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Abstract—Crowdsourcing has become a popular paradigm to
leverage the collective intelligence of massive crowd workers to
perform certain tasks in a cost-effective way. Task assignment is
an essential issue in crowdsourcing platforms owing to heteroge-
neous tasks and work skills. In this article, we focus on assigning
workers with diversified skill levels to crowdsourcing tasks with
different quality requirements and budget constraints. Task
assignment is fundamentally a many-to-one matching problem,
where one task is allocated to multiple users who can meet the
minimum quality requirement of the task within the limited bud-
get. While most existing works try to maximize the utility of
the crowdsourcing platform, we take into account the individual
preferences of crowdsourcers and workers toward each other to
ensure the stability of task assignment results. In this article, we
propose task assignment mechanisms that can guarantee stable
outcomes for the many-to-one matching problem with lower and
upper bounds (i.e., quality requirement and budget constraint) in
regard to heterogeneous worker skill levels. Extensive simulation
results show that the proposed algorithms can greatly improve
the success ratio of task accomplishment and worker happiness
compared with existing algorithms.

Index Terms—Crowdsourcing, matching, quality requirement,
task assignment.

I. INTRODUCTION

CROWDSOURCING combines efforts from massive
workers with heterogeneous skills to accomplish tasks

with high qualities and low costs, e.g., new product design,
traffic monitoring, and image labeling. Crowdsourcing plat-
forms offer an open and reliable environment for crowd-
sourcers and individual workers to communicate with each
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other. Crowdsourcers publish their tasks and hope to recruit
workers with sufficient skills and affordable costs. Workers
apply to perform tasks in return for certain payments.
Crowdsourcers and workers have different preferences toward
each other in terms of skill levels and costs.

Task assignment is one of the most fundamental problems
in crowdsourcing. Existing algorithms [1]–[10] address the
problem of task assignment to realize different design goals for
heterogeneous systems, e.g., mobile crowdsensing, fog-based
crowdsourcing, and Internet of Vehicles (IoV). Considering
limited budgets, a two-phase exploration–exploitation algo-
rithm was designed to maximize the payoff of the crowd-
sourcer by allocating workers with different skill levels to
different tasks [2]. To guarantee the deadline of tasks, the
mobility and active time of workers as well as the geotem-
poral requirements of tasks had been considered in [3]–[5]
and [7]. In [4] and [7], the uncertainty of user mobil-
ity was tackled. The reliability of task results was studied
in [8]. In [9], the relationship between data quality and the
profit of workers was taken into consideration. In [10], a
utility maximization problem was formulated jointly consid-
ering roadside unit deployment and service task assignment.
Nonetheless, most existing works only consider the total utility
of the crowdsourcing platform but ignore individual prefer-
ences of crowdsourcers and workers. A global-optimal task
assignment result may deviate if individual crowdsourcers and
workers have incentives to seek for better options. Therefore, it
is important to ensure stability in an open crowdsourcing plat-
form, where the task assignment results cater to the individual
utility of crowdsourcers and workers.

In this article, we present a stable matching framework
for task assignment in crowdsourcing, as shown in Fig. 1.
In particular, we utilize the many-to-one matching where one
task can be assigned to multiple workers as long as the pay-
ments can be covered by the budget of the task. Workers
have diversified skills due to different experiences, capabilities,
and proficiencies. Naturally, high-skill workers cost more than
low-skill workers. A crowdsourcer should hire a set of work-
ers with enough skills to successfully accomplish the tasks
and also meet the budget constraint. Therefore, the formu-
lated many-to-one matching framework has both lower bound
(quality requirement) and upper bound (budget constraint).

As discussed before, we focus on stable rather than optimal
matching to ensure that crowdsourcers and workers are willing
to obey the task assignment results. Nonetheless, conventional
stable solutions to many-to-one matching problems with lower
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Fig. 1. Architecture of our proposed task assignment framework for
crowdsourcing platforms.

and upper bounds cannot be applied here since agents are
assumed to be homogeneous in “size,” i.e., workers have the
same skill levels and ask for the same amount of payment. To
introduce heterogeneity into the matching framework is quite
challenging since different combinations of workers have dif-
ferent costs and aggregate skill levels even if the numbers of
workers are the same. In this article, we design novel algo-
rithms that can efficiently converge to stable task assignments.
Through an extensive array of simulations, we compare the
proposed algorithms with benchmark algorithms for a many-
to-one matching problem with heterogeneous agents but no
lower bounds. We show that our proposed matching algorithms
can greatly improve the success ratio of completed tasks and
worker happiness at the expense of a slight increase in running
times.

In this article, we make the following key contributions.
1) We propose an innovative many-to-one matching frame-

work to model the problem of task assignment for
crowdsourcing platforms, resolving conflicting interests
between workers and tasks. Unlike existing utility
optimization-based solutions, our framework aims to
find a stable matching result that individual workers are
willing to conform to.

2) We develop novel stable matching algorithms for our
many-to-one matching framework with a lower bound
(quality requirement), an upper bound (budget con-
straint), and heterogeneous workers. Through theoretical
analysis, our proposed algorithms have been proved to
produce stable task assignment results.

3) Our extensive simulation results validate the effective-
ness of our proposed algorithms, showing their benefits
to both tasks and workers in terms of the success ratio
of task accomplishment and worker happiness.

A preliminary version of this article has been published in
IEEE/ACM IWQoS 2017 [11], featuring our proposed task
assignment with the quality requirement (TAQR) algorithm.
In this journal version, we have proposed a new extended
stable task assignment (ESTA) algorithm with a guaranteed
requirement.

The remainder of this article is organized as follows. We
introduce the system model in detail in Section II. The ESTA
algorithm is proposed, and the stability of its matching result

is proved in Section III. The simulation results are presented in
Section IV. We survey the related works in Section V. Finally,
we conclude this article in Section VI.

II. SYSTEM MODEL

We consider a crowdsourcing platform that consists of a
set S of workers. Worker s ∈ S has a quality level of rs,
which reflects how good her response to a task is. In this
article, we make the simplifying assumption that a worker’s
quality level rs is the same for all tasks. This is reasonable
for scenarios where the crowdsourcing tasks have similar dif-
ficulty levels, e.g., crowdsensing the noise or pollution levels
in different locations. In our future work, we will consider the
case where a worker’s performance across tasks may be differ-
ent. Different workers have different quality levels due to their
diversity in skills, experience, and proficiency. We assume that
the workers’ quality levels are known to the crowdsourcers. To
achieve this, the crowdsourcing platform simply keeps a repu-
tation system to update the quality level of each worker based
on their past performance. A worker with a higher quality level
will ask for higher compensation for performing a task. This
is reasonable since those workers usually spend more time
and energy in training, and crowdsourcers are willing to pay
more for a more reliable result. We use f (rs) to denote the
payment that worker s requires for completing a task. f (·) is
a monotonically increasing function, and we have f (0) = 0.

We assume that there is a set T of crowdsourcers on the
crowdsourcing platform, each publishing a specific task. In
practice, a crowdsourcer is allowed to publish multiple tasks
on the crowdsourcing platform. In this case, we can regard
such a crowdsourcer as multiple virtual crowdsourcers, each
with a single task. Under this circumstance, with a little abuse
of notations, we use T to denote the set of tasks as well.
Since crowdsourcing tasks rely on the wisdom of the crowd,
a task can only be successfully accomplished if the crowd-
sourcer can recruit enough workers. Let qt denote the quality
requirement of task t ∈ T . We make the simplifying assump-
tion that a set A of workers can achieve a total quality level
of

∑
s∈A rs when cooperating on the same task. Therefore, the

crowdsoucer of task t must ensure that she can attract enough
workers to fulfill the quality requirement. If the aggregate qual-
ity level of workers assigned to task t is not smaller than its
quality requirement, i.e.,

∑
s∈A rs ≥ qt, task t can be finished

with acceptable results; otherwise, task t will fail.
Even though a larger number of workers means a higher

quality level, each crowdsourcer is bounded by her budget,
which limits the number of workers she can hire. Let bt denote
the budget of crowdsourcer t. Hence, it must be conformed
that

∑
s∈A f (rs) ≤ bt. In this article, we make the simplifying

assumption that f (rs) = rs. In future work, we will study more
general forms of function f (·). Combining the quality require-
ment and the budget constraint, we have the condition for the
assignment for a task to be successful: qt ≤ ∑

s∈A rs ≤ bt.
Each worker has a preference list over all the tasks. Let �s

denote the complete, reflexive, and transitive preference rela-
tion of worker s. t �s t′ indicates that worker s is more willing
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TABLE I
KEY PARAMETERS

to work on task t than task t′. For example, if two crowd-
sourcers aim to collect traffic information at two different
locations, a worker may prefer the location near her residence
to the location that is far away. Due to worker diversity, their
preference lists are different from each other. In this article,
we assume that a worker has the same quality level toward all
tasks, but it is noteworthy that a worker’s preferences toward
different tasks may also be affected by her quality level toward
the tasks. A worker may be more interested in performing a
task that she is more skilled in this task. Also, a worker’s skill
will evolve over time, indicating that their preference lists may
change over time. In the future, we will consider the impact
of skill levels on workers’ preferences.

Similarly, each crowdsourcer has a preference list over all
the workers, depending on the workers’ quality levels. Let �t

denote the complete, reflexive, and transitive preference rela-
tion of crowdsourcer t. Naturally, a crowdsourcer will prefer a
worker with a higher quality level. Therefore, the preference
lists of all crowdsourcers are the same since we assume that
each worker has the same quality level toward all the tasks.
Furthermore, we assume that all the preference lists are fixed
and known to all the participants (workers and crowdsourcers)
of the crowdsourcing platform. Without loss of generality, we
assume that all the tasks are acceptable to every worker. If a
worker is reluctant to do some of the tasks, she can simply
insert an empty task in the preference list and put all the unac-
ceptable tasks behind the empty task. We summarize major
parameters and their definitions in Table I.

In this article, we impose the restriction that each worker
can only focus on one task, but each task can involve multiple
workers. The objective of the crowdsourcing platform operator
is to realize a stable task assignment that takes into consider-
ation the preferences of workers and crowdsourcers, as well
as quality requirements and budget constraints of all tasks.
We formulate the task assignment for a crowdsourcing plat-
form as a many-to-one matching problem with a hard upper
bound (budget constraint) and a soft lower bound (quality
requirement), as follows.

Definition 1 (Task Assignment): A task assignment μ for
the crowdsourcing platform is a mapping μ : S

⋃
T →

2S
⋃

T , which satisfies:
1) μ(s) ∈ T for all s ∈ S;
2) μ(t) ⊆ S for all t ∈ T ;

3) for any s ∈ S and t ∈ T , we have μ(s) = t if and only
if s ∈ μ(t), where μ(t) is the set of workers matched to
task t;

4) Hard Upper Bound (Budget Constraint):
∑

s∈μ(t) rs ≤ bt

for all t ∈ T ;
5) Soft Lower Bound (Quality Requirement): Let T̃ =

{t|t ∈ T ,
∑

s∈μ(t) rs ≥ qt} denote the set of tasks whose
quality requirements are satisfied. Define success ratio
as [(|T̃ |)/(|T |)] × 100%, in which | · | is the number
of elements in a set. The success ratio evaluates the
extent to which the task assignment μ fulfills the quality
requirements of all crowdsourcing tasks.

Most of the existing many-to-one matching models do not
impose a lower bound constraint as in our model, which
involves the quality requirement of crowdsourcing tasks that
rely heavily on joint efforts. We pose a soft lower bound on
the task assignment μ since it is difficult to decide whether
there exists a task assignment that attains a 100% success
ratio. In the existing many-to-one matching models that do
consider lower bounds, it is assumed that agents are homo-
geneous in “size,” that is, each worker has a uniform quality
level of rs = 1 ∀s ∈ S . Under this simplified model, a task
assignment that fully satisfies the lower bound exists if and
only if the total quality of all workers is not smaller than the
total quality requirement of all tasks, i.e.,

∑
s∈S rs ≥ ∑

t∈T qt.
Unfortunately, when workers have heterogeneous quality

levels,
∑

s∈S rs ≥ ∑
t∈T qt no longer guarantees that the qual-

ity requirement of every task can be satisfied. For example,
if we have two workers with quality levels as 0.3 and 0.7,
respectively, and two tasks with quality requirements as 0.4
and 0.5, respectively. We have 0.3+0.7 > 0.4+0.5, but no task
assignment can simultaneously meet the quality requirements
of the two tasks. Let xs,t be the task assignment indicators,
and xs,t = 1 if μ(s) = t; otherwise, xs,t = 0. To validate
the existence of a task assignment with a 100% success ratio
is equivalent to checking whether the following integer linear
programming problem has a feasible solution:

max
xs,t

∑

s∈S

∑

t∈T
xs,t (1)

subject to
∑

t

xs,t ≤ 1 ∀s (2)

qt ≤
∑

s

xs,trs ≤ bt ∀t (3)

xs,t ∈ {0, 1} ∀ s, t. (4)

Instead of solving the integer linear programming problem, we
only have to verify whether the feasible region is empty or not
because we only care about the existence of a task assignment
with a 100% success ratio. Even so, the problem is NP-hard.
Therefore, in this article, we only treat quality requirements
as soft lower bounds, but will try to improve the success ratio
as much as possible.

A task assignment is stable if no worker or crowdsourcer has
the incentive to deviate from the assignment result. Workers
and crowdsourcers are selfish and rational individuals who
will break off from the task assignment if they have better
choices. On a crowdsourcing platform, where workers can
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freely choose tasks and crowdsourcers can freely hire or sack
workers, a task assignment can be implemented only if it is
stable. A stable task assignment features individual rationality,
fairness, and nonwastefulness.

Definition 2 (Individual Rationality): A task assignment μ

is individually rational if:
1) every worker prefers being assigned to the current task

of being unassigned;
2) every crowdsourcer prefers the current set of assigned

workers to any subset of these workers.
Being individually rational is the basic property of a task

assignment. It ensures that workers are not reluctant to per-
form crowdsourcing tasks and crowdsourcers are willing to
accomplish their tasks in the form of crowdsourcing. To define
fairness [12], we have to introduce the concept of type I
blocking pair.

Definition 3 (Type I Blocking Pair): Given a task assign-
ment μ, worker s and task t form a type I blocking pair (s, t),
if there exists a nonempty subset of workers, denoted by A,
who are matched to task t, i.e., A ⊆ μ(t), and satisfy the
following conditions.

1) Worker s prefers task t to her current assignment μ(s).
Crowdsourcer t prefers worker s to any worker in A,
and crowdsourcer t prefers worker s to the whole worker
set A.

2) Worker s can displace the workers in A without violating
the budget constraint of task t.

3) The leaving of worker s will not violate the quality
requirement of her currently assigned task μ(s).

Mathematically speaking, worker s and task t form a type I
blocking pair if there exists a nonempty subset of workers A ⊆
μ(t), and:

1) t �s μ(s), s �t s′ ∀s′ ∈ A, and rs ≥ ∑
s′∈A rs′ ;

2) rs + ∑
s′∈μ(t)\A rs′ ≤ bt;

3)
∑

s′∈μ(μ(s)) rs′ − rs ≥ qμ(s).
The type I block pair makes a task assignment unstable

because the worker in concern has the chance to shift to a
more preferred task by replacing some of the less-preferred
workers who have been assigned to that task. The definition
of type I blocking pair is simpler in many-to-one matching
problems without lower bounds. In particular, condition 3) is
not entailed. However, in our proposed framework, condition
3) is needed to suppress the violation of quality requirements.

Definition 4 (Fairness): A task assignment μ is fair if and
only if there is no type I blocking pairs.

A fair task assignment indicates that it is fair for a worker
to be assigned to her current task because she cannot replace
the workers assigned to her more-preferred tasks. Apart from
the type I blocking pairs, we also have the type II blocking
pair.

Definition 5 (Type II Blocking Pair): Given a task assign-
ment μ, worker s and task t form a type II blocking pair
(s, t), if:

1) worker s prefers task t to her current assignment μ(s);
2) add worker s to task t will not violate the budget

constraint of task t;
3) the leaving of worker s will not violate the quality

requirement of her currently assigned task μ(s).

Mathematically speaking, under the task assignment μ, worker
s and task t form a type II blocking pair, if:

1) t �s μ(s);
2) rs + ∑

s′∈μ(t) rs′ ≤ bt;
3)

∑
s′∈μ(μ(s)) rs′ − rs ≥ qμ(s).

The type II blocking pair makes a task assignment unstable
because a crowdsourcer has enough budget to hire one more
worker who is willing to work for her.

Definition 6 (Nonwastefulness): A feasible task assignment
μ is nonwasteful if and only if there are no type II blocking
pairs.

Nonwastefulness [12] ensures that crowdsourcers make the
best use of their budgets in recruiting workers. The difference
between type I and type II blocking pairs is whether a worker
can take the budget paid to some of the workers currently
assigned to a task. In type II blocking pair (s, t), only the
remaining budget of task t is considered to cover the payment
to worker s; whereas in a type I blocking pair (s, t), the budget
for task t’s currently assigned workers can be reclaimed for
compensating worker s.

III. EXTENDED STABLE TASK ASSIGNMENT

WITH GUARANTEED QUALITY

In this section, we design a stable task assignment algo-
rithm with guaranteed quality. The basic idea is to divide
each original task into two extended tasks, called the regu-
lar task and the shadow task. The regular task is responsible
for the minimum quality requirement of the original task, and
thus in an outstanding important position. The shadow task
is responsible for the remaining budget (the budget subtract
the minimum quality requirement) to improve the quality of
task complishment. Let tr and td denote the regular task and
the shadow task of the original task t, respectively. We set
the budget of the regular task tr as btr = qt and the bud-
get of the shadow task td as btd = bt − qt. By introducing
two kinds of extended tasks, TAQRs and budget constraints
are transformed into task assignment with only budget con-
straints. Thus, there is no minimum quality requirement for
all extended tasks. Generally speaking, if we reserve at least∑

t qt for the regular tasks, their quality will be guaranteed,
which implies that the minimum quality requirements of all
original tasks will be satisfied. Nevertheless, due to the hetero-
geneous skill levels of workers, to calculate how many workers
to preserve for regular tasks in task assignment is a challenging
problem.

A. Problem Transformation

The transformation of the task assignment problem with
minimum quality requirement into that without minimum qual-
ity requirement is shown in Algorithm 1. The worker set
remains the same. The preference lists of the regular task
and shadow task are the same as the original task (line 7).
The preference list of each worker is rebuilt by inserting the
shadow task right after the regular task with the sequence of
the original preference list unchanged (line 11).
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Algorithm 1 Task Assignment Transformation
Input: Worker set S , task set T , preference lists of workers

{�s}s∈S , preference lists of tasks {�t}t∈T , quality require-
ments of tasks {qt}t∈T , and budget constraints of tasks
{bt}t∈T .

Output: Worker set S̃ , task set T̃ r, T̃ d, preference lists
of workers {�̃s}s∈S̃ , preference lists of tasks {�̃tr }tr∈T̃ r ,
{�̃td }td∈T̃ d , and budget constraints of tasks {btr }tr∈T̃ r ,
{btd }td∈T̃ d .

1: S̃ = S .
2: T̃ r = �, T̃ d = �.
3: for t ∈ T do
4: T̃ r = T̃ r ∪ {tr},
5: T̃ d = T̃ d ∪ {td}.
6: btr = qt, btd = bt − qt.
7: �̃tr := �̃td :=�t.
8: end for
9: T̃ = T̃ r ∪ T̃ d.

10: for s ∈ S do
11: Change �s:= ts,1 �s ts,2 �s · · · into �̃s :=

trs,1�̃s tds,1�̃s trs,2�̃s tds,2�̃ · · ·
12: end for

B. Proposed Algorithm ESRT

With the transformed workers and tasks, the ESTA algo-
rithm with the guaranteed quality requirement is shown in
Algorithm 2. Tasks are partitioned into regular tasks and
shadow tasks and have different rules to decide whether to
accept or reject a worker.

1) If task t belongs to the regular task set T̃r, no more
than |A| workers will be selected (lines 7 and 8), where∑

s∈A rs ≤ bt.
2) If task t belongs to the shadow task set T̃d, we need to

take all the other regular tasks into account to ensure
their quality, i.e., the minimum quality requirements of
all original tasks. In Algorithm 2, in line 10, we calcu-
late �Q̃, the total quality requirement that has not been
fulfilled yet. In line 11, we compute �R̃, the total qual-
ity of the unassigned workers (including worker s). It
is obvious that the quality requirements of other tasks
cannot be fulfilled without worker s if �R̃ − rs is less
than �Q̃. In this way, we check whether worker s can
be assigned to task t.

a) If �R̃ − rs < �Q̃, worker s cannot be assigned to
task t, and the task assignment remains unchanged.

b) If �R̃ − rs ≥ �Q̃, task assignment will be
determined by Algorithm 3 (the ReDA).

Given the matching result μ̃ of Algorithm 2, we can obtain
the final task assignment as ∀t ∈ T̃ , μ̃(t) = μ̃(tr) ∪ μ̃(td), as
shown in lines 19–21 ∀s ∈ S̃ , if s ∈ μ̃(tr) or s ∈ μ̃(td), we
have s ∈ μ̃(t), as shown in lines 22–26.

Toy Example: We use the settings as shown in Table II.
Using Algorithm 1, we can obtain the transformed workers
and tasks, as shown in Table III. We have six workers with
updated preference lists and four extended tasks, i.e., two regu-
lar tasks and two shadow tasks, with their updated preference

Algorithm 2 ESTA Algorithm With Minimum Requirement

Input: Worker set S̃ , task set T̃ r, T̃ d, preference lists of
workers {�̃s}s∈S̃ , preference lists of tasks {�̃tr }tr∈T̃ r ,
{�̃td }td∈T̃ d , and budget constraints of tasks {btr }tr∈T̃ r ,
{btd }td∈T̃ d .

Output: Task assignment μ̃.
1: Initialization μ̃(s) = ∅, μ̃(t) = ∅ ∀s ∈ S̃ ∀t ∈ T̃ .
2: for s ∈ S̃ do
3: p(s) := ordered list of tasks according to �̃s.
4: end for
5: while ∃s, μ̃(s) = ∅ and p(s) �= ∅ do
6: t = highest ranked task in p(s). Remove t from p(s).
7: if t ∈ T̃ r then
8: μ̃ = ReDA(s, t, μ̃).
9: else

10: �Q̃ = ∑
t∈T̃ (btr − Q̃μ̃(tr) − Q̃μ̃(td))

+.

11: �R̃ = ∑
μ̃(s)=∅ rs.

12: if �R̃ − rs < �Q̃ then
13: μ̃(t) = μ̃(t), μ̃(s) = ∅.
14: else
15: μ̃ = ReDA(s, t, μ̃).
16: end if
17: end if
18: end while
19: for ∀t ∈ T̃ do
20: μ̃(t) = μ̃(tr) ∪ μ̃(td).
21: end for
22: for ∀s ∈ S̃ do
23: if s ∈ μ̃(tr) or s ∈ μ̃(td) then
24: s ∈ μ̃(t).
25: end if
26: end for

TABLE II
WORKERS AND TASKS

lists and budget constraints. The task assignment algorithm
runs as follows.

Round 1: s1 → tr1 (worker s1 proposes to task tr1). Task tr1
has enough budget, worker s1 is assigned to task tr1, and we
have μ(s1) = tr1 and μ(tr1) = {s1}.

Round 2: s2 → tr2 (worker s2 proposes to task tr2). Task tr2
has enough budget, worker s2 is assigned to task tr2, and we
have μ(s2) = tr2 and μ(tr2) = {s2}.

Round 3: s3 → tr2 (worker s3 proposes to task tr2). Task tr2
has enough budget, worker s3 is assigned to task tr2, and we
have μ(s3) = tr2 and μ(tr2) = {s2, s3}.

Round 4: s4 → tr2 (worker s4 proposes to task tr2). Task tr2
has enough budget, worker s4 is assigned to task tr2, and we
have μ(s4) = tr2 and μ(tr2) = {s2, s3, s4}.
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Algorithm 3 ReDA: Revised Deferred Acceptance Algorithm
Input: Task t, worker s, temporary task assignment μ.
Output: Updated task assignment μ

1: if rs ≤ bt − ∑
s′∈μ(t) rs′ then

2: Assign worker s to task t: μ(t) = μ(t)
⋃{s}, μ(s) = t.

3: else
4: A = {s′|s′ ∈ μ(t), s′ ≺t s}.
5: if ∃B ⊆ A, QB < rs and rs ≤ bt − Qμ(t)\B then
6: Find such B with the minimum total quality level.
7: for ∀s′ ∈ Bmin do
8: μ(s′) = ∅.
9: end for

10: Assign worker s to task t: μ(t) = μ(t)
⋃{s}\Bmin,

μ(s) = t.
11: else
12: μ(t) = μ(t), u(s) = ∅.
13: end if
14: end if

Round 5: s5 → tr2 (worker s5 proposes to task tr2). Task
tr2 does not have enough budget for s5. The set of workers
who are less preferred than worker s5 is A = {s2, s3, s4}.
The potential subsets of workers in A whose total quality is
less than r5 and who can vacate enough budget for s5 include
{s2} and {s3, s4}. We choose to remove set Bmin = {s2} with
the optimal total quality. Therefore, we have μ(s5) = tr2 and
μ(tr2) = {s3, s4, s5}.

Round 6: s6 → tr2 (worker s6 proposes to task tr2). Task tr2
does not have enough budget for s6, and the set of workers
who are less preferred than worker s6 is A = ∅. Therefore,
worker s6 is rejected by task tr2.

Round 7: s2 → td2 (worker s2 proposes to task td2). Worker
s2 cannot be assigned to task td2 because doing so will make
it impossible to satisfy the quality requirement of the original
task t1. Hence, worker s2 is rejected by task td2.

Round 8: s2 → tr1 (worker s2 proposes to task tr1). Task tr1
has enough budget, worker s2 is assigned to task tr1, and we
have μ(s2) = tr1 and μ(tr1) = {s1, s2}.

Round 9: s6 → td2 (worker s6 proposes to task td2). Worker
s6 cannot be assigned to task td2 because doing so will make
it impossible to satisfy the quality requirement of the original
task t1. Hence, worker s6 is rejected by task td2.

Round 10: s6 → tr1 (worker s6 proposes to task tr1). Task tr1
does not have enough budget for s6, and the set of workers
who are less preferred than worker s6 is A = ∅. Therefore,
worker s6 is rejected by task tr1.

Round 11: s6 → td1 (worker s6 proposes to task td1). The
quality requirement of the original task t2 (the other task in
the system) is fulfilled, and task td1 has enough budget for
worker s6. Thus, worker s6 is assigned to task td1, and we have
μ(s6) = td1 and μ(td1) = {s6}.

We summarize the stable task assignment process in
Table IV. The final task assignment is μ(t1) = {s1, s2, s6}
and μ(t2) = {s3, s4, s5}. It can be easily checked that
this task assignment satisfies budget constraints and quality
requirements of all tasks, achieving a 100% success ratio.

TABLE III
TRANSFORMED WORKERS AND TASKS. (a) ORIGINAL TASKS.

(b) TRANSFORMED TASKS. (c) ORIGINAL WORKERS.
(d) TRANSFORMED WORKERS

(a)

(b)

(c)

(d)

C. Theoretical Analysis

Theorem 1 (Computational Complexity): The ESTA algo-
rithm converges with a computational complexity of
O(|S||T |τ), in which τ is the computational complexity of
finding Bmin in Algorithm 3.

Proof: To transform the task assignment as in Algorithm 1
that has a computational complexity of O(|S|+|T |). As shown
in Algorithm 2, for regular tasks, the computation complexity
is O(|S||T |τ), and for shadow tasks, the computation com-
plexity is also O(|S||T |τ). In summary, the ESTA algorithm
has a computational complexity of O(|S||T |τ).

Theorem 2 (Individual Rationality): The matching result of
the ESTA algorithm is individually rational.

Proof: Every worker prefers the current task assignment
to being unassigned. Both regular tasks and shadow tasks pre-
fer a larger set of workers as it improves the total quality level,
thus every crowdsourcer prefers the current set of assigned
workers to any subset of these workers as long as its bud-
get permits. Therefore, the ESTA algorithm is individually
rational.

Lemma 1: The task assignment algorithm in Algorithm 2
guarantees that through the iteration, the total quality of
workers assigned to a task, i.e., Qμ(t), is nondecreasing.

We ignore the proof of Lemma 1. Interested readers refer
to the proof in the conference version [11].

Theorem 3 (Nonwastefulness): The matching result of the
ESTA algorithm is nonwasteful.
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TABLE IV
TASK ASSIGNMENT PROCESS OF THE ESTA ALGORITHM

Proof: We prove the nonwastefulness of the ESTA algo-
rithm by contradiction. Assume that under the final task
assignment μ, there is a type II blocking pair (s, t). Since
t �s μ(s), worker s must have proposed to corresponding task
tr and td, but has been rejected. Let μ′ denote the task assign-
ment at the time worker s proposes to task tr or td. One of
the following two situations must be true.

1) s Proposes to tr: Task tr does not have enough budget for
worker s because otherwise, worker s will be assigned
to task tr immediately, we have Qμ′(tr) + rs > btr .
According to Lemma 1, the aggregate quality of task
tr is nondecreasing, i.e., Qμ(tr) ≥ Qμ′(tr), where μ(tr)
is the final assignment result of task tr and Qμ(tr) is
the aggregate quality of workers assigned to task tr.
Therefore, under the final task assignment, we have
Qμ(tr) + rs > btr , and worker s and task tr cannot form
a type II blocking pair.

2) s proposes to td:
a) Task td has enough budget for worker s, but with-

out worker s, the remaining unassigned workers
cannot satisfy the quality requirements of other
tasks. In this case, in the final task assignment,
worker s cannot shift to task td because the quality
requirement of task μ′(s) will be violated.

b) Task td does not have enough budget for worker
s, and the remaining unassigned workers can sat-
isfy the quality requirements of other tasks, i.e.,
Qμ′(td) + rs > btd . According to Lemma 1, the
aggregate quality of task td is nondecreasing, i.e.,
Qμ(td) ≥ Qμ′(td). Therefore, under the final task
assignment, we have Qμ(td) + rs > btd , and worker
s and task td cannot form a type II blocking pair.

c) Task td does not have enough budget for worker
s, and without worker s, the remaining unassigned
workers cannot satisfy the quality requirement of
other tasks. In this case, in the final assignment,
worker s cannot shift to task td because the quality
requirement of task μ′(s) will be violated.

In summary, worker s and task t cannot form a type II block-
ing pair. Therefore, the matching result of the ESTA algorithm
is nonwasteful.

To prove that the ESTA algorithm can achieve a fair task
assignment result, we first introduce the following lemma.

Lemma 2: If worker s is rejected by shadow task td, under
the final task assignment μ̃, it must be true that ∀s′ ∈ μ̃(td),
we have s′�̃td s.

Proof: Assume that worker s is rejected by shadow task
td at round w, and μ̃w(td) is the (temporary) matching result
at round w. There are three situations in which worker s will
be rejected by shadow task td.

1)
∑

s′∈μ̃w(td) rs′ < btd , but without worker s, the remaining
unassigned workers cannot satisfy the quality require-
ments of other tasks.

2)
∑

s′∈μ̃w(td) rs′ < btd , and the quality requirements of
other tasks have been fulfilled, but shadow task td does
not have enough budget for worker s, and a subset of
workers who are less preferred than worker s cannot be
found at the same time.

3)
∑

s′∈μ̃w(td) rs′ = btd , and a subset of workers who are
less preferred than worker s cannot be found. Therefore,
if worker s is rejected by shadow task td at round w, it
means that ∀s′ ∈ μ̃w(td), s′�̃td s.

For round w + 1, the following situations may occur.
1) If worker s is rejected to reserve workers for other reg-

ular tasks, the (|μ̃w(td)| + 1)th worker is also rejected
by td. For example, as shown in the toy example, s2 is
rejected by shadow task td2 at round 7, and s6 is also
rejected by shadow task td2 at round 9. Therefore, we
have μ̃w+1(td) = μ̃w(td), and ∀s′′ ∈ μ̃w+1(td), s′′�̃td s.

2) If worker s is rejected because the set of workers
who are less preferred than worker s does not exist,
according to Lemma 1, since the aggregate quality of
workers allocated to a task is nondecreasing, we know
that either the (|μ̃w(td)| + 1)th worker has higher qual-
ity level than worker s or the (|μ̃w(td)| + 1)th worker
can fill the remaining budget for task td, otherwise,
the (|μ̃w(td)| + 1)th worker will also be rejected. Thus
∀s′′ ∈ μ̃w+1(td), s′′�̃td s. Therefore, in the final matching
result, we can derive that ∀s′ ∈ μ̃(td), s′�̃td s.

Theorem 4 (Fairness): The matching result of the ESTA
algorithm is fair.

Proof: Assume that under the final task assignment μ̃,
there is a type I blocking pair (s, t). This implies that worker
s has applied for but been rejected by both tr and td. Because,
otherwise, worker s would have applied for tr and td according
to lines 2–17 in Algorithm 2. Consider any worker s′ ∈ μ̃(tr),
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Success ratio. (a) Limited workers, jTj = 30. (b) Balanced workers, jTj = 30. (c) Abundant workers, jTj = 30. (d) Limited tasks, jSj = 150.
(e) Balanced tasks, jSj = 150. (f) Overloaded tasks, jSj = 150.

it must be true that s′�̃tr s because s is rejected in favor of
the currently matched workers who are more preferred than
s. Consider any worker s′′ ∈ μ̃(td), according to Lemma 2,
we have s′′�̃td s. This verifies that no type I blocking pair will
exist. Therefore, the matching result of the ESTA algorithm is
fair.

Theorem 5 (Stability): The ESTA algorithm produces a
stable task assignment.

Proof: According to Theorems 2–4, the final task assign-
ment is individually rational, fair, and nonwasteful. Therefore,
the ESTA task assignment algorithm is stable.

IV. SIMULATION

In this section, we evaluate the performance of the proposed
algorithms, referred to as the TAQR algorithm (the confer-
ence version [11]) and the ESTA algorithm with a guaranteed
requirement, respectively. We implement Anchor [13], an
algorithm for many-to-one matching with upper bounds and
heterogeneous agents but no lower bounds, as the benchmark
for comparison. The key idea of Anchor is that whenever a
task rejects a worker, it also rejects any other workers that are
less preferred than this worker, even if the budget allows for
these workers. In this way, Anchor achieves fairness but not
nonwastefulness. We compare our proposed matching algo-
rithms TAQR and ESTA with Anchor in terms of success
ratio, worker happiness, task happiness, and running time.

Each simulation runs for 500 times on a ThinkPad laptop with
Intel Core i5-3230M CPU at 2.60 GHz and 4.00-GB RAM.

A. Success Ratio

Recall that we define success ratio as the ratio of success-
fully completed tasks to all tasks in Definition 1. A task can
be successfully accomplished only if its quality requirement
is satisfied. We compare the performance of our proposed
algorithms with the baseline algorithm in terms of success
ratio.

1) Success Ratio Versus the Number of Workers: In this
set of simulations, the quality requirements qt ∀t ∈ T , budget
constraints bt ∀t ∈ T , and worker quality levels rs ∀s ∈ S are
randomly chosen from [3, 5], [6, 10], and [1, 2], respectively.
Naturally, the success ratio increases with the number of work-
ers with a fixed number of tasks, as shown in Fig. 2(a)–(c).
When there is a limited number of workers available in the
system, the success ratio is very low but will increase rapidly
with the increase of workers, as shown in Fig. 2(a). When
the number of workers and the number of tasks are relatively
balanced, the success ratio has a quasilinear relationship with
the number of workers, as shown in Fig. 2(b). Compared with
the benchmark, our proposed algorithms can achieve up to
16% improvement. With massive workers, the gap between
the proposed algorithms and the benchmark narrows down, as
shown in Fig. 2(c). The success ratio will reach 100% when
the number of workers is large enough for all tasks to fill
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(a) (b)

Fig. 3. Success ratio under different quality requirements. (a) |T | = 30.
(b) |S| = 150.

(a) (b)

Fig. 4. Happiness comparison. (a) |T | = 30. (b) |S| = 150.

up their quality requirements. It is shown that our proposed
algorithms can deal with worker shortages more effectively
since we prioritize tasks with unsatisfied quality requirements
during the assignment, and make the best use of the budget to
hire as many workers as possible, leading to a higher success
ratio than the benchmark.

2) Success Ratio Versus the Number of Tasks: In this set
of simulations, the quality requirements qt ∀t ∈ T , budget
constraints bt ∀t ∈ T , and worker quality levels rs ∀s ∈ S
are randomly chosen from [3, 5], [6, 10], and [1, 2], respec-
tively. The success ratio will decrease as more tasks compete
for a fixed number of workers, as shown in Fig. 2(d)–(f). The
success ratio stays at 100% when there is a small number of
tasks and drops as the number of tasks increases, as shown in
Fig. 2(d). Our proposed algorithms have much slower decrease
rates than the benchmark, and can achieve up to 18% gain in
success ratio, as shown in Fig. 2(e). As the number of tasks
further increases, the gap between the proposed algorithms
and the benchmark first grows then decreases, as shown in
Fig. 2(f). The benchmark suffers from worker deficiency more
severely as it aggressively rejects workers to ensure fairness
without considering fulfilling the quality requirements of tasks.
Both TAQR and ESTA have a higher success ratio than the
benchmark under the same conditions. Thanks to task par-
tition, ESTA is better at recruiting low-quality workers than
TAQR, and can make full use of the budgets of tasks.

3) Success Ratio Versus Quality Requirements: In this set
of simulations, the budget constraints bt ∀t ∈ T and worker
quality levels rs ∀s ∈ S are randomly chosen from [6, 10]
and [1, 2], respectively. To investigate the influence of qual-
ity requirements on the success ratio, we draw the low-quality
requirements randomly from [2, 4], corresponding to “-L”
in Fig. 3, and the high-quality requirements randomly from

(a) (b)

Fig. 5. Happiness versus quality requirements. (a) |T | = 125. (b) |S| = 30.

[4, 6], corresponding to “-H” in Fig. 3. It is shown that our
proposed algorithms outperform the benchmark. It is notewor-
thy that higher quality requirements lead to lower success ratio
with a fixed number of tasks, as shown in Fig. 3(a). With
a fixed number of workers, the success ratio is lower if the
quality requirements are higher, as shown in Fig. 3(b). With
higher quality requirements, workers with moderate quality
levels may not be recruited due to task partition, thus TAQR
has a slightly higher success ratio than ESTA.

B. Happiness of Workers and Tasks

We have the same definition of happiness as [13]. The hap-
piness of a worker is the rank percentile of her assigned task.
For example, if there are three tasks, a worker’s happiness is
100% if she is assigned to her most-preferred task; her happi-
ness is 33% if she is assigned to her least-preferred task; and
her happiness is 0% if she is unassigned. The happiness of a
task is the average rank percentile of its assigned workers. For
example, if there are four workers, and a task is assigned to
its most-preferred worker and the third-preferred worker, its
happiness will be (100 + 50)/2 × 100% = 75%. In this set of
simulations, the quality requirements qt ∀t ∈ T , budget con-
straints bt ∀t ∈ T , and worker quality levels rs ∀s ∈ S are
randomly chosen from [3, 5], [6, 10], and [1, 4], respectively.

As shown in Fig. 4(a), worker happiness goes down as more
workers join the crowdsourcing platform, making it more and
more difficult for an individual worker to be assigned to her
preferred tasks. TAQR and ESTA maintain 11% and 12% gain,
respectively, over the benchmark because they do not reject
workers as radically as the benchmark and make better use of
their budgets to employ more workers. The worker’s happiness
grows as there are more tasks since there is a higher chance
for a worker to be assigned to her preferred tasks, as shown in
Fig. 4(b). The worker happiness of TAQR and ESTA is around
11% and 12% higher than that of the benchmark, respectively.

C. Impact of Quality Requirement

Lower bounds, i.e., the quality requirements, are not consid-
ered in the benchmark, thus we only show the impact of quality
requirement on TAQR and ESTA, but not the benchmark. In
this set of simulations, the budget constraints bt ∀t ∈ T and
worker quality levels rs ∀s ∈ S are randomly chosen from
[6, 10] and [1, 4], respectively. We study the scenarios when
tasks have high-, medium-, and low-quality requirements, with
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(a) (b)

Fig. 6. Running time comparison. (a) |T | = 30. (b) |S| = 100.

qt ∀t ∈ T randomly chosen from [3, 4], [2, 3], and [1, 2],
respectively. As illustrated in Fig. 5, the average task happi-
ness is higher when the quality requirements are lower, as it is
unnecessary to recruit less-preferred workers to meet the qual-
ity requirements. This also explains the interesting observation
in Fig. 5(a) that the average task happiness decreases with the
number of workers. This is because more less-preferred work-
ers are assigned to each task, dragging down the average task
happiness. When the number of tasks goes up, the average
task happiness gradually descends due to a lack of workers,
as shown in Fig. 5(b).

D. Running Time

In this set of simulations, the quality requirements qt ∀t ∈
T , budget constraints bt ∀t ∈ T , and worker quality levels
rs ∀s ∈ S are randomly chosen from [0.8, 1.5], [1.4, 2], and
[0, 1], respectively. As shown in Fig. 6, the running time of
TAQR and ESTA is linear in the number of workers and the
number of tasks, and is longer than that of the benchmark.
Taking into account the results in Figs. 2 and 4, it is clear that
there is a tradeoff between the running time and performance
improvement. The benchmark rapidly culls out less-preferred
workers to ensure fairness but not the quality requirements of
tasks. In comparison, both TAQR and ESTA carefully examine
every worker for potential assignment and make better use
of the budget to hire as many workers as possible, resulting
in higher success ratio and worker happiness at the expense
of longer running time. Due to task partition and problem
transformation, the running time of ESTA is relatively higher
than that of TAQR.

E. Aggregate Quality-Level Comparison

By taking a closer look at the task assignment result, we
demonstrate that both TAQR and ESTA make better use of
the budget and improve the success ratio of tasks. We con-
sider 30 tasks and 100 workers, with the quality requirements
qt ∀t ∈ T , budget constraints bt ∀t ∈ T , and worker quality
levels rs ∀s ∈ S randomly chosen from [3, 5], [6, 10], and
[1, 4], respectively. We run the simulation once, and show the
aggregate quality of assigned workers to each task in Fig. 7.
It is clear that both TAQR and ESTA meet the quality require-
ment of every task and try to use available budgets to attain
the highest possible quality. The benchmark fails to reach the

Fig. 7. Matching result of the aggregate quality level.

quality requirements of several tasks and leaves a consider-
able amount of room for quality improvement. This further
corroborates the fact that both TAQR and ESTA can improve
the success ratio (Fig. 2) and worker happiness (Fig. 4).

V. RELATED WORK

Task Assignment for Crowdsourcing: Crowdsourcing has
become a promising and popular paradigm for collecting
and sharing information [1], and task assignment is one of
the fundamental concerns in crowdsourcing platforms. In [2],
workers were assigned to tasks in a way that maximizes
the total benefit of the crowdsourcing platform by using a
two-phase exploration–exploitation assignment algorithm. The
exploration phase assessed worker skills while the exploitation
phase performed the task assignment for profit maximization.
Boutsis and Kalogeraki [3] presented CRITICAL to deter-
mine the appropriate group of workers to every task under
reliability and time constraints. Feng et al. [4] described a
truthful auction mechanism with an optimal task allocation
algorithm and near-optimal truthful mechanism for offline and
online task assignment, respectively. In [5], taking both spa-
tial coverage and temporal coverage into account, He et al.
proposed a greedy approximation and a genetic algorithm to
achieve high-quality crowdsourcing results by recruiting work-
ers who best match the application requirements, based on
their predicted mobility. Xiao et al. [6] proposed an offline task
assignment algorithm and an online task assignment algorithm
based on a greedy strategy. Karaliopoulos et al. [7] devised
a greedy heuristics worker selection algorithm to deal with
the uncertainty of worker mobility. Han et al. [14] presented
an online algorithm to achieve robust crowdsensing. In [15],
by taking geographical characteristics of sensing tasks and the
spatial movement constraints of mobile workers into account,
the problem of allocating location-dependent tasks was stud-
ied. Cheung et al. [16] designed a distributed task selection
algorithm to collect time-sensitive and location-dependent data
from heterogeneous workers. In [17], based on the service
quality factor (SQF), link reliability factor (LRF), and region
heat factor (RHF), An et al. evaluated preferences of users,
put forward a credible crowdsourcing assignment model, and
proposed a crowdsourcing algorithm that solved the credible
interaction issue between mobile users finally. In [18] and [19],
network effects have been leveraged to incentivize workers
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to undertake crowdsourcing tasks. Jeong et al. [20] lever-
aged carrier resources, distributing CPU resources as well as
user demands, and proposed a hierarchical trust computing
algorithm to assign task efficiently based on the Vickrey–
Clarke–Groves auction. Yu et al. [8] introduced a temporal–
spatial task allocation algorithm to match the tasks, fog nodes
(FNs), and workers, which achieves efficient resource alloca-
tion and system robustness. Tao et al. [9] proposed a genetic
algorithm and a detective algorithm to maximize data quality
and the profit of workers. In [10], to meet the requirements
of delivery delay and task assignment, Ni et al. proposed
a utility-based maximization solution for the roadside unit
deployment problem. Bhatti et al. [21] developed a constant-
ratio approximation solution for bounded and heterogeneous
task assignment to maximize the sum of the rewards of work-
ers. Sarker et al. [22] introduced a task allocation policy by
taking worker utilities and platform profit into consideration.

Existing works mostly focused on utility maximization for
the entire crowdsourcing platform, ignoring personal prefer-
ences of individual workers and crowdsourcers. An optimal
but unstable task assignment may not be easily implemented,
as unsatisfactory workers and crowdsourcers have incentives
to deviate from the assignment result. By formulating the task
assignment in crowdsourcing as a matching problem and gen-
erating a stable result, we ensure that every participant is
willing to abide by the task assignment result.

Stable Matching: Stable matching has been studied exten-
sively since 1962. Gale and Shapley [23] first proposed and
then analyzed the problems of stable matching. According
to [24], the deferred acceptance algorithm was used to achieve
a stable matching. Variants of matching problems in eco-
nomics have been examined [25]–[28]. Hamada et al. [29]
focused on the hospital-residents matching problem with
quota, and proposed an exponential-time algorithm. The the-
ory of matching has also been explored in computer science.
Fragiadakis et al. [12] introduced two classes of strategy-
proof mechanisms for many-to-one matching with minimum
quotas. Zhang et al. [30] investigated the resource allocation
problem between a set of data service subscribers (DSSs) and
a set of low-power FNs. Xu and Li [13] proposed both online
and offline algorithms to match virtual machines to hetero-
geneous sized jobs in the cloud. In [31], two generalized
stable matching problems that exist in the higher education
sector with lower and common quotas were studied. In [32]
and [33], the spectrum resources from sellers were matched
with the requirements of buyers. In our previous work [34],
we proposed a stable worker–task matching framework for
crowdsourcing but did not consider the quality requirements
of tasks. However, none of these matching frameworks can be
applied to TAQRs and budget constraints, where the hetero-
geneity in worker quality levels makes it challenging to reach
a stable matching result.

VI. CONCLUSION

In this article, we investigated the task assignment problem
for crowdsourcing platforms. Instead of finding a task assign-
ment that can maximize the total utility of the crowdsourcing

platform, we focused on the diverse preferences of individual
workers and crowdsourcers toward each other and introduced
a many-to-one matching framework with lower and upper
bounds to account for the quality requirements and budget
constraints of crowdsourcing tasks. To conquer the difficulty
of heterogeneous worker skill levels, we proposed two stable
matching algorithms, which can yield task assignment results
that are individually rational, fair, and nonwasteful. Through
extensive simulation results, we verified that our proposed
algorithms can improve both the task success ratio and the
happiness of both workers and tasks with acceptable time
complexity.
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