quality requirement of task t has already been

satisfied, we check whether the quality requirements of the other

tasks can be fulfilled without worker s. If the answer is no, we

will not assign worker s to task t; if the answer is yes, we again

use Algorithm 2 to determine whether worker s will be assigned

to task t.
We use a simple necessary condition to check whether the

quality requirements of other tasks can be fulfilled without worker

s. In Algorithm 1, in line 11, we calculate ΔQ, the total

quality requirement that has not been fulfilled yet. Note that

x+ = x, if x > 0, x+ = 0, if x < 0. In line 12, we compute

ΔR, the total quality level of the unassigned workers (including

worker s). It is obvious that the quality requirements of other tasks

cannot be fulfilled without worker s if ΔR− rs is less than ΔQ.

In our proposed matching algorithm, we differentiate the cases

when a task’s quality requirement has not been satisfied and when

a task’s quality requirement has already been satisfied. In the

former case, we need to prioritize the objective of meeting the

quality requirement of the task in concern. Whereas in the latter

case, we deem it more important to meet the quality requirements

of other tasks than to add one more worker to this task for the

sake of improving the success ratio of all crowdsourcing tasks.

The stability of the task assignment is achieved through Algorithm

2, the algorithm to determine whether worker s will be assigned

to task t.
As shown in Algorithm 2, when considering the task assign-

ment between worker s and task t, the following situations may

occur.

1) If the remaining budget of task t is greater than the quality

level of worker s, s will immediately be assigned to task t.
2) If the remaining budget of task t is not enough to pay worker

s, we will check whether some workers currently assigned

to task t can be evicted to make room for worker s. We

first single out the set of workers who are less preferred than

worker s, denoted by A. Then, we will check whether there

exists a subset of workers in A whose aggregated quality

level is less than worker s, i.e., QB < rs,B ⊆ A, and

whose removal will save enough budget for worker s, i.e.,

rs +Qμ(t)\B ≤ bt.

a) If the answer is yes, we will find such a subset with

the minimum total quality level, denoted by Bmin. The

workers in Bmin will be rejected by task t, and worker s
will be assigned to task t.

b) If the answer is no, worker s will be rejected by task t. The

task assignment remains unchanged.

We now give a simple example to illustrate how this algorithm
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Algorithm 1 Task Assignment Algorithm

Input: A set of workers S , their quality levels {rs}s∈S and

preference lists {�s}S ; a set of tasks T , their preference lists

{�t}T , quality requirements {qt}t∈T , and budget constraints

{bt}t∈T .

Ensure: The task assignment μ.

1: Initialization μ(s) = ∅, μ(t) = ∅, ∀s ∈ S , ∀t ∈ T .

2: for s ∈ S do
3: p(s) := orderred list of tasks according to �s.

4: end for
5: while ∃s, μ(s) = ∅ and p(s) �= ∅ do
6: t = highest ranked task in p(s).
7: Remove t from p(s).
8: if Qμ(t) < qt then
9: μ = ReDA(s, t, μ).

10: else
11: ΔQ =

∑
t∈T (qt −Qμ(t))

+.
12: ΔR =

∑
μ(s)=∅ rs.

13: if ΔR− rs < ΔQ then
14: μ(t) = μ(t), μ(s) = ∅.

15: else
16: μ = ReDA(s, t, μ).
17: end if
18: end if
19: end while

Algorithm 2 ReDA: Revised Deferred Acceptance Algorithm

Input: Task t, worker s, temporary task assignment μ.

Ensure: Updated task assignment μ
1: if rs ≤ bt −

∑
s′∈μ(t) rs′ then

2: Assign worker s to task t: μ(t) = μ(t)
⋃{s}, μ(s) = t.

3: else
4: A = {s′|s′ ∈ μ(t), s′ ≺t s}.

5: if ∃B ⊆ A, QB < rs and rs ≤ bt −Qμ(t)\B then
6: Find such B with the minimum total quality level.

7: for ∀s′ ∈ Bmin do
8: μ(s′) = ∅.

9: end for
10: Assign worker s to task t: μ(t) = μ(t)

⋃{s} \ Bmin,

μ(s) = t.
11: else
12: μ(t) = μ(t), u(s) = ∅.

13: end if
14: end if

works. As shown in Table 2, we have 6 workers with their

corresponding preference lists and quality levels, as well as two

tasks with their corrresponding quality requirements and budget

constraints. It can be easily derived that the preference list of all

crowdsourcers will be s5 �t s2 �t s6 �t s3 �t s4 �t s1. The

task assignment algorithm runs as follows.

Round 1: s1 → t1 (worker s1 proposes to task t1). The quality

requirement of task t1 is not fulfilled, and crowdsourcer t1 has

enough budget. Worker s1 is assigned to task t1, and we have

μ(s1) = t1 and μ(t1) = {s1}.

Round 2: s2 → t2. The quality requirement of task t2 is not

fulfilled, and crowdsourcer t2 has enough budget. Worker s2 is

assigned to t2, and we have μ(s2) = t2 and μ(t2) = {s2}.

Round 3: s3 → t2. The quality requirement of task t2 is not

TABLE 2
Workers and Tasks

s1 s2 s3 s4 s5 s6

� t1 t2 t2 t2 t2 t2
t2 t1 t1 t1 t1 t1

rs 0.4 0.55 0.3 0.2 0.6 0.1

t1 t2
qt 1 1.1
bt 1.9 1.3

fulfilled, and crowdsourcer t2 has enough budget. Worker s3 is

assigned to t2, and we have μ(s3) = t2 and μ(t2) = {s2, s3}.

Round 4: s4 → t2. The quality requirement of task t2 is not

fulfilled, and crowdsourcer t2 has enough budget. Worker s4 is

assigned to t2, and we have μ(s4) = t2 and μ(t2) = {s2, s3, s4}.

Round 5: s5 → t2. The quality requirement of task t2 is

not fulfilled, but crowdsourcer t2 does not have enough budget.

The set of workers who are less preferred than worker s5 is

A = {s2, s3, s4}. The potential subsets of workers in A whose

total quality level is less than r5 and who can vacate enough

budget for s5 include {s2} and {s3, s4}. We choose to remove

set Bmin = {s3, s4} with the least total quality level. Therefore,

we have μ(s5) = t2 and μ(t2) = {s2, s5}.

Round 6: s6 → t2. The quality requirement of task t2 is

fulfilled. Although crowdsourcer t2 has enough budget for worker

s6, we won’t assign worker s6 to task t2 because doing so will

make it impossible to satisfy the quality requirement of task t1.

Hence, worker s6 is rejected by task t2.

Round 7: s3 → t1. The quality requirement of task t1 is not

fulfilled, and crowdsourcer t1 has enough budget. Worker s3 is

assigned to t1, and we have μ(s3) = t1 and μ(t1) = {s1, s3}.

Round 8: s4 → t1. The quality requirement of task t1 is not

fulfilled, and crowdsourcer t1 has enough budget. Worker s4 is

assigned to t1, and we have μ(s4) = t1 and μ(t1) = {s1, s3, s4}.

Round 9: s6 → t1. The quality requirement of task t1 is

not fulfilled, and crowdsourcer t1 has enough budget. Worker

s6 is assigned to t1, and we have μ(s6) = t1 and μ(t1) =
{s1, s3, s4, s6}.

We summarize the task assignment process in Table 3. The

final task assignment is μ(t1) = {s1, s3, s4, s6} and μ(t2) =
{s2, s5}. It can be easily checked that this task assignment

satisfies budget constraints and quality requirements of all tasks,

achieving a 100% success ratio.

Theorem 1. The proposed task assignment algorithm has a com-
putational complexity of O(|S||T |τ), in which τ is the running
time of finding Bmin in Algorithm 2.

Proof. The number of iterations in Algorithm 1 is at most |S|∗|T |,
since there are |S| workers, who may propose to no more than

|T | tasks. The most difficult part is to find the set of workers

Bmin in Algorithm 2, which can be transformed into an integer

programming problem. Integer programming is NP-hard, and there

are many algorithms for solving the integer programming problem

such as the cutting-plane and the branch-and-bound methods [10].

To prove that the proposed algorithm can reach a stable task

assignment result, we first introduce the following lemma.

Lemma 1. The task assignment algorithm in Algorithm 1 guar-
antees that, through the iteration, the total quality level of workers
assigned to a task, i.e., Qμ(t), is non-decreasing.
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TABLE 3
Task Assignment Process

Round Action Available budget Aggregate quality Matching result
1 s1 → t1 b′1 = 1.5; b′2 = 1.3 q′1 = 0.4; q′2 = 0 μ(t1) = {s1}; μ(t2) = ∅
2 s2 → t2 b′1 = 1.5; b′2 = 0.75 q′1 = 0.4; q′2 = 0.55 μ(t1) = {s1}; μ(t2) = {s2}
3 s3 → t2 b′1 = 1.5; b′2 = 0.45 q′1 = 0.4; q′2 = 0.85 μ(t1) = {s1}; μ(t2) = {s2, s3}
4 s4 → t2 b′1 = 1.5; b′2 = 0.25 q′1 = 0.4; q′2 = 1.05 μ(t1) = {s1}; μ(t2) = {s2, s3, s4}
5 s5 → t2 b′1 = 1.5; b′2 = 0.15 q′1 = 0.4; q′2 = 1.15 μ(t1) = {s1}; μ(t2) = {s2, s5}
6 s6 → t2 b′1 = 1.5; b′2 = 0.15 q′1 = 0.4; q′2 = 1.15 μ(t1) = {s1}; μ(t2) = {s2, s5}
7 s3 → t1 b′1 = 1.2; b′2 = 0.15 q′1 = 0.7; q′2 = 1.15 μ(t1) = {s1, s3}; μ(t2) = {s2, s5}
8 s4 → t1 b′1 = 1; b′2 = 0.15 q′1 = 0.9; q′2 = 1.15 μ(t1) = {s1, s3, s4}; μ(t2) = {s2, s5}
9 s6 → t1 b′1 = 0.9; b′2 = 0.15 q′1 = 1; q′2 = 1.15 μ(t1) = {s1, s3, s4, s6}; μ(t2) = {s2, s5}

Proof. Let μ and μ̃ denote the task assignment before and after

worker s proposes to task t, respectively.

• If worker s is rejected by task t, the task assignment remains

unchanged, i.e, μ = μ̃. Hence, Qμ̃(t) = Qμ(t).

• If worker s is assigned to task t without evicting any of task

t’s previously assigned workers, we have μ̃(t) = μ(t)
⋃{s}.

It is obvious that Qμ̃(t) > Qμ(t).

• If worker s is assigned to task t by evicting some of task t’s
previously assigned workers, we have μ̃(t) = μ(t)

⋃{s} \
Bmin. According to Algorithm 2, QBmin

< rs. Hence

Qμ̃(t) = Qμ(t) −QBmin
+ rs > Qμ(t).

Theorem 2 (Individual Rationality). The proposed algorithm
produces an individually rational task assignment.

Proof. We have assumed that every task is acceptable to each

worker. Therefore, every worker prefers the current task as-

signment to being unassigned. Under the budget constraint, a

crowdsourcer prefers a larger set of workers as it improves the total

quality level. Therefore, every crowdsourcer prefers the current set

of assigned workers to any subset of these workers. The proposed

algorithm is, therefore, individual rational.

Theorem 3 (Nonwastefulness). The proposed algorithm produces
a nonwasteful task assignment.

Proof. We prove the nonwastefulness of the proposed algorithm

by contradiction. Assume that under the final task assignment μ,

there is a type II blocking pair (s, t). Since t �s μ(s), worker

s must have proposed to task t, but is rejected. Let μ̃ denote the

task assignment at the time worker s proposes to task t. One of

the following three situations must be true.

• The quality requirement of task t is not fulfilled, but the

budget of task t is not enough for worker s, because otherwise

worker s will be assigned to task t immediately. We have

Qμ̃(t) + rs > bt. According to Lemma 1, the budget of task

t is non-decreasing, i.e., Qμ(t) ≥ Qμ̃(t). Therefore, under the

final task assignment, we have Qμ(t) + rs > bt, and worker

s and task t cannot form a type II blocking pair.

• The quality requirement of task t is fulfilled, and without

worker s, the remaining unassigned workers can satisfy the

quality requirements of other tasks, but the budget of task t
is not enough for worker s, i.e., Qμ̃(t) + rs > bt. According

to Lemma 1, the budget of task t is non-decreasing, i.e.,

Qμ(t) ≥ Qμ̃(t). Therefore, under the final task assignment,

we have Qμ(t) + rs > bt, and worker s and task t cannot

form a type II blocking pair.

• The quality requirement of task t is fulfilled, but without

worker s, the remaining unassigned workers cannot satisfy

the quality requirement of other tasks. In this case, in the

final assignment, worker s cannot shift to task t because the

quality requirement of task μ(s) will be violated.

In summary, worker s and task t cannot form a type II blocking

pair, either because task t will not have enough budget for worker

s, or because worker s is essential to fulfill the quality requirement

of her currently assigned task μ(s).

Theorem 4 (Fairness). The proposed algorithm produces a fair
task assignment.

Proof. We prove that our proposed algorithm is fair by contra-

diction. Assume that under the final task assignment μ, there is

a type I blocking pair (s, t). Since t �s μ(s), worker s must

have proposed to task t, but is rejected. Let μ̃ denote the task

assignment at the time worker s proposes to task t. One of the

following three situations must be true.

• The quality requirement of task t is not fulfilled, but there

does not exist such a set of workers as B in Algorithm 2, who

are less preferred than worker s, have a lower total quality

level and can vacate enough budget for worker s. As the task

assignment algorithm runs, the set of workers less preferred

than worker s will shrink, and the remaining budget of task

t will decrease (Lemma 1). Therefore, under the final task

assignment, there will not exist a set of workers that satisfy

the condition in Definition 3, thus task t and worker s cannot

form a type II blocking pair.

• The quality requirement of task t is fulfilled, and without

worker s, the remaining unassigned workers can satisfy the

quality requirements of other tasks, but there does not exist

such a set of workers as B in Algorithm 2, who are less

preferred than worker s, have a lower total quality level

and can vacate enough budget for worker s. As the task

assignment algorithm runs, the set of workers less preferred

than worker s will shrink, and the remaining budget of task

t will decrease (Lemma 1). Therefore, under the final task

assignment, there will not exist a set of workers that satisfy

the condition in Definition 3, thus task t and worker s cannot

form a type II blocking pair.

• The quality requirement of task t is fulfilled, but without

worker s, the remaining unassigned workers cannot satisfy

the quality requirements of other tasks. In this case, in the

final assignment, worker s cannot shift to task t because the

quality requirement of task μ(s) will be violated.

In summary, worker s and task t cannot form a type I blocking

pair, either because worker s cannot displace any set of workers

currently assigned to task t, or because worker s is essential to

fulfill the quality requirement of her currently assigned task μ(s).
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Fig. 2. Success ratio comparison. (a) |T | = 30; (b) |S| = 150.

Theorem 5 (Stability). The proposed algorithm produces a stable
task assignment.

Proof. According to Theorem 2, Theorem 3 and Theorem 4, the

final task assignment is individually rational, fair and nonwasteful.

Therefore, the proposed task assignment algorithm is stable.

4 SIMULATION

In this section, we evaluate the performance of the proposed

algorithm, referred to as Task Assignment with Quality Require-

ment (TAQR) in the following figures. We implement Anchor [9],

an algorithm for many-to-one matching with upper bounds and

heterogeneous agents but no lower bounds, as the benchmark

for comparison. The key idea of Anchor is that, whenever a

task rejects a worker, it also rejects any other workers that are

less preferred than this worker, even if the budget allows for

these workers. In this way, Anchor achieves fairness but not non-

wastefulness. We compare our proposed matching algorithm, i.e.,

TAQR, with Anchor in terms of success ratio, worker happiness,

task happiness and running time. Each simulation runs for 500

times on a ThinkPad laptop with Intel(R) Core (TM) i5-3230M

CPU at 2.60GHz and 4.00GB RAM.

4.1 Success Ratio
Recall that we define success ratio as the ratio of successfully com-

pleted tasks to all tasks in Definition 1. A task can be successfully
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Fig. 3. Happiness comparison. (a) |T | = 30; (b) |S| = 150.

accomplished only if its quality requirement is satisfied. In this

set of simulations, the quality requirements qt, ∀t ∈ T , budget

constraints bt, ∀t ∈ T and worker quality levels rs, ∀s ∈ S
are randomly chosen from [3, 5], [6, 10] and [1, 2], respectively.

Naturally, the success ratio increases with the number of workers,

as shown in Fig. 2(a). Compared with the benchmark, TAQR can

achieve up to 16% improvement when the number of workers are

relatively small. With more and more workers, the gap between

TAQR and the benchmark narrows down. As expected, the success

ratio will reach 100% when the number of workers is large enough

for all tasks to fill up their quality requirement. With insufficient

workers, TAQR prioritizes tasks whose quality requirements have

not been satisfied when assigning workers, leading to a higher

success ratio than the benchmark.

The success ratio will decrease as more and more tasks

compete for workers, as shown in Fig. 2(b). TAQR has a slower

decrease rate than the benchmark, and can achieve up to 18% gain

in success ratio. The benchmark suffers from worker deficiency

more severely as it aggressively rejects workers to ensure fairness

without considering fulfilling the quality requirements of tasks.

4.2 Happiness of Workers and Tasks
We have the same definition of happiness as [9]. The happiness

of a worker is the rank percentile of her assigned task. For
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Fig. 4. Happiness vs quality requirements (a) |T | = 125; (b) |S| = 30.

example, if there are three tasks, a worker’s happiness is 100%
if she is assigned to her most-preferred task; her happiness is

33% if she is assigned to her least-preferred task; her happiness

is 0% if she is unassigned. The happiness of a task is the

average rank percentile of its assigned workers. For example,

if there are four workers, and a task is assigned to its most-

preferred worker and the third-preferred worker, its happiness will

be (100 + 50)/2 ∗ 100% = 75%. In this set of simulations, the

quality requirements qt, ∀t ∈ T , budget constraints bt, ∀t ∈ T
and worker quality levels rs, ∀s ∈ S are randomly chosen from

[3, 5], [6, 10] and [1, 4], respectively.

As shown in Fig. 3(a), worker happiness goes down as more

workers join the crowdsourcing platform, making it more and

more difficult for an individual worker to be assigned to her

preferred tasks. TAQR maintains a 11% gain over the bench-

mark because TAQR does not reject workers as radically as the

benchmark and makes a better use of the budget to employ more

workers. The worker happiness grows as there are more tasks since

there is a higher chance for a worker to be assigned to her preferred

tasks, as shown in Fig. 3(b). The worker happiness of TAQR is

around 11% higher than that of the benchmark.
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Fig. 5. Running time comparison. (a) |T | = 30; (b) |S| = 100.

4.3 Impact of Quality Requirement

Lower bounds, i.e., the quality requirements, are not considered

in the benchmark, thus we only show the impact of quality

requirement on TAQR, but not the benchmark. In this set of

simulations, the budget constraints bt, ∀t ∈ T and worker quality

levels rs, ∀s ∈ S are randomly chosen from [6, 10] and [1, 4], re-

spectively. We study the scenarios when tasks have high, medium

and low quality requirements, with qt, ∀t ∈ T randomly chosen

from [3, 4], [2, 3], [1, 2], respectively. As illustrated in Fig. 4, the

average task happiness is higher when the quality requirements

are lower, as it is unnecessary to recruit less-preferred workers to

meet the quality requirements. This also explains the interesting

observation in Fig. 4(a) that the average task happiness decreases

with the number of workers. This is because more less-preferred

workers are assigned to each task, dragging down the average

task happiness. When the number of tasks goes up, average task

happiness gradually descends due to a lack of workers, as shown

in Fig. 4(b).

4.4 Running time

In this set of simulations, the quality requirements qt, ∀t ∈
T , budget constraints bt, ∀t ∈ T and worker quality levels

rs, ∀s ∈ S are randomly chosen from [0.8, 1.5], [1.4, 2] and
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[0, 1], respectively. As shown in Fig. 5, though the running time of

TAQR is linear in the number of workers and the number of tasks,

it is much longer than that of the benchmark. Taking into account

the results in Fig. 2 and Fig. 3, it is clear that there is a trade-

off between the running time and the performance improvement.

The benchmark rapidly culls out less-preferred workers to ensure

fairness but not the quality requirements of tasks. In comparison,

TAQR carefully examines every worker for potential assignment,

and makes a better use of the budget to hire as many workers as

possible, resulting in a higher success ratio and worker happiness

at the expense of a longer running time.

4.5 Aggregate Quality Level Comparison
By taking a closer look at the task assignment result, we demon-

strate that TAQR makes a better use of the budget and improves the

success ratio of tasks. We consider 20 tasks and 60 workers, with

the quality requirements qt, ∀t ∈ T , budget constraints bt, ∀t ∈ T
and worker quality levels rs, ∀s ∈ S randomly chosen from [3, 5],
[6, 10] and [1, 4], respectively. We run the simulation once, and

show the aggregate quality level of assigned workers to each task

in Fig. 6. It is clearly that TAQR meets the quality requirement of

every task and tries to use available budgets to attain the highest

possible quality level. The benchmark fails to reach the quality

requirements of several tasks and leaves a considerable amount

of room for quality improvement. This further corroborates the

fact that TAQR can improve the success ratio (Fig. 2) and worker

happiness (Fig. 3).

5 RELATED WORK

Task Assignment for Crowdsourcing. Crowdsourcing has become

a promising and popular paradigm for collecting and sharing

information [1], and task assignment is one of the fundamental

concerns in crowdsourcing platforms. In [2], workers are as-

signed to tasks in a way that maximizes the total benefit of

the crowdsourcing platform by using a two-phase exploration-

exploitation assignment algorithm. The exploration phase assesses

worker skills while the exploitation phase performs the task

assignment for profit maximization. In [3], Boutsis et al. presented

CRITICAL, to determine the appropriate group of workers to

every task under reliability and time constraints. In [4], Feng

et al. described a truthful auction mechanism with an optimal

task allocation algorithm and near-optimal truthful mechanism

for offline and online task assignment, respectively. In [5], taking

both spatial coverage and temporal coverage into account, He et

al. proposed a greedy approximation and a genetic algorithm to

achieve high quality crowdsourcing results by recruiting workers

who best match the application requirements, based on their

predicted mobility. In [6], Xiao et al. proposed an offline task

assignment algorithm and an online task assignment algorithm

based on a greedy strategy. In [7], Karaliopoulos et al. devised

a greedy heuristics worker selection algorithm to deal with un-

certainty of worker mobility. In [11], Han et al. presented an

online algorithm to achieve robust crowdsensing. In [12], by taking

the geographical characteristics of sensing tasks and the spatial

movement constraints of mobile workers into account, the problem

of allocating location-dependent tasks is studied. In [13], Cheung

et al. designed a distributed task selection algorithm to collect

time-sensitive and location-dependent data from heterogeneous

workers.

Existing works mostly focused on utility maximization for the

entire crowdsourcing platform, ignoring personal preferences of

individual workers and crowdsourcers. An optimal but unstable

task assignment may not be easily implemented, as unsatisfactory

workers and crowdsourcers have incentives to deviate from the

assignment result. By formulating the task assignment in crowd-

sourcing as a matching problem and generating a stable result,

we ensure that every participant is willing to abide by the task

assignment result.

Stable Matching. Stable matching has been studied exten-

sively since 1962. In [14], Gale and Shapley first proposed and

then analyzed the problems of stable matching. According to

[15], the deferred acceptance algorithm is used to achieve a stable

matching. Variants of matching problems in economics have been

examined [16], [17], [18], [19]. In [20], Hamada et al. focused

on the hospital-residents matching problem with quota lower

bounds, and proposed an exponential-time algorithm. The theory

of matching has also been explored in computer science. In [8],

Fragiadakis introduced two classes of strategyproof mechanisms

for many-to-one matching with minimum quotas. In [9], Xu et

al. proposed both online and offline algorithms to match virtual

machines to heterogeneous sized jobs in the cloud. In [21], two

generalized stable matching problems that exist in the higher

education sector with lower and common quotas are studied.

However, none of these matching frameworks can be applied to

task assignment with quality requirements and budget constraints,

where the heterogeneity in worker quality levels makes it chal-

lenging to reach a stable matching result.

6 CONCLUSION

In this paper, we investigated the task assignment problem for

crowdsourcing platforms. Instead of finding a task assignment

that can maximize the total utility of the crowdsourcing platform,

we focused on the diverse preferences of individual workers and

crowdsourcers towards each other, and introduced a many-to-one

matching framework with lower and upper bounds to account for

the quality requirements and budget constraints of crowdsourcing

tasks. To conquer the difficulty of heterogeneous worker skill

levels, we proposed a stable matching algorithm, which can

yield task assignment results that are individual rational, fair and

nonwasteful. Through extensive simulation results, we verified
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that our proposed algorithm can improve both the task success

ratio and the happiness of both workers and tasks with acceptable

time complexity.
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