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Abstract—The shared-medium multihop nature of wireless ad hoc networks poses fundamental challenges to the design of effective

resource allocation algorithms that are optimal with respect to resource utilization and fair across different network flows. None of the

existing resource allocation algorithms in wireless ad hoc networks have realistically considered end-to-end flows spanning multiple

hops. Moreover, strategies proposed in wireline networks are not applicable in the context of wireless ad hoc networks, due to their

unique characteristics of location-dependent contention. In this paper, we propose a new price-based resource allocation framework in

wireless ad hoc networks to achieve optimal resource utilization and fairness among competing end-to-end flows. We build our pricing

framework on the notion of maximal cliques in wireless ad hoc networks, as compared to individual links in traditional wide-area

wireline networks. Based on such a price-based theoretical framework, we present a two-tier iterative algorithm. Distributed across

wireless nodes, the algorithm converges to a global network optimum with respect to resource allocations. We further improve the

algorithm toward asynchronous network settings and prove its convergence. Extensive simulations under a variety of network

environments have been conducted to validate our theoretical claims.

Index Terms—Wireless communication, algorithm/protocol design and analysis, nonlinear programming.
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1 INTRODUCTION

A wireless ad hoc network consists of a collection of
wireless nodes without a fixed infrastructure. Each

node in the network forwards packets for its peer nodes and
each end-to-end flow traverses multiple hops of wireless links
from a source to a destination. Compared with wireline
networks, where flows only contend at the router that
performs flow scheduling (contention in the time domain),
the unique characteristics of multihop wireless networks
show that flows also compete for shared channel if they are
within the interference ranges of each other (contention in
the spatial domain). This presents the problem of designing
a topology-aware resource allocation algorithm that is both
optimal with respect to resource utilization and fair across
contending multihop flows.

In previous work, fair packet scheduling mechanisms
have been proposed [1], [2], [3] and shown to perform
effectively in providing fair shares among single-hop flows in
wireless ad hoc networks and in balancing the trade-off
between fairness and resource utilization. However, none of
the previously proposed algorithms has considered end-to-
end flows spanning multiple hops, which reflect the reality in
wireless ad hoc networks. While these mechanisms may be
sufficient for maintaining basic fairness properties among
localized flows, they do not coordinate intraflow resource
allocations between upstream and downstream hops of an
end-to-end flow and, thus, will not be able to achieve global
optimum with respect to resource utilization and fairness.

Due to the complexities of such intraflow coordinations,
we are naturally led to a price-based strategy, where prices are
computed as signals to reflect relations between resource
demands and supplies and are used to coordinate the
resource allocations at multiple hops. Previous research in
wireline network pricing (e.g., [4], [5], [6]) has shown that
pricing is effective as a means to arbitrate resource allocation.
In these research results, a shadow price is associated with a
wireline link to reflect relations between the traffic load of
the link and its bandwidth capacity. A utility is associated
with an end-to-end flow to reflect its resource requirement.
Transmission rates are chosen to respond to the aggregated
price signals along end-to-end flows such that the net
benefits (the difference between utility and cost) of flows are
maximized. It has been shown that [4], [5], at equilibrium,
such a price-based strategy of resource allocation may
achieve global optimum where resource is optimally
utilized. Moreover, by choosing appropriate utilities, var-
ious fairness models can be achieved.

Unfortunately, there exist fundamental differences be-
tween multihop wireless ad hoc networks and traditional
wireline networks, preventing verbatim applications of the
existing pricing theories. In multihop wireless networks,
flows that traverse the same geographical vicinity contend
for the same wireless channel capacity. This is in sharp
contrast with wireline networks, where only flows that
traverse the same link contend for its capacity. When it
comes to pricing, we may conveniently associate shadow
prices with individual links in wireline networks to reflect
their resource demand and supply. This is not feasible in
wireless networks with the presence of location dependent
contention. Due to the decentralized and self-organizing
nature of ad hoc networks, the quest for a fully distributed
and adaptive algorithm further exacerbates the problem.

In this paper, we address these unique characteristics of
wireless ad hoc networks and follow a price-based strategy to
allocate channel bandwidth to competing multihop flows.
The fundamental question we seek to answer is: How much
bandwidth should we allocate to each of the end-to-end
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flows so that scarce resources in a wireless network may be
optimally and fairly utilized? Toward this goal, our original
contributions are two-fold. First, we build a pricing frame-
work specifically tailored to the contention model of wireless
networks and establish shadow prices based on the notion of
maximal cliques in wireless link contention graphs, rather than
individual links, as in wireline networks. In such a price-
based theoretical framework, the price of an end-to-end
multihop flow is the aggregate of prices of all its subflows,
while the price of each of the subflows is the sum of shadow
prices of all maximal cliques that it belongs to. With our new
pricing framework, by choosing the appropriate utility
functions, the optimality of resource allocations—in terms
of both fairness and utilization—may be achieved by
maximizing the aggregated utility across all flows. Second,
we present a two-tier distributed algorithm to compute the
bandwidth allocation for each of the end-to-end flows based
on our price-based theoretical framework. The first tier of the
algorithm constitutes an iterative algorithm that determines
per-clique shadow prices and end-to-end flow resource
allocations. We show that this algorithm converges to the
unique equilibrium where the aggregated utility is max-
imized. The second tier of the algorithm constructs the
maximal cliques in a distributed manner. To facilitate its
deployment in practical network environments, the algo-
rithm is further improved to accommodate asynchronous
communications. We have performed extensive simulations
under a variety of network settings and showed that our
solution is practical for multihop wireless networks.

The remainder of this paper is organized as follows: We
first present our price-based theoretical framework in
wireless ad hoc networks (Section 2 and Section 3). We
then proceed to design a two-tier decentralized algorithm in
Section 4, which is further refined to accommodate
asynchrony in Section 5. Finally, we evaluate the perfor-
mance of our algorithm in a simulation-based study
(Section 6), discuss related work (Section 7), and conclude
the paper (Section 8).

2 RESOURCE CONSTRAINTS IN WIRELESS AD HOC

NETWORKS

In this paper, we consider a wireless ad hoc network that
consists of a set of nodes V . Each node i 2 V has a
transmission range dtx and an interference range dint, which
can be larger than dtx. Packet transmission in such a network
is subject to location-dependent contention. There exist two
models for packet transmission in wireless networks in the
literature [7], generally referred to as the protocol model and
the physical model. In the case of a single wireless channel,
these two models are presented as follows:

1. The Protocol Model. In the protocol model, the
transmission from node i to j, (i; j 2 V ) is successful
if 1) the distance between these two nodes dij
satisfies dij < dtx; 2) any node k 2 V , which is within
the interference range of the receiving node j,
dkj � dint, is not transmitting. This model can be
further refined toward the case of IEEE 802.11-style
MAC protocols, where the sending node i is also
required to be free of interference as it needs to
receive the link layer acknowledgment from the
receiving node j. Specifically, any node k 2 V , which
is within the interference range of the nodes i or j
(i.e., dkj � dint or dki � dint), is not transmitting.

2. The Physical Model. This model is directly related to
the physical layer characteristics. The transmission
from node i to j is successful if the signal-to-noise
ratio at the node j, SNRij, is not smaller than a
minimum threshold: SNRij � SNRthresh.

In this paper, we focus our attention on solving problems
of resource allocation based on the protocol model, with
particular interest in IEEE 802.11-style MAC protocols due
to their popular deployment in realistic wireless systems.
The problems of resource allocation under the physical
model is beyond the scope of this paper and left as a future
research direction. Under the protocol model, a wireless
ad hoc network can be regarded as a bidirectional graph
G ¼ ðV ;EÞ. E � 2V denotes the set of wireless links which
are formed by nodes that are within the transmission range
of each other. A wireless link e 2 E is represented by its end
nodes i and j, i.e., e ¼ fi; jg.

In such a network, there exists a set of end-to-end flows,
denoted as F . Each flow f 2 F goes through multiple hops
in the network, passing a set of wireless links EðfÞ. A
single-hop data transmission in the flow f along a
particular wireless link is referred to as a subflow of f .
Obviously, there may exist multiple subflows along the
same wireless link. We use the notation SðS � EÞ to
represent a set of wireless links in G such that each of the
wireless links in S carries at least one subflow, i.e., the
wireless link is not idle.

Based on the protocol model, flows in a wireless ad hoc
network contend for shared resources in a location-
dependent manner: Two subflows contend with each other
if either the source or destination of one subflow is within
the interference range (dint) of the source or destination of
the other. Among a set of mutually contending subflows,
only one of them may transmit at any given time. Thus, the
aggregated rate of all subflows in such a set may not exceed
the channel capacity. Formally, we consider a wireless link
contention graph [3] Gc ¼ ðVc; EcÞ, in which vertices corre-
spond to the wireless links (i.e., Vc ¼ S), and there exists an
edge between two vertices if the subflows along these
two wireless links contend with each other.

In a graph, a complete subgraph is referred to as a clique.
A maximal clique is defined as a clique that is not contained
in any other cliques. In a wireless link contention graph, the
vertices in a maximal clique represent a maximal set of
mutually contending wireless links, along which at most
one subflow may transmit at any given time.

We proceed to consider the problem of allocating rates to
wireless links. We claim that a rate allocation yy ¼ ðys; s 2 SÞ
is feasible if there exists a collision-free transmission
schedule that allocates ys to s. Formally, if a rate allocation
yy ¼ ðys; s 2 SÞ is feasible, then the following condition is
satisfied [2]:

8q 2 Q;
X
s2V ðqÞ

ys � C; ð1Þ

where Q is the set of all maximal cliques in Gc and C is the
channel capacity. For a clique q in the wireless link
contention graph Gc, V ðqÞ � S is the set of its vertices.

Equation (1) gives an upper bound on the rate allocations
to the wireless links. In practice, however, such a bound
may not be tight, especially with carrier-sensing-multiple-
access-based wireless networks (such as IEEE 802.11). In
this case, we introduce Cq, the achievable channel capacity at
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a clique q. More formally, if
P

s2V ðqÞ ys � Cq, then yy ¼
ðys; s 2 SÞ is feasible. To this end, we observe that each
maximal clique may be regarded as an independent channel
resource unit with capacity Cq. It motivates the use of a
maximal clique as a basic resource unit for pricing in wireless
ad hoc networks, as compared to the notion of a link in
wireline networks.

We now proceed to consider resource constraints on rate
allocations among flows. To facilitate discussions, we define
a clique-flow matrix RR ¼ fRqfg, where Rqf ¼ jV ðqÞ \ EðfÞj
represents the number of subflows that flow f has in the
clique q. If we treat a maximal clique as an independent
resource, then the clique-flow matrix RR represents the
“resource usage pattern” of each flow. Let the vector CC ¼
ðCq; q 2 QÞ be the vector of achievable channel capacities in
each of the cliques. In a wireless ad hoc network G ¼ ðV ;EÞ
with a set of flows F , there exists a feasible rate allocation
xx ¼ ðxf ; f 2 F Þ, if and only if RRxx � CC. This observation
gives the constraints with respect to rate allocations to end-
to-end flows in wireless ad hoc networks.

We present an example to illustrate the concepts and
notations defined so far. Fig. 1a shows the topology of the
network, as well as its ongoing flows. The corresponding
wireless link contention graph is shown in Fig. 1b, where
the interference range is the same as transmission range
(dint ¼ dtx), and in Fig. 1c, where the interference range is
twice as large as the transmission range (dint ¼ 2 � dtx). In
this example, there are four end-to-end flows

f1 ¼ ff1; 2g; f2; 3g; f3; 4g; f4; 5gg;
f2 ¼ ff7; 6g; f6; 3gg;
f3 ¼ ff6; 3g; f3; 2g; f2; 1gg ; and

f4 ¼ ff5; 4gg:

As such, in Fig. 1b, there are three maximal cliques in the
contention graph:

q1 ¼ ff1; 2g; f3; 2g; f3; 4g; f3; 6gg;
q2 ¼ ff3; 2g; f3; 4g; f4; 5g; f3; 6gg; and

q3 ¼ ff3; 2g; f3; 4g; f3; 6g; f6; 7gg;

in Fig. 1c, wheredint ¼ 2 � dtx, there is only one maximal clique

q1 ¼ ff1; 2g; f3; 2g; f3; 4g; f3; 6g; f4; 5g; f6; 7gg:
We use yij to denote the aggregated rate of all subflows

along wireless link fi; jg. For example, y12 ¼ x1 þ x3,
y36 ¼ x2 þ x3. In each clique, the aggregated rate may not

exceed the corresponding channel capacity. In particular,
when dint ¼ dtx,

y12 þ y32 þ y34 þ y36 � C1;

y32 þ y34 þ y45 þ y36 � C2; and

y32 þ y34 þ y36 þ y67 � C3:

When dint ¼ 2 � dtx, y12 þ y32 þ y34 þ y36 þ y45 þ y67 � C01:
When it comes to end-to-end flow rate allocation, the

resource constraint imposed by shared wireless channels is
as follows: When dint ¼ dtx,

3 1 3 0
3 1 2 1
2 2 2 0

0
@

1
A xx � CC:

And, when dint ¼ 2 � dtx,

4 2 3 1ð Þ xx � CC0:
In summary, the unique characteristics of location-

dependent contention in wireless ad hoc networks imply a
fundamentally different resource model compared to the case
of wireline networks. In wireline networks, the capacity of a
link represents the constraint on flows contending for its
bandwidth, which is independent from other links. However,
in the case of wireless ad hoc networks, the capacity of a
wireless link is interrelated with other wireless links in its
vicinity. Such a fundamental difference calls for a new
treatment with respect to the models of resource constraints
and allocations in wireless networks. Our original contribu-
tion toward this direction is one of the highlights of this paper.

3 PRICE-BASED THEORETICAL FRAMEWORK IN

WIRELESS AD HOC NETWORKS

We now formally present our new pricing framework based
on previous observations with respect to resource con-
straints in wireless ad hoc networks.

3.1 Primal Problem: Optimal Resource Allocation

We associate each end-to-end flow f 2 F with a utility
function UfðxfÞ : <þ ! <þ, which represents the degree of
satisfaction of its corresponding end user. Moreover, we
make the following assumptions about Uf :

. A1. On the interval If ¼ ½mf;Mf �, the utility func-
tion, Uf , is increasing, strictly concave, and twice
continuously differentiable.
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. A2. The curvature of Uf is bounded away from zero
on If : �U 00f ðxfÞ � 1=�f > 0.

. A3. Uf is additive so that the aggregated utility of
rate allocation xx ¼ ðxf ; f 2 F Þ is

P
f2F UfðxfÞ.

We investigate the problem of optimal rate allocation in
the sense of maximizing the aggregated utility function,
which is also referred to as the social welfare in the literature.
Such an objective achieves Pareto optimality with respect to
the resource utilization and also realizes different fairness
models—including proportional and max-min fairness
[6]—when appropriate utility functions are specified. We
argue that the problem of optimal resource allocation in
wireless ad hoc networks may be formulated as the
following nonlinear optimization problem (primal problem):

P : maximize
X
f2F

UfðxfÞ ð2Þ

subject to RRxx � C ð3Þ
over xf 2 If : ð4Þ

The objective function in (2) of the optimization problem
maximizes the aggregated utility of all flows. The constraint
of the optimization problem (3) is the resource constraint
from the shared wireless channel, as discussed in Section 2.
By optimizing toward such an objective, both optimal
resource utilization and fair resource allocations may be
achieved among end-to-end flows spanning multiple hops.

3.2 Dual Problem: Clique-Based Pricing Framework

We proceed to study how the solution to the problem P
may be derived, so that optimal resource allocation in terms
of both utilization and fairness may be achieved. By
Assumption A1, the objective function of P in (2) is
differentiable and strictly concave. In addition, the feasible
region of the optimization problem in (3) and (4) is convex
and compact. By nonlinear optimization theory, there exists
a maximizing value of argument xx for the above optimiza-
tion problem. Let us consider the Lagrangian form of the
optimization problem P:

Lðxx;��Þ ¼
X
f2F
ðUfðxfÞ � xf

X
q2Q

�qRqfÞ þ
X
q2Q

�qCq; ð5Þ

where �� ¼ ð�q; q 2 QÞ is a vector of Lagrange multipliers.
Now, we seek a decentralized solution where knowledge

of utility functions of all flows is not needed. The key to
decentralization is to investigate its dual problem and to
decompose the problem via pricing. Let us first consider the
dual problem D of the primal problem P as follows:

D : min
���0

Dð��Þ; ð6Þ

where

Dð��Þ ¼ max
xf2If

Lðxx;��Þ

¼
X
f2F

max
xf2If

UfðxfÞ � xf
X

q:EðfÞ\V ðqÞ6¼;
�qRqf

0
@

1
AþX

q2Q
�qCq:

ð7Þ

Let us also define

�f ¼
X

q:EðfÞ\V ðqÞ6¼;
�qRqf : ð8Þ

In this equation, the Lagrange multipliers �q may be
interpreted as the implied cost of a unit flow accessing the
channel in the maximal clique q. More straightforwardly, �q
is the shadow price of the clique q. �f , on the other hand, may be
interpreted as the shadow price of the flow f . From (8), we may
observe that flow f needs to pay for all the maximal cliques that
it traverses. For each clique, the price to pay is the product of
the number of wireless links that f traverses in this clique
and the shadow price of the clique. Alternatively, since

�f ¼
X

q:EðfÞ\V ðqÞ6¼;
�qRqf ¼

X
s:s2EðfÞ

X
q:s2V ðqÞ

�q; ð9Þ

the shadow price of a flow is also the aggregated price of all
its subflows. For each subflow, its price is the aggregated
price of all the maximal cliques that it belongs to.

We illustrate these observations with an example, shown
in Fig. 2. The wireline network shown in Fig. 2a has a chain
topology consisting of four links, associated with prices �1,
�2, �3, �4. In this case, the price of the flow f is �f ¼

P4
l¼1 �l.

In comparison, though the wireless ad hoc network in
Fig. 2b (in this example, dint ¼ dtx) has the same topology,
its maximal cliques q1 ¼ ff1; 2g; f2; 3g; f3; 4gg and q2 ¼
ff2; 3g; f3; 4g; f4; 5gg are, in effect, its units for resource
allocations. Let the shadow prices of these two cliques be �1

and �2. The price of flow f that traverses these two cliques is
given by �f ¼ 3�1 þ 3�2, which is the sum of the product of
the number of subflows of f in each clique and the shadow
price of this clique. Alternatively, the price can also be
written as �f ¼ �1 þ ð�1 þ �2Þ þ ð�1 þ �2Þ þ �2, which is the
sum of the prices of its subflows. The price of each subflow
is the aggregated price of all the maximal cliques that it
belongs to.

4 TWO-TIER PRICE-BASED ALGORITHM FOR

RESOURCE ALLOCATIONS

With an objective of promoting theory to practice, we
proceed to present a decentralized two-tier algorithm based
on the clique-based theoretical pricing framework that we
have presented. The objective of the algorithm is to achieve
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optimal resource allocation in wireless ad hoc networks. In
the first tier, we design an iterative algorithm that
determines per-clique prices and flow rate allocations. In
the second tier, we present a decentralized algorithm to
construct maximal cliques. Finally, we discuss the imple-
mentation choices to integrate these two tiers.

4.1 First Tier: Per-Clique Price Calculation

Treating cliques as units of resource allocation, we first
present an iterative algorithm that solves the problem P.
The iterative algorithm we propose applies the gradient
projection method to the dual problem D.

Let

�fðxfÞ ¼ UfðxfÞ � �fxf : ð10Þ

As �f is the shadow price of the flow f , �fðxfÞ may be
considered as the net benefit of the flow f , which is the
difference between its utility and its cost. By Assumption A1,
�fðxfÞ is strictly concave and twice continuously differenti-
able. Therefore, a unique maximizer of �fðxfÞ exists when

d�fðxfÞ
dxf

¼ U 0fðxfÞ � �f ¼ 0: ð11Þ

We define such a maximizer as follows:

xfð�fÞ ¼ arg max
xf2If
f�fðxfÞg: ð12Þ

Obviously, xfð�fÞ ¼ ½U 0�1
f ð�fÞ�

Mf

mf
. Here, xfð�fÞ is generally

referred to as the demand function, which reflects the optimal
rate for flow f , where its net benefit is maximized with a
flow price of �f .

Now, we solve the dual problem D using the gradient
projection method [8]. In this method, �� is adjusted in the
opposite direction to the gradient rDð��Þ:

�qðtþ 1Þ ¼ �qðtÞ � �
@Dð��ðtÞÞ
@�q

� �þ
; ð13Þ

where � is the step size. Dð��Þ is continuously differentiable
since Uf is strictly concave [8]. Thus, based on (7), the
q-dimension of the gradient is given as follows:

@Dð��Þ
@�q

¼ Cq �
X

f:EðfÞ\V ðqÞ6¼;
xfð�fÞRqf : ð14Þ

Equation (14) gives the difference between the resource
capacity Cq and its load demand

P
f:EðfÞ\V ðqÞ6¼; xfð�fÞRqf ,

which are the rates of all flows that pass this clique
multiplied by the number of subflows they have in this
clique. Substituting (14) into (13), we have

�qðtþ 1Þ ¼
"
�qðtÞ � �

 
Cq �

X
f :EðfÞ\V ðqÞ6¼;

xfð�fðtÞÞRqf

!#þ
: ð15Þ

Equation (15) reflects the law of supply and demand. If the
demand for bandwidth at clique q exceeds its supply Cq, the
resource constraint is violated. Thus, the clique price �q is
increased. Otherwise, �q is reduced.

We summarize the first-tier iterative algorithm in Table 1,
where clique q and flow f are considered as abstract entities
capable of computing and communicating. In the second tier
of the algorithm, details of such entities will be presented.

We are now in a position to show the properties of this
iterative algorithm. Let us define Y ðfÞ ¼

P
q2Q Rqf , which

leads to the definition of �YY ¼ maxf2F Y ðfÞ as, intuitively
speaking, the “length” of the “longest” path. We further
define ZðqÞ ¼

P
f2F Rqf , leading to the definition of �ZZ ¼

maxq2Q ZðqÞ as the number of subflows at the most
“congested” clique. Let ��� ¼ maxf2F �f , where �f is the
bound on the curvature of Ufð�Þ (see Assumption A2).

Theorem 1. Assume that 0 < � < 2=��� �YY �ZZ, starting from any
initial rates xxð0Þðxf 2 IfÞ and prices ��ð0Þ � 0, every limit
point ðxx�; ���Þ of the sequence ðxxðtÞ; ��ðtÞÞ generated by the
algorithm in Table 1 is primal-dual optimal.

The detailed proof of this theorem is given in our
technical report [9].

4.2 Second Tier: Decentralized Clique Construction

The first tier of the algorithm treats maximal cliques as
entities that are able to perform the communication and
computation tasks. Obviously, these tasks need to be
performed by the network nodes that constitute the
maximal clique. As a starting point, a decentralized
algorithm to construct maximal cliques is required. Since
the existing maximal clique construction algorithms are
centralized in nature [10], they cannot be directly applied
here. Nevertheless, the unique graphical properties of the
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First Tier: The Iterative Algorithm



wireless link contention graph may have the potential to
facilitate efficient clique construction. Hereafter, we present
a decentralized maximal clique construction algorithm that
explores the characteristics of wireless link contention
graphs. In this algorithm, the network topology is decom-
posed into overlapping subgraphs and maximal cliques are
constructed based only on local topological information
within each of the subgraphs. Since only wireless links that
are geographically close to each other will form an edge in
the wireless link contention graph, the communication and
computational overhead is significantly reduced.

We first show the implication of topological character-
istics of wireless link contention graphs when it comes to
constructing maximal cliques. Let us denote the maximal
clique that contains wireless link s 2 S as qðsÞ (i.e., s 2 V ðqÞ)
and the set of all maximal cliques that contain the wireless
link s as QðsÞ ¼ fqðsÞg. We now give the subgraph of G on
which QðsÞ can be constructed. To facilitate discussions, we
introduce the following terms.

Definition 1 (Neighbor Sets). The wireless link neighbor
set ILINðeÞ of a wireless link e 2 E is defined as

ILINðeÞ ¼ fe0je \ e0 6¼ ;; e0 2 Eg:

Similarly, the wireless link k-neighbor set ILINkðeÞ of e is
defined by induction: 1) ILIN1ðeÞ ¼ ILINðeÞ and 2) ILINkðeÞ ¼
ILINðILINk�1ðeÞÞ for k > 1. For s 2 S � E, we further define
SSINkðsÞ ¼ ILINkðsÞ \ S.

Theorem 2. Let graph Gc½VcðsÞ� be an induced subgraph of Gc

with VcðsÞ ¼ SSIN2ðsÞ � Vc. Then, Gc½VcðsÞ� contains suffi-
cient and necessary topological information to construct
QðsÞ, when dint ¼ dtx. And, Gc½VcðsÞ� contains necessary
topological information to construct QðsÞ, when dint > dtx.
Let graph GðsÞ be GðsÞ ¼ ðV ðsÞ; EðsÞÞ with EðsÞ ¼ ILSS3ðsÞ
and V ðsÞ ¼ fij9s such that i 2 s and s 2 SSIN2ðsÞg. GðsÞ is
a subgraph G, and GðsÞ contains sufficient and necessary
topological information to construct Gc½VcðsÞ�.

Proof. When dint ¼ dtx by the definitions of the wireless
link contention graph and clique, it is obvious that
[q2QðsÞV ðqÞ ¼ SSIN2ðsÞ. This shows that Gc½VcðsÞ� contains
sufficient and necessary topological information to
construct QðsÞ. Also, for any pair of s00; s0 2 SSIN2ðsÞ, we
need to know whether they contend with each other to
determine whether they are connected in Gc½VcðsÞ�.
Apparently, ILIN3ðsÞ contains all the topological informa-
tion to construct Gc½VcðsÞ�. When dint > dtx, there may
exist wireless links which interfere with each other, yet
are not connected by any other wireless links in the
network topology. Thus, Gc½VcðsÞ� only contains neces-
sary topological information. tu

For wireless link s 2 S, one of its vertices will be selected
as its delegation node, denoted as vðsÞ. The delegation node
vðsÞ constructs all maximal cliques q 2 QðsÞ by applying the
Bierstone algorithm [10] on graph Gc½VcðsÞ�.

We consider an example shown in Fig. 3. When
dint ¼ dtx, the set of wireless links

SSIN2ðf1; 2gÞ ¼ff8; 3g; f3; 1g; f1; 2g; f2; 5g;
f5; 14g; f6; 11g; f6; 12gg

represents all the vertices that appear in Gc½Vcðf1; 2gÞ�. To
construct all the maximal cliques Qðf1; 2gÞ, the algorithm
also needs to determine which wireless links in SSIN2ðf1; 2gÞ
contend with each other. For example, in Fig. 3, whether
subflow f5; 14g contends with f6; 12g needs to be known to
determine whether they are within the same clique. This
implies that the knowledge of the wireless link f12; 14g
needs to be known by the algorithm for correct clique
construction. Thus,

ILIN3ðf1; 2gÞ ¼ SSIN2ðf1; 2gÞ [ f12; 14g
needs to be known. When dint > dtx, the network topology
graph does not have sufficient information to infer all the
interferences among wireless links. In this case, the clique
construction algorithm only provides an approximation
solution. For practical deployment, it will work with the
measurement-based bandwidth estimation technique pre-
sented in Section 6, which takes into account the interfer-
ences among wireless communications.

4.3 Two-Tier Algorithm: Integration Choices

In the first tier of the algorithm, maximal clique q is
considered as an entity that is able to perform the following
tasks:

1. Obtain the aggregated rate
P

f :EðfÞ\V ðqÞ6¼; xfRqf

within it.
2. Compute the clique-based shadow price �q.
3. Communicate the price �q to the flows that traverse

through.

After presenting the decentralized clique construction
algorithm, we now proceed to discuss how these tasks are
distributed to the network nodes that constitute the
maximal clique. There are two implementation choices.

In implementation 1, one delegation node in clique q

serves as a master that performs the task of price
calculation, denoted as vðqÞ. At time t, each delegation
node vðsÞ collects the rate of flow f which passes it (i.e.,
s 2 EðfÞ), computes rate ys at wireless link s according to
ysðtÞ ¼

P
f:s2EðfÞ xfðtÞ and, sends it to the master nodes vðqÞ

of all cliques q which s belongs to (i.e., s 2 V ðqÞ). The master
node vðqÞ then computes the new price �qðtþ 1Þ of clique q
according to

�qðtþ 1Þ ¼
"
�qðtÞ � �

 
Cq �

X
s:s2V ðqÞ

ysðtÞ
!#þ

ð16Þ
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Fig. 3. Example of decentralized clique construction.



and distributes it to the other delegation nodes vðsÞ within
clique q (i.e., s 2 V ðqÞ). After obtaining the updated clique
price �qðtþ 1Þ, vðsÞ computes a per hop price �sðtþ 1Þ
according to �sðtþ 1Þ ¼

P
q:s2V ðqÞ �qðtþ 1Þ for each flow f

that satisfies s 2 EðfÞ, then sends �sðtþ 1Þ to the source of f .

For flow f , its source node performs the task of rate

update. When the source node receives the per hop prices

�sðtÞ, it computes the flow price �fðtÞ according to �fðtÞ ¼P
s:s2EðfÞ �sðtÞ and adjusts the rate xf according to

xfðtþ 1Þ ¼ xfð�fðtÞÞ. It then notifies vðsÞ (s 2 EðfÞ) of

xfðtþ 1Þ.
In implementation 2, every delegation node in a clique

performs price calculation. In particular, it differs from
implementation 1 in the following aspects. At time t, each
delegation node vðsÞ broadcasts the rate information ys to
the other delegation nodes vðs0Þ that satisfy s0 2 SSIN2ðsÞ. As
such, each delegation node vðsÞ can compute the price of
clique q (s 2 V ðqÞ) independently. Let us denote the price of
clique q at node vðsÞ as �qðvðsÞÞ. �qðvðsÞÞ is calculated as follows:

�qðvðsÞÞðtþ 1Þ ¼
"
�qðvðsÞÞðtÞ � �

 
Cq �

X
s:s2V ðqÞ

ysðtÞ
!#þ

: ð17Þ

Node vðsÞ then directly computes and communicates
�sðtþ 1Þ to the source of f , which satisfies s 2 EðfÞ.

5 TOWARD ASYNCHRONY: IMPROVING THE

TWO-TIER ALGORITHM

Our two-tier algorithm assumes that updates at the sources
and the relaying nodes are synchronized to occur at times
t ¼ 1; 2; . . . . In realistic ad hoc network environments,
however, such synchronization is difficult to achieve. In
this section, we improve the algorithm to an asynchronous
setting, where sending rates and clique prices are updated
at different times at different nodes.

First, we briefly introduce the asynchronous model that
will be used for our algorithm in the context of implementa-
tion I. LetT ¼ f0; 1; 2; . . .gbe the set of time instances at which
either rates or prices are updated. In particular, we define

1. Tq � T—the set of time instances at which master
node vðqÞ updates �q.

2. T�s � T—the set of time instances at which delega-
tion node vðsÞ updates �s.

3. Tf � T—the set of time instances at which the source
of flow f updates xf .

4. Tys � T—the set of time instances at which delega-
tion node vðsÞ updates ys.

The asynchronous model further makes the following
assumption.

. A4. (Partial Asynchronism). There exists a positive
integer B such that:

1. For every flow f , clique q, and wireless link s,
the time between consecutive updates is
bounded by B for both price and rate updates.

2. One-way communication delay between any
two nodes is at most B time units.

This partial asynchronism model is first discussed in [11]
and is then adopted by Low and Lapsley in the context of
wireline networks [5]. Now, we improve our two-tier

resource allocation algorithm and analyze its convergence
under this asynchronous model.

In the asynchronous environment, node vðqÞ, which
updates the price �qðtÞ at time t 2 Tq, may not have the
knowledge of rate information ysðtÞ. Instead, it only knows
a sequence of recent rate updates, ysðð�qs Þ

1Þ, ysðð�qs Þ
2Þ, . . . ,

that satisfy t�B � ð�qs Þ
1 � ð�qs Þ

2 � . . . � t. Thus, node vðqÞ
estimates the rate ŷyqsðtÞ by using a weighted average of
recent values as follows:

ŷyqsðtÞ ¼
Xt
t0¼t�B

�qsðt0; tÞysðt0Þ with
Xt
t0¼t�B

�qsðt0; tÞ ¼ 1: ð18Þ

Further, node vðqÞ computes the price of clique q according
to the following, which is essentially (15) with the loadP

f:EðfÞ\V ðqÞ6¼; xfð�fðtÞÞRqf replaced by its estimation ŷyqsðtÞ.

�qðtþ 1Þ ¼
"
�qðtÞ � �

 
Cq �

X
s:s2V ðqÞ

ŷyqsðtÞ
!#þ

; 8t 2 Tq: ð19Þ

At all times t =2 Tq, �q is unchanged, i.e., �qðtþ 1Þ ¼ �qðtÞ.
Similarly, to compute the per hop price �sðtÞ at time

t 2 T�s , node vðsÞ estimates the clique price �̂�sqðtÞ according to

�̂�sqðtÞ ¼
Xt
t0¼t�B

�sqðt0; tÞ�qðt0Þ with
Xt
t0¼t�B

�sqðt0; tÞ ¼ 1 ð20Þ

and calculates per hop price according to

�sðtþ 1Þ ¼
X

q:s2V ðqÞ
�̂�sqðtÞ;8t 2 T�s : ð21Þ

At time t =2 T�s , �s is unchanged.
At time t 2 Tf , the source of f estimates its flow price

according to �̂�fðtÞ ¼
P

s:s2EðfÞ �̂�
f
s ðtÞ, where

�̂�fs ðtÞ ¼
Xt
t0¼t�B

�fs ðt0; tÞ�sðt0Þ with
Xt
t0¼t�B

�fs ðt0; tÞ ¼ 1; ð22Þ

and computes its rate according to xfðtþ 1Þ ¼ xfð�̂�fðtÞÞ,
8t 2 Tf . At time t =2 Tf , xf is unchanged.

At time t 2 Tys , node vðsÞ calculates ys as ysðtþ 1Þ ¼P
f:s2EðfÞ x̂x

s
fðtÞ; where

x̂xsfðtÞ ¼
Xt
t0¼t�B

�sfðt0; tÞxfðt0Þ with
Xt
t0¼t�B

�sfðt0; tÞ ¼ 1: ð23Þ

At time t =2 Tys , ysðtþ 1Þ ¼ ysðtÞ.
In this algorithm, the elements of T can be viewed as the

indices of the sequence of physical times at which updates
to either prices or rates occur. The sets Tf , Tq, T

f
s , Tqs as well

as the physical times they represent need not be known to
any other nodes since their knowledge is not required in the
price and rate computation. Thus, there is no requirement
for synchronizing the local clocks at different nodes. We are
able to show that, under Assumption A4, our resource
allocation algorithm converges to global optimum even in
asynchronous environments. Our main result is formally
presented in the following theorem.

Theorem 3. Assume that the step size � is sufficiently small.
Then, starting from any initial rate xxð0Þðxf 2 IfÞ and
prices ��ð0Þ � 0, every limit point ðxx�; ���Þ of the sequence
ðxxðtÞ; ��ðtÞÞ generated by the asynchronous price-based re-
source allocation algorithm is primal-dual optimal.
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The detailed proof of this theorem is given in our
technical report [9].

The improvements on implementation 2 toward asyn-
chrony is similar to implementation 1. The only difference is
that it does not need the communication between delega-
tion nodes and master node of a clique for its price update
as the clique prices are computed independently at
delegation nodes. We show via simulation that the
asynchronous algorithm under implementation 2 closely
matches the global optimum at equilibrium, if the step size �
is sufficiently small, and the initial prices �qðvðsÞÞð0Þ at
different delegation nodes vðsÞ are the same for a clique q.

6 EMPIRICAL STUDIES

In this section, we present deployment issues of our
price-based resource allocation algorithm in realistic
wireless networking environments and evaluate its
performance in an empirical study involving a set of
simulation environments.

6.1 Simulation Environments

We study the price-based resource allocation algorithm in
three different simulation environments. The first environ-
ment, referred to as synsim for convenience, assumes
bounded communication delay and synchronized message
updates. The second environment, referred to as asynsim for
convenience, considers the asynchronous environments in
wireless ad hoc networks. In both environments, we assume
that the transmission range is the same as the interference
range, both of which are 250m. We further assume that the
MAC layer scheduling is ideal in the sense that it can
achieve the wireless channel capacity of 2 Mbps and the
routing algorithm selects the shortest path. The third
environment, referred to as realsim, considers realistic
wireless networking environments. Realsim, implemented
using the ns-2 simulator, adopts the two-ray ground
reflection model as the radio propagation model and uses
IEEE 802.11 DCF as the MAC protocol. The transmission
range in realsim is smaller than the interference range,
which are 250m and 550m, respectively. The data transmis-
sion rate in realsim is 1 Mbps. With respect to routing, the
AODV routing protocol [12] is used in realsim. In all
simulation environments, the utility function UfðxfÞ ¼
lnðxfÞ is used, which enforces proportional fairness.

6.2 Deployment Issues in Realistic Wireless
Environments

Realistic physical and MAC layers in wireless ad hoc
networks—that are reflected in realsim—presents several
challenges to deploy our price-based resource allocation
algorithm. First, the achievable channel capacity varies at
different contention regions (cliques) depending on the
MAC protocol. It is usually much smaller than the ideal
channel capacity and cannot be known a priori. Dynamically
estimating the achievable channel capacity at different
contention regions is a critical problem to deploy our
algorithm in realistic wireless environments. Second, the
two-tier decentralized clique construction and price calcula-
tion algorithm requires communication among nodes,
which may introduce additional overhead to the network.
Designing an efficient communication protocol that still
ensures appropriate algorithm convergence is also a challen-
ging problem. To address these challenges, we present
two deployment techniques: measurement-based band-
width estimation and lightweight communication protocol.

6.2.1 Measurement-Based Bandwidth Estimation

The measurement-based bandwidth estimation is based on
the approach presented in [13]. It measures the achievable
bandwidth of each wireless link based on its historical data
transmission results.

As shown in Fig. 4, under the IEEE 802.11 MAC protocol,
at time tr, when a packet from a particular wireless link
becomes the head-of-line packet (i.e., the first packet waiting
to be transmitted), we claim that the packet is ready. At
time td, when the link layer acknowledgment is received, the
packet departs. The transmission delay of this packet is then
given as td � tr, which includes a contention period. The
contention period indicates the channel bandwidth used by
packet transmissions of other wireless links within the
contention region. The achievable bandwidth observed by
this wireless link is then calculated as z

td�tr, where z is the size
of the packet. To achieve more accurate measurement
results, we use a window of w packets to conduct the
bandwidth estimation, i.e., the bandwidth is estimated as

w�zPw

i¼1
ti
d
�tir

. The measurement-based bandwidth estimation

takes into account the effect of physical layer interference
and the inefficiency of MAC protocols, as it is based on the
scheduling results of packet transmissions.

6.2.2 Lightweight Communication Protocol

To calculate the price of each clique, only its gradient (i.e.,
the difference between achievable capacity and traffic
demand) needs to be known. Based on this observation,
each wireless link calculates its local gradient by monitoring
its achievable bandwidth and its traffic load. Instead of
communicating both load and bandwidth information, only
the gradient information is sent along with the connectivity
information to construct cliques and compute their prices.
To achieve low overhead communication, the information is
sent via piggybacking. First, the local gradient information
of each wireless link is piggybacked onto the data packets of
the flows passing by to notify the downstream nodes.
Second, working with the AODV routing protocol, the
connectivity and local gradient information is also piggy-
backed onto HELLO packets and sent at a certain time
interval. Based on Theorem 2, end nodes of subflow s cache
the information within ILSS3ðsÞ and transmit information
within ILSS2ðsÞ to their neighboring nodes. The prices are also
piggybacked onto data packets so that the destination of a
flow can notify its source via FEEDBACK packets. Such
protocol provides an asynchronous information update for
price calculation and communication. As we have shown in
Theorem 3, the price-based algorithm converges to the
global optimum even in such asynchronous environments.

Using the above deployment techniques, we have im-
plemented realsim in ns-2. As shown in Fig. 5a, the price-based
resource allocation algorithm is implemented as several
components at different levels in ns-2. At the MAC level, the
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bandwidth estimator measures the local achievable band-
width to each neighboring node. At the interface queue level,
the monitor observes the backlogged traffic to each neighbor-
ing node. Working with the bandwidth estimator, the
monitor generates the local gradient for each wireless link
to its neighbors. At the routing level, HELLO messages of the
AODV routing protocol communicate the gradient informa-
tion to its neighbors. The local gradient information, together
with the gradient information received from HELLO mes-
sages, is maintained in a gradient cache table. The changes at
the gradient cache table trigger the price update component,
which reads the gradient information and calculates the
clique prices. These clique prices are maintained at a price
cache table. The price aggregation component receives data
packets from the routing layer. Depending on the data
packet’s next hop, the price aggregation component calcu-
lates the per hop price and adds it to the aggregated price
from the upstream hops. At the end nodes, the receiving
component retrieves the aggregated price information from
the data packets and sends back FEEDBACK packets if it
observes a price change. Upon receiving FEEDBACK packets,
the sending component adjusts its sending rate based on the
new price via the rate update algorithm, as shown in Fig. 5b.

6.3 Convergence

We first study the convergence behavior of our price-based
resource allocation algorithm under different simulation
environments and identify the factors that affect this
procedure.

6.3.1 Convergence Speed

With appropriately tuned step sizes, we first evaluate how
rapidly our algorithm converges to the global optimum. We
simulate the algorithm on chain topologies from four hops to
10 hops in synsim. As an example, the four-hop chain
topology and its traffic pattern is shown in Fig. 6. In all the
experiments, the initial values of sending rates are 2 Mbps
and the initial prices are 2. The results are shown in Table 2
along with their corresponding step sizes, which are tuned to
ensure the most efficient convergence.1 From these results,

we observe that the best step sizes and the convergence time
apparently correspond to the scale of the network. In
particular, the larger the number of cliques through which
the longest flow passes (i.e., �YY ), the smaller the step sizes and
the more iterations are required for convergence.

We have also carried out this experiment with different
initial settings of prices and rates. We observe that the
algorithm always converges, regardless of the initial
settings. In particular, the sending rates always converge
to a unique optimum, regardless of the initial rates, and the
prices may converge to different values—all of which are
dual optimal—if different initial prices are used. This is
because, at equilibrium, only the flow price ��f is con-
strained by U 0fðx�fÞ ¼ ��f and different price vectors ��� may
lead to the same value of ��f .

6.3.2 Convergence in Asynchronous Environments

With asynsim, we evaluate the convergence behavior of our
algorithm in asynchronous environments. We first show the
convergence behavior of implementation 1. Recall that, in
asynchronous models, recent updates are averaged to
accommodate delayed and out-of-order messages. In the
simulation, we adopt a moving average method to specify
the weight parameters. In particular, let 0 � ð�Þ1 � ð�Þ2 �
; . . . ;� ð�Þm be the time instances of the received updates,
then �qs is specified as

�qsðt0; tÞ ¼ 1 if m ¼ 1; t0 ¼ ð�Þ1; ð24Þ

�qsðt0; tÞ ¼ ð1� �Þ
m�j � �

if m > 1; t0 ¼ ð�Þj; j ¼ 1; 2; . . . ;m:
ð25Þ

�fs , �sf , and �sq are defined in the same way. � is a unified
parameter that represents the weight of the history in
estimation. When � ¼ 0, only the most recently received
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1. The termination criteria in synsim are jxf ðtÞ � x�f j � " for all f 2 F and
j�qðtÞ � ��q j � " for all q 2 Q with " ¼ 10�4. Fig. 6. Four-hop chain topology.



update is used for estimation. We evaluate the impact of �
and step size � on the convergence. We conduct the
experiments on a 4-hop chain topology (Fig. 6) using different
values of � and �. The experimental results are shown in
Fig. 7 and Fig. 8, respectively. From the results, we have the
following observations: First, at equilibrium, with sufficient
small step size (� � 0:05), independent of the choices of �,
rate allocation in asynchronous environments achieves the
global optimum as in synchronous settings. This validates
the theoretical claim in Theorem 3. Second, the value of the
step size that ensures the convergence and optimal rate
allocation is much smaller than the synchronous case. For
example, as shown in Fig. 7, the resource allocation does not
converge to the optimum when the step size � ¼ 0:5, while,
in synchronous settings, the algorithm converges to opti-
mum when � ¼ 1. Further, the value of � affects the
convergence speed, with a larger � leading to a longer
convergence time. This means that, in implementation I, � ¼
0 can ensure the fastest convergence to the global optimum.

We now repeat these experiments using implementation 2,
with step size � ¼ 0:05. The results are shown in Fig. 9. From
these results, we have the following observations: First, the
equilibrium rate allocation closely matches the optimal
values. Second, the value of � affects the convergence speed
and how close the equilibrium rate allocation matches the
optimum. The reason behind this observation can be
intuitively explained as follows: In implementation 2,

different delegation nodes have different rate estimations

for clique price calculation, depending on the value of �.

Although the clique price changes will converge to zero at

each individual node, the difference between clique prices at

these nodes does not. Such a difference may vary with the

value of �. Yet, no matter what value � is set to, the

equilibrium rate allocation always closely matches the

optimum in the simulations. This is because nodes within a

clique have relatively small communication delays, hence

small rate estimation differences.

6.3.3 Impact of Measurement Window Size

on Convergence

Now, we study the convergence behavior of our algorithm

with bandwidth estimation and evaluate the impact of

measurement parameters in realsim. We experiment with

different measurement window sizes w on the four-hop

chain topology (Fig. 6). The results are shown in Fig. 10. From

the results, we have the following observation: The algorithm

converges faster in the case of w ¼ 5 than the case of w ¼ 20

because a smaller measurement window gives faster feed-

back on the channel condition. On the other hand, too smallw

results in imprecise measurement. This leads to slight

fluctuations at the equilibrium, as shown in Fig. 10 in the

case of w ¼ 5. In what follows, we use w ¼ 20 as the default
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TABLE 2
Number of Iterations Toward Convergence

Fig. 7. Asynchronous experiments of implementation 1 with different step sizes � (� ¼ 0). (a) � ¼ 0:01. (b) � ¼ 0:05. (c) � ¼ 0:5.

Fig. 8. Asynchronous experiments of implementation 1 with different weights � (� ¼ 0:05). (a) � ¼ 0:1. (b) � ¼ 0:4. (c) � ¼ 0:6.



measurement window size because it gives stable and precise

measurement results with acceptable convergence speed.

6.3.4 Impact of HELLO Interval on Convergence

We experiment with different lengths of HELLO intervals
and evaluate its impact on convergence. As shown in Fig. 11,
large HELLO intervals (e.g., interval = 20 seconds) increase
the convergence time and may cause small fluctuations. The
results also show that, in a static environment, a HELLO
interval of less than 10 seconds can ensure convergence with
satisfactory speed and can achieve stability at equilibrium.
Obviously, different lengths of HELLO intervals also affect
the overhead. Long HELLO intervals can significantly
reduce the overhead. In the following simulations, we use
1 second as the default length of the HELLO interval.

6.3.5 Convergence in Random Networks

Now, we study the convergence behavior of our algorithm
with respect to both transmission rate and throughput in a

randomly generated wireless network, as shown in Fig. 12a.
This network consists of 30 nodes deployed over a 600	
600 m2 region. In the experiment, five flows are established
between five different pairs of nodes to start at different
time instants. Fig. 12b and Fig. 12c plot the instantaneous
transmission rate and throughput of each flow, respec-
tively. From these results, we have the following observa-
tions: 1) Our algorithm converges with satisfactory speed
even in relatively large scale networks (e.g., 30 node over a
600	 600 region) and 2) our algorithm converges when
traffic dynamically joins the network.

6.4 Impact of Realistic Wireless Interference

In the next set of experiments, we are interested in studying
the impact of realistic wireless interference on our algorithm.

6.4.1 Special Scenarios

First, using realsim, we perform our experiments in a set of
special network topologies: the hidden terminal scenario, the
exposed terminal scenario, and the race condition scenario.
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Fig. 9. Asynchronous experiments with implementation 2. (a) � ¼ 0:01. (b) � ¼ 0:4. (c) � ¼ 0:6.

Fig. 10. Convergence with bandwidth estimation. (a) w = 5. (b) w = 20.

Fig. 11. Convergence under the piggyback-based lightweight communication protocol. (a) hello interval = 1 second. (b) hello interval = 10 seconds.
(c) hello interval = 20 seconds.



. Hidden terminal. Fig. 13 shows one example of the
hidden terminal scenario, as well as experimental
results on the convergence of the transmission rate
and the throughput of our algorithm. From the
results, we observe that the algorithm performs as
expected: At equilibrium, two flows share the
resource fairly. The result is obvious because the
sending nodes of both flows are able to obtain the
information from each other, thus correctly construct-
ing the clique and calculating its price. In contrast, we
also show the performance of our algorithm over a
different hidden terminal scenario, as shown in
Fig. 14. In this scenario, the sending nodes of the
two flows are unable to communicate, though their
transmissions still interfere with each other. Thus,
each wireless link treats itself as the only link within
the clique, though the correct clique construction
should consist of both wireless links. In this case, the
price of a clique relies on the gradient of one wireless
link, which is in turn calculated based on the
bandwidth estimation at either node 2 or node 3.
Node 2 can sense the interference from node 3, when
it sends FEEDBACK packets to node 1. Similarly,
node 3 can sense the interference from node 2, when it
sends the data packets. But, due to their asymmetric
traffic loads, their bandwidth estimation results are
different. As a result, the rate allocation of these two
flows is not fair at equilibrium.

. Exposed terminal. Due to the coordination of RTS/
CTS at the MAC layer, the sending nodes are able to
communicate with each other to exchange necessary

load and topology information. Fig. 15 shows that
the algorithm performs correctly in the exposed
terminal scenario.

. Race condition. The result under the race condition is
shown in Fig. 16. We observe that the performance
of our algorithm under the race condition is different
from the hidden terminal scenario in its delayed
convergence. This is because flow f1 is unable to
capture the wireless channel at the beginning due to
the unawareness of the RTS/CTS signals from the
transmission of the other flow and the unfair backoff
of IEEE 802.11. Once it gets the chance to transmit,
the load change will be detected by flow f2 via
bandwidth estimation, which in turn leads to the
price increase of this contention region and the rate
decrease of flow f2. Via the communication between
their receiving nodes, these two flows share the
same view of the network condition and the price,
thus converging to an equilibrium, where their
transmission rates are the same. Although they have
approximately the same throughput at equilibrium,
a slight difference and fluctuation can still be
observed on their instantaneous throughput, espe-
cially compared with the results in the hidden
terminal scenario in Fig. 13. This is caused by the
imprecise measurement under the race condition:
IEEE 802.11 has short-term unfairness in its schedul-
ing even when both flows send at the same rate,
which is achievable. This problem is rooted at the
MAC protocol and cannot be resolved by our
algorithm. However, as we may observe from the
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Fig. 12. Convergence in random networks. (a) Random topology. (b) Transmission rate. (c) Throughput.

Fig. 13. Convergence in the hidden terminal scenario 1. (a) Hidden terminal topology. (b) Transmission rate. (c) Throughput.



results, the long term fairness can be guaranteed at
the equilibrium via our price-based algorithm.

6.4.2 Comparison Studies

To further illustrate the meaning of contention region and
the impact of interference, we compare the equilibrium
resource allocations of an ad hoc network with a wireline
network of the same topology and two ad hoc networks
with different interference ranges.

First, the rate allocation and the equilibrium prices of the
wireline network and the wireless ad hoc network with a
four-hop chain topology are compared under synsim. The
cliques of the ad hoc network under synsim are the same as in
Fig. 2. The results are listed in Table 3. From these results, we
have the following observations: First, the rate allocated to
each flow in the ad hoc network is less than the rate allocated
to the corresponding flow in wireline networks. The
difference lies in their different definitions of contention
regions. In the wireline network, a wireline link represents a
contention region, whose capacity is the link bandwidth. In
the ad hoc network, a wireless link is no longer a contention

region. Instead, the set of wireless links, formally repre-
sented by a clique, constitutes the contention region and
shares the channel capacity. Thus, with the same capacity of
the wireless channel and the wireline link, the throughput of
the ad hoc network is lower than that of the wireline
network. Second, in the wireline network, the rates of all
single-hop flows are the same. In the ad hoc network, the
rates of these flows are different. The reason is that, in the
wireline network, flows f2 through f5 enjoy the same amount
of resources; while, in the ad hoc network, due to location-
dependent contention, f3 suffers higher contention than f2.
This is also reflected through the prices that f2 and f3 need to
pay. For f2, the price is �2 ¼ �1, which equals to 1:25 at
equilibrium, while the price for f3 is �3 ¼ �1 þ �2, which
equals to 2.5. Third, in both networks, the equilibrium rate
allocations for flows with different lengths are different. This
is actually the result of proportional fairness. In particular,
the longer the flow, the less the rate allocated. This
observation is natural from the perspective of maximizing
the aggregated utility. When the utility functions of all flows
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Fig. 14. Convergence in the hidden terminal scenario 2. (a) Hidden terminal topology. (b) Transmission rate. (c) Throughput.

Fig. 15. Convergence in the exposed terminal scenario. (a) Exposed terminal topology. (b) Transmission rate. (c) Throughput.

Fig. 16. Convergence in the race condition scenario. (a) Race condition topology. (b) Transmission rate. (c) Throughput.



are the same, long flows consume more resources for an unit
of utility increase. Hence, the short flows are favored.

To further illustrate the impact of interference, we
compare the resource allocation on two ad hoc networks
with different interference ranges. The results are shown in
Fig. 17b and Fig. 17c. We observe that the resource
allocations are different for two networks. The reason
behind this observation is that different interference ranges
lead to different contention regions as shown in Fig. 17a.
When the interference range is 550m, the network only
consists of one contention region. On the other hand, when
interference range is 250m, there are two overlapping
contention regions in the network.

6.5 Overhead

Now, we evaluate the overhead of our algorithm under
different mobility degrees. In the simulation, 30 mobile
nodes are randomly deployed on a 600	 600 m2 network.
They move according to the random waypoint mobility
model with an average node speed of 20m/s. The pause
time interval is varied in the experiment. For each simula-
tion, the results are averaged over 10 randomly generated
mobile scenarios with the same pause time interval.

Fig. 18a plots the normalized overall packet overhead,
which is the ratio between the number of nondata packets
and the data packets delivered at each hop. The overall
overhead includes the FEEDBACK packets sent by the
receiver of each flow and the AODV routing packets, which

include HELLO packets that carry the price calculation
information. We compare the overhead of our algorithm
with the overhead of the TCP protocol2 running over
AODV. From the results, we observe that our algorithm has
lower packet overhead than TCP. This is mainly because
our price-based resource allocation algorithm generates
fewer FEEDBACK packets than the ACK packets of TCP.
Fig. 18b plots the ratio between the number of FEEDBACK
packets sent at the receivers of the flows and the data
packets that they receive. We observe that fewer FEED-
BACK packets are generated with lower mobility. This is
because, at the equilibrium where the price is unchanged,
no FEEDBACK packet needs to be sent. Moreover, because
the lightweight communication protocol uses packet piggy-
backing as its information delivery method, it does not
introduce many additional control packets (AODV packets)
at the routing layer into the network.

We proceed to study the overhead of our algorithm in bits
per second. From Fig. 18d, we observe that the overhead of
our algorithm in bits per second is also comparable to TCP
over AODV, although our algorithm uses larger AODV
HELLO packets.

To further reduce the overhead, we introduce a set of
k-hop heuristic algorithms. In these heuristics, end nodes of
subflow s cache the information within ILSSkðsÞ (k � 3) and
transmit information within ILSSk

0 ðsÞ (k0 ¼ k� 1) to their
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Fig. 17. Comparison of different interference ranges. (a) Topology and clique. (b) Tranmission rate. (c) Throughput.

2. TCP is also considered as a form of resource allocation for end-to-end
flows in existing literature [4].

TABLE 3
Rate Allocations and Equilibrium Prices in Different Networks



neighbor nodes. Based on such partial knowledge of the
network topology and load, cliques are constructed and
their prices are computed approximately.

The result in Fig. 18c shows the overhead in bits per
second incurred by HELLO packets when heuristics with
different information propagation ranges are used. Fig. 18d
compares the overall overhead in bits per second of the
original price-based resource allocation algorithm with its
heuristics. From the results, we observe that the two-hop
heuristic has similar overhead as TCP over AODV, while
one-hop heuristic has even smaller overhead in bits per
second than TCP.

We further study the performance of these heuristics in
terms of rate allocation. First, we study the aggregated
utilities achieved by different heuristics and compare them
with the original algorithm and TCP. In the experiment, we
consider wireless ad hoc networks at two scales. At the
smaller scale, the networks have 20 nodes deployed over a
500	 500 m2. At the larger scale, the networks have
30 nodes deployed over a 600	 600 m2 region. For each
network scale, 10 topologies are randomly generated. The
original algorithm and its heuristics are simulated and
compared with TCP over the same topology. The results are
shown in Fig. 19a and Fig. 19b, respectively, corresponding
to each network scale.

From these results, we have the following observations:
First, the price-based resource allocation algorithm and its
heuristics all outperform TCP in terms of aggregated utility.

In networks with a smaller scale, the performance of the
heuristics closely matches the original algorithm. This
observation is because, in networks with smaller scales,
the hop counts between any two nodes are small. Thus,
heuristics with smaller information propagation ranges are
sufficient to communicate the information for clique con-
struction and price calculation. In some topologies, one-hop
heuristic can provide even better performance than the
original algorithm due to its lower overhead. In networks
with larger scales, the two-hop heuristic and the original
algorithm give better performance than the one-hop heur-
istic owing to more precise clique construction. Moreover,
two-hop heuristic can sometimes outperform the original
algorithm due to its lower communication overhead.

Larger aggregated utility indicates more fair resource
allocation and better resource utilization. To further under-
stand the results in terms of aggregated utility in Fig. 19, we
plot in Fig. 20 the throughput of each flow from the
simulation result of one randomly generated 600	 600 m2

network. The result clearly reflects the fairness improve-
ment achieved by our price-based resource allocation
algorithms in comparison with TCP.

6.6 Impact of Mobility

In this section, we study the behavior of our algorithm over
mobile ad hoc networks. In particular, we seek to find the
threshold of mobility where the convergence speed of the
algorithm is not fast enough to ensure a sufficient portion of
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Fig. 18. Overhead. (a) Normalized overall packet overhead. (b) Normalized FEEDBACK packet overhead. (c) HELLO packet overhead in bits per

second. (d) Overall overhead in bits per second.



time at equilibrium. We experiment on a specially designed
mobile scenario, as shown in Fig. 21a. In this mobile
scenario, node 1 is moving between location (150, 1000)
and (150, 500) observing the random waypoint model, and
node 2 is moving between (150, 500) and (150, 0). During the
simulation, these two nodes will serve as the relaying nodes
for flow f1 in an interwoven fashion. The convergence
behavior and the throughput under different node speeds
and pause time intervals are plotted in Fig. 21. From the
figure, we can observe that the new convergence occurs after
broken routes are reestablished. The results show that the
algorithm converges and stays at equilibrium for a large
portion of time when the node moves at 10m/s without
pause. When the node speed increases to 20m/s, the flow
spends approximately the same amount of time during the
convergence and at the equilibrium. Further increasing the
node speed under this scenario may result in insufficient
amount of equilibrium time where resource is optimally
allocated. Obviously, if the pause time interval is increased,
the algorithm can support higher node speeds. This is
illustrated in the figure, when node speeds are 50m/s with
the pause time interval as 20 seconds.

To study the impact of mobility on our algorithm over
random networks, we organized the simulated network
scenarios into mobility patterns. Each mobility pattern,
generated randomly, specifies a sequence of movements.
Within each mobility pattern, the mobility index specifies the
average node speed and pause time of each mobile scenario.
For example, under one mobility pattern, if, with index 1, a
node takes time t to move from location a to location b, then,
with index 2, this node will take 2	 t to traverse this distance.
Our experiment ranges from mobility index 1, which

corresponds to an average node speed of 100m/s and pause
time interval of 10 seconds, to mobility index 6, which
corresponds to an average node speed of 16.67m/s and pause
time interval of 60 seconds. Fig. 22a plots the aggregated
utility of our algorithm with varied mobility indices under
four different mobility patterns. To better understand the
performance indicated by the aggregated utility, Fig. 22b
plots the throughput of each flow under pattern 1 with varied
mobility indices. From these results, we observe that the
difference from mobility index 4, which corresponds to an
average node speed of 25m/s and pause time interval of
40 seconds, to mobility index 6 is quite small. Moreover, even
in highly mobile environments such as the ones indicated by
mobility indices smaller than 3, the performance of our
algorithm still degrades reasonably with the increased
mobility.

7 RELATED WORK

We evaluate and highlight our original contributions in
light of previous related work.

The problem of optimal and fair resource allocation has
been extensively studied in the context of wireline net-
works. Among these works, pricing has been shown to be
an effective approach to achieve distributed solution for
rate allocation (e.g., [4], [5], [14]). The role of price in our
work is similar to [4], [5], which reflects the relation of the
demand and the supply of resources. Nevertheless, the
fundamental differences in contention models between
ad hoc and wireline networks deserve a fresh treatment to
this topic. As we have emphasized, these resource alloca-
tion strategies employed in the wireline network may not be
applied directly in the context of ad hoc networks due to the
unique characteristics of the shared wireless channel.

A collection of papers have studied the use of pricing in the
context of wireless networks (e.g., [15], [16]). In these works,
pricing has been used as a mechanism for optimal distributed
power control. In comparison, our work is toward different
objectives and in different wireless environments. For
example, we study rate allocation in multihop wireless
networks with time-slotted MAC, while most of the work in
this group study base-station-based single-hop wireless
networks with CDMA. In addition, Liao et al. [17] use price
as an incentive for service class allocation in wireless LAN.
Their solution, however, is applicable in scenarios where
centralized management is readily available.
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Fig. 19. Comparison of price-based resource algorithms and TCP over randomly generated networks. (a) 500m*500m network. (b) 600m*600m
network.

Fig. 20. Throughput comparison over a randomly generated network

with 30 node deployed over a 600	 600 m2 region.



There also exists work to use pricing as incentives to
encourage packet relays in wireless ad hoc networks (e.g.,
[18], [19]). Our work is fundamentally different from these
results in the following aspects. First, in [18], a simplified
wireless ad hoc network model is used, where each node i in
the network has a capacity of Ci, which is independent from
other nodes. We have shown that such a network model is not
able to correctly characterize the unique characteristics of
location dependent contention in ad hoc networks. Second, in
[18], [19], a user is assumed to have limited transmission

resources and the role of pricing is to provide adequate user
incentives to forward packets for other users. The goal of
optimal price setting at each node is to maximize its net
benefit. Incontrast, the roleofpricing inour workis toregulate
channel access and to provide globally optimal resource
allocation in the sense of maximizing aggregated utility.

Resource allocation, using MAC-layer fair scheduling for
single-hop MAC layer flows, has also been studied in
wireless ad hoc networks [1], [2], [3]. In comparison, we
address end-to-end multihop flows. It can be shown that
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Fig. 21. Impact of node mobility. (a) Mobile scenario. (b) Transmission rate. (c) Throughput.

Fig. 22. Impact of node mobility. (a) Aggregated utility under different patterns. (b) Throughput of each flow under pattern 1.



fair resource allocation among single-hop flows may not be
optimal for multihop flows due to the unawareness of
bottlenecks and lack of coordination among upstream and
downstream hops. Moreover, global optimal resource
allocation among multihop flows cannot be completely
reached only by MAC-layer scheduling, which is only
based on local information. Price is needed as a signal to
coordinate the global resource allocation. Finally, we argue
that our proposed solution for end-to-end flows is
complementary to any MAC-layer solutions and can be
implemented based on them.

8 CONCLUDING REMARKS

In this paper, we have presented a novel price-based resource
allocation algorithm based on an analytical pricing model
that is specifically designed for the unique characteristics of
multihop wireless ad hoc networks. The original contribu-
tion incorporated in the pricing model is the association of
shadow prices with the maximal cliques in the contention
graph model, rather than with individual links as in wireline
networks. Based on insights brought forth by such strategies,
the algorithms proposed are fully distributed and arbitrate
the contention among end-to-end multihop flows with respect
to fair resource allocation. The validity of our claims is
supported by both theoretical studies and extensive simula-
tion results. To the best of our knowledge, there does not exist
any previous work that addresses the problem of enforcing
fairness among multihop flows in wireless ad hoc networks,
especially when a price-based approach is utilized to design
fully distributed algorithms to achieve this goal.
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