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Abstract. The shared-medium multi-hop nature of wireless ad hoc networks
poses fundamental challenges to the design of an effective resource allocation
algorithm to maximize the aggregated utility of flows, while maintaining basic
fairness among multiple flows. When previously proposed scheduling algorithms
have been shown to perform well in providing fair shares of bandwidth among
single-hop wireless flows, they did not consider multi-hop flows with an end-
to-end perspective. Moreover, the resource allocation strategies employed in the
wireline network can not be applied directly in the context of ad hoc networks due
to the unique characteristic of location dependent contention and spatial reuse of
the shared wireless channel. In this paper, we propose a price-based resource al-
location model to achieve maximized aggregated utility (i.e., social welfare) of
flows. Our original contributions are: First, we propose to use maximal clique-
associated shadow prices for wireless channel access coordination, rather than
link-associated price for wireline link access arbitration. Second, we present a
new pricing policy for end-to-end multi-hop flow. Using this model, different fair-
ness goals can be realized in ad hoc networks for end-to-end flows. With a two-
tier distributed and iterative algorithm, scarce channel capacity is allocated fairly
among multi-hop flows from an end-to-end perspective, using shadow prices as
the mechanism to arbitrate channel access. Through extensive analysis and sim-
ulation results, we show that our proposed algorithm is able to fairly distribute
resources among multi-hop flows, while simultaneously maximizing the aggre-
gated utility of flows globally.

1 Introduction

A wireless ad hoc network consists of a collection of wireless nodes without a fixed in-
frastructure. Each node in the network serves as a router that forwards packets for other
nodes. Each flow from the source to the destination traverses multiple hops of wireless
links. Compared with wireline networks where flows contend only at the router with
other simultaneous flows through the same router (contention in the time domain), the
unique characteristics of multi-hop wireless networks show that, flows also compete
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for shared channel bandwidth if they are within the transmission ranges of each other
(contention in the spatial domain). This presents the problem of designing an appropri-
ate topology-aware resource allocation algorithm, such that contending multi-hop flows
fairly share the scarce channel capacity, while the total aggregated utility of all flows is
maximized.

In the context of wireline networks, pricing (e.g., [1–5]) has been extensively used
in the literature as a means to arbitrate resource allocation. In order to adopt a price-
based approach, utility functions are used to characterize the resource requirements and
the degree of satisfaction of individual users. The goal of the network is to appropriately
allocate resources to maximize an objective function that depends on user utilities. For
example, the total aggregated utility over all users may be maximized (called the social
welfare) subject to certain resource constraints. Kelly et al. [3] have shown that, to
achieve such a goal, the network may use price as a signal to reflect the traffic load on the
wireline links, and users can choose a transmission rate to respond to such price so that
their net benefit can be maximized. It is shown that at equilibrium, such a price-based
resource allocation scheme maximizes the social welfare and achieves a (weighted)
proportional fair rate allocation, if the logarithmic utility function is used.

Unfortunately, there exist fundamental differences in multi-hop wireless ad hoc net-
works compared with traditional wireline networks, preventing verbatim application of
the existing pricing theories. First, in multi-hop wireless networks, flows that traverse
the same geographical vicinity contend for the same wireless channel capacity. This is
in sharp contrast with wireline networks, where the network resource is modeled as a
set of links (or edges in the topological graph) connecting nodes, and only flows that
traverse the same link contend for the capacity of this link. When it comes to pricing, we
may conveniently associate shadow prices with individual links in wireline networks,
such that the price of a flow is the aggregate of shadow prices of the links it traverses.
However, we may not be able to accommodate such conveniences when pricing ad hoc
networks. Second, as opposed to wireline networks, algorithms designed for wireless
ad hoc networks may not rely on the convenience of any centralized management or
authority. The search for a fully distributed algorithm further exacerbates the problem.

In this paper, we address these unique characteristics of wireless ad hoc networks,
and follow a price-based approach to allocate channel bandwidth availability to com-
peting multi-hop flows. The fundamental question we attempt to answer is: how much
bandwidth should we allocate to each of the flows, so that the aggregated utilities over
all users can be maximized? Towards this goal, our original contribution is the follow-
ing: (1) We associate shadow prices with maximal cliques in the corresponding wireless
link contention graph of the ad hoc network, rather than individual links as in wireline
networks; (2) Based on this new model, we present a new pricing policy for end-to-end
multi-hop flows. In this policy, the price of an end-to-end multi-hop flow is the aggre-
gate of prices of all its subflows1, while the price of each subflow is the sum of shadow
prices of all maximal cliques that it belongs to. We present a distributed algorithm that
determines shadow prices such that the aggregated utility of all flows is maximized.
We show that by choosing appropriate utility functions, different fairness models can

1 When each multi-hop flow is considered as multiple single-hop flows, each single-hop flow is
referred to as a subflow.



be realized for multi-hop flows, including proportional fairness and max-min fairness.
The algorithm consists of two tiers. The first tier constitutes an iterative algorithm to
determine per-clique shadow prices. It can be shown that this algorithm converges to
the unique system equilibrium. The second tier completes the details of the algorithm
within the same maximal clique.

The remainder of this paper is organized as follows. Sec. 2 and Sec. 3 present re-
lated work and the network model, respectively. We propose our price-based resource
allocation model in Sec. 4, and present our distributed algorithm in Sec. 5. Finally, we
show simulation results in Sec. 6, and conclude in Sec. 7.

2 Related Work

Price-based resource allocation strategies, as well as the analysis of their fairness prop-
erties, have received much attention in recent years in the setting of wireline networks
(e.g., [1–5]). For example, in the work proposed in [1, 3, 2], a shadow price is associ-
ated with each wireline link. The network uses these prices as signals to users which
reflect the traffic load on the links along their route, and users choose a transmission rate
to optimize their net benefit. Nevertheless, the fundamental differences in contention
models between ad hoc and wireline network deserve a fresh treatment to this topic.
The resource allocation strategies employed in the wireline network can not be applied
directly in the context of ad hoc networks due to the unique characteristic of location
dependent contention and spatial reuse of the shared wireless channel. In this paper,
we propose a new pricing model for wireless ad hoc networks to address such unique-
ness. We propose using clique-associated shadow prices for channel access, rather than
the traditional link-associated price for wireline link access arbitration. Based on this
model, we present a new pricing policy with respect to end-to-end multi-hop flows.

In the setting of wireless LANs, the use of pricing has also been studied in the
context of efficient power control (e.g., [6]) and service differentiation [7]. These solu-
tions focus on single-hop infrastructure wireless networks, while we consider multi-hop
wireless networks.

There also exists work to use pricing as incentives to encourage packet relays in
wireless ad hoc networks (e.g., [8]). Our work is fundamentally different from these
results in the following aspects. (1) In [8], a simplified ad hoc network model is used,
where each node i in the network has a capacity of Ci, which is independent from other
nodes. We will later show that such a network model can not correctly characterize
the unique characteristics of location-dependent contention in ad hoc networks. (2) In
[8], a user is assumed to have limited transmission resources. Thus, the user might not
volunteer to forward packets for other users as this impacts the ability to transmit their
own traffic. In light of this problem, the role of pricing is to provide adequate user
incentives to forward packets for other users. The goal of optimal price setting at each
node is to maximize its net benefit, which reflects its utility gain, its revenue from packet
relays and its cost for paying other nodes to relay its own packets. In contrast, the role of
pricing in our work is to regulate channel access and provide globally optimal resource
allocation in the sense of maximizing aggregated utility. This goal is complementary to
any incentives to packet relays.



Resource allocation, using MAC-layer fair scheduling for single-hop MAC layer
flows, is also studied in ad hoc networks [9–12]. In comparison, we address end-to-
end multi-hop flows. It can be shown with examples that, optimal resource allocation
among single-hop flows may not be optimal for multi-hop flows, due to the unawareness
of bottlenecks. Moreover, global optimal resource allocation among multi-hop flows
can not be completely reached by MAC-layer scheduling, which is only based on local
information. Pricing is needed as a signal to coordinate the global resource demand and
supply.

3 Network Model and Resource Constraints

In this paper, we consider a static multi-hop wireless network with channel capacity
C. In this network, only nodes that are within the transmission range of each other
can communicate directly and form a wireless link. Data transmissions over a single
wireless link are referred to as a subflow. Two subflows contend with each other if
either the source or destination of one subflow is within the transmission range of the
source or destination of the other2. Let lij denote the subflow from node i to j. For
the example in Fig. 1(A), we may observe that l12 contends with l62, l23 and l34. The
locality of wireless transmissions implies that the degree of contention for the shared
medium is location-dependent.
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Fig. 1. Location-dependent contention: an example.

We first illustrate resource constraints due to such location-dependent contention by
using the example shown in Fig. 1, where there are three multi-hop flows f1, f2 and f3,
with data rates x1, x2 and x3, respectively. Further, we use yij to denote the aggregated
data rate of all subflows lij between node i and j. For example, y12 = x1, y23 =
x1+x2. The channel capacity C gives the upper bound on the aggregated data rate of all
mutually contending subflows. In this example, there are three contending subflow sets

2 If we assume that the interference range is greater than the transmission range, the contention
model can be straightforwardly extended.



{l12, l23, l34, l26}, {l23, l34, l45, l47} and {l34, l45, l47, l78}, where all subflows within a
set contend with each other. We then have

y12 + y26 + y23 + y34 ≤ C (1)

y23 + y34 + y45 + y47 ≤ C (2)

y34 + y45 + y47 + y78 ≤ C (3)

This leads to 3x1 + 2x2 ≤ C, 3x1 + x2 + x3 ≤ C and 2x1 + 2x3 ≤ C, which show
the resource constraints when it comes to end-to-end flow rate allocation.

Motivated by this example, we consider a static network topology modeled by a
undirected graph GT = (VT , ET ), where VT is the set of nodes in the network. A
wireless link {i, j} ∈ ET , if nodes i and j are within the transmission range of each
other.

We now introduce the concept of wireless link contention graph. In a wireless link
contention graph, each vertex represents a wireless link. Each edge between two ver-
tices denotes that subflows, if there exists any, on the wireless links corresponding to the
two vertices contend with each other. A wireless link contention graph is different from
a flow contention graph [11] in that each vertex in a flow contention graph represents a
backlogged MAC layer flow, thus the topology of a flow contention graph depends on
the traffic patterns and routes in the network. On the other hand, the wireless link con-
tention graph only depends on the topology of the original network and is not related
to the traffic patterns and routes of flows. As an example, Fig. 1(B) shows the wireless
link contention graph of the ad hoc network in Fig. 1(A).

Formally, a graph GC = (VC , EC) is a wireless link contention graph of network
GT , if there exists a mapping function ϕ : ET → VC that satisfies

(1) ϕ(l) ∈ VC , if and only if l ∈ ET ;

(2) {ϕ(l), ϕ(l′)} ∈ EC , if for l, l′ ∈ ET , ∃l′′ ∈ ET , so that l∩ l′′ �= ∅ and l′∩ l′′ �= ∅.

In a graph, a complete subgraph is referred to as a clique. A maximal clique is
referred as a clique that is not contained in any other cliques3. In a wireless link con-
tention graph, the vertices in a maximal clique represent a maximal set of wireless links
where subflows along any two links contend with each other. Intuitively, each maximal
clique in a wireless link contention graph represents a “maximal distinct contention
region”, since at most one subflow in the clique can transmit at any time and adding
any other flows into this clique will introduce the possibility of simultaneous trans-
missions. Formally, we denote a maximal clique of a wireless link contention graph
GC as Gq = (Vq, Eq), and the set of all maximal cliques in a wireless link contention
graph as Q. For simplicity, we use the vertices set Vq of a clique Gq to represent the
clique, and sometimes simply denote it as q. For the example in Fig. 1, the set of
maximal clique is Q = {q1, q2, q3} where q1 = {{12}, {23}, {34}, {26}}, q2 =
{{23}, {34}, {45}, {47}} and q3 = {{34}, {45}, {47}, {78}}. To this end, we show
the role of maximal cliques in resource allocation in the following definition and lemma.

3 Note that maximal clique has a different definition from maximum clique of a graph, which is
the maximal clique with the largest number of vertices.



Definition 1 (feasibility). A wireless link bandwidth allocation y = (yl, l ∈ ET ) is
feasible, if there exists a collision-free transmission schedule that allocates bandwidth
yl to wireless link l.

Lemma 1. A wireless link bandwidth allocation y = (yl, l ∈ ET ) is feasible, if and
only if the following condition is satisfied:

∀q ∈ Q,
∑

l∈q

yl ≤ C (4)

Proof: It is trivial to show that Eq. (4) is a necessary condition for feasible band-
width allocation, as flows within a clique q can not transmit simultaneously. Now, we
show that the condition Eq. (4) is also sufficient for a feasible bandwidth allocation. We
assume the converse is true, i.e., when Eq. (4) holds, there exists no feasible bandwidth
allocation. This means that under any schedule, there always exists a set of mutually
contending wireless links whose bandwidth allocation exceeds the channel capacity C.
Naturally, this set of mutually contending wireless links constitutes a clique q′ so that∑

l∈q′ yl > C. If q′ is a maximal clique, a contradiction exists. If q′ is not a maximal
clique, then there exists another maximal clique q′′ ∈ Q that contains q′. It is obvious
to see

∑
l∈q′′ yl > C, which also leads to a contradiction. 	


This lemma shows that each maximal clique can be regarded as an independent
resource with capacity C. It motivates the use of a maximal clique as a basic resource
unit for pricing.

We associate each user in the network with an end-to-end multi-hop flow (or simply
flow) f , and denote the set of flows as F . We assume each flow has a fixed path which
passes a set of wireless links. We use this set of wireless links to represent the flow f
(i.e., f ⊂ ET ). In the example shown in Fig. 1, f1 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}},
f2 = {{2, 6}, {2, 3}}, and f3 = {{4, 7}, {7, 8}}. We use the vector x = (xf , f ∈ F)
to denote the rate of flows in the set F .

We now proceed to define a clique-flow matrix R, where Rqf = |q ∩ f | is the
number of wireless links that flow f passes in clique q. If we treat a maximal clique as
a singular resource, then the clique-flow matrix represents the “resource usage pattern”
of each flow. In the example, the clique-flow matrix is shown in Fig. 2.
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Fig. 2. An example of the clique-flow matrix.

Finally, we use the vector C= (Cq, q ∈Q) as the vector of channel capacities in
each of the cliques, where Cqs are equal to the physical channel capacity C in the ideal
case. Now, we give the constraints of resource allocation in an ad hoc network in the
following theorem.



Theorem 1. In an ad hoc network GT , given the set of flows F that uses this net-
work, there exists a feasible rate allocation x = (xf , f ∈ F), if and only if Rx ≤ C,
where R is the clique-flow matrix defined on the network GT and the flow set F .

Proof: It is obvious that Rx ≤ C ⇔ ∀q ∈ Q,
∑

f∈F Rqfxf ≤ C. By the definition
of R, we have

∑
f∈F Rqfxf =

∑
l∈q yl. The result follows naturally from Lemma

1. 	


4 Pricing Model in Wireless Ad hoc Networks

4.1 Optimal resource allocation: problem formulation

We associate each flow f ∈ F with an utility function Uf (xf ), where xf is the rate of
flow f . We make the following assumption regarding the utility function.

Assumption: For each flow f ∈ F , the function Uf : R+ → R+ satisfies the follow-
ing conditions:

(1) On the interval If = [mf ,Mf ], the utility functions Uf are increasing, strictly
concave and twice continuously differentiable.

(2) Uf is additive so that the aggregated utility of rate allocation x = (xf , f ∈ F)
is

∑
f∈F Uf (xf ).

(3) The curvatures of Uf are bounded away from zero on If .

Following the work of resource allocation in wireline networks [1, 2], we investigate
the optimal rate allocation in the sense of maximizing the aggregated utility function.
As we will show in Sec. 4.2, by specifying appropriate utility functions, such an objec-
tive can enforce different fairness models, including proportional fairness and max-min
fairness. We now formulate the problem of optimal resource allocation in wireless ad
hoc networks as the following constrained non-linear optimization problem:

SYSTEM(U,R, C):

maximize
∑

f∈F

Uf (xf ) (5)

subject to Rx ≤ C (6)

over x ≥ 0 (7)

We observe that the objective function in Eq. (5) of the optimization problem is dif-
ferentiable and strictly concave, while the feasible region of Eq. (6) and (7) is compact.
By non-linear optimization theory, there exists a maximizing value of argument x for
the above optimization problem, and we can apply the Lagrangian method to solve such
a problem. Let us consider the Lagrangian form of this optimization problem:

L(x, z;µ) =
∑

f∈F

Uf (xf ) + µT (C −Rx − z)

=
∑

f∈F

(Us(xf ) − xf

∑

q∈Q
µqRqf ) +

∑

q∈Q
µqCq −

∑

q∈Q
µqzq (8)



where µ = (µq, q ∈ Q) is a vector of Lagrange multipliers and z = (zq, q ∈ Q) is
a vector of slack variables. Hence, at a maximum of L over x, z ≥ 0, the following
conditions hold:

U ′
f (xf ) =

∑

q∈Q
µqRqf , if xf > 0

≤
∑

q∈Q
µqRqf , if xf = 0 (9)

∑

q∈Q
µq = 0, if zq > 0

≥ 0, if zq = 0 (10)

Thus, given that the system knows the utility functions Uf of all the flows, this
optimization problem can be mathematically tractable through the above procedure.
However, in practice, the system is not likely to know all the Uf , and it is also infeasible
for an ad hoc network to compute and allocate resource in a centralized fashion.

In the Lagrange form shown in Eq. (8), the Lagrange multipliers µq can be regarded
as the implied cost of unit flow accessing the channel within the maximal clique q. In
other words, µq is the shadow price of clique q. Motivated by the concept of shadow
price of cliques, we decompose the SYSTEM problem into the following two problems
and seek a distributed solution where the ad hoc network does not need to know the
utility functions of individual flows.

Suppose that each flow f is given the price per unit flow λf . Then f chooses an
amount to pay per unit time wf , and receives in return a rate xf given by xf = wf

λf
. The

utility optimization problem for flow f becomes the following:
FLOWf (Uf ;λf ):

maximize Uf (
wf

λf
) − wf (11)

over wf ≥ 0 (12)

The network, given the amounts that the flows are willing to pay, w = (wf , f ∈ F),
attempts to maximize the function

∑
f∈F wf log(xf ). So the network’s optimization

problem can be formulated as follows:
NETWORK(R, C;w):

maximize
∑

f∈F
wf log(xf ) (13)

subject to Rx ≤ C (14)

over x ≥ 0 (15)

Note that in the NETWORK problem, the utility functions are not required to carry
out the resource allocation computation. Similar to [3], we have the following results.

Theorem 2: There exist vectors λ = (λf , f ∈ F), w = (wf , f ∈ F) and x =
(xf , f ∈ F) such that



(1) wf solves FLOWf (Uf ;λf ), for f ∈ F ; (2) x solves NETWORK(R, C;w); (3)
wf = λfxf .

We omit the proofs due to space constraints. Refer to [13] for a detailed proof.
Corollary 1. The price λf of a flow f and the shadow price of channel clique µq

satisfy the following relation:

λf =
∑

q:f∩q �=∅
µqRqf (16)

=
∑

l:l∈f

∑

q:l∈q

µq (17)

This relation shows that the flow f needs to pay for all the maximal cliques that it
traverses. For each clique, the price to pay is the product of the number of wireless links
that f traverses in this clique and the shadow price of this clique as in Eq. (16). Alter-
natively, we can also explain the pricing model in the following way: (1) the price of a
flow is the aggregated price of its subflows; (2) the price of a subflow is the aggregated
price of all the maximal cliques that the subflow belongs to as in Eq. (17).
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Fig. 3. Wireline and wireless ad hoc networks: a comparison.

We now show an example to illustrate the difference between the proposed pricing
model for wireless ad hoc networks and the existing model in wireline networks. In
Fig. 3(A), the wireline network has a chain topology consisting of four links, which are
associated with prices µi, i = 1, . . . , 4. The price of flow f in this wireline network is
λf =

∑4
i=1 µi. On the other hand, although the wireless ad hoc network in Fig. 3(B)

has the same topology as the wireline network, its resource is no longer “links”. Instead,
two maximal cliques q1 = {l12, l23, l34} and q2 = {l23, l34, l45} constitute the re-
sources. Suppose that the shadow price of these two cliques are µ1 and µ2, respectively.
Then the price of flow f in this ad hoc network is given by λf = 3µ1 + 3µ2, which is
the number of subflows of f in this clique multiplied by the shadow price of this clique.
Alternatively, the price can be written as λf = µ1 +(µ1 +µ2)+(µ1 +µ2)+µ2, which
is the sum of its subflows’ prices, with each subflow paying the aggregated price of all
the maximal cliques that it belongs to.

4.2 Achieving fairness among multi-hop flows

By choosing different utility functions for flows, the optimal resource allocation can
enforce different fairness models among multi-hop flows in wireless ad hoc networks.



Definition 2 (proportional fairness). In a wireless ad hoc network, a vector of
rates x∗ = (x∗

f , f ∈ F) is weighted proportionally fair with weight vector wf , if it is
feasible, i.e., x∗

f ≥ 0 and Rx∗ ≤ C, and for any other feasible vector x = (xf , f ∈ F),
the aggregate of proportional change is zero or negative:

wf

∑

f∈F

xf − x∗
f

x∗
f

≤ 0 (18)

Proposition 1. A rate allocation x is weighted proportional fair with weight vec-
tor wf in a wireless ad hoc network, if and only if it solves SYSTEM(U,R, C), with
Uf (xf ) = wf log xf for f ∈ F .

Definition 3 (max-min fairness). In a wireless ad hoc network, a vector of rates
x∗ = (x∗

f , f ∈ F) is max-min fair, if it is feasible, i.e., x∗ ≥ 0 and Rx∗ ≤ C, and if
for any f ∈ F , increasing x∗

f can not be done without decreasing the fair share x∗
f ′ of

another flow f ′ ∈ F which satisfies x∗
f ≥ x∗

f ′ .
Proposition 2. A rate allocation x is max-min fair if and only if it solves SYSTEM(U,R, C),

with Uf (xf ) = −(− log xf )α, α → ∞ for f ∈ F .
These results straightforwardly follow its counterpart in wireline networks [3]. We

omit the proofs due to space constraints. Refer to [13] for a detailed proof.

5 Algorithm: Pricing and Resource Allocation

The decomposition of SYSTEM(U,R, C) problem into FLOWf (Uf ;λf ) and NETWORK(R, C;w)
problems suggests that solving SYSTEM(U,R, C) can be achieved by solving FLOWf (Uf ;λf )
and NETWORK(R, C;w) problems via an iterative algorithm. In each iteration, the
source node of flow f individually solves its willingness to pay wf in Eq. (11), ad-
justs its sending rate and notifies the network about this change. After the new sending
rate is observed by the clique q, it updates its price µq accordingly and communicates
the new prices to the flow, and the cycle repeats.

To illustrate how flow f adjusts its willingness to pay, we define the demand func-
tion Df : R+ → R+ of flow f as follows. Df (λf ) is the optimal solution w∗

f to the
FLOW(Uf ;λf ) problem. That is,

Df (λf ) = w∗
f = arg max

wf≥0
{Uf (

wf

λf
) − wf} (19)

The iterative algorithm that computes the price and resource allocation is then given
as follows.

Algorithm I (First Tier) – Per-clique price calculation and resource allocation

– Clique q’s algorithm at iteration k
(1) receives sending rate xf (k) from all flows f that go through clique q;
(2) computes a new price according to the following formula

µq(k + 1) = [µq(k) + α(
∑

f :f∩q �=∅
Rqfxf (k) − C)]+ (20)



where α > 0 is a small step size parameter, and [z]+ = max{z, 0}. This algorithm
is consistent with the law of supply and demand: if the demand for bandwidth at
clique q exceeds the channel capacity supply C, which is the channel capacity, then
the price µq is raised; otherwise, the price is reduced;
(3) communicates new price µq(k + 1) to all flows f that go through clique q.

– Flow f ’s algorithm at iteration k
(1) receives from the network the path price λf (k) along its path, where

λf (k) =
∑

q:f∩q �=∅
µq(k)Rqf (21)

(2) chooses a new willingness to pay wf (k + 1) to maximize its net benefit under
the price λf (k) according to

wf (k + 1) = Df (λf (k)) (22)

(3) calculates rate xf (k + 1) according to the following formula and transmits at
rate xf (k + 1), where

xf (k + 1) =
wf (k + 1)

λf (k)
. (23)

We now show the convergence and the optimality of the above iterative algorithm
through the following theorem.

Theorem 3 (Convergence). Provided that the stepsize α is sufficiently small, then
Algorithm I has a unique equilibrium point x∗, to which all trajectories converge.

Theorem 4 (Optimality). The equilibrium point x∗ of Algorithm I is the optimal
solution to the SYSTEM problem.

We omit the proofs due to space constraints. Refer to [13] for a detailed proof.
In the above iterative algorithm, a maximal clique is regarded as a network element

that can carry out certain network functions. In particular, it assumes that a maximal
clique q can perform the following tasks for price calculation and resource allocation:
(1) obtain the aggregated bandwidth demand

∑
f :f∩q �=∅ xfRqf within the clique q; (2)

calculate the per-clique shadow price µq; and (3) notify the price µq to the flows that
pass through it.

However, a maximal clique is only a concept defined based on wireless link con-
tention graph. To deploy the algorithm in an actual ad hoc network, the above tasks of
a maximal clique need to be carried out by the nodes (hosts) that constitute the clique
in a distributed fashion. To achieve this goal, the very first questions that need to be
addressed are: (1) Which nodes constitute a maximal clique; (2) How many maximal
cliques a node belongs to. The answer to these questions require an algorithm to find
all maximal cliques in a graph. Although several such algorithms have been proposed
in the existing literatures of graph theory [14], they can not be applied directly to our
situation. This is because that these algorithms are all centralized and have high com-
putational complexity, while the ad hoc network requires a full distributed solution.

Nevertheless, the unique graphical properties of the wireless link contention graph
may have the potential to facilitate clique calculations. We proceed to propose a dis-
tributed maximal clique construction algorithm, in which the entire topology is decom-
posed into subgraphs. Maximal cliques can then be constructed only based on local



topology information within each subgraph. Our algorithm can significantly reduce the
communication and computational overhead. Using this algorithm, each node computes
the maximal cliques it belongs to and carries out part of the tasks of these cliques. In
particular, the tasks of maximal cliques are distributed among nodes in the following
way.

– All nodes need to provide their local connectivity information to their neighborhood
nodes.

– If a node i is sending packets to node j, then for all such j, i needs to
(1) calculate all cliques q, which include link {i, j};
(2) collect rate information and calculate the price µq for all cliques q;
(3) notify all the passing flows (for which node i forwards packets) of the updated
price.

For example, in Fig. 1, node 2 needs to calculate all the cliques that contain link
{2, 3}; node 4 needs to calculate all the cliques that contain link {4, 5} and all the
cliques that contain link {4, 7}, respectively.

First, we study the problem of how much information node i needs to know in
order to construct all maximal cliques that contains wireless link {i, j}. To do that, we
introduce the following definitions and denotations.

Definition 4 (neighbor sets).
(1) A neighbor set of link l, N(l) is defined as N(l) = {l′|l ∩ l′ �= ∅};
(2) A neighbor set of link set L, N(L), is defined as N(L) = ∪l∈LN(l);
(3) A k neighbor set of link l, denoted as Nk(l), is defined by induction: (i) N1(l) =

N(l), and (ii) Nk(l) = N(Nk−1(l)) for k > 1.
Lemma 2. Any clique that contains link l, denoted as q<l>, satisfies condition

q<l> ⊆ G(N2(l)), where G(N2(l)) is a spanning subgraph of GT whose edge set
is N2(l).

By definitions of the wireless link contention graph and clique, Lemma 2 can be
derived. This lemma shows that G(N2(l)) contains all the links to construct all maximal
cliques q<l>. As an example, in Fig. 1, N2({2, 3}) = {{1, 2}, {2, 6}, {2, 3}, {3, 4},
{4, 5}, {4, 7}}, which consists of all the links that are required to construct maximal
cliques q<2,3>.

In order to establish such a view of G(N2(l)) at node i, which sends packets along
l, each node in the network distributes its connectivity and the traffic information to two
hops away. Based on these information, node i constructs its local view of the network
and uses the Bierstone algorithm [14] to find all maximal cliques that contain link {i, j}.

The iterative algorithm also requires communication between flows and the net-
work. This is implemented via inbound signaling between the source nodes (in the role
of flows) and the relaying nodes (in the role of network). In particular, there are two
special fields in the packet header of each data packet. One field carries the sending
rate of this flow; the other field carries the aggregated price of this flow along its path.
The source of a flow fills in its sending rate xf in the first field so that all the relaying
nodes of flow f can distribute this rate to facilitate the price calculation. Similarly, each
relaying node of f will fill in the price field of f ’s data packets. When the packets arrive
at the destination, the destination node sends an acknowledgment packet to the source
node to notify it about the possible price changes.



To summarize, each node i in an ad hoc network performs the following task locally
in a cooperative manner to support global optimal resource allocation.

Algorithm II (Second Tier) - Per-node price calculation and resource allocation

– Every node. Every node i in the network sends its connectivity information N(i) =
{j|{i, j} ∈ ET } to two hops away.

– Relaying node. If node i transmits to node j, relaying packets for end-to-end flows
f1, f2, . . . , fm, which means flow fk, k = 1, 2, . . . , m is passing wireless link
{i, j}, then i performs the following operations:
(1) retrieves the sending rates xk of flows fk, k = 1, 2, ...,m, from their packet
headers, calculates the aggregated rate yij =

∑m
k=1 xk and distributes the aggre-

gated rate information;
(2) collects connectivity information and constructs G(N2({i, j}));
(3) collects aggregated rate information yl′ , where l′ ∈ N2({i, j});
(4) calculates all maximal cliques q, and their prices µq according to the iterative
algorithm Eq. (20). Note that

∑
f :f∩q �=∅ Rqfxf =

∑
l′∈q yl′ .

(5) updates the aggregated price λf = λf + λ{i,j}, where λ{i,j} =
∑

q:{i,j}∈q µq,
in the packet header for all flows fk;

– Destination node. If node i is a destination node of an end-to-end flow f , then it
observes the change of the aggregated price λf . If there is a change in λf , i sends
a packet to the source to explicitly notify it about the change.

– Source node. If node i is a source node of an end-to-end flow f , then it
(1) receives price update packets from the destination and retrieves path aggregated
price λf from the packet.
(2) calculates xf according to Eq. (23);
(3) updates its sending rate as xf , and insert xf into its packet header.

6 Simulation Results

In this section, we validate the performance of our price-based resource allocation al-
gorithm through a detailed numerical study. In our simulation, the channel capacity of
wireless networks and the bandwidth of wireline networks are both 1 Mbps. The utility
function in use is Uf (xf ) = log(xf ), which will enforce the proportional fair resource
allocation in both wireline and wireless ad hoc networks.

6.1 Resource allocation in wireline and wireless networks: a comparison

We first compare the effects of resource allocations in wireless ad hoc networks with
wireline networks, using identical topologies. We consider a simple example. The net-
work topology is shown in Fig. 1(A), where the network is shared by three flows. The
resulting rate allocation of two types of networks is listed in Table 1. The corresponding
price vectors when the systems are converged are shown in Table 2.

From these results, we have the following observations: (1) In both networks, the
price µj , at the bottleneck resource j (which is the clique q2 in the ad hoc network,
and the wireline link {2, 3} in the wireline network) is larger than 0. In comparison,



x1 x2 x3

wireline network (Mbps) 0.5 0.5 1

wireless ad hoc network (Mbps) 0.111 0.333 0.333

Table 1. Rate allocation in the example topology shown in Fig. 1

µ1 µ2 µ3 µ4 µ5 µ6 µ7

wireline network 0 2 0 0 0 0 0

wireless ad hoc network 0 3 0 N/A N/A N/A N/A

Table 2. Equilibrium prices in the example topology shown in Fig. 1

at non-bottleneck resources, they are equal to 0. This shows the role of shadow price
to arbitrate resource allocation. When the demand (sending rate) exceeds the supply
(channel capacity), which happens in the bottleneck resource, the shadow price, which
reflects the marginal cost, is increased. When the demand is below supply, there is no
such marginal cost, thus the price equals to 0. (2) Due to the contention in the spatial
domain for the shared wireless medium, the rate allocation in the ad hoc network for
each flow is less than the rate allocation for the corresponding flow in wireline networks.

We then proceed to show a more detailed comparison between the two types of net-
works using chain topologies, on which flows with different numbers of hops are shar-
ing the resources. As shown in Fig. 4(A), a chain topology is shared among 5 flows.
Four of them are single-hop flows, one of them is a flow with 4 hops. The rate allo-
cation and the equilibrium prices for this scenario are given in Table 3 and Table 4.
We also conduct simulations in a chain topology with 5 hops as shown in Fig. 4(B) for
comparison purposes. The results are shown in Table 5 and Table 6.

1 2 3 4 5

f

m1
m2

5

f1 f2 f3 f4

1 2 3 4 5 6

m2 m3m1

(A) 4-hop chain topology

(B) 5-hop chain topology

f6

f1 f2 f 3 f4 f5

Fig. 4. Two example chain topologies with 4 hops and 5 hops



x1 x2 x3 x4 x5

wireline network (Mbps) 0.8 0.8 0.8 0.8 0.2

wireless ad hoc network (Mbps) 0.4 0.2 0.2 0.4 0.067

Table 3. Rate allocation in the 4-hop chain topology shown in Fig. 4(A)

µ1 µ2 µ3 µ4

wireline network 1.25 1.25 1.25 1.25

wireless ad hoc network 2.5 2.5 N/A N/A

Table 4. Equilibrium prices in the 4-hop chain topology shown in Fig. 4(A)

x1 x2 x3 x4 x5 x6

wireline network (Mbps) 0.833 0.833 0.833 0.833 0.833 0.167

wireless ad hoc network (Mbps) 0.333 0.333 0.167 0.333 0.333 0.056

Table 5. Rate allocation in the 5-hop chain topology shown in Fig. 4(B)

From the above results, we have the following observations.
In the wireline network, the rates of all single hop flows are the same, e.g., in the

4-hop chain topology, x1 = x2 = x3 = x4 = 0.8. In wireless ad hoc networks,
however, the rates of these flows are different. For example, in the 4-hop chain topology,
x1 �= x2. This is because, in wireline network flow f1 – f4 enjoy the same amount of
resource in the network, while in the wireless ad hoc network, due to location-dependent
contention, f2 suffers higher contention than f1. Alternatively, we can explain such
resource allocation through the price that they need to pay. For f1, the price is λ1 = µ1,
which is equal to 2.5 at equilibrium; while the price for f2 is λ2 = µ1 + µ2, which is
equal to 5.0.

From the results in the 5-hop topology example, we can show another interesting
observation in the ad hoc network scenario. In Table 5, we observe that x1 = x2,
although it seems that these two flows suffer different degrees of contention. This result
can be explained by the price of this flow, where λ1 = µ1 = 3, and λ2 = µ1 + µ2 = 3.
Because the prices they need to pay are the same and they have the same utility function,
they reach the same bandwidth allocation.

The reason why µ2 is 0 in Table 6 can be intuitively explained as follows. The three
cliques q1, q2 and q3 have the same traffic demand. When q1 and q3 are appropriately
priced, sufficient price has been charged on the network to arbitrate the resource usage,
thus no price is needed for clique q2. On the other hand, if only q2 is priced, then a
price is still required to regulate the channel access at wireless link {1, 2} and {5, 6}.



µ1 µ2 µ3 µ4 µ5

wireline network 1.2 1.2 1.2 1.2 1.2

wireless ad hoc network 3.0 0.0 3.0 N/A N/A

Table 6. Equilibrium prices in the 5-hop chain topology shown in Fig. 4(B)

Moreover, these two prices also regulate the subflows within q2, causing a decrease of
µ2. Eventually at equilibrium, µ2 = 0.

When we compare the rate allocation of the long flow which has a large number of
hops and the rate allocation with short flows, we notice that the long flow is penalized
compared to the short flows. This observation is consistent with the previously pre-
sented observations in wireline networks under proportional fairness model [4]. How-
ever, the degree of penalties is different in these two networks. In the wireline network,
the ratio of rate allocation for short flows and long flows are equal, e.g., in the 4-hop
topology, x1

x5
= x2

x5
= x3

x5
= x4

x5
= 4. In the ad hoc network with the 4-hop topology,

such ratio depends on the location of the flows. For example, in the ad hoc network
x1
x5

= 6, x2
x5

= 3.

6.2 Convergence of the iterative algorithm
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Fig. 5. A random topology

We now show the convergence behavior of our proposed algorithm using three ex-
ample networks. They are the simple network in Fig. 1(A), the chain topology network
shown in Fig. 4(B) and a random generated network shown in Fig. 5. For each exam-
ple, we have plotted the time-varying values of the transmission rate of each flow and
shadow price at each clique in Fig. 6, Fig. 7 and Fig. 8.

We note that the system converges to an equilibrium rate allocation and an equilib-
rium price vector within 800 iterations. This result is comparable to other relay-based
pricing scheme in ad hoc networks [8]. In a mobile environment, such a convergence
time will be orders of magnitude lower than the topology changing time.
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7 Concluding Remarks

In this paper, we have presented a novel pricing-based resource allocation algorithm
based on an analytical pricing model that is specifically designed for the unique charac-
teristics of multi-hop wireless ad hoc networks. The original contribution incorporated
in the pricing model is the association of shadow prices with the maximal cliques in
the contention graph model, rather than with individual links as in wireline networks.
Based on insights brought forth by such strategies, the algorithms proposed are fully dis-
tributed, and arbitrate the contention among end-to-end multi-hop flows with respect to
fair resource allocation. The frequently used fairness constraints, such as weighted pro-
portional or max-min fairness, may be straightforwardly supported by assigning their
corresponding utility functions in the pricing model. The validity of our claims is sup-
ported by both theoretical studies and extensive simulation results. To the best of our
knowledge, there does not exist any previous work that addresses the problem of enforc-
ing fairness among multi-hop flows, especially when a pricie-based approach is utilized
to design fully distributed algorithms to achieve this goal.
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