
Circa: collaborative code offloading among multiple mobile devices

Xueling Lin1 • Jingjie Jiang1,2 • Calvin Hong Yi Li3 • Bo Li1 • Baochun Li4

� Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
For mobile users who seek extra power or computing resources to perform computation-intensive tasks, code offloading to

remote infrastructures is a promising solution. However, most of the recent works mainly target on code offloading from

single mobile devices to remote cloud servers, which restricts the potential of offloading only to devices with available

Internet access. Moreover, offloading to remote cloud computing platforms is not always guaranteed to be time efficient

and energy conserving. In this paper, we propose Circa, a framework that demonstrates the feasibility of code offloading

among multiple mobile devices in the same vicinity, leveraging the presence of iBeacons. Circa eliminates the costs

incurred by connecting to a remote cloud and running virtual machine instances in the cloud. With iBeacons, neighbouring

devices can discover and support one another through collaborative code offloading with short-range communication,

obviating the need for centralized servers. We also propose task allocation algorithms to select reliable collaborators

among nearby mobile devices and disseminate the computation intensive tasks among them efficiently in a fair fashion.

The performance of the task allocation algorithm is evaluated based on three different mobility models. We also implement

a prototype of the Circa framework on an iOS platform and validate its feasibility and efficiency using iOS devices.

According to the experimental results, by involving nearby mobile devices as collaborators, Circa is able to reduce the total

execution time of an offloaded task substantially, while preserving the satisfactory performance of mobile applications.

Keywords Cloud computing � Mobile computing � Remote offload � Mobile communication

1 Introduction

With the incredible prevalence of smartphones, mobile

applications are becoming increasingly ubiquitous, taking

the leading role in personal communication as well as

information processing. Nowadays, numerous native

applications on mobile and wearable devices have blos-

somed to servers as more convenient substitutes to web

applications.

Nevertheless, since mobile devices are still resource

constrained, the execution of computation intensive or

power draining applications still puts a heavy burden on

devices, which may lead to a poor performance and enor-

mous energy consumption. For instance, a device with low-

end CPU may exceed its computational limits before

obtaining the translation results of a long voice message

processed locally; a low-battery device may even power off

before the computation finishes.

Computation offloading is a promising technique to

alleviate such problems. With abundant computing and

power resources in cloud computing infrastructures, it is

& Xueling Lin

xlinai@cse.ust.hk

Jingjie Jiang

jiang.jingjie@huawei.com

Calvin Hong Yi Li

cli78@jhu.edu

Bo Li

bli@cse.ust.hk

Baochun Li

bli@ece.toronto.edu

1 Department of Computer Science and Engineering, Hong

Kong University of Science and Technology, Hong Kong,

China

2 Future Network Theory Lab, Huawei Technologies,

Hong Kong, China

3 Department of Computer Science, Whiting School of

Engineering, Johns Hopkins University, Baltimore, USA

4 Department of Electrical and Computer Engineering,

University of Toronto, Toronto, Canada

123

Wireless Networks
https://doi.org/10.1007/s11276-018-1824-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-6819-3406
http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-018-1824-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-018-1824-y&domain=pdf
https://doi.org/10.1007/s11276-018-1824-y

feasible to offload a portion of a computational task of

resource-intensive applications to cloud servers [1–3]. This

can further enable numerous types of applications, such as

natural language translation, face recognition and aug-

mented reality, to run on tiny handhold, wearable or body-

implanted platforms. The increasing level of parallelism

can also enhance the performance of mobile applications.

Unfortunately, offloading to remote cloud computing

platforms is not always guaranteed to be time efficient

and energy conserving. When the network bandwidth is

fairly limited, it may be too slow to transmit data between

mobile devices and remote servers; when the network

status is highly unstable, maintaining a connection to a

cloud might consume more energy than local computa-

tion. To make matters worse, some devices, such as

smartwatches, have no access to clouds, due to hardware

restrictions or signal attenuation. In addition, the rental

expense of cloud servers could be too exorbitant for a

mobile user.

In this paper, we propose to detour from the conven-

tional wisdom of offloading to the cloud. Instead, we focus

on the concept of collaborative offloading among multiple

mobile devices that are in close proximity to one another.

With the presence of iBeacons [4], an exciting technology

enabling new location-aware applications, devices entering

into a local area can discover each other through the unique

identifications distributed by a common iBeacon. A device

without sufficient computing capability or battery life can

then turn to its ‘‘neighbours’’ for help. Mobile devices that

are in the same vicinity can be involved in the same task

and work together.

We design and implement Circa, a new collaborative

offloading framework that identifies and selects a group of

mobile devices in the same vicinity, and involves them into

the same offloading task. With such collaborative

offloading among nearby devices, the costs involved in

running instances in the cloud and setting up connections to

the cloud will be eliminated, or at least reduced signifi-

cantly. Besides, devices that are incapable of connecting to

a cloud can also enjoy the benefits brought by computation

offloading. Furthermore, since the group of selected mobile

devices follow similar movement patterns in a relatively

stable mode, the probability of disconnection and trans-

mission errors is much lower.

The key to our framework is to identify and select a

group of adjacent mobile devices with the assistance of

iBeacons, and involve them into the same offloading task.

Our goal is to choose the available devices with abundant

computation resources that are potentially connected with

each other as the most reliable collaborators. The compu-

tation task is then divided and disseminated among these

devices in a fair fashion. We propose a task allocation

algorithm and a task priority scheduling algorithm to

achieve the aim of cutting down the total completion time

of the entire task.

To investigate the performance benefits brought by the

Circa system, we have carried out simulation experiments

based on different mobility models, including the Random

Waypoint Model, the Gauss–Morkov Model as well as the

Reference Point Group Model. We have also implemented

Circa on the iOS development platform, and evaluated its

effectiveness and performance in a number of practical

scenarios. As demonstrated by the experimental results, by

involving nearby mobile devices as collaborators, the total

time spent on the execution of the offloaded task can be

reduced substantially.

Organization The remainder of this paper is organized

as follows. Section 2 discusses our contributions in the

context of related work. In Sect. 3, we introduce the

background knowledge of iBeacons and describe the

motivating examples of our framework under different

scenarios. In Sect. 4, we present the workflow of collabo-

rative offloading, including setting up a connection among

devices and determining the most reliable and valuable

collaborators. Task allocation and priority assignment

algorithms are proposed in Sect. 5 to minimize the overall

completion time of a task when it is disseminated among a

group of mobile device collaborators. We undertake an

extensive evaluation of the Circa system in Sect. 6. We

evaluate our framework through prototype-based experi-

ments in Sect. 7. Some possible extensions to our frame-

work are discussed after the concluding remarks in Sect. 8.

2 Related work

2.1 Code offloading to remote servers

Most existing works, such as MAUI [1], CloneCloud [2],

ThinkAir [3] and COMET [5], mainly focus on code

offloading between mobile devices and cloud servers. With

the objective of reducing local energy consumption, such

frameworks try to determine which parts of an application

could be offloaded to a remote server at runtime. The

offloading granularities vary from function calls to running

threads.

Similar working schemes include Cloudlets [6], which is

a trusted, resource-rich computer or cluster of computers

that is well-connected to the Internet and available for

nearby mobile devices. Cuckoo [7] also presents a feasible

framework that offloads mobile applications to a cloud

server equipped with a Java stub/proxy model. It offers a

simple way for the application user to collect remote

resources. However, neither of them is easy to implement

as a practical framework in reality, since the mobility

nature of mobile devices is not taken into account.

Wireless Networks

123

There are also other works that aims at improving the

efficiency of the computation offloading task. Hermes [8]

searches for the optimal strategy that balances between

latency improvement and energy consumption of mobile

devices during the offloading task. Chen et al. [9] proposes

a game theoretic approach for the computation offloading

decision making problem among multiple mobile device

users for mobile-edge cloud computing. In this work, the

problem is formulated as a multi-user computation

offloading game, which always admits a Nash Equilibrium.

Zhou et al. [10] also provides a context-aware offloading

decision algorithm, aiming to selecting wireless medium

and target cloud resources based on the device context at

runtime. Flores et al. [11] contributes by proposing

crowdsourced evidence traces as a novel mechanism to

optimize offloading decision making.

Nevertheless, most of these works only consider

offloading via the Internet to powerful servers in a remote

cloud. Involving remote servers, however, requires an

Internet connection through a cellular or Wifi network.

Since the network status between cloud servers and a

mobile device is highly unstable, the device may lose its

Internet connection to remote servers before the computa-

tion finishes. Moreover, some devices, such as smart-

watches, may not even have Internet access due to their

hardware constraints.

Our work is closely related to those that also consider a

collaborated scheme in cloud computing, which regard

devices as a part of cloud, utilizing the remaining resources

of mobile devices. Usually the cloud server acts as the

controller and scheduler of the collaboration among mul-

tiple devices. However, in our framework, one or more

initial mobile devices will take the leading role to choose

and coordinate the collaborators.

2.2 Code offloading among mobile devices

As mentioned in the previous section, if we only consider

offloading via the Internet to powerful remote servers, the

long WAN latency and the energy consumed in the trans-

mission process will be an inevitable problem. Recently,

there has been a growing interest in utilizing mobile

devices in building a mobile computing system. To avoid

the long latency which occurs in WANs, the idea of

‘‘Mobile Cloud’’ is proposed in order to take advantage of

computing power in proximity to achieve execution and

energy saving.

To investigate how mobile devices can function as

resource providers and mutually help each other, Doolan

et al. in [12] design a mobile version of the standard

message passing interface over Bluetooth. They employ a

fully interconnected mesh structure so that all nodes can

directly communicate with each other. Due to the limited

communication range of Bluetooth, only devices in a small

physical area can form such a fully-interconnected local

network. Nevertheless, it is non-trivial to dynamically

identify such fully connected clusters under mobile envi-

ronments. In contrast, the Circa framework utilizes the

deployment of iBeacons to discover all the devices within

close proximity to one another, and enables local cooper-

ation among these devices.

Derived from Hadoop [13], Hyrax [14] also explores the

possibility of using mobile phones as resource providers.

However, a central server is required to collect device

information and coordinate computation jobs. Therefore,

Hyrax shares the same deficiencies as the remote offload-

ing frameworks: the unpredictable delay between a remote

server and a device may lead to severe performance

degradation, incurring intolerable computation latencies.

Furthermore, Hyrax only works for a set of smartphones

that connect to each other via plain TCP/IP sockets, and

thus cannot be applied to a realistic setting where smart-

phones do not have global, unrestricted IP addresses.

Leveraging iBeacons, devices in our framework can effi-

ciently identify one another through the unique IDs dis-

tributed by their neighboring beacons.

Another similar work is presented by Black and Edgar

[15], which demonstrates the feasibility of using mobile

devices as part of a grid by implementing the BOINC [16]

client on Apple iPhones. Work units are downloaded from

a BOINC server and executed on an iPhone via a virtual

machine emulating an �86 processor. Afterwards the

results are uploaded to the cloud. Similar working schemes

include the Codor system architecture [17], SETI@home

[18] and folding@home [19]. However, there is still no

consideration about the mobility patterns and the collabo-

ration schemes of the mobile devices.

Serenity [20] is another work designed for computation

offloading among intermittently connected mobile devices.

It enables a mobile initiator to use the computational

resources of other mobile systems in its environment. The

authors in [21] investigates how to map a job to a set of

available devices so that the devices can perform a portion of

the job with their own resources. Works like [21–26] also

share a common objective to allow a mobile device to utilize

other computing resources to accomplish its own work. The

target of these works is to save computation for the

offloading devices that offload computation to other devices.

Specifically, [27] extend the idea of code offloading to

wearable computing by proposing a three-layer architec-

ture, which consists of wearable devices, mobile devices

and remote cloud servers. In particular, a portion of com-

putation tasks are offloaded from wearable devices to local

mobile devices or remote cloud such that even applications

with heavy computation load can still be upheld on wear-

able devices.

Wireless Networks

123

However, in all the works mentioned above, the incen-

tive of participants and collaboration is not taken into

account. In our framework, before a device borrows com-

putation power from other mobile devices with the same

job objective and shares the workload with them, it must

also donate parts of its own resources to them. Thus free-

riders are prevented.

We proposed the idea of offloading the computation-

intensive task to nearby devices with the assistance of

iBeacons in [28]. In this paper, we extend the previous idea

by formally describing the framework and designing task

allocation algorithms in the offloading process, and

demonstrating the feasibility and efficiency og the frame-

work with more experimental results.

3 Background and motivation

In this section, we first introduce iBeacons, a new wireless

location-based transmitter technology that we adapt in

Circa to detect mobile devices in its proximity, in order to

set up connections among these devices. Afterwards, we

illustrate two practical scenarios that motivate the design of

the Circa framework.

3.1 iBeacon: a proximity detector

How can mobile devices easily discover each other as

neighbours? This is one of the major and crucial problems

that we need to solve in our framework design. We propose

iBeacon, a new wireless location-based transmitter that

detects mobile devices in its proximity, as a solution to this

problem. In this subsection, we give a brief introduction of

the iBeacon technology and demonstrate the workflow that

we adapt into the Circa working scheme as the key factor

to help devices connect with one another.

Introduced in iOS 7, iBeacon is an exciting technology

proposed by Apple Inc. which enables new location-aware

information and services for mobile devices. Leveraging

Bluetooth low-energy (BLE) for short-range communica-

tion, a device with iBeacon technology can establish a

region around itself. Each iBeacon (called a beacon) has a

unique 20-byte ID, which is divided into three sections:

proximity UUID (16 bytes), major number (2 bytes) and

minor number (2 bytes). A beacon continuously broadcasts

its unique ID via BLE to devices in its close proximity. The

broadcast coverage of a beacon could be as small as 2

inches and as large as 230 feet away, since its Bluetooth

signal can diffract, be interfered with or be absorbed by its

surroundings.

Any mobile device entering such beacon coverage can

receive its unique ID without a priori and explicit pairing

procedures. Devices probe a beacon’s signal and refresh

their relative distance at fixed intervals, which is usually set

to 1.0 s in most cases. The concept of beacons is similar to

the small light towers that are installed in fixed locations

and broadcast their presence to ships (smartphones) in the

vicinity.

A related event will be triggered by the application of a

mobile device when it enters or exists in the region covered

by the beacon, which can be applied to inform the device

about its geographical location changes [4]. The coverages

of different beacons overlap with each other. Mobile

devices in the overlapping area can pick up the unique IDs

broadcasted by multiple beacons, and estimate their dis-

tances to those beacons by measuring the received signal

strength (RSSI) [29]. The closer a device is to a beacon, the

stronger the corresponding signal it can receive. Thus, the

mobile device will be able to learn its relative location

based on the knowledge of its estimated distance to each

beacon.

The application scenario of iBeacons is simple and

straightforward. As shown in Fig. 1, all the devices resid-

ing within a beacon’s coverage receive the unique ID of the

corresponding beacon. By checking the beacon IDs picked

up by others, a device can easily discover the ones that stay

in the same beacon region and form a collaborative group

with them. As the key to identifying such groups, iBeacons

play crucial roles in the Circa framework.

3.2 Motivating scenarios

To better demonstrate the highlights of collaborative code

offloading, we present two scenarios as motivating exam-

ples. In these scenarios, devices can come across their

hardware limitations or failures, get rid of the poor network

performance resulting from their mobility, and embrace the

benefits of code offloading.

Suppose a scholar is attending a meeting held in a

conference hall without available WiFi network. Unfortu-

nately, he forgets to bring his smart phone and merely

wears a smart watch, which has no cellular network.

However, with the mobile collaborative offloading frame-

work, the scholar can still enjoy the speech recognition and

Fig. 1 The way an iBeacon works with mobile devices

Wireless Networks

123

face recognition application, by sending the speech and

image data to a nearby smart phone that is more powerful

via Bluetooth.

For another example, a group of users are staying in

front of a piece of glorious artwork in a museum. Each user

uses their mobile device to take a snap of the artwork from

their own unique angle. Thanks to the help of the mobile

collaborative offloading framework, they can easily dis-

tinguish each other as nearby collaborators, and are thus

capable of building a 3D model of the artwork together by

allocating the 3D modeling task among one another.

The first example above implies the potential benefits

brought by collaborative offloading when hardware failure

or network disconnection appears in some devices. In

contrast, the second example demonstrates the value of

collaborative offloading in location-based activities, where

the collaborating devices share the same objective to

complete a computationally intensive task in a parallel

fashion.

One essential incentive of collaborative offloading is

that all of the participating devices should provide some

types of original resource before they can enjoy the result.

In the first example, the user with the smart watch shares

the recording file of a talk among the nearby users before

he can obtain the translation result. As for the second

example, everyone donates a snap of the artwork from their

own angle before obtaining the complete 3D model.

Therefore, in the mechanisms for both scenarios, the free

rider problem is inherently avoided.

4 System design and job model

In this section, we present the design of the Circa frame-

work. Circa consists of a code offloading workflow that

involves three basic phases. In the first phase, all mobile

devices that stay in the region of a beacon establish con-

nections with one another. In the second phase, Circa

determines which devices should be involved in the task as

reliable collaborators according to different factors,

including their battery levels, memories and mobility pat-

terns. Lastly, we apply a task allocation algorithm to dis-

tribute subtasks among each of the participating devices to

proceed via Bluetooth.

4.1 Establish connections based on iBeacons

In this phase, we aim at setting up a connection between

each pair of devices that are within the region of a beacon.

There are several beacons that broadcast their unique

IDs in a certain area. Each mobile device that enters in the

Bluetooth transmission regions of the beacons will auto-

matically pick up the ID of each beacon. Once a device

starts our application, it can detect all beacons in its

proximity and estimate its distance to those beacons.

Devices probe the signal of beacons every second.

Afterwards, a peer discovery mode inherited from the

GameKit framework [30] is applied to establish connec-

tions between devices. Specifically, a GKSession object

provides the devices with the ability to discover and con-

nect to nearby mobile devices using Bluetooth. Devices

connected to an ad-hoc wireless network are known as

peers. A peer is synonymous with a session object running

inside our application. Each peer creates a unique peer

identification string (session ID), which is used to identify

itself to other peers in the network [31]. In the Circa

framework, sessions discover other peers based on a ses-

sion mode, which is set when the session is initialized

according to the role of the devices as explained below.

A mobile device should choose one of the following

three roles:

Server A mobile device acts as a server of a session

when it needs to offload a portion or all of its current task

to other devices, if at least one of the following 4 condi-

tions is satisfied:

a) its remaining battery capacity falls below a certain

threshold;

b) according to its historic profiling, both of the energy

consumption and time duration of the requested task

exceed specific thresholds;

c) due to hardware constraints, offloading the current

task to other devices is of necessity, e.g. the speech

recognition task run by the smartwatch mentioned in

Sect. 3;

d) it is required to participate in a task that demands

collaboration with others, e.g., the collaborative 3D

modeling task mentioned in Sect. 3.

Client A device serves as a client if it is willing to accept an

offloading request, when both of the following two

requirements are met:

a) its remaining battery capacity is over a certain

threshold;

b) according to its historic profiling, both the energy

consumption and time duration of the requested task

are below specific thresholds, or it is a task that

demands collaboration with others.

Bystander A device acts as a bystander, if it is neither in

demand for offloading tasks to others, nor willing to accept

offloading requests from others. A bystander does nothing

in the whole process.

A server advertises its service type with a session

identification string (sessionID) which is the same as the

unique ID of the beacon that it picks up. If a server collects

more than one beacon ID, it will advertise a set of session

Wireless Networks

123

IDs that contains every beacon ID it obtained. A client

records all the beacon IDs it has picked up as session IDs.

It keeps listening for the session IDs broadcasted by other

servers and only connects to those servers that have one or

more matching session ID. Thus, devices are able to

establish connections with one another if and only if they

stay in the region of the same beacon.

We illustrate the first phase through an example shown

in Fig. 2. Suppose there are two mobile devices, A and B.

They stay in the region of a certain beacon, whose unique

ID is ‘7’ for short. When A and B start our application, they

can detect all beacons in proximity as well as their updated

distances. Meanwhile, A and B record the session ID which

is exactly the same as the unique ID of the beacon (‘7’).

When A needs to offload tasks, it directly advertises ‘7’ as

its session ID. If B is willing to collaborate with others, it

will start searching for other devices that are broadcasting

‘7’ as the session ID. Then A and B are able to connect to

each other successfully as a peer with the session ID ‘7’,

and proceed to the next phase.

4.2 Determine the potential collaborators

For a holistic view, our goal is to minimize the overall time

and energy consumption of all users accomplishing the job.

We assume that all users involved share the common goal

of finishing the job. What we need to do in this phase is to

pick out some of the mobile devices that have already built

up a connection to the server as the clients of the whole

computationally intensive task.

Although only devices that are geographically close to

each other can set up connections, it is still possible to

encounter disconnection problems if some collaborators

walk away during the offloading process without a prompt

or just simply shut down their devices. To avoid discon-

nection in the middle of an offloading process, we need to

conduct a reliability analysis to select the most reliable

devices as actual collaborators. If an unstable node could

be identified beforehand, the system can take precautions

by promoting task redundancy.

There are a few principles that a mobile device should

satisfy to become a qualified collaborator. Besides, there

are also some key observations that guide our selection

process. We discuss these principles and observations in

the rest of this section.

4.2.1 Communication relationship

In theCirca framework, the server device processes the input

data and splits the data into multiple subtask segments,

which are passed to the clients. These parallel tasks are

executed independently on the clients. The workload of each

subtask is determined in the allocation algorithm, which

basically relies on the computation ability and resource of

the devices that are supposed to execute these tasks. In our

design scheme, the workload of each of the subtasks is set to

be equivalent to each other. Afterwards, the computation

results will be transferred back to the server. Therefore, the

determination of the potential and reliable collaborators is a

key problem in theCirca framework. For each server device,

we consider all the other devices in its communication

relationships as potential collaborators.

To describe the communication relationships of the

potentially collaborative mobile users, for each beacon, we

use a resource graph Gr ¼ ðV; LÞ, with the set of nodes

V ¼ fv0; v1; . . .; vi�1g. Each of the nodes in the graph

represents a mobile device that stays in the transmission

region of this beacon. The internal node represents the

server and the leaf nodes represent the clients. Since one

client will only match one server, we will not consider the

communication relationship between the clients. Each of

the links li;j 2 L of the graph represents the communication

channel from user i to userj. If li;j ¼ 1, it means device i

and device j are able to exchange resource with each other.

In the beginning, there will be edges between some pairs of

nodes in V that stay in the same region and automatically

set up a connection with each other. Since devices in the

Circa framework probe a beacon’s signal and refresh their

relative distances at fixed intervals, the graph will also

update at fixed intervals. In the Circa framework, the

resource graph updates every second.

We assume that currently there are m mobile devices

connected to a server as clients. After connections are

established, each client sends a tiny piece of message to the

server, which includes its battery level (in percentage),

available memory (in MB) and the time span (in seconds)

that it has been in the current region. Based on the relia-

bility analysis, the server then generates a ranked list of the

m devices.

Fig. 2 Peer connection example

Wireless Networks

123

4.2.2 Neighbourhood

We give the following definitions of neighbourhoods of a

mobile device in our framework.

Definition 1 One-hop neighbourhood (N1ðviÞ)
8vi 2 V, the 1-hop neighbourhood of node vi is defined

as

N1ðviÞ ¼ fvj j vj 2 V; li;j ¼ 1g

The physical meaning of 1-hop neighbourhood is the set

of the devices that can be directly reached from device vi
via 1-hop neighbours within the transmission regions of

one or more beacons.

Definition 2 h-hop neighbourhood (NhðviÞ)
8vi 2 V, the h-hop neighbourhood of node vi is defined

as

NhðviÞ ¼ vk

�
�
�
�
9vj 2 Nh�1ðviÞ; vk 2 N1ðvjÞ; vk 62

[h�1

i¼1

NiðviÞ
()

The physical meaning of 1-hop neighbourhood is the set

of devices that can be reached from device vi via its mul-

tiple-hop neighbours within the transmission region of

several beacons, by passing at most h links.

Observation 1 Devices that are in the h-hop neighbour-

hood (h[1) of the server should be considered to be less

reliable and ranked lower.

Suppose that there is a device vm, who is in the h-hop

neighbourhood (h[1) of the server vs. vm can only

exchange resource and information with vs by offloading its

resource to one of the devices, v0m, which is in both N1ðvmÞ
and Nh�1ðvsÞ. Then v0m should stay on to pass the resource

to v00m, which is in N1ðv0mÞ and Nh�2ðvsÞ. All in all, the

resource must be transmitted h times from one device to

another before it reaches the server vs. The transmission

process will be successful if and only if all the intermediate

devices stays and works properly in their current region. If

one of the intermediate devices walks away during the

computation and offloading process, the results would

never be transferred to the destination. In other words, the

communication between the devices in the h-hop neigh-

bourhood (h[1) of the server depends on the devices in

the i-hop neighbourhood (0\i\h� 1) of the server.

To simplify the whole communication process, we do

not take the devices in the h-hop neighbourhood (h[1) of

the server into consideration. Instead, we only choose the

devices that are in 1-hop distance from the server as our

potential collaborators. However, during the computation

and offloading process, when one collaborator, vj, discon-

nects with the server and if it still maintains the connection

to one of the 1-hop neighbours of the server, v0j, vj will

consider transferring the results of its subtask to v0j and let

v0j and the server communicate with each other. The details

of this process are discussed in the next section.

4.2.3 Battery level and available memory

We make the following observation based on the battery

level and available memory of a device.

Observation 2 Devices with higher battery and available

memory should be considered to be more reliable and

ranked higher.

Since the probability that the aforementioned devices run-

ning out of battery or memory during the offloading process is

much lower, it is less likely for us to encounter disconnection if

they are chosen to be the collaborators. Let bi be the battery

level (in percentage) of the i-th mobile device among the

1; 2; . . .;m devices. Let ai be the available memory (inMB) of

the i-th mobile device. Thus the energy level Ei of the i-th

mobile device can be formulated as follows:

Ei ¼ bi � ai ð1Þ

4.3 Residence time

Definition 3 Residence Time is the time duration that a

client stays in the 1-hop neighbourhood of a certain server.

Observation 3 Devices whose residence time are too short

or too long should be considered to be less reliable and

ranked lower.

Mobile devices that enter in the 1-hop neighbourhood of

the server for just a few seconds are more likely to be

passers-by, who will leave in a short time. On the contrary,

those with longer residence time tend to leave soon, since

they may finish their tour in the current region soon, and

would like to move to another region. Hence the proba-

bility of disconnection would be higher if we select them as

collaborators.

We use a normal distribution to represent the avail-

ability of mobile device, depending on the time that it has

already stayed in the 1-hop neighbourhood of the server.

Let l be the average time span (in seconds) that those

qualified collaborators have been connected to the server.

Let r be the standard deviation of the time span (in sec-

onds). Let t be the time span (in seconds) that the i-th

mobile device has been connected to the server as its 1-hop

neighbour. Thus the availability uiðtÞ of the i-th mobile

device can be formulated as follows:

Wireless Networks

123

uiðtÞ ¼
1
ffiffiffiffiffiffi

2p
p

r
e
�ðt�lÞ2

2r2 ð2Þ

In the Circa framework, each server will record the aver-

age time duration that its collaborators have stayed in its

1-hop neighbourhood as well as the standard deviation of

the time span. These two values will update after the

resource graph is updated at a fixed time interval.

4.3.1 Ranking

Finally, let Ri be the reliability level of the i-th mobile

device in the 1-hop neighbourhood of the server, which can

be formulated as follows:

Ri ¼ Ei þ auiðtÞ ¼ biai þ a
1
ffiffiffiffiffiffi

2p
p

r
e�

ðt�lÞ2

2r2 ð3Þ

In this function, a is introduced to combine the energy level

and availability of a single device. Therefore, arranging

reliability of each device from high to low, a ranked list

P ¼ fm0;m1;m2;m3; . . .g will be generated. A server will

choose those devices with higher rankings as its

collaborators.

Algorithm 1 ReliabilityRanking
Require: s, T, threshold, tolerance, α

/∗ s is the server, T is the subtask set delivered by the
server, threshold is the threshold of the collaborators quantity,
tolerance is the delay tolerance of unreceived subtask result, α
is used to combine the energy level and availability of a single de-
vice. ∗/

1: s.connectionDurationList = ∅
2: T.suspendedSubtasksList = ∅
3: T.executingSubtasksList = ∅
4: T.finishedSubtasksList = ∅
5: T.oldCollaboratorsList = ∅
6: while finishedSubtasksList.size() <T.size() do
7: P = ∅
8: N1(s) = oneHopNeighbours(s)
9: for all v ∈ N1(s) do
10: μ ← connectionDurationList.getAverage()
11: σ ← connectionDurationList.getStandardDeviation()
12: v.ranking ← v.getBatterry() ∗ v.getMemory() +α∗

normalDistribution(μ, σ, v.timeDuration)
13: P ← v
14: end for
15: collaboratorsSort(P, threshold)
16: if v /∈ N1(s) then
17: s.connectionDurationList.add(v.timeDuration)
18: end if
19: if contact.controllbleState = TRUE then
20: CONTROLLABLECONTACTALLOCATION(T, P) /∗ will be

discussed in Section 5.1.1 ∗/
21: else
22: UNCONTROLLABLECONTACTALLOCATION(T, P,

tolenrance) /∗ will be discussed in Section 5.1.2 ∗/
23: end if
24: end while

We use a threshold here to determine the quantity of

mobile devices we need to involve. In order to achieve the

best performance with the least energy consumption and

transmission latency, it is important for us to decide how

many devices should be picked out as collaborators from

the ranked list, which is obtained in the previous step.

The main challenge of this problem is to balance the

trade-off among energy cost, transmit latency and appli-

cation performance. More collaborators lead to better

application performance for the following reasons. First of

all, after offloading part of its computation task to other

devices, a single device incurs less energy cost. Moreover,

since the collaborators share a common object to achieve a

positive outcome, the performance can be enhanced if the

execution sequence of the application can be reordered so

as to increase the level of parallelism. The total time

required to finish the whole task could also be cut down.

However, involving more nearby devices as potential col-

laborators will inevitably cause longer delay, since it takes

extra time for all the devices to connect to each other.

As shown in Algorithm 1, our goal is to keep the

quantity of collaborators below a certain threshold t. Thus

each time after we rank the potential collaborators, we will

only keep the t mobile devices that have a higher reliability

level as the final collaborators.

4.4 Working schemes

There are 2 different kinds of work schemes in the Circa

framework.

One server and multiple clients The server does not

execute any task on its own. In this scheme, a single server

device broadcasts its offloading requests to other mobile

devices that are within the same region, e.g. such as pro-

cessing the speech recognition task run by the smartwatch

mentioned in Sect. 3. The offloaded task is then divided

into multiple smaller subtasks, each of which is transmitted

to one client device. The workload of each subtask is

similar to one another to simplify the task allocation. In this

case, there is one server and multiple clients. A mobile

device acts as either a server or a client.

Multiple servers and multiple clients A node can be both

a server and a client. In this scheme, all the mobile devices

share the same goal to complete one computation-intensive

task. Each of the devices provides its own original resource

and takes its own responsibility to accomplish the given

part of the computation, e.g., when processing the collab-

orative 3D modelling task mentioned in Sect. 3. In this

case, there are multiple servers and multiple clients. A

mobile device serves as both a server and a client at the

same time.

Wireless Networks

123

5 Task allocation and priority assignment
algorithms

5.1 Task allocation algorithms

In most mobile code offloading frameworks, in order to

improve the performance of computation-intensive tasks, it

is necessary to cut down the total completion time. Noted

that the time for each collaborating device to receive its

target subtasks may be different, because of varying

availability levels and mobility patterns that may affect the

Bluetooth signal strength. The execution time of each

subtask on different clients may also vary, based on the

computation ability of different devices. Similarly, the time

for clients to transfer their subtasks back to the server

devices also depends on their mobility patterns.

Our target is to reduce the total completion time of the

whole task, by allocating the subtasks wisely among the

most reliable devices with stronger computation abilities.

We consider two different working schemes when

designing the task allocation algorithm. One is the model

with controllable contact knowledge and the other one is

the model with uncontrollable contact knowledge. The task

allocation for PNP-blocks in Serenity [20] also considers

the design of algorithms in the context of several models

with different contact knowledge and control channel

availability knowledge, aimed at minimizing the job

completion time. However, our design mainly focuses on

the choosing the most reliable devices as collaborators

according to the availability ranking list.

5.1.1 Task allocation with controllable contact knowledge

First of all, we consider a scheme with an ideal connection

setting so that a device must stay in its current region until

the subtask allocated to it is finished. In other words, the

contact of collaborators is controllable, since a subtask is

guaranteed to be completed after the allocation. This sce-

nario achieves the best possible performance of the subtask

allocation algorithm in our framework.

With a controllable future connection and contact

information, we propose a task allocation algorithm that

greedily picks out the most reliable clients among a group

of potential collaborators of the server, which are chosen

from the 1-hop neighbours of the server by Algorithm 1

after each update of the resource graph.

After each update of the potential collaborators of the

server, the algorithm iteratively picks out the devices with

the highest reliability ranking as the clients to receive the

subtasks from the server. For each client chosen, the

algorithm first examines whether the client is carrying a

unfinished subtask with it. If yes, the execution of the

subtask will be continued on the device. If not, a new

subtask will be assigned to the device. Since the ideal

network connection setting assumes that the clients will not

disconnect with the server before the server receives the

computation result of the subtask from the client, there will

not be no subtasks abandoned during the offloading pro-

cess. Once a certain subtask is delivered to a client, it is

guaranteed to be completed and the result will be trans-

ferred back to the server.

5.1.2 Task allocation without controllable contact
knowledge

Under the scenario that without any controllable contact, it

is impossible to reserve a collaborator in advance for the

whole task execution period. Thus we propose another

algorithm, which allocates the subtasks in an opportunistic

way, to solve this problem.

The general idea of this algorithm is that during the

subtask dissemination process, the other intermediate

nodes can also execute these subtasks. Since there is no

controllable future contact knowledge, a client may leave

its current area and disconnect with the server, even though

the subtask is not finished. Thus, instead of assigning a

subtask to a particular client device and let this client

device execute the whole subtask until the computation is

finished, in this algorithm, all the devices encountered by

the client devices can share the responsibility to complete

the subtask. The devices that previously serve as clients of

the server but have disconnected with the server also have

the chance to opportunistically disseminate the subtasks to

other devices.

For example, we assume that in the beginning, the server

will only consider the clients that are in its 1-hop neigh-

bourhood as potential collaborators. However, during the

dissemination and computation process, some old clients

may leave the current region and no longer return the

results back to the server. Meanwhile, there may be other

devices that walk into the 1-hop neighbourhood of such

clients. Actually, those non-working clients can still make

their own contribution by transferring their unfinished

subtask to the new arrivals that are connected to them.

These new arrivals can keep the suspended jobs for them

and start working on these jobs if they meet the server and

connect to the server in the future. We demonstrate the task

allocation design in Algorithm 4.

However, although we assume that all of the devices

involved are collaborative and trustworthy, there will still

be some extreme cases in this scenario.

Selfish devices Selfish devices refer to those devices that

accept the request, but refuse to carry on the computation

process or send the result back. Such situations may occur

when there is a network disconnection. The clients chosen

Wireless Networks

123

by the server may leave their current working transmission

regions owing to some emergency or just simply shut down

their devices because they run out of battery. Token-based

incentive mechanism [32] is proposed as a solution to this

problem, which makes use of notional credit to pay off

nodes for executing tasks, and can be applied as a pre-

caution against selfish devices.

In the scenario of Circa, our precaution against selfish

devices is to send the intermittent result to the encountered

devices of the leaving clients. Once when a client leaves its

server with an unfinished subtask, it acts as a server and

looks for other clients in its one-hop neighbourhood that

volunteers to take its task. After these clients accept the

subtasks from the old collaborators, they execute the

remaining parts of the subtask if they meet the original

server and pass the computation result to the server.

However, it is still possible that after the departing client

delivers the subtask to the other devices it encounters, these

devices never meets the original server. Such situations

may occur when some devices passively try to learn the

computation results from others and refuse to return its

own computational result. The drawback is that it will get a

peak into the computation tasks and lead to delay of the

task completion. In order to address this problem, we set a

time tolerance threshold in both the server and these newly-

joined clients. For a device serving as server, if the time

duration that the server waits for the result of a certain

subtask exceeds the time tolerance, the server will resend

this subtask to another client. Moreover, for a device

serving as server and client at the same time, if the duration

between the time that it receives results from other clients

and the time that it starts to offload results to other clients

exceeds the time tolerance, this device will be excluded

from the working list, and the subtasks that have been

assigned to this client will be resent to another client. In

Algorithm 4, we use time tolerance to control the working

sequence of the subtasks.

Malicious devices Malicious devices refer to the devices

that distort the result. The data of the computation result

transferred back by a malicious device may be incorrect. In

a collaborative computing process, such incorrect results

may lead to the failure of the whole task. To guarantee the

correctness of the whole computation task, reputation-

based trust [33], in which devices construct and share their

reputation information, can be applied in the collaborating

process. In our working scheme, if a server receives an

incorrect result from a client, it will record the information

of the client and penalize it in the reliability ranking in the

next rounds.

Algorithm 2 Suspended Subtask Allocation
1: Procedure SUSPENDEDSUBTASKALLOCATION(T) /∗ T is the

set of subtasks delivered by the server ∗/ /∗ when the leaving
collaborator carries a unfinished subtask, assign these suspended
subtasks to its one-hop neighbours ∗/

2: if T.leavingClientsList.size()!=0 then
3: for all l ∈ T.leavingClientsList do
4: if l.getSubtask() != NULL then
5: T.suspendedSubtasksList.add(l.getSubtask())
6: T.executingSubtasksList.add(l.getSubtask())
7: N ← ONEHOPNEIGHBOURS(l)
8: for all n ∈ N do
9: if n.getSubtask() == NULL then
10: n.assign(T.getCurrentSubtask())
11: end if
12: end for
13: end if
14: end for
15: end if
16: end Procedure

Algorithm 3 Overtimed Subtask Allocation
1: Procedure OVERTIMEDSUBTASKALLOCATION(t) /∗ t is the

subtask that are currently carried by the collaborator ∗/
/∗ if the result of the subtask carried has already been submitted,
drop the subtask ∗/

2: if SubtaskTmp ∈ T.finishedSubtasksList then
3: v.assginSubtask(NULL)
4: return TRUE
5: end if

/∗ if the result belongs some previously suspended subtask, send
the result to the server ∗/

6: if SubtaskTmp ∈ T.suspendedSubtasksList then
7: v.sendSubtaskResult();
8: T.suspendedSubtasksList.remove(SubtaskTmp)
9: return TRUE
10: end if
11: end Procedure

Wireless Networks

123

Algorithm 4 Task Allocation without Controllable Contact
1: Procedure UNONTROLLABLECONTACTALLOCA-

TION(T,P, tolenrance)
/∗ T is the set of subtasks delivered by the server, P is the updated
ranked set of potential collaborators of the server, tolenrance is
the delay tolerance of unreceived subtask result ∗/

2: T.stableClientsList ← P

3: T.stableClientsList.retainAll(T.oldClientsList)
4: T.leavingClientsList ← T.oldClientsList
5: T.leavingClientsList.removeAll(T.stableClientsList)
6: T.newClientsList ← P

7: T.newClientsList.removeAll(T.stableClientsList)
8: SUSPENDEDSUBTASKALLOCATION(T)
9: assignLoop:
10: for all v ∈ P do
11: SubtaskTmp ← v.getSubtask()
12: if SubtaskTmp != NULL then
13: if OVERTIMEDSUBTASKALLOCATION(SubtaskTmp)

== TRUE then
14: continue assignLoop
15: end if
16: v.executeSubtask();
17: T.executingSubtasksList.add(SubtaskTmp)
18: if v.isFinished() then
19: v.sendSubtaskResult();
20: T.finishedSubtask.add(v.getSubtask())
21: end if
22: continue
23: else
24: if T.finishedSubtask.size() == T.size() then
25: break assignLoop
26: end if

/∗ assign the overtime subtask in the waiting list to the col-
laborator ∗/

27: for all t ∈ T.suspendedSubtasksList do
28: if t .waitingTime > tolerance then
29: v.assignSubtask(t)
30: T.suspendedSubtasksList.remove(t)
31: T.executingSubtasksList.add(t)
32: continue assignLoop
33: end if
34: end for
35: v.assignSubtask(T.getNewSubtask())
36: T.executingSubtasksList.add(v.getSubtask())
37: end if
38: T.oldClientsList.clear()
39: end for
40: end Procedure

Redundant results There will be situations where a

server assigns the same subtask to two or more different

clients and receives the results from both, which leads to

redundant results. Such cases may happen when a selfish

device returns and connects to the server. If this device has

already delivered its subtask to another client and both this

selfish device and this client successfully offloads their

subtasks to the original server, there will be redundant

results for this subtask. Similar problems will also occur

when the server receives the computation result of a sub-

task that has already expired, i.e. its waiting time exceeds

the time tolerance and has already been sent to other

devices for further execution. There will be redundant

results if the server also collects the output of the same

subtask from the others

A precaution which helps to avoid redundant results is to

record the reassigned subtasks and finished subtasks, so as

to drop the redundant results. Algorithm 2 and Algorithm 3

are designed as a precaution against redundant results, by

analysing and allocating the overtimed subtask and sus-

pended subtasks wisely. If the subtask carried by a client is

already in the finished subtask list, it will be automatically

dropped by the client.

5.2 Priority scheduling algorithm

As mentioned in the previous subsection, the completion

time for the whole task can be reduced by allocating the

subtasks wisely to the clients of the server device. Fur-

thermore, although each subtask is executed parallel on the

clients, we should still consider the sending sequence of

these subtasks. Which subtask should we assign to the

device that come first in the reliability ranking list? Which

should be assigned to the second one?

It is possible that some computationally intensive task is

chronological. Some tasks can only be simultaneously

allocated after other tasks are completed. For example, in

the speech recognition application, those subtasks with

posterior content in time should be executed earlier, since

there will be information loss without the earlier content.

For such chronological subtasks, those with posterior

content should be assigned higher priority.

The task completion time can be reduced by assigning

properties to each subtask according to their chronological

Wireless Networks

123

order in the original task. In the scenario of Circa, for a

server device, we assign different priorities to the subtasks

of its task. Subtasks with more descendants should have

higher priorities.

Algorithm 5 Priority Assignment
1: Procedure PRIORITYASSIGNMENT(T)

/∗ Step 1: Assign same priority to each subtask ∗/
2: for t in T do
3: t.priority ← T.size()
4: end for

/∗ Step 2: Sort the subtasks according to the chronological order
of the whole task ∗/

5: for t in T do
6: t.priority ← t.priority − t.ascendantsList.size()
7: end for

/∗ Step 3: Sort the subtasks according to the number of their de-
scendants ∗/

8: for l in T.priorityList do
9: for t in l do
10: tmp ← l.descendantsList.getMax()-

t .descendantsList.size()
11: t .priority ← t .priority -(tmp)
12: end for
13: end for

/∗ Step 4: Randomly assign different priorities to those that are
with same priority ∗/

14: for t in T do
15: for t in T do
16: if t.priority == t .priority then
17: t .priority ← t .priority −1
18: end if
19: end for
20: end for
21: end Procedure

The details of the priority assignment algorithm is

shown in Algorithm 5. First of all, we assign the same

priority to each subtask. Afterwards, we sort the subtasks

according to the chronological order of the whole task.

Then the algorithm will sort the subtasks according to the

number of their children. In the last step, we randomly

assign different priorities to those that have the same pri-

ority. A subtask will not be sent to a client for computing

and processing until all the other subtasks with higher

priorities have been sent.

6 Performance evaluation

6.1 Simulation setup

To evaluate the performance of the task allocation algo-

rithms of our framework, we have carried out a simulation

based on different mobility models. Under each mobility

model, we configure the experimental settings such as the

number of nodes, node properties and speed, all of which

emulate the intermittent connectivity among nodes.

We use three mobility models to synthesize the con-

nections among the mobile devices within a simulation

area, including the Random Waypoint Model (RWP) [34] ,

the Gauss–Morkov Model (GM) [35] and the Reference

Point Group Model (RPG) [36].

The simulation area is 100 m � 100 m. There are 30

nodes in each simulation area, representing 30 mobile

devices. We use distance threshold, instead of contact

trace, to determine the contact relationship of the nodes,

since any two nodes can establish a connection with each

other if they enter the transmission region of the same

beacon. During the simulation process, if two devices set

up a connection with each other with the assistance of

iBeacons, there will be a link between the two nodes that

represent these two devices in the figure, indicating that the

two nodes are in contact with each other and are able to

exchange data and subtasks. The contact range is set to

15 m here, since the efficient transmission region of a

beacon is usually 15–20 m.

We have not adopted any contact traces in our mobility

emulation modules, since with the assistance of iBeacon,

any two devices within a certain beacon transmission

region are capable of setting up a connection with each

other.

In order to demonstrate how the Circa framework assists

the collaborative task offloading and computation of the

mobile device involved, we primarily compare the per-

formance of executing the tasks locally on the device that

act as a server with that of executing the divided subtasks

on Circa. Every experiment is repeated 10 times to acquire

the average values of the output results.

All the experiments presented are conducted on a

MacBook Pro with 2.9 GHz Intel Core i5 processor and 8

GB 2133 MHz LPDDR3 memory. The simulation program

is implemented using Python 2.7.

6.2 Performance evaluation

We compare the performance of the algorithms in this

section. As mentioned in Sect. 4, the task of the server

device is divided into multiple subtasks by a pre-process

program. Then the subtasks will be distributed to the client

devices for further processing. Finally, each client device

will offload its execution result to the post-process program

of the server device after the computation of its subtask is

finished. Then the post-process program of the server

device then assembles all the execution results it received

and comes out with the final complete result. In each of our

experiments, we randomly pick out one node in all the

involved nodes in the simulation as the server device, then

carry out the task allocation algorithms and the priority

scheduling algorithms on this node. One important

Wireless Networks

123

assumption of our simulation is that all of the devices

involved have the same objective, which is to complete the

task.

Figures 3, 4 and 5 demonstrate the performance benefits

of the two task allocation algorithms in Circa, compared to

local execution. We examine the completion time of dif-

ferent numbers of subtasks which are offloaded to the cli-

ents for execution under different scenarios.

Figure 3 shows the simulation results of the Random

Waypoint Model (RWP), while Fig. 4 demonstrates the

results of the Gauss–Morkov Model (GM) and Fig. 5

examines the results of the Reference Point Group Model

(RPG).

As shown in the figures, in all three mobility models,

when the number of subtasks increases, the performance

benefit of the task allocation algorithms become more

significant. With a higher workload, Circa is able to cut

down the total execution time of the input task by dis-

tributing the task among the nearby devices as collabora-

tors wisely. Moreover, we can observe that the

Predictable Allocation Algorithm consistently performs

slightly better than the Unpredictable Allocation Algo-

rithm, which indicates that the Circa framework achieves a

better performance with the control channel and future

contact information. Lastly, there are small difference

between the simulation results of different mobility mod-

els. The experimental results of the Reference Point Group

Model is the best, since in RPG, there are always groups of

users travelling together, which implies that it is quite

convenient for a server device to seek available and reli-

able collaborators, while the probability of connection

failure is also quite small.

In order to further analyze the impact of different

environments on the performance of the two task allocation

algorithms, we also compare the completion time of the

whole task with varying moving speed of the devices as

well as the density of the devices. According to the

experimental result shown in Fig. 6, when the speed

increases from 0 to 5 m/s, the task completion time is cut

down. Since the devices are moving freely in the fixed area,

the probability that each device encounters available col-

laborators will become higher. However, when the speed

increases from 5 to 10 m/s, the total execution time for the

whole task does not decrease largely.

The next experiment demonstrates the impact of node

density on the performance of the two task allocation

algorithms. Figure 7 shows the comparison of the task

completion time with different numbers of devices in a

fixed area. Based on the observation of the experimental

results, we can conclude that the task completion time will

be shorter with increased device density. We can also

observe that when the number of devices is larger than 40,

the task completion time will remain constant even if the

number of devices is increased.

We have also conducted another experiment to examine

the impact brought by the different thresholds of the

quantity of collaborators as well as the time delay toler-

ance. As demonstrated in Table 1, the total completion

time of the whole task is rather long when the threshold of

the number of collaborators is small. The task completion

time decreases when the threshold is set to be larger, since

the parallelism level of the whole task is increased, pro-

viding each of the subtasks the opportunity to run on dif-

ferent devices and save time.

However, if the threshold is larger than 6, the task

completion time increases, since the probability of dis-

connection during the offloading and remote computation

process is increased when more collaborators are involved.

It leads to extra time for reconnection and transmission

delay, hence the task completion time is proved to be

longer with too many collaborators.

Meanwhile, the task completion time is also affected by

the time delay tolerance, but not to a very large extent. It is

also a little bit long when the time tolerance is set to be

very short. It slightly decreases when the time delay tol-

erance is set to be longer. Nevertheless, when the time

delay tolerance is set to be too long, i.e., longer than 40 s

(more than two times longer than the subtask task com-

pletion time), it takes more time to finish the whole task.

According to the experimental results, we should choose

the proper value of the threshold of collaborator numbers

as well as the time delay tolerance to improve the perfor-

mance of the collaborative offloading.

The last experiment aims at exploring the importance of

assigning priorities to the client devices. We adapt the

subtask priority scheduling in Fig. 8 as a scheduling model

of the experiment. Among the 100 subtasks that needed to

Fig. 3 A comparison of the performance benefits of Circa, with

different amounts of subtask input. We use the Random Waypoint

Model (RWP) here as the mobility model. The minimum velocity of

each device is 0.05 m/s, the maximum velocity of each device is

0.2 m/s. The maximum waiting time is 300 s. We configure the

simulation area to be 100 m � 100 m. There are 30 devices in the

simulation area. The contact range is 15 m. The number of subtasks is

100. The subtask completion time is 15 s. The threshold of the

quantity of collaborators is 5. The delay tolerance is 25 s

Wireless Networks

123

be processed, 20 of them belong to A; 10 of them belong to

B; C has 20 subtasks; D has 20 subtasks; E has 30 subtasks

and F has 0 subtask. Without the priority scheduling

algorithm, all the subtasks are randomly distributed among

the unordered collaborators. The priority scheduling algo-

rithm, on the other hand, assigns higher priorities to A, B,

C and D, while lower priorities are assigned to E and

F. Those subtasks with higher priorities will be dissemi-

nated and processed earlier.

Figure 7 shows the completion time of the whole task

with and without applying the priority scheduling algo-

rithm before distributing the subtasks. According to the

experimental results, the priority scheduling algorithm

greatly improves the performance of the collaborative

offloading in the Circa framework.

7 Implementation

7.1 Experiment setup

In this section, we evaluate the performance of Circa to

validate its feasibility and efficacy. We first describe the

hardware configurations, test applications and performance

metrics used in our experiments. We then present and

analyze the detailed experimental results under different

scenarios.

Our prototype consists of three smart devices: an iPhone

5, an iPhone 4s and an iPad 3. The detailed information of

the configurations for the tested devices are listed in

Table 2.

We deploy 3 beacons bought from Estimote Inc. in our

experiment environment, acting as the iBeacon transmitters

in Circa. Each beacon has a square chip inside, which is s

32-bit ARM Cortex M0 CPU with 256 KB flash with a 2.4

GHz Bluetooth low-energy radio [29]. During the experi-

ments, all of the beacons are attached to a plain wall in

order to avoid possible signal distortion.

Fig. 4 A comparison of the performance benefits of Circa, with

different amounts of subtasks input. We use the Gauss–Morkov

Model (GM) here as the mobility model. The mean velocity is 0.1 m/

s. The tuning parameter used to vary the randomness, a, is 0.5, while
the randomness variance is 0.1. We configure the simulation area to

be 100 m � 100 m. There are 30 devices in the simulation area. The

contact range is 15 m. The number of subtasks is 100. The subtask

completion time is 15 s. The threshold of the quantity of collaborators

is 5. The delay tolerance is 25 s

Fig. 5 A comparison of the performance benefits of Circa, with

different amounts of subtasks input. We use the Reference Point

Group Model (RPG) here as the mobility model. The minimum

velocity of each device is 0.05 m/s, the maximum velocity of each

device is 0.2 m/s.The value of aggregation is set to be 0.3. We

configure the simulation area to be 100 m � 100 m. There are 30

devices in the simulation area. The contact range is 15 m. The number

of subtasks is 100. The subtask completion time is 15 s. The threshold

of the quantity of collaborators is 5. The delay tolerance is 25 s

Fig. 6 The influence brought about by the device speed of Circa.We

use the Gauss–Morkov Model (GM) here as the mobility model. We

configure the simulation area to be 100 m � 100 m. There are 30

devices in the simulation area. The contact range is 15 m. The number

of subtasks is 100. The subtask completion time is 15 s. The threshold

of the quantity of collaborators is 5. The delay tolerance is 25 s

Fig. 7 The influence brought by device density of Circa.We use the

Random Waypoint Model (RWP) here as the mobility model. We

configure the simulation area to be 100 m � 100 m. The contact

range is 15 m. The minimum velocity of each device is 0.05 m/s, the

maximum velocity of each device is 0.2 m/s. The number of subtasks

is 100. The subtask completion time is 15 s. The threshold of the

quantity of collaborators is 5. The delay tolerance is 25 s

Wireless Networks

123

To test the practical performance of Circa, we develop a

speech recognition application, which records a wav file of

the speaker, then transmit the file to Google Speech API to

obtain the corresponding text result. The application

divides the wav file into several smaller files according to

the quantity of selected collaborators.

We examine Circa under different scenarios in our

experiment. In the first scenario ‘‘single device’’, the

original device carries out the speech recognition task by

itself. In the second scenario ‘‘2 collaborators’’ (1 server

and 1 client), the original device switches to airplane mode

and only turns on the Bluetooth for connection, which

means that its WiFi and cellular network are both cut off.

This original device then acts as a server. There is another

device that is willing to act as a client to accept the task

from the server. In other words, there are 2 collaborators,

one serves as a server and the other serves as a client. In the

third scenario ‘‘3 collaborators’’ (1 server and 2 clients), the

original device still serves as a server, while there are two

other devices acting as clients to accept the task offloaded

from the server. The wav file from the server will be

divided into two files with identical amounts of data, which

will be offloaded to the 2 clients for speech recognition. In

this situation, there are 3 collaborators in total.

In all the experiments, the iPhone 5 acts as the only

server, while the iPhone 4s and iPad 3 act as potential

clients. We measure the time duration of a whole task as an

indicator of its performance, since the speech recognition

task is time-sensitive. To quantify the delay incurred by

offloading, we measure the time duration of a given task

under different scenarios with varying task sizes, different

numbers of obstacles, distances between devices and speed

of devices. All of our measurements are performed under

stable network conditions, with all the mobile devices

running in standalone environments, in which all other

applications and background tasks are shut off, with the

screen on.

7.2 Performance analysis

The first experiment is conducted to compare the total

execution time of the whole task with single device, 2

collaborators (1 server and 1 client), and 3 collaborators (1

server and 2 clients). As shown in Fig. 9, it takes a longer

time to complete larger tasks. Compared to the original

scheme with only one device, if there are 2 collaborators,

there will be additional connection time, which is 5000 ms

on average.

However, if more than two devices are involved in the

task, the total execution time for the same task will be

shorter than the local execution. The benefit of offloading

becomes more significant when the task is larger. The main

reason for this phenomenon is the degree of parallelism.

With 3 collaborators, we can divide the task into two

smaller pieces so that they can be processed at the same

time, while the transmission delay is also around 5000 ms,

remaining the same as that of 2 collaborators.

In the second experiment, of which the results are shown

in Fig. 10, we measure the execution time of the task under

Table 1 A comparison of task completion time (measured in ms) with

different thresholds of collaborator numbers and delay time tolerance

Delay tolerence (s) Threhhold of the quality collaboration

2 3 4 5 6 7 8 9

15 820 548 413 357 352 372 372 388

20 805 546 411 362 352 370 372 390

25 817 543 407 359 345 372 385 390

30 819 546 403 359 351 372 390 405

35 805 545 416 367 362 376 387 413

40 810 543 405 361 359 376 390 414

45 805 546 409 355 358 390 405 425

We use the Gauss–Morkov Model (GM) here as the mobility model.

We configure the simulation area to be 100 m � 100 m. There are 30

devices in the simulation area. The contact range is 15 m. The min-

imum velocity of each device is 0.05 m/s, the maximum velocity of

each device is 0.2 m/s. The number of subtasks is 100. The subtask

completion time is set to be 15 s

Fig. 8 The influence of priority assignment of Circa.We use the

Random Waypoint Model (RWP) here as the mobility model. We

configure the simulation area to be 100 m � 100 m. The number of

nodes is 30. The contact range is 15 m. The minimum velocity of

each device is 0.05 m/s, the maximum velocity of each device is

0.2 m/s. The number of subtasks is 100. The subtask completion time

is 15 s. The threshold of the quantity of collaborators is 5. The delay

tolerance is 25 s

Table 2 Configurations of mobile devices tested

Devices iPhone 5 iPhone 4s iPad 3

Version iOS 7.1.2 iOS 7.1.2 iOS 7.1.2

Capacity 27.9 GB 28.3 GB 27.8 GB

Avaliable 9.6 GB 21.8 GB 4.2 GB

Battery 15–20% 45–55% 90–100%

Wireless Networks

123

different environments with obstacles. The reason for

conducting such experiments is that the Bluetooth signal

could be easily affected by physical surroundings due to

distraction or absorption. We use 1, 2, 3 and 4 cardboards

as obstacles to block the signal from the beacon in different

directions. The devices stand in a line, pointing in the same

direction to the beacon. According to the result, only when

we use 4 cardboards to block all 4 directions around the

beacon, will the total execution time increase significantly

due to minor connection latency.

The third experiment examines the impact of the dis-

tances between devices during task execution. The distances

shown in Fig. 11 refer to the vertical distances between

every two devices. Based on the experimental results, we

can conclude that the distances between the devices do not

affect the offloading performance if the devices all stay in

the broadcasting region of the same beacon. However, there

will be additional connection latencies if the devices are too

close to each other (less than 1m).

The fourth experiment compares the total execution

time with varying device speeds during the offloading

process. According to experimental data shown in Fig. 12,

the speeds of the devices do not affect the processing time

greatly, as long as the devices stay in the Bluetooth

transmission region of each other.

Finally, as illustrated in Fig. 13, we have also evaluated

the power consumption of each device during the

offloading. We utilize the Energy Diagnostics in Open

Developer Tool for iOS developers to measure the power

consumption of the speech recognition application. For a

certain size of task, we repeat the experiment for 15 times

and use the average power consumption of each device as

the final result. The experimental result indicates that with

more collaborators, the average power consumption of

each device will decrease. More power will be saved with

more collaborators when the task becomes larger. The

reason is that with more collaborators, the computational

effort for the subtask conducted by each device is smaller,

which leads to less power consumption.

We have also tested the situation where collaborators

leave the region and the offloading process ends without

prompt. When there are only two collaborators (1 server

and 1 client) and the client leaves, the collaborative process

just ends and the original device will be notified about the

interruption. It can choose either to conduct the task by

itself or to search for another possible collaborator. When

there are three collaborators (1 server and 2 clients), if the

server loses one of the clients, it simply offloads the

unfinished task to another client.Fig. 9 The total execution time with different task sizes. Distance ¼
1 m. Speed ¼ 0 m/s. No obstacle

Fig. 10 The total execution time in different environment. Task size

¼ 50 KB. Distance ¼ 1 m. Speed ¼ 0 m/s

Fig. 11 The total execution time with varying distances between the

devices. Task size ¼ 50 KB. Speed ¼ 0 m/s. No obstacle

Fig. 12 The total execution time with varying device speeds. Task

size ¼ 50 KB. Distance ¼ 1 m. No obstacle

Wireless Networks

123

8 Concluding remarks and future work

8.1 Conclusions

In this paper, we have designed and implemented Circa, a

collaborative code offloading framework, leveraging the

presence of iBeacon. Unlike the involvement of cloud

servers in existing schemes, Circa is completely localized

and requires no Internet connection. Devices within a local

area can discover and help each other with the assistance of

iBeacons as long as their Bluetooth functions work

properly.

Afterwards, a reliability analysis is conducted to select

the mobile devices with sufficient computation resources

and collaborative incentive to be collaborators for the

current task. We also proposed two task allocation algo-

rithms and one task priority scheduling algorithm to

achieve the goal of minimizing local power consumption as

well as cutting down the total completion time of the entire

task.

We evaluate the performance benefits of this system

with different mobility models. As a proof of concept, we

have implemented a prototype to evaluate the feasibility

and performance of Circa. Experimental results with

realistic settings have shown that code offloading incurs

negligible (if any) delay with two collaborators. Fortu-

nately, with more than two collaborators, the performance

is improved since total execution time is reduced, when

compared to local execution of the same code.

8.2 Future work

As for further discussion, in order to improve the perfor-

mance of the Circa framework, it is possible to involve a

cloud server which connects to each device via WiFi or

cellular network. The cloud server will be able to monitor

the devices more efficiently and record the beacons in their

vicinity. With a cloud server, the initiator devices (servers)

no longer needs to spend extra battery or memory on the

reliability analysis of their potential collaborators (clients).

However, the benefits might offset the latency and energy

consumption caused by long-range network connection to

the cloud.

Another possible extension to Circa lies in the division

of an offloaded task. Currently, the task is divided evenly

into multiple subtasks for dissemination. Nevertheless, it

would be more reasonable if the size of each divided part

depends on the battery level and availability state of its

targeted device. We leave a more sophisticated division

algorithm for future work.

Furthermore, we will also complete our experimental

evaluation of the prototype system by involving more

devices and more challenging scenarios. We will also

conduct more performance analysis in terms of execution

time, energy, memory and processor consumption.

Acknowledgements This work is supported in part by RGC GRF

Grants under the contracts 16211715 and 16206417, and an RGC

CRF Grant under the contract C7036-15G.

References

1. Cuervo, E., Balasubramanian, A., Cho, D.-K., Wolman, A.,

Saroiu, S., Chandra, R., & Bahl, P. (2010). Maui: Making

smartphones last longer with code offload. In Proceedings of

ACM MobiSys (pp. 49–62).

2. Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., & Patti, A. (2011).

Clonecloud: Elastic execution between mobile device and cloud.

In Proceedings of ACM EuroSys (pp. 301–314).

3. Kosta, S., Aucinas, A., Hui, P., Mortier, R., & Zhang, X. (2012).

Thinkair: Dynamic resource allocation and parallel execution in

the cloud for mobile code offloading. In Proceedings of IEEE

INFOCOM (pp. 945–953).

4. iBeacons for developers. https://developer.apple.com/ibeacon/.

Accessed 4 Sept 2018.

5. Gordon, M. S., Jamshidi, D. A., Mahlke, S. A., Mao, Z. M., &

Chen, X. (2012). Comet: Code offload by migrating execution

transparently. In Proceedings of USENIX OSDI (pp. 93–106).

6. Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009).

The case for vm-based cloudlets in mobile computing. IEEE

Transactions on Pervasive Computing, 8(4), 14–23.

7. Kemp, R., Palmer, N., Kielmann, T., & Bal, H. (2012). Cuckoo:

A computation offloading framework for smartphones. In Mobile

computing, applications, and services (pp. 59–79). Springer

8. Kao, Y.-H., Krishnamachari, B., Ra, M.-R., & Bai, F. (2017).

Hermes: Latency optimal task assignment for resource-con-

strained mobile computing. IEEE Transactions on Mobile Com-

puting, 16, 3056–3069.

9. Chen, X., Jiao, L., Li, W., & Xiaoming, F. (2016). Efficient

multi-user computation offloading for mobile-edge cloud com-

puting. IEEE/ACM Transactions on Networking, 24(5),

2795–2808.

10. Zhou, B., Dastjerdi, A. V., Calheiros, R. N., Srirama, S. N., &

Buyya, R. (2015). A context sensitive offloading scheme for

mobile cloud computing service. In 2015 IEEE 8th international

conference on cloud computing (CLOUD) (pp. 869–876). IEEE.

11. Flores, H., Hui, P., Nurmi, P., Lagerspetz, E., Tarkoma, S.,

Manner, J., et al. (2017). Evidence-aware mobile computational

Fig. 13 The average power consumption of each device during the

offloading, with different size of task. Distance ¼ 1 m. No obstacle

Wireless Networks

123

https://developer.apple.com/ibeacon/

offloading. IEEE Transactions on Mobile Computing, 17,

1834–1850.

12. Doolan, D. C., Tabirca, S., Yang, L. T. (2008). MMPI: A message

passing interface for the mobile environment. In Proceedings of

ACM conference on advances in mobile computing and multi-

media (pp. 317–321).

13. Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The

Hadoop distributed file system. In Proceedings of IEEE symposium

on mass storage systems and technologies (MSST) (pp. 1–10).

14. Marinelli, E. E. (2009). Hyrax: Cloud computing on mobile

devices using mapreduce. Technical report, DTIC Document.

15. Black, M., & Edgar, W. (2009). Exploring mobile devices as grid

resources: Using an �86 virtual machine to run boinc on an

iphone. In 2009 10th IEEE/ACM international conference on grid

computing (pp. 9–16). IEEE.

16. Anderson, D. P. (2004). Boinc: A system for public-resource

computing and storage. In Fifth IEEE/ACM international work-

shop on grid computing, 2004. Proceedings (pp. 4–10). IEEE.

17. Thain, D., Tannenbaum, T., & Livny, M. (2005). Distributed

computing in practice: The condor experience. Concurrency and

Computation: Practice and Experience, 17(2–4), 323–356.

18. Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M., & Wer-

thimer, D. (2002). Seti@ home: An experiment in public-resource

computing. Communications of the ACM, 45(11), 56–61.

19. Beberg, A. L., Ensign, D. L., Jayachandran, G., Khaliq, S., &

Pande, V. S. (2009). Folding@ home: Lessons from eight years of

volunteer distributed computing. In IEEE international sympo-

sium on parallel and distributed processing, 2009. IPDPS 2009

(pp. 1–8). IEEE.

20. Shi, C., Lakafosis, V., Ammar, M. H., & Zegura, E. W. (2012).

Serendipity: Enabling remote computing among intermittently

connected mobile devices. In Proceedings of the thirteenth ACM

international symposium on mobile ad hoc networking and

computing (pp. 145–154). ACM.

21. Langford, T., Gu, Q., Rivera-Longoria, A., & Guirguis, M.

(2013). Collaborative computing on-demand: Harnessing mobile

devices in executing on-the-fly jobs. In 2013 IEEE 10th inter-

national conference on mobile ad-hoc and sensor systems

(MASS) (pp. 342–350). IEEE

22. Miluzzo, E., Cáceres, R., & Chen, Y.-F. (2012). Vision: mclouds-

computing on clouds of mobile devices. In Proceedings of the

third ACM workshop on mobile cloud computing and services

(pp. 9–14). ACM.

23. Guirguis, M., Ogden, R., Song, Z., Thapa, S., & Gu, Q. (2011).

Can you help me run these code segments on your mobile device?

In 2011 IEEE global telecommunications conference (GLOBE-

COM 2011) (pp. 1–5). IEEE.

24. Arslan, M. Y., Singh, I., Singh, S., Madhyastha, H. V., Sun-

daresan, K., & Krishnamurthy, S. V. (2012). Computing while

charging: Building a distributed computing infrastructure using

smartphones. In Proceedings of the 8th international conference

on emerging networking experiments and technologies (pp.

193–204). ACM.

25. Sucipto, K., Chatzopoulos, D., Kosta, S., & Hui, P. (2017). Keep

your nice friends close, but your rich friends closercomputation

offloading using nfc. In IEEE conference on computer commu-

nications INFOCOM 2017, IEEE (pp. 1–9). IEEE.

26. Chen, X., & Zhang, J. (2017). When d2d meets cloud: Hybrid

mobile task offloadings in fog computing. In 2017 IEEE inter-

national conference on communications (ICC) (pp. 1–6). IEEE.

27. Cheng, Z., Li, P., Wang, J., & Guo, S. (2015). Just-in-time code

offloading for wearable computing. IEEE Transactions on

Emerging Topics in Computing, 3(1), 74–83.

28. Lin, X., Jiang, J., Li, B., & Li, B. (2015). Circa: Offloading

collaboratively in the same vicinity with ibeacons. In 2015 IEEE

international conference on communications (ICC) (pp.

3751–3756). IEEE.

29. Estimote Beacon API. https://developer.estimote.com. Accessed

4 Sept 2018.

30. Horovitz, A., Kim, K., LaMarche, J., & Mark, D. (2013). Peer-to-

peer over bluetooth using game kit. In More iOS6 development

(pp. 251–293). Springer.

31. Game Kit Programming Guide. https://developer.apple.com/doc

umentation/gamekit. Accessed 4 Sept 2018.

32. Lu, R., Lin, X., Zhu, H., Shen, X. S., & Preiss, B. (2010). Pi: A

practical incentive protocol for delay tolerant networks. IEEE

Transactions on Wireless Communications, 9(4), 1483–1493.

33. Buttyán, L., & Hubaux, J.-P. (2000). Enforcing service avail-

ability in mobile ad-hoc wans. In Proceedings of the 1st ACM

international symposium on mobile ad hoc networking and

computing (pp. 87–96). IEEE Press.

34. Saha, A. K., & Johnson, D. B. (2004). Modeling mobility for

vehicular ad-hoc networks. In Proceedings of the 1st ACM

international workshop on vehicular ad hoc networks (pp.

91–92). ACM.

35. Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility

models for ad hoc network research. Wireless Communications

and Mobile Computing, 2(5), 483–502.

36. Hong, X., Gerla, M., Pei, G., & Chiang, C.-C. (1999). A group

mobility model for ad hoc wireless networks. In Proceedings of

the 2nd ACM international workshop on modeling, analysis and

simulation of wireless and mobile systems (pp. 53–60). ACM.

Xueling Lin is currently a Ph.D.

student at the Department of

Computer Science and Engi-

neering in Hong Kong Univer-

sity of Science and Technology.

Before starting her Ph.D. jour-

ney in January 2017, she

obtained her MPhil degree in

Computer Science and Engi-

neering from Hong Kong

University of Science and

Technology and received her

Bachelor degree in Software

Engineering from Sun Yat-sen

University. Her current research

interests include knowledge base refinement, data fusion, truth dis-

covery, cloud computing and mobile computing.

Jingjie Jiang received her

B.Eng. degree from the Depart-

ment of Automation, Tsinghua

University, China, in 2012, and

the Ph.D. degree from the

Department of Computer Sci-

ence and Engineering at the

Hong Kong University of Sci-

ence and Technology in 2017.

She visited the Department of

Electrical and Computer Engi-

neering at the University of

Toronto in 2015. She is now

with Future Network Theory

Lab, Huawei Technology. Her

current research interests include datacenter network management,

congestion control, big data scheduling, device-to-device communi-

cation and content distribution.

Wireless Networks

123

https://developer.estimote.com
https://developer.apple.com/documentation/gamekit
https://developer.apple.com/documentation/gamekit

Calvin Hong Yi Li is currently an

undergraduate student at Johns

Hopkins University in Balti-

more, Maryland, completing his

B.S./B.A. degrees in Computer

Science, Cognitive Science and

Applied Math & Statistics. His

research interests include cloud

computing, mobile computing,

deep learning and natural lan-

guage processing.

Bo Li is a Chair professor in the

Department of Computer Sci-

ence and Engineering, Hong

Kong University of Science and

Technology, which he has been

affiliated with since 1996. His

works covered a wide spectrum

of topics in computer network-

ing and communications, more

recently on datacenter network-

ing, cloud computing, big data

analytics, machine learning in

cloud, content distribution in the

Internet, and network control

algorithms. He made pioneering

contributions in the Internet video broadcast with a system called

Coolstreaming, which was credited as the first large-scale Peer-to-

Peer live video streaming system in the world. This work received the

inaugural The Test-of-Time Paper Award from IEEE INFOCOM

(2015). He has been an editor or a guest editor for over a two dozen

journals and magazines, mostly in IEEE and ACM. He was the Co-

TPC Chair for IEEE INFOCOM 2004. He received six Best Paper

Awards from IEEE. He received the Young Investigator Award from

Natural Science Foundation of China (NFSC) in 2005, the State

Natural Science Award (2nd Class) in 2011. He received his Ph.D. in

the Electrical and Computer Engineering from the University of

Massachusetts at Amherst, and his B.Eng. (summa cum laude) in the

Computer Science from Tsinghua University, Beijing, China.

Baochun Li received his B.Eng.

degree from the Department of

Computer Science and Tech-

nology, Tsinghua University,

China, in 1995 and his M.S. and

Ph.D. degrees from the Depart-

ment of Computer Science,

University of Illinois at Urbana-

Champaign, Urbana, in 1997

and 2000. Since 2000, he has

been with the Department of

Electrical and Computer Engi-

neering at the University of

Toronto, where he is currently a

Professor. He holds the Nortel

Networks Junior Chair in Network Architecture and Services from

October 2003 to June 2005, and the Bell Canada Endowed Chair in

Computer Engineering since August 2005. His research interests

include cloud computing, large-scale data processing, datacenter

networking, and coding for distributed storage systems. Dr. Li has co-

authored more than 350 research papers, with a total of over 16,000

citations, an H-index of 74 and an i10-index of 225, according to

Google Scholar Citations. He was the recipient of the IEEE Com-

munications Society Leonard G. Abraham Award in the Field of

Communications Systems in 2000. In 2009, he was a recipient of the

Multimedia Communications Best Paper Award from the IEEE

Communications Society, and a recipient of the University of Toronto

McLean Award. He is a member of ACM and a Fellow of IEEE.

Wireless Networks

123

	Circa: collaborative code offloading among multiple mobile devices
	Abstract
	Introduction
	Related work
	Code offloading to remote servers
	Code offloading among mobile devices

	Background and motivation
	iBeacon: a proximity detector
	Motivating scenarios

	System design and job model
	Establish connections based on iBeacons
	Determine the potential collaborators
	Communication relationship
	Neighbourhood
	Battery level and available memory

	Residence time
	Ranking

	Working schemes

	Task allocation and priority assignment algorithms
	Task allocation algorithms
	Task allocation with controllable contact knowledge
	Task allocation without controllable contact knowledge

	Priority scheduling algorithm

	Performance evaluation
	Simulation setup
	Performance evaluation

	Implementation
	Experiment setup
	Performance analysis

	Concluding remarks and future work
	Conclusions
	Future work

	Acknowledgements
	References

