
1

Deep Reinforcement Learning Based
Dynamic Flowlet Switching for DCN

Xinglong Diao, Huaxi Gu, Wenting Wei, Member, IEEE, Guoyong Jiang, and Baochun Li, Fellow, IEEE

Abstract—Flowlet switching has been proven to be an effective
technology for fine-grained load balancing in data center net-
works. However, flowlet detection based on static flowlet timeout
values, lacks accuracy and effectiveness in complex network en-
vironments. In this paper, we propose a new deep reinforcement
learning approach, called DRLet, to dynamically detect flowlets.
DRLet offers two advantages: first, it provides dynamic flowlet
timeout values to detect bursts into fine-grained flowlets; second,
flowlet timeout values are automatically configured by the deep
reinforcement learning agent, which only requires simple and
measurable network states, instead of any prior knowledge, to
achieve the pre-defined goal. With our approach, the flowlet
timeout value dynamically matches the network load scenario,
ensuring the accuracy and effectiveness of flowlet detection while
suppressing packet reordering. Our results show that DRLet
achieves superior performance compared to existing schemes
based on static flowlet timeout values in both baseline and
asymmetric topologies.

Index Terms—Flowlet, deep reinforcement learning, load bal-
ancing, data center networks.

I. INTRODUCTION

DATA center networks (DCN) often employ a multi-
rooted Clos topology [1], which offers multiple equal-

hop paths between two hosts. With the rapid growth of traffic
in DCNs, load balancing is of great significance to achieve
high performance by distributing the traffic uniformly across
the multiple paths [2].

Flowlet switching is a promising technique for fine-grained
load balancing [3]–[5]. As Fig. 2 shows, a flowlet is a burst
of packets from the same flow, separated from other bursts
by a significant time gap, called flowlet timeout. Traffic can
be distributed for better load balancing by sending different
flowlets from the same flow across multiple paths. Further-
more, the natural time gap between bursts reduces the risk of
out-of-order packet arrivals.

One challenge that remains for existing flowlet-level load
balancing is the accuracy and effectiveness of flowlet detec-
tion. This has two implications. Firstly, a static flowlet timeout
value is used by the switch to detect bursts into flowlets [4],
[6]. However, it is hard to match the static flowlet timeout
with highly dynamic and time-varying load scenarios.

More specifically, if the static flowlet timeout value is too
long, it will affect the accuracy of identifying flow bursts,
thus reducing the number of flowlets and the opportunities

X. Diao, H. Gu, W. Wei, and G. Jiang are with the State Key Laboratory
of Integrated Service Networks, Xidian University, Xi’an, China (email:
xl.diao@stu.xidian.edu.cn; hxgu@xidian.edu.cn; wtwei@xidian.edu.cn;
gy.jiang.xidian@foxmail.com).
B. Li is with the Department of Electrical and Computer Engineering,
University of Toronto, Toronto, Canada (email: bli@ece.toronto.edu).

for load balancing. On the other hand, if the flowlet timeout
value is too short, it is likely to over-detect, which means that
packets in the same burst may be further divided into more
than one flowlet, resulting in too fine a granularity and easily
aggravating packet reordering.

Another implication is that the flowlet timeout value is
configured based on heuristic methods [4], [5], [7] which
heavily rely on historical observations or experiences. The
heuristic method usually builds mathematical models based on
human understandings and strict assumptions [8]. For example,
the Markov chain model in [5] certainly offers some useful
insights to configure flowlet timeout values. The bad news is
that the final flowlet timeout value is still set to the empirical
value from their testbed, which may not apply to other network
scenarios.

Considering that the realistic network environment is ex-
tremely complicated, the final load balancing performance is
the result of a mixture of multiple network factors. However,
the relationship between the network factors and the final
performance is hard to characterize. Consequently, mathemat-
ical models of heuristics may not be applicable or even valid
in practice [9]. Thus, the model can only help to improve
performance in the worst case scenario [10]. Moreover, once
the human understanding of the network is biased, built models
are extremely prone to make decisions that stray too much
from the actual optimal configuration or may even lead to
network errors.

To address the above challenges, this paper proposes DR-
Let (Deep Reinforcement Learning-based Flowlet Switching),
which uses deep reinforcement learning (DRL) to achieve
dynamic flowlet switching for fine-grained load balancing in
data center networks.

Highlights of our design are also two-fold. On the one hand,
DRLet offers dynamic flowlet timeout values to detect bursts
of packets into flowlets, which provides the foundation of
being able to adapt to a variety of network load scenarios. On
the other hand, flowlet timeout values are configured under
the guidance of the deep reinforcement learning algorithm.
In particular, our DRL agent does not rely on precisely
solvable mathematical models and can dynamically adjust
flowlet timeout values based on feedback from the network
environment, which provides DRLet with the actual ability to
adapt to a variety of network load scenarios at all times.

To make DRLet work, we have built a network model to
better represent the flowlet switching problem for our DRL
agent. Note that there is little information on the methods
of model building in the existing literature [8], [11]. In this
paper, the network model is designed based on two important

2

principles: logicality inside the model, and simplicity of model
parameters. Then, we give the state and action vectors, and
the reward function of our DRL agent based on the network
model.

Based on the characteristics of the constructed network
model, a suitable deep reinforcement learning algorithm is re-
quired to complete the mapping from input to output within the
network model. This makes decisions for the flowlet switching
problem. Considering that flowlet switching is a continuous
control problem, Deep Deterministic Policy Gradient (DDPG)
[12] would be the suitable candidate. We have designed a
load-aware exploration mechanism for DDPG to better serve
DRLet’s network model.

The contributions of this paper are as follows:
i) We point out the drawbacks of the fixed flowlet timeout

for flowlet detection and validate the flowlet timeout mismatch
problem via experimental results. To solve that, we propose
DRLet, a deep reinforcement learning-based dynamic flowlet
switching.

ii) To fit deep reinforcement learning into the dynamic
flowlet switching problem, we build a well-designed network
model to better translate the dynamic flowlet switching prob-
lem for the deep reinforcement learning agent. We also design
a load-aware exploration mechanism for the DDPG algorithm
we used to train the deep reinforcement learning agent.

iii) We have conducted extensive large-scale ns-3 simu-
lations under realistic traffic workloads. These simulations
demonstrate that DRLet outperforms static flowlet timeout-
based flowlet switching by 46% in the baseline and can
work with any routing algorithm. Additionally, small-scale
emulations based on two servers were also conducted to
evaluate the time overhead of the centralized control loop.
Emulation results show that the millisecond-level control loop
delay is acceptable for DRLet.

The remainder of this paper is organized as follows. In
Section II, we introduce the background and motivation.
In Section III, we present the overall design of DRLet. The
established network model for the flowlet switching problem
is represented in Section IV, and the corresponding DRL
algorithm is shown in Section V. We evaluate the performance
of DRLet in Section VI. Finally, we show some related work
in Section VII, and conclude this paper in Section VIII.

II. BACKGROUND AND MOTIVATION

Load balancing distributes traffic evenly across multiple
paths to optimize resource utilization [2], [13]. It has two
aspects: routing and granularity. Routing chooses the path,
while granularity defines the load balancing unit (which is
the key factor for the load balancing performance limit).

A. Promise of Flowlet-Level Granularity

Load balancing has different levels of granularity: flow [14],
sub-flow [15], flowcell [16], flowlet [5], and packet [17]. The
finer the granularity, the more opportunities for load balancing.

At the flow-level granularity, a flow has only one chance to
balance its load. As shown in Fig. 1 (a), all packets of each
flow in f1, f2, f3, and f4 are assigned to the same path. This

(a) flow-level (b) packet-level (c) flowlet-level

f1 f2 f3 f4 2
1

3

1

2

3

f5

b
u

rst

poor
balance

out-of-order

Fig. 1. Typical granularity of load balancing.

time gap > flowlet timeout

TCP flow

flowlet 1flowlet 2 flowlet 0

packet burst

Fig. 2. The flowlet detection mechanism based on the flowlet timeout.

can cause serious problems in realistic networks, such as hash
collisions [2] and head-of-line blocking.

Fine granularity improves performance by creating more
opportunities for load balancing and distributing packets of the
same flow over multiple paths. As shown in Fig. 1 (b), each
packet of flow f5 is forwarded independently to a candidate
path. Theoretically, the finest packet-level granularity can
achieve the best performance of load balancing.

However, fine granularity may also cause out-of-order
packet arrivals at the receiver [18]. As Fig. 1 (b) illustrates, the
second packet of flow f5 arrives at the receiver earlier than the
first packet of flow f5, because the former is routed to a less-
loaded path, while the latter is routed to a more-loaded path.
The problem is that the receiver may incorrectly assume that
the out-of-order arrival of the second packet indicates packet
loss of the first packet in the network. Since packet loss often
implies congestion, the congestion control mechanism will be
erroneously activated, resulting in the throughput degradation.

Flowcell-level load balancing [16] splits a flow into many
flowcells based on bytes, and sends flowcells along different
paths. Sub-flow level granularity uses the multiple parallel
interfaces of the host to transmit the flow [15]. These two
techniques have intermediate granularity between flow and
packet, and they also suffer from severe packet reordering.

Flowlet-level granularity treats each burst of packets as a
flowlet [3] and distributes flowlets of the same flow across
multiple paths, as shown in Fig. 1. A flowlet is a burst of
packets from the same flow, separated from other bursts by a
significant time gap. A burst is detected as a new flowlet if
the time gap between it and the previous burst is larger than
the preset time threshold (named flowlet timeout), as shown
in Fig. 2.

Flowlet technology has two benefits. First, it uses traffic
bursts to create more load balancing opportunities. Second,
and more importantly, it avoids packet reordering if the flowlet
timeout is set to be at least the maximum delay difference
between paths [4].

3

87.8
83.9 84.5 91.4

98.8

0

40

80

120

160

T
o
ta

l A
v
g
 F

C
T

 /
 m

s 100us 400us 2000us

4000us 8000us

(a)

213.8

174.5
155.1 160.5

183.3

50

100

150

200

250

300

T
o
ta

l A
v
g
 F

C
T

 /
 m

s 100us 400us 2000us

4000us 8000us

(b)

1163
1030

1137 1240
1361

0

400

800

1200

1600

2000

T
o

ta
l
P

9
9

 F
C

T
 /
 m

s 100us 400us 2000us

4000us 8000us

(c)

2589
2354

2032
2135 2320

0

1000

2000

3000

4000

T
o

ta
l
P

9
9

 F
C

T
 /
 m

s 100us 400us 2000us

4000us 8000us

(d)
Fig. 3. Performance of LetFlow under different flowlet timeout values. (a)
The average FCT under 40% load. (b) The average FCT under 60% load.
(c) The P99 FCT under 40% load. (d) The P99 FCT under 60% load.

806.8

104.1
15.2 3.5 1.1

0

200

400

600

800

1000

100us 400 2000 4000 8000

R
e
ro

u
ti
n

g
 T

im
e
s

60% load

(a)

0% 0.1% 0.2% 0.2% 0.2%

4.0%

1.18% 0.23% 0.2% 0.2%

0%

1%

2%

3%

4%

5%

100us 400 2000 4000 8000

Packet Loss

Reordering

(b)
Fig. 4. LetFlow performance under different flowlet timeout values in 60%
load. (a) Rerouting times (number of flowlets divided by number of flows).
(b) Packet loss and reordering ratios.

B. Flowlet Timeout Mismatch

Existing flowlet-level load balancing solutions [3]–[5], [7]
use a static and empirical flowlet timeout value to detect
flowlets. However, the static flowlet timeout value cannot
always adapt to the highly dynamic and time-varying network
scenarios, causing the flowlet timeout mismatch problem.

In this section, we use simulation results to demonstrate this
mismatch problem of the static flowlet timeout value under
different network load scenarios. We conducted experiments
using ns-3 simulator with an 8-pod FatTree with 1 Gbps link
bandwidth. Fig. 3 shows the FCT performance of an exist-
ing flowlet-level approach [5] with different flowlet timeout
values.

The first observation is that, using either too large or too
small flowlet timeout values for flowlet detection is inap-
propriate and results in poor FCT (Flow Complete Time)
performance. The reasons for this behavior can be analyzed
from Fig. 4. With the flowlet timeout value of 8000µs, there
are very few opportunities for rerouting, and the number
of flowlets is only 1.1 times the original number of flows.
Consequently, load balancing granularity is extremely large,
which leads to the high ratio of packet drops (20 times more
than that of 100µs). For the flowlet timeout value of 100µs,
the opportunity for rerouting increases dramatically, which in
turn optimizes the load balancing granularity and significantly

reduces packet loss in the network to only 0.01%. However,
it faces serious packet reordering (up to 4%), which trig-
gers many retransmissions that drag down FCT performance.
Therefore, it is difficult to make trade-offs between load
balancing granularity and packet reordering when configuring
flowlet timeout values.

Another observation is that, the optimal flowlet timeout
value for the best FCT performance varies depending on the
load. For the 60% load in Fig. 3b, the FCT decreases by
12.4%, and 15.4% when the flowlet timeout value of LetFlow
changes from 8000µs to 4000 µs, 2000 µs, respectively.
However, when the flowlet timeout values continue to change
from 2000µs to 400µs and 100µs, the FCT increases by 12.5%
and 37.8%, respectively. Compared with other values, 2000µs
can be considered the optimal configuration for LetFlow’s
flowlet timeout value in the 60% load scenario. As observed
in Fig. 3a, 400µs is the most appropriate configuration for
LetFlow under 40% load, which is much different from the
optimal value of 2000µs in Fig. 3b. The overall 99% FCT
shown in Fig. 3c and Fig. 3d further confirms our observation.

The two observations in Fig. 3 validate the flowlet timeout
mismatch problem of existing flowlet-level schemes. The mis-
match problem has two main causes: first, flowlets are detected
based on a static flowlet timeout value that cannot adjust to
different load scenarios; and second, the flowlet timeout value
is set with empirical values or heuristics [5] that may not suit
the network situation. Therefore, a more efficient method is
needed to achieve dynamic flowlet switching, which should
be able to cope with the highly-dynamic and time-varying
network environment.

Summary Flowlet switching is a promising technology for
load balancing. However, static flowlet timeout value based
flowlet detection faces the challenge of effectively refining
granularity. In this paper, we try to use deep reinforcement
learning to achieve dynamic flowlet switching for load bal-
ancing in DCN, with the aim of configuring optimal flowlet
granularity in complex network environments.

III. DRLET DESIGN

DRLet is designed to optimize load balancing performance
from the perspective of flowlet granularity. In this section, we
will show how DRLet provides efficient and dynamic flowlet
switching with the guidance of deep reinforcement learning.

A. Overview

The deep reinforcement learning agent of DRLet lives in a
centralized controller. The centralized deployment allows for
convenient collection of network information and assignment
of agent decisions. Through the controller, the DRLet agent
interacts with the network environment periodically and op-
timizes its decisions during the interaction. The interaction
period should be set to be relatively larger than the actual
control-loop delay (which is discussed in §VI-D). For example,
30 milliseconds per interaction would be enough under a 16-
pod FatTree topology.

Fig. 5 illustrates the overall workflow of the interaction
between the DRLet agent and the network environment. The

4

network state data collected from the switches is first aggre-
gated to the controller, where it is fed to the DRLet agent
after two internal processing modules of reward calculation
and state aggregation. Guided by the deep reinforcement
learning algorithm, the agent outputs actions related to flowlet
granularity. Then, the controller sends the actions down to the
network side. In turn, the switch can identify the flowlet based
on the received actions.

B. Modules in the Workflow

Next, we briefly introduce the modules involved in the
interaction flow in Fig. 5.

Collect network state at the switch: The switch is re-
quired to collect and report a variety of network states to
the centralized controller, including traffic injected into the
network as well as the link utilization (or the queue occupancy
of switches). These network state information will be further
processed and used to train the DRLet agent. The reasons for
choosing the above two types of network state information
will be analyzed in detail in Section IV.

State aggregation: This module is responsible for process-
ing the traffic data from each switch, and arranging them in a
certain order to form a set of scalar values that will eventually
be used as input to the DRLet model.

Reward calculation: This module calculates the reward
value during each interaction cycle based on the network state
information uploaded by the switch, resulting in a scalar value
that is used to evaluate the effectiveness of the agent’s action.

Network model (DRLet agent): The network model is built
for the target problem of dynamic flowlet switching, which is
also the core contribution of our work. The input and output
of the model are elaborately designed to facilitate the agent’s
understanding of the target problem. The agent is responsible
for completing the mapping from the input in a given format
to the output in a given format, and the specific mapping rules
are guided by the deep reinforcement learning algorithm. More
details about the considerations behind the designed model
will be displayed in Section IV.

Action assignment: The DRLet agent learns the flowlet
timeout values for flowlet detection, and the network model
described above will output a set of scalar flowlet timeout
values. For the action assignment module, its responsibility is
to distribute the flowlet timeout values to the corresponding
switches on the network side. Based on the agent’s action, the
switch detects flowlets in the network and forwards flowlets
based on a routing algorithm.

C. Flowlet Detection

Flowlet detection has been well studied in existing works
[3], [4]. Like in [3], the flowlet timeout value is used by the
switch to detect flowlets in this paper. When the time gap
between the current incoming packet and the previous packet
of the same flow exceeds the flowlet timeout value, the switch
considers that the current packet starts a new flowlet.

Importantly, dynamic flowlet switching of DRLet guaran-
tees that flowlet detection can adapt to complex network
environments. This is achieved by two points. First, the

Controller

Traffic information

Timeout values

Link
utilization

State
aggregation

Action
assignment

Reward
calculation

Switch

Collect network state at the switch

output

input

DRL algorithm

Network model
(DRLet agent)

Fig. 5. System architecture of DRLet.

flowlet timeout value used by the switch to detect flowlets is
periodically updated by DRLet’s controller. Second, the flowlet
timeout value assigned to each switch is unique and may
be different, because each switch may suffer from different
network conditions.

The flowlet timeout value assigned to a switch will be used
for flowlet detection of all traffic passing through that switch,
rather than being dedicated to a flow. This is because the goal
of DRLet is not to accurately detect the burst of each flow
to be a flowlet, but to refine the overall granularity of load
balancing in the network.

D. Routing

DRLet focuses on load balancing granularity, which is
independent of routing. In other words, DRLet is compatible
with any routing algorithm.

Finer granularity can increase load balancing opportunities
and does improve load balancing performance to some extent.
Since ultimate performance is also up to the dispersion of each
flowlet within the network, routing decisions are also worth
exploring.

On the one hand, given the elastic nature of flowlets
[5], explicit path congestion information is not necessary for
routing. This allows flowlets to explore different paths and
adaptively balance traffic across multiple paths [5]. Therefore,
a static routing algorithm based on random or polling seems
to be an appropriate choice for DRLet.

On the other hand, static routing algorithms such as hashing
and random routing can achieve absolute balancing regarding
the number of routing decisions. Since there is no guarantee
that the granularity regarding byte size is consistent for each
routing decision, absolute balancing of the number of routing
decisions does not lead to load balancing of traffic in practice.
Therefore, load imbalance between paths still exists, and it is
necessary to introduce dynamic routing at this point.

In this paper, the different performance of static routing and
dynamic routing is discussed and is displayed in Section VI-C.

IV. NETWORK MODEL FOR FLOWLET SWITCHING

When machine learning is applied to solve the network
problem, a network model with the input and the output
is required to help machine learning algorithms to better
understand the target network problem. Regarding deep re-
inforcement learning used by DRLet for dynamic flowlet

5

switching, the state space, action space and reward function
should be specified for the DRLet agent.

A well-designed network model can improve the efficiency
of the DRLet agent. Unfortunately, we notice that in the
existing literature [8], [10], [11], there is little description
of model design and even less analysis of the considerations
behind model design.

Model design is one of the key elements in this paper.
Two principles are concluded for our model design: i) The
network state elements involved in each of the state, action
and reward of the DRL agent should be logically related. ii)
The impact of data dimension and number of parameters on
the efficiency of machine learning algorithms should be fully
considered. In addition, the network features we chose are
commonly supported by major switch vendors [19]–[22].

A. Action Space
In this paper, the target problem of dynamic flowlet switch-

ing is to decide how to divide traffic into flowlets. Considering
that traffic mostly appears in bursts and there is a relatively
obvious time gap between bursts, using a flowlet timeout value
to detect bursts and divide them into flowlets would be a
simple and reasonable approach [3], [4]. Even so, there are
many possible forms of action space for the DRLet agent.

Due to the unique transmission process of each flow in the
network, the time gap and duration of bursts vary among flows.
Therefore, it would be good if the DRLet agent configures
a unique flowlet timeout value for each flow. However, this
will induce two problems. First, the number of simultaneously
existing flows in the network is not fixed, which will result
in the action of the DRLet agent being a variable-length se-
quence (which is not supported by existing deep reinforcement
learning algorithms). Second, the number of simultaneously
existing flows in the network is very huge, which will lead to
a very large number of parameters for the action of the DRLet
agent. Unfortunately, it is not conducive to the convergence of
deep reinforcement learning algorithms.

Using the same flowlet timeout value to divide flowlets for
all flows in the network as in LetFlow [5] and CONGA [4] can
indeed minimize the number of action parameters and avoid
the problem of variable-length action sequences. However, the
same flowlet timeout value obviously cannot be applied to
the burst state of all flows in the network, which will reduce
the accuracy of flow burst detection and the effectiveness of
flowlet division, as validated in Section II-B.

With the goal of refining the overall load balancing granu-
larity in the network, DRLet adopts a compromise approach to
simultaneously balance the effectiveness of flowlet detection
with the number of action parameters. In this paper, the
topological features of data center networks are used to design
the action space of DRLet agent. As shown in Fig. 6, for the
4-pod FatTree [1] topology, there are four equal-hop paths
between Src and Dst host pairs, and the following paths are
determined once the edge and aggregate switches have made
their routing decisions. This indicates that flowlet detection is
only required at the edge and aggregate layers. Because there
is only one candidate for each hop of the second half of the
path, load balancing, or flowlet detection no longer works.

Pod 0 Pod 1 Pod ... Pod k-1

Src Dst

Edge

Aggregate

Core

Hosts

E1 Ek/2 Ei Ek2/2Ek/2+1 Ek

A1 Ak/2 Aj Ak2/2Ak/2+1 Ak

Fig. 6. The architecture of k-pod FatTree topology (k=4).

Therefore, the insight is that, the DRLet agent outputs
the flowlet timeout values only for the edge and aggregate
switches. All flows entering the same switch will be divided
into flowlets based on the same flowlet timeout value assigned
to that switch. This makes sure the effectiveness and accuracy
of detecting flow bursts into flowlets on the one hand, and
reduces the number of output parameters to a large extent on
the other hand.

The action vector of the DRLet agent is:

a⃗ =
[
aE1 , · · · , aEj , · · · , aE k2

2

, aA1 , · · · , aAj , · · · , aA k2
2

]
(1)

where aEj and aAj represent the flowlet timeout values that
will be assigned to the jth edge switch and the jth aggregate
switch, respectively. There are k2 elements in the action vector
under k-pod FatTree topology.

B. State Space

What needs to be considered when constructing the state
space is which network state elements affect solving the target
problem. Theoretically, it is traffic and node connection infor-
mation that are the most primitive and fundamental influencing
factors.

Detailed information about the transmission state of each
flow is helpful for accurately dividing flow bursts into flowlets.
However, observing the state information on a flow-by-flow
basis will incur a huge measurement overhead. Moreover,
simply employing the transmission state of each flow as the
state of the DRLet agent will face similar problems as in the
previous section: i) the state of the DRLet agent will be a
variable-length sequence, and ii) the high dimension of the
state. Unfortunately, these problems have a negative effect on
the data processing of deep reinforcement learning.

A compromise approach for state space design was adopted
in this paper. Aggregated traffic between edge switch pairs is
observed and reported to the centralized controller, and will
be used as the state of the DRLet agent after the process of
State Aggregation. This design of the state reduces the data
dimension as much as possible to enhance the efficiency of
the DRLet agent while protecting the logical relationship to
the action.

Deep reinforcement learning mostly uses deep neural net-
work to fit the value function or policy. However, deep neural
networks are not good at handling the input data of graph
structure. Therefore, the connection relationship between each

6

network node is difficult to understand by deep reinforcement
learning.

To this end, topological information of the network is not
directly introduced into the state of the DRLet agent, which
is indirectly hidden in the data sequence of the aggregated
traffic between edge switches. This means that the network
model designed for dynamic flowlet switching in this paper
cannot adapt to real-time changes in network topology (e.g.,
link failure and recovery).

The state vector of the DRLet agent is:

s⃗ =

s(E1,E2), · · · , s(E1,Ej), · · · , s(E1,E k2
2

),

... · · ·
... · · ·

...
s(Ei,E1), · · · , s(Ei,Ej), · · · , s(Ei,E k2

2

),

... · · ·
... · · ·

...
s(E k2

2

,E1), · · · , s(E k2
2

,Ej), · · · , s(E k2
2

,E k2
2

−1
)

(2)

where s(Ei,Ej) denotes the traffic going from the ith edge
switch to the jth edge switch (i, j ≤ k2

2 & i ̸= j). There are
k2

2 (k
2

2 − 1) elements in the state vector under k-pod FatTree
topology.

C. Reward Function

Flowlet technology increases load balancing opportunities
by refining the granularity, which helps to optimize the bal-
ancing performance. However, fine-grained granularity will
inevitably lead to packet reordering, which in turn degrades
network performance. To this end, the objectives of the DRLet
agent are twofold, focusing on the performance optimization of
load balancing brought by flowlet switching, and suppressing
the negative impact caused by out-of-order packets.

In this paper, the objective of load balancing is converted
into “minimizing the load variance between links”, so that
it can be understood by the DRLet agent. The corresponding
reward function for load balancing is constructed based on the
mean squared difference of the utilization of all links between
switches:

rLB = log |
∑Nlink

i=1

(u(i)− ū)2

Nlink
| (3)

where Nlink is the number of links between the switches
(i.e., k3

2 bidirectional links under k-pod FatTree), u(i) is the
utilization of the ith link, and ū is the mean value of the
utilization of all links. It can be seen that the smaller the
difference in link utilization, the larger the reward of load
balancing.

Out-of-order packets could accidentally trigger the conges-
tion control mechanism and consequently disrupt the normal
transmission of the sender, which ultimately imposes a neg-
ative impact on the sender’s flow rate. Considering that the
flow rate is eventually reflected in the traffic injected into the
network, the impact of packet reordering on the flow rate can
be evaluated through the variation in traffic injected into the
network.

Specifically, the impact of packet reordering is evaluated
via the ratio between the traffic injected into the network

of two consecutive time steps. Note that we still observe
the aggregated traffic between edge switch pairs to avoid the
huge measurement overhead of flow-by-flow observations. The
corresponding reward function to evaluate the negative impact
of packet reordering is:

rreordering = log

∑
s⃗t∑
⃗st−1

(4)

where s⃗t and st−1 are the observed states of two consecutive
time steps, respectively. The total traffic injected into the
network is roughly calculated by the sum of the elements in
the observed state as shown in Equation (2). If the packet
reordering has less negative impact, the flow rate of the host
as well as the traffic injected into the network will gradually
increase. Then the ratio between throughput of two time steps
will exceed 1. Finally, a positive reward value will be obtained.
Otherwise a negative reward value.

Total reward function is as follows:

r = α · rLB + β · rreordering (5)

where both α and β are configured to 0.5 to balance the opti-
mization objectives of load balancing and packet reordering.

Finer granularity results in high reward values for load
balancing but low reward values for packet reordering. Con-
versely, coarser granularity results in high packet reordering
reward values and low load balancing reward values. There-
fore, the advantage of dual objectives is that the flowlet gran-
ularity can be dynamically adjusted based on feedback from
load balancing and packet reordering, avoiding the granularity
to be extremely large or small.

V. DEEP REINFORCEMENT LEARNING ALGORITHM

Deep reinforcement learning employs deep learning for
feature representation of states and construction of value
function, such as the pioneering work named DQN in [23].
However, DQN cannot solve problems with large-scale actions
or continuous action values. To this end, DDPG [12] is later
proposed to use the actor network with policy-based learning
to make up for the shortcoming of DQN.

For the flowlet switching problem, the established network
model in Section IV involves the continuous-valued state space
and the continuous-valued action space, and is therefore well
suited to be solved using DDPG algorithm.

However, simply applying DDPG algorithm to the flowlet
switching problem may not bring the expected results. The
reason is that reinforcement learning mostly adopts online
learning, while DDPG may generate unpredictable actions
under random noise-based exploration. Unfortunately, this is
highly likely to induce serious network threats [24], [25].

In addition, the network load is not always static and will
likely change over time. Therefore, we design a load-aware
exploration mechanism. Briefly, to better guide training the
deep reinforcement learning algorithm, the pre-defined flowlet
timeout values adapted to the network load are used as bench-
marks during the exploration process. Note that the roughly-
measured flowlet timeout values are enough to lead to quite
good learning for DRLet, thus introducing less measurement
overhead. The specific exploration mechanism is as follows:

7

Algorithm 1: The online learning of DDPG with load-
aware exploration mechanism.

1 Randomly initialize critic network Q(·) and actor
network µ(·) with weights θQ and θµ respectively;

2 Initialize target critic network Q′(·) with θQ′← θQ,
and target actor network µ′(·) with θµ′← θµ ;

3 Initialize replay buffer R ;
4 for each episode do
5 Initialize a random process (noise) N ;
6 Receive the initial observed state s1 ;
7 for t = 1 to T do
8 Apply the load-aware exploration mechanism

to obtain the action:

at =

{
abase +Nt p
µ(st|θµ) +Nt 1-p

p = 1
10t

9 Execute action at, observe reward rt and new
state st+1;

10 Store transition sample (st, at, rt, st+1) in R;
11 Sample a mini-batch of M transitions

(si, ai, ri, si+1) from R;
12 Compute target value for critic network Q(·)

yi = ri + γ · Q′(si+1, µ
′(si+1|θµ

′
)|θQ′

)
13 Update critic network by minimizing the loss:

L = 1
M

M∑
i=1

(yi −Q(si, ai)|θQ)2

14 Update the actor policy using the sampled
policy gradient: ∇θµJ ≈
1
M

M∑
i=1

∇ai
Q(si, ai)|ai=µ(si)∇θµµ(si|θµ)

15 Update the weights of the target networks:
θQ′ ← τθQ + (1− τ)θQ′

µQ′ ← τµQ + (1− τ)µQ′

16 end
17 end

1) Based on the observed state (i.e., traffic statistics between
switch pairs) of each time step, the current load intensity
of the network is estimated by calculating the ratio of the
average throughput of traffic to the link bandwidth.

2) According to the estimated load intensity, the optimal
flowlet timeout value for each load intensity is selected
as the basic action abase. There are two points to note:
first, the optimal flowlet timeout value is the empirical
result we have obtained in our experiments; second, all
the elements in abase have the same value, which means
that the same optimal flowlet timeout value is used for
all switches.

3) At the beginning of each time step, the agent selects the
basic action with p probability and the original action
with (1− p) probability.

4) The probability p decreases with time grows (e.g., setting
p = 1

10t), which means that the empirical flowlet timeout
values become less and less useful as the agent continues
to mature.

Algorithm 1 represents the online-learning process of the

DDPG algorithm with the load-aware exploration mechanism.
After the initialization of the four networks and the replay
buffer (line 1-3), the algorithm starts the learning of each
episode (line 4). At the beginning of each step in each
episode, the agent obtains the action at based on the load-
aware exploration mechanism (line 8). After the action at is
executed, the resulting sample is stored into the replay buffer
(line 10). Then, a batch of samples is selected from the replay
buffer (line 11) to update the parameters of the actor and policy
networks (lines 12-14). To improve the learning stability, the
two target networks are also updated, while at a slow rate τ
(line 15).

VI. EVALUATION

Extensive large-scale ns-3 [26] simulations and small-scale
emulations have been conducted to evaluate the performance
of DRLet.

A. Simulation Methodology

To run reinforcement learning algorithms in network envi-
ronment, an extension module named ns3-gym [27] is used
in our ns-3 simulation, which enables the data interaction
between ns-3 [26] and OpenAI Gym [28].

An 8-pod FatTree topology [1] is used in the simulation,
containing 128 hosts, 80 switches. Besides, the actor and
critic networks in Algorithm 1 both use the 2-layered, fully-
connected neural network which includes 992 and 64 neurons
in the first and second layer, respectively. Other parameter
settings in our simulation include: the link bandwidth of 10
Gbps, the packet size of 1400 bytes, the RED queue with the
minimal threshold of 65 packets and the maximal threshold
of 250 packets, and the agent’s time step of 50 ms. Note
that, DCTCP [29] is used as the default congestion control
algorithm in the simulation.

Traffic: In the simulation, communication between hosts is
simulated by constructing flow-level traffic. Three key points
are considered in our traffic generator: i) Communication pat-
tern: All-to-all pattern was adopted in the simulation, in which
each host randomly select a different host as the destination
host. ii) Traffic pattern: The widely-used Web Search [29]
workloads and Data Mining workload [30] are used as the
traffic pattern in our simulation, which are extracted from
realistic data centers. iii) Load intensity: For any source-
destination pair, the communication interval obeys an expo-
nential distribution. The smaller the interval, the more flows
are generated, which in turn leads to higher load intensity.
In the simulation, different load intensities are constructed by
changing the value of the communication interval.

Schemes Compared: Recently proposed load balancing
approaches [31], [32] mostly focus on the perspective of
routing. DRLet aims to optimize the load balancing granularity
with DRL-based dynamic flowlet switching. It might be unfair
to directly compare DRLet with these approaches, because it’s
hard to tell whether the performance improvement/degradation
comes from the routing or the granularity. Therefore, the
control variable approach is used in our experiments.

8

0

50

100

150

200

20% load 40% 60% 80%

M
ic

e
 A

vg
 F

C
T

 /
 m

s ECMP

LetFlow

RPS

DRLet

(a)

0

200

400

600

800

20% load 40% 60% 80%

E
le

.
A

vg
 F

C
T

 /
 m

s ECMP

LetFlow

RPS

DRLet

(b)

0

100

200

300

400

20% load 40% 60% 80%

To
ta

l
A

vg
 F

C
T

 /
 m

s ECMP

LetFlow

RPS

DRLet

(c)

0

1000

2000

3000

4000

20% load 40% 60% 80%

T
o
ta

l
P

9
9

 F
C

T
 /

 m
s ECMP

LetFlow

RPS

DRLet

(d)
Fig. 7. FCT statistics under the Web Search workload in symmetric topology.
(a) Mice avg FCT. (b) Elephant avg FCT. (c) Total avg FCT. (d) Total P99
FCT.

First, in Section VI-B, we evaluate the effectiveness of
DRLet’s granularity by setting the routing algorithm as a
control variable and the schemes with different granularity
as independent variables. At this point, the simplest random
routing is used, and the compared schemes include ECMP [14]
at flow-level granularity, LetFlow [5] based on static flowlet
switching, and a packet-level approach called RPS [17].

Then, to explore the compatibility of DRLet with different
routing algorithms, we use DRLet as the control variable and
set different routing algorithms as independent variables in
Section VI-C. At this point, DRLet will work with different
routing algorithms, including the CONGA [4] routing algo-
rithm based on global congestion awareness, the DRILL [33]
routing algorithm based on local congestion awareness, and the
random routing algorithm [17] without congestion awareness.

Metrics: The flow completion time is one of the important
metrics. We show the average FCT for mice flows smaller than
100 KB, elephant flows larger than 100 KB, and the overall
flows simulated. Additionally, the 99% FCT of mice flows
and overall flows are also presented. Moreover, some essential
network states inside the stack are observed in the simulation
for a deep dive on the reasons behind the performance. Note
that our simulation results are based on two runs.

B. Effectiveness of Dynamic Flowlet Switching

1) Baseline: We first present the performance comparison
between DRLet and other different-granularity schemes under
the symmetric topology.
Under the Web Search workload:

Fig. 7 shows the performance under the Web Search work-
load. For mice flows smaller than 100KB shown in Fig. 7a,
DRLet outperforms ECMP and LetFlow by more than 81%
and 70%, respectively, but is about 4.9 times inferior to RPS.

For elephant flows over 100KB shown in Fig. 7b, DRLet
is superior to ECMP and LetFlow by about 88% and 37%,
respectively, and is 69% inferior to RPS.

200

400

600

800

1000

20% load 40% 60% 80%

M
ic

e
 A

vg
 F

C
T

 /
 u

s ECMP LetFlow

RPS DRLet

(a)

200

400

600

800

1000

20% load 40% 60% 80%

E
le

.
A

vg
 F

C
T

 /
 m

s ECMP

LetFlow

RPS

DRLet

(b)

0

50

100

150

200

20% load 40% 60% 80%

To
ta

l
A

vg
 F

C
T

 /
 m

s ECMP

LetFlow

RPS

DRLet

(c)

0

1

2

3

4

20% load 40% 60% 80%

M
ic

e
 P

9
9

 F
C

T
 /

 m
s ECMP

LetFlow
RPS
DRLet

(d)
Fig. 8. FCT statistics under the Data Mining workload in symmetric topology.
(a) Mice avg FCT. (b) Elephant avg FCT. (c) Total avg FCT. (d) Mice P99
FCT.

Regarding the overall average FCT shown in Fig. 7c, DRLet
is better than ECMP and LetFlow by about 84% and 46%,
respectively, and worse than RPS by about 88%.

Regarding the 99% FCT of all flows shown in Fig. 7d,
DRLet achieves about 61% and 54% FCT reductions than
ECMP and LetFlow, respectively, and underperforms RPS by
about 1.3 times.
Under the Data Mining workload:

Fig. 8 presents the performance under the Data Mining
workload. For mice flows less than 100KB shown in Fig. 8a,
DRLet outperforms ECMP by about 43%, and underperforms
LetFlow and RPS within 5%.

For elephant flows over 100 KB shown in Fig. 8b and the
overall average FCT shown in Fig. 8c, DRLet is better than
ECMP by about 4%, and achieves comparable performance to
LetFlow and RPS.

Regarding the 99% FCT of mice flows shown in Fig. 8d,
DRLet outperforms ECMP by about 50%, and inferior to
LetFlow and RPS by about 26% and 19%, respectively.
Analysis:

It can be seen that all fine-grained schemes significantly
outperform flow-level ECMP regarding FCT performance, be-
cause fine-grained granularity increases the chance of rerout-
ing, thus solving the serious hash collision problem faced by
flow-level granularity. Packet is the most fine-grained load
balancing granularity, where each packet has the opportunity
for rerouting. Therefore, compared to other schemes, RPS has
the best FCT performance in almost all network scenarios.

The flowlet timeout value used for LetFlow in the simula-
tion is configured to 200µs, which is a fair value for both
workloads and different load intensities, selected from our
previous extensive LetFlow measurements. As shown in Fig. 7,
LetFlow achieves comparable performance to DRLet in low
and medium load scenarios, and is significantly inferior to
DRLet in FCT performance when the load intensity increases.
This is because DRLet enables dynamic flowlet switching,

9

while LetFlow faces the flowlet timeout mismatch problem
(as validated in Section II-B). In DRLet, the flowlet timeout
values used by the switch to detect flowlets are dynamically
assigned by the DRLet agent based on load awareness. This
makes sure that DRLet can dynamically optimize the overall
load balancing granularity of traffic in any network scenario.

Note that the performance improvement of DRLet over
LetFlow is not a sweet spot that we deliberately set in the
simulation, but is determined by the intrinsic problem of
flowlet timeout mismatch. Even if we configure the static
flowlet timeout value of LetFlow to be adapted to the higher
load intensity in both workloads, it still faces the flowlet
timeout mismatch problem and performs less well than DRLet
in low-load scenarios.

It is also noted that the improvement in DRLet’s perfor-
mance in Data Mining workload is not as significant as in
WEB workload. The difference between ECMP and other
fine-grained schemes is obvious regarding the average FCT of
mice flows, while the difference between different fine-grained
levels is not significant, as shown in Fig. 8a. Regarding the
average FCT of elephant flows, the performance difference
between different granularity is not large, as shown in Fig. 8b.

The reason is that the long-tail characteristic is more
obvious in the Data Mining workload. A very large part
of the flows (more than 80%) are mice flows smaller than
100KB. Since the number of mice flows is high, granularity
refinement brings some performance improvement and out-
performs ECMP obviously. However, mice flows are small
and survive very shortly in the network. Thus, different fine-
grained granularity fail to present significant performance
differences. The traffic load in Data Mining is contributed by
a smaller fraction of extremely large bytes of elephant flows.
Since network bandwidth resources are almost all occupied
by elephant flows, no significant performance improvement is
visible even with granularity refinement.

2) Asymmetry: Link failures and switch failures are very
common in large-scale data centers [34], and it is reported that
there are up to 40 link failures per day [35]. Unfortunately,
link failures break the symmetry of the topology and will pose
a serious threat to load balancing. In this section, the impact
of topology asymmetry caused by link failures is investigated.
In the simulation, the asymmetry scenario is constructed by
decreasing the link speed of an arbitrarily chosen 5% of the
in-network bidirectional links.

Given that the performance of each scheme in the asymmet-
ric topology is similar to that in the baseline topology, Fig. 9
presents the overall average FCT metric in the asymmetric
topology and omits the results of the mice average FCT and
the elephant average FCT. Under the Web Search workload,
DRLet outperforms ECMP, LetFlow and RPS by about 51%,
7% and 13%, respectively. Under the Data Mining workload,
DRLet is superior to ECMP and RPS by about 6.5% and 2%,
respectively, and is within 7% of LetFlow.

Compared to the symmetric topology, the degree of perfor-
mance degradation in the asymmetric topology is different for
each scheme. Fig. 10 shows the quotient of the total average
FCT in asymmetric topology and that in symmetric topology,
which reflects the performance degradation due to asymmetry.

0

300

600

900

1200

20% load 40% 60% 80%

To
ta

l
A

vg
 F

C
T

 /
 m

s ECMP

LetFlow

RPS

DRLet

(a)

0

50

100

150

200

20% load 40% 60% 80%

To
ta

l
A

vg
 F

C
T

 /
 m

s ECMP
LetFlow
RPS
DRLet

(b)
Fig. 9. Total avg FCT statistics under the asymmetric topology. (a) Web
Search workload. (b) Data Mining workload.

1

6

11

16

20% load 40% 60% 80%

A
s
y.

 /
 B

a
s
e
lin

e
 F

C
T ECMP LetFlow

RPS DRLet

(a)

0.6

0.8

1.0

1.2

1.4

20% load 40% 60% 80%

A
s
y.

 /
 B

a
s
e
lin

e
 F

C
T

ECMP
LetFlow
RPS
DRLet

(b)
Fig. 10. Ratio of total avg FCT in the asymmetric topology to that in the
symmetric topology. (a) Web Search workload. (b) Data Mining workload.

It can be observed that under the WebSearch workload, the
average FCT value of RPS increases to more than six times
of that under baseline. DRLet and LetFlow also show a non-
negligible performance degradation when in asymmetry, but
the performance change of ECMP is much smaller. Under
the Data Mining workload, the performance degradation of
all schemes under asymmetry is much smaller due to the less
bursty traffic.
Analysis:

When packets are sent to a failed link, there is a high
probability of causing congestion and resulting in packet
loss, which in turn negatively affects the flow rate of the
sender. Therefore, compared to baselines, the average FCT of
each scheme has more or less performance degradation under
asymmetry.

Congestion on the failed link will not spread to other links
due to the RED queue management. ECMP employs flow-
level granularity, and only a small fraction of flows will be
hashed to the equal-cost path which contains the failed link.
Coupled with the fact that, for ECMP in high-load scenarios,
the network is saturated and heavily congested. Consequently,
most flows are transmitted in a network environment that is
not significantly different from that in the symmetric topology.
Therefore, the impact of link failures is relatively small for
ECMP, leading to a minimal variation in FCT metric.

For fine-grained load balancing, the finer the granularity,
the more opportunities for load balancing, and thus the more
likely that packets from each flow will encounter the failed-
link paths. In other words, the negative impact of link failures
on performance depends directly on the granularity of load
balancing: the finer the granularity, the more significant the
degradation of the FCT metric. Therefore, RPS of packet-level
granularity is most negatively affected by link failures. Due to
that, DRLet optimizes the overall flowlet granularity based

10

1.936

5.905
6.744 6.494

0

2

4

6

8

10

80% load

T
h

ro
u

g
h

p
u

t
/
G

b
p
s

ECMP LetFlow
RPS DRLet

(a)

1.800 1.984 1.983 1.980

0

1

2

3

4

80% load

T
h

ro
u

g
h

p
u

t
/
G

b
p
s

ECMP LetFlow
RPS DRLet

(b)

1.872

5.039

3.176

5.751

0

2

4

6

8

10

80% load

T
h

ro
u

g
h

p
u

t
/
G

b
p
s

ECMP LetFlow
RPS DRLet

(c)

1.714 1.939 1.749 1.826

0

1

2

3

4

80% load

T
h

ro
u

g
h

p
u

t
/
G

b
p
s

ECMP LetFlow
RPS DRLet

(d)
Fig. 11. The average throughput statistics at 80% load under different
scenarios. (a) Under Web Search in symmetry. (b) Under Data Mining in
symmetry. (c) Under Web Search in asymmetry. (d) Under Data Mining in
asymmetry.

on dynamic flowlet timeout values. DRLet is more affected
by link failures compared to the static-flowlet timeout-based
LetFlow.

3) Deep Dive: Bandwidth Utilization: The network will
reach saturation if the load is too high and the network can’t
keep up. Fig. 11 shows the average throughput in saturation
state for different scenarios. This can be used to analyze
bandwidth utilization.

ECMP suffers from severe congestion, and the average
throughput is low, with bandwidth utilization not exceeding
20%. RPS has the best granularity, with an average throughput
of up to 6.7 Gbps. However, in asymmetry, RPS’ throughput
and bandwidth utilization drop significantly due to severe
packet reordering.

The flowlet granularity approximates RPS regarding band-
width utilization, and degrades much less in asymmetry (e.g.,
about 15% for LetFlow) due to the tolerance of packet reorder-
ing. Thanks to dynamic flowlet switching, DRLet improves
bandwidth utilization by 10% over LetFlow under Web Search
in the baseline, and its performance drops by only 11% in the
asymmetric topology.

Due to the obvious long-tail characteristics of the DataMin-
ing workload, fine-grained load balancing does not show
performance benefits regarding bandwidth utilization, as the
same analysis in Section 6.2.1 shows.

Packet Loss and Reordering: Since packet order af-
fects packet processing latency, we show the packet loss and
reordering statistics in Fig. 12. The reordering metric may
be exaggerated because the statistic is counted before TCP
buffer’s reordering in our simulations.

As observed, ECMP faces the most severe packet loss due
to the heavy congestion caused by flow-level granularity. Once
the first-sent packets in flight are dropped due to congestion,
subsequent in-flight packets will be recognized as out-of-order
packets by our reordering counter, as shown in Fig. 12b.

0.23%

0.03%
0.00% 0.01%

0.0%

0.1%

0.2%

0.3%

80% load

P
a

c
k
e

t
L

o
s
s ECMP

LetFlow
RPS
DRLet

(a)

2.11%
0.42%

12.8%

0.30%

0%

5%

10%

15%

80% load

O
u

t-
o

f-
o

rd
e

r
A

rr
iv

a
l ECMP

LetFlow
RPS

DRLet

(b)
Fig. 12. Packet loss in the network and reordering at the receiver at 80% load
under Web Search in symmetric topology. (a) Packet loss. (b) Out-of-order
packet arrival.

4.7
16.3

41
57

150.2

74

29
8.1

0

50

100

150

200

20% load 40% 60% 80%

R
e
ro

u
ti
n

g
 T

im
e
s

LetFlow DRLet

Fig. 13. Rerouting times lead by flowlets under the Web Search workload in
the symmetric topology.

The packet-level granularity results in the least congestion
in the network and nearly no packet drops even at 80% load.
However, delay differences between paths still exist. RPS
encounters the most packet reordering, e.g., 12.8% in our
simulation, because per-packet rerouting easily leads to the
out-of-order arrival of packets at the receiver.

Flowlet switching treats each burst as a flowlet, which
refines the granularity and leads to much less packet loss.
Besides, the natural time gap between bursts offsets the delay
differences between paths, which largely alleviates packet
reordering. Note that DRLet does a better job at packet loss
and reordering than LetFlow. This is because DRLet uses
dynamic flowlet timeout values, considering both the positive
rewards of granularity refinement and the negative rewards of
reordering.

Rerouting Times: Fig. 13 shows the rerouting times
brought about by flowlet granularity. LetFlow’s rerouting times
increase with load intensity. This is because traffic is more
bursty in high-load scenarios. LetFlow still detects flowlets
based on a static flowlet timeout value of 200 microseconds.
This means that LetFlow has more opportunities to detect
flowlets.

Although the number of rerouting opportunities of DRLet
decreases with the increase of load intensity, its FCT perfor-
mance improves as shown in Fig. 7. The reason is that DRLet
is load-aware and can dynamically decide the appropriate
flowlet timeout value. For example, it can assign a relatively
larger flowlet timeout value to detect flowlets in high-load
scenarios to optimize the overall load balancing performance
of the traffic.

Different Weights for The Reward: Alpha and beta are
the weights of load balancing reward and packet reordering
reward in the final reward function for DRLet, respectively.
We take (0.5, 0.5) as the default (α, β) combinations in our

11

14.8

137.2

69.1

15.5

135.7

68.8

10.4

134.4

65.3

0

50

100

150

200

Mice Elephant Total

A
vg

.
F

C
T

 /
 m

s
(0.2, 0.8)

(0.5, 0.5)

(0.8, 0.2)

Fig. 14. Different combinations of (α, β) in the reward function of DRLet.

0

1

2

3

4

20% load 40% 60% 80%

N
o

rm
a

liz
e

d
 F

C
T

ECMP LetFlow

RPS DRLet

(a)

0

1

2

3

4

20% load 40% 60% 80%

N
o

rm
a

liz
e

d
 F

C
T ECMP LetFlow

RPS DRLet

(b)
Fig. 15. FCT statistics (normalized to DRLet) under mixed workloads in
symmetric topology. (a) Total avg FCT. (b) Total P99 FCT.

simulation. Fig. 14 shows the performance comparison of DR-
Let under different (α, β) combinations at 60% load of Web
Search workload in the baseline topology. For the combination
of (0.2, 0.8), the contribution of reordering reward contributes
is large in the final reward, while the contribution of load
balancing reward is much smaller. As a result, the DRLet
agent provides relatively large flowlet timeout values, and
thus, the load balancing granularity is relatively large, which
leads to slight degradation in FCT performance. Regarding
the combination of (0.8, 0.2), the final reward focuses more
on load balancing. Therefore, the DRLet agent will bring
more fine-grained flowlet granularity, leading to about 5%
improvement in FCT performance.

Mixed Workloads: We have evaluated the FCT perfor-
mance of DRLet under the mixed workloads [36], which
are common in realistic data center networks. The results
are shown in Fig. 15. DRLet consistently outperforms other
load balancing approaches, except for the packet-level RPS.
As shown in Fig. 15a, DRLet reduces the overall average
FCT by 30%-40% compared to LetFlow, and more than 60%
compared to ECMP. However, DRLet is about 50% worse than
the packet-level RPS. Fig. 15b shows a similar performance
comparison as Fig. 15a.

C. Compatibility for Routing

DRLet works with any routing algorithm, so we’ll look at
how it performs with different options. We’ll focus on three
types of routing algorithms: 1) The random-based option, like
RPS [17]. The router randomly selects one of the candidate
output ports for routing. 2) The dynamic option based on
global congestion awareness, such as CONGA [4] and Hermes
[31], selecting the least-congested path for routing. 3) The
dynamic option based on local congestion awareness. Like
DRILL [33], the router selects the least-congested output
port between two randomly selected candidate ports and the
historical port.

57

566

282

53

568

281

44

537

263

0

200

400

600

800

1000

Mice Elephant Total

A
vg

.
F

C
T

 /
 m

s

with CONGA routing with DRILL routing

with Random routing

(a)

127

1044

490

125

1266

631

134

1162

590

0

500

1000

1500

2000

Mice Elephant Total

A
vg

.
F

C
T

 /
 m

s

with CONGA routing with DRILL routing

with Random routing

(b)
Fig. 16. FCT statistics of DRLet using different routing algorithms at
80% load under the Web Search workload. (a) Under symmetry. (b) Under
asymmetry.

2.2

3432

642

1.55

3565

750
1.63

3410

717

0

1000

2000

3000

4000

Mice Elephant Total

A
vg

.
F

C
T

 /
 m

s

with CONGA routing

with DRILL routing

with Random routing

(a)

2.3

3358

707

1.9

4540

954

2.1

3920

825

0

1000

2000

3000

4000

5000

Mice Elephant Total

A
vg

.
F

C
T

 /
 m

s

with CONGA routing

with DRILL routing

with Random routing

(b)
Fig. 17. FCT statistics of DRLet using different routing algorithms at
80% load under the Data Mining workload. (a) Under symmetry. (b) Under
asymmetry.

Since Hermes is an edge-based routing algorithm, we chose
CONGA as the compared routing algorithm in this section.
Moreover, traffic is more bursty at high bandwidth, making
it hard to find a suitable value of parameter τ for the Dis-
counting Rate Estimator algorithm in CONGA. Therefore, the
simulations in this section are performed at 1 Gbps bandwidth.

Fig. 16 and Fig. 17 show the FCT performance of DRLet
with different routing algorithms in different network scenar-
ios. Note that a highly asymmetric topology in this section is
used by halving the link bandwidth for 25% of the links in
the 8-pod FatTree topology.
Under the Web Search workload:

The random routing algorithm brings the best perfor-
mance for DRLet in the symmetric topology, outperforming
CONGA’s routing algorithm and DRILL’s routing algorithm
by about 7% and 6.5%, respectively, regarding the overall
average FCT. While for the highly asymmetric topology,
CONGA’s routing algorithm delivers almost the best perfor-
mance for DRLet, outperforming DRILL’s routing algorithm
and the random routing algorithm by about 22% and 17%,
respectively.
Under the Data Mining workload:

The routing algorithm of CONGA is the best for DRLet
under the Data Mining workload, especially for elephant flows,
which is better than DRILL’s algorithm and the random routing
algorithm by about 22% and 17% in the symmetric topology.
While for the mice flow, the DRILL routing algorithm achieves
the best performance for DRLet, outperforming CONGA al-
gorithm and the random routing by more than 27% and more
than 6% in symmetric and asymmetric topology, respectively.
Guidance for DRLet:

1) DRLet is suggested to employ congestion-aware dynamic
routing for highly unbalanced scenarios (such as topology
asymmetry). This will give DRLet comprehensive visibility of
path congestion in the network to distribute flowlets, making

12

7.86 25.1

314

0

100

200

300

400

D
e

la
y
 /

 m
s

 8-pod FatTree

16-pod FatTree

32-pod FatTree

(a)

95.3% 95.5%

98.4%

92%

94%

96%

98%

100%

P
e
rc

.
o
f

C
a
lc

u
la

ti
o
n 8-pod 16-pod

32-pod

(b)
Fig. 18. Time overhead of the centralized control loop under different
FatTree sizes. (a) The centralized control-loop delay under 80% load. (b) The
percentage of calculation delay in control-loop delay under 80% load.

full advantage of the dynamic flowlet switching.
2) Under highly bursty network scenarios, DRLet prefers to

use random routing. This ensures load balancing performance
by providing many rerouting opportunities. However, dynamic
routing may degrade performance instead. This is because
multiple flowlets may be sent to the optimal path that was
recorded earlier, but is now out-of-date and congested.

3) We observe that DRLet performs poorly in most network
scenarios when it uses DRILL’s routing algorithm. This is
mainly because it does not have a comprehensive view of
congestion, and it only routes based on the local congestion of
the current hop. However, DRILL’s routing algorithm performs
well when using the packet-level granularity. This is because
the load on each link is more balanced under the finest
granularity, and the congestion difference on next hops does
not affect the final performance much. This is why DRILL
improves the FCT performance by 10% over random routing
under the packet-level granularity.

D. Time Overhead of DRLet’s Control Loop

Since DRLet adopts the DRL approach with centralized de-
ployment, which is time-consuming, this section evaluates the
time overhead of the control loop. The centralized control-loop
delay is the time elapsed from when the network environment
sends the network-state observation to when it receives the
action from the DRLet agent.

We used two servers in the experiment: one for the emulated
network environment and the other for the DRLet agent. The
network environment server periodically sends network-state
observations to the DRLet agent server. The DRLet agent
server runs the DDPG algorithm shown in Algorithm 1 and
sends the calculated actions to the network environment server.
The two servers communicate through the websocket protocol
and transmit data through 1 Gbps NICs. Moreover, the DRLet
Agent server has the Nvidia K80 GPU.

The control-loop delay mainly consists of two parts: the
communication delay of network-to-agent interactions, and the
calculation delay of the DDPG algorithm in the DRLet agent.
Fig. 18 shows the control-loop delays under different network
sizes.

We can make three observations: i) the control loop delay
is in the order of milliseconds; ii) the control-loop delay
increases sharply as the network size increases; and iii) the
calculation delay of the DRL agent makes up a very large

7.53 23.8

308

0

100

200

300

400

D
e

la
y
 /

 m
s

 8-pod FatTree

16-pod FatTree

32-pod FatTree

(a)

7.43 24.1

309

0

100

200

300

400

D
e

la
y
 /

 m
s

 8-pod FatTree

16-pod FatTree

32-pod FatTree

(b)
Fig. 19. The calculation delay of the DRL agent under varied load scenarios
and different FatTree sizes. (a)Under the 20% load. (b)Under the mix of 40%
and 60% load.

fraction of the total control-loop delay, surpassing 95% even
under small-scale networks.

Previous work [37] has shown that traffic demands are
relatively stable over sub-second intervals due to load balanc-
ing. In addition, the average FCT is on the order of tens of
milliseconds to hundreds of milliseconds according to Fig. 7.
Therefore, throughout the lifespan of flows within the network,
DRLet can deliver the promised performance without being
affected by the millisecond-level DRL delay.

The possible issue is the large control-loop delay for the
large-scale network. This is because the sizes of the action
vector and the state vector will grow with the network size,
leading to more stress on both the network-to-agent interaction
and the calculation of the DRL agent. We are not concerned
about the increased communication delay as it makes up a
very small fraction of the total delay. The main concern is the
calculation delay of the DRLet Agent.

In fact, the calculation delay consists of two specific parts:
the computation time of neural networks and the memory
access time of neural network parameters. However, existing
GPUs often have very high computational ability but low
memory access bandwidth, resulting in much higher memory
access time than computation time. Moreover, with the high-
dimensional state vector and action vector, the number of pa-
rameters of the neural network rises sharply, and the memory
access time is even higher, which greatly delays the calculation
of the DRL agent and consequently the control-loop delay.

To make DRLet feasible for large-scale networks, we need
to reduce the enormous calculation delay of the DRL agent. A
practical approach is to use distributed multi-agent reinforce-
ment learning [38], [39], which distributes the computation
and memory access to multiple agents and directly reduces
the total calculation delay of the DRL agent.

Considering fluctuations in network load, we have also
conducted experiments under the varied load scenarios to
evaluate the calculation delay of the DRLet agent, as shown in
Fig. 19. We found that DRLet ensures the timeliness of results
regardless of load scenarios.

VII. RELATED WORK

Flowlet was first proposed in FLARE [3], using packet
bursts as the load balancing unit. Cisco researchers then
applied flowlet-level load balancing to data center networks
[4] and attracted a lot of studies.

13

Most existing work focuses on routing, i.e., selecting ap-
propriate paths for flowlets to improve load balancing per-
formance. CONGA [4], CLOVE [7], HULA [6], and Hermes
[31] are the most typical work referring to congestion-aware
routing for flowlets. CONGA uses piggybacking to collect
the global congestion information, while CLOVE and HULA
use different methods, which are probing and the traceroute
mechanism, respectively. They both select the least congested
path for a new flowlet. A more comprehensive set of path
conditions (including congestion and link failures) are sensed
in Hermes. Then, timely yet cautious rerouting decisions are
made to bring performance gains for the active flow. Further-
more, CONGA and CLOVE require customized switches to
collect information on path conditions. While CLOVE and
Hermes are edge-based approaches that do not require switch
modification.

There are other approaches to make routing decisions.
CAF [40] proactively adjusts the congestion window based
on measured available bandwidth before flowlets enter the
network. While LetFlow [5] claims that flowlets should be
allowed to explore different paths with random routing. Even
if inappropriate routing decisions are made, flowlets can
compensate for this due to elasticity. When a flowlet is routed
to a slow path, it will lead to a large time gap for the ongoing
flow, thus creating a new flowlet.

The above-mentioned work mostly uses the static flowlet
timeout value to detect flowlets. DRW [41] tunes the flowlet
timeout dynamically: setting a small flowlet timeout value
for high-load scenarios and a large timeout value for low-
load scenarios. However, the timeout value used in each load
scenario is still a fixed static value. In addition, this is not
feasible in realistic networks, because the load is time-varying,
and the preset timeout value by DRW obviously cannot adapt
to the time-varying network scenario.

VIII. CONCLUSION

In this paper, we propose DRLet, which applies deep
reinforcement learning to dynamically configure the flowlet
timeout values for achieving dynamic flowlet switching in
the network. We first establish a network model to help
deep reinforcement learning understand the flowlet switching
problem, and then tailor and design the deep reinforcement
learning algorithms according to the characteristics of the
established model to better accomplish the mapping inside the
model.

Simulation and emulation results have verified that: i) thanks
to the effectiveness of DRL-based dynamic flowlet switch-
ing, the proposed scheme outperforms existing static flowlet
timeout value-based schemes both under the baseline topology
and asymmetric topology; ii) DRLet is concerned with the
granularity of load balancing and is compatible with any
routing algorithm, where random-based static routing helps
DRLet explore more paths, while congestion-aware dynamic
routing is preferred under high asymmetry or high unbalancing
workloads; iii) the millisecond-level control loop delay is
acceptable for DRLet, since its goal is to optimize the overall
balancing granularity across the network.

In future work, we will try to design a distributed method
using multi-agent reinforcement learning to achieve accurate
flowlet detection in the flow-level perspective, considering
that centralized control loop latency may still be a potential
problem in large-scale networks.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM computer communication
review, vol. 38, no. 4, pp. 63–74, 2008.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat
et al., “Hedera: dynamic flow scheduling for data center networks.” in
Nsdi, vol. 10, no. 8, 2010, pp. 89–92.

[3] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load
balancing without packet reordering,” ACM SIGCOMM Computer Com-
munication Review, vol. 37, no. 2, pp. 51–62, 2007.

[4] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav et al., “Conga:
Distributed congestion-aware load balancing for datacenters,” in Pro-
ceedings of the 2014 ACM conference on SIGCOMM, 2014, pp. 503–
514.

[5] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it flow:
Resilient asymmetric load balancing with flowlet switching,” in 14th
{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 17), 2017, pp. 407–420.

[6] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula: Scal-
able load balancing using programmable data planes,” in Proceedings
of the Symposium on SDN Research, 2016, pp. 1–12.

[7] N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, and
J. Rexford, “Clove: Congestion-aare load balancing at the virtual edge,”
in Proceedings of the 13th International Conference on emerging
Networking EXperiments and Technologies, 2017, pp. 323–335.

[8] L. Chen, J. Lingys, K. Chen, and F. Liu, “Auto: Scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization,”
in Proceedings of the 2018 conference of the ACM special interest group
on data communication, 2018, pp. 191–205.

[9] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 2018, pp. 1871–1879.

[10] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar, “Learning to
route,” in Proceedings of the 16th ACM workshop on hot topics in
networks, 2017, pp. 185–191.

[11] W. Wei, L. Fu, H. Gu, Y. Zhang, T. Zou, C. Wang, and N. Wang, “Grl-
ps: Graph embedding-based drl approach for adaptive path selection,”
IEEE Transactions on Network and Service Management, 2023.

[12] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[13] J. Hu, C. Zeng, Z. Wang, J. Zhang, K. Guo, H. Xu, J. Huang, and
K. Chen, “Load balancing with multi-level signals for lossless datacenter
networks,” IEEE/ACM Transactions on Networking, 2024.

[14] C. Hopps et al., “Analysis of an equal-cost multi-path algorithm,” RFC
2992, November, Tech. Rep., 2000.

[15] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath tcp,” ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4, pp. 266–277, 2011.

[16] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,” ACM
SIGCOMM Computer Communication Review, vol. 45, no. 4, pp. 465–
478, 2015.

[17] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact
of packet spraying in data center networks,” in 2013 Proceedings IEEE
INFOCOM. IEEE, 2013, pp. 2130–2138.

[18] J. Hu, J. Huang, W. Lv, Y. Zhou, J. Wang, and T. He, “Caps: Coding-
based adaptive packet spraying to reduce flow completion time in data
center,” IEEE/ACM Transactions on Networking, vol. 27, no. 6, pp.
2338–2353, 2019.

[19] Broadcom, “Broadcom tomahawk 4 switch.” [Online]. Available:
https://docs.broadcom.com/doc/12398014

[20] Cisco, “Cisco nexus series switches.” [On-
line]. Available: https://www.cisco.com/c/en/us/products/collateral/
data-center-analytics/nexus-dashboard/datasheet-c78-744371.html

14

[21] Huawei, “Huawei data center switches.” [Online]. Available: https:
//e.huawei.com/eu/products/switches/data-center-switches

[22] Intel, “Intel tofino switches.” [Online]. Available:
https://www.intel.com/content/www/us/en/products/details/network-io/
intelligent-fabric-processors.html

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[24] Q. Zhang, X. Wang, J. Lv, and M. Huang, “Intelligent content-aware
traffic engineering for sdn: An ai-driven approach,” IEEE Network,
vol. 34, no. 3, pp. 186–193, 2020.

[25] Y. Xu, W. Xu, Z. Wang, J. Lin, and S. Cui, “Load balancing for
ultradense networks: A deep reinforcement learning-based approach,”
IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9399–9412, 2019.

[26] “ns-3: Network simulator, version 3.” [Online]. Available: https:
//www.nsnam.org/

[27] P. Gawłowicz and A. Zubow, “Ns-3 meets openai gym: The playground
for machine learning in networking research,” in Proceedings of the 22nd
International ACM Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems, 2019, pp. 113–120.

[28] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[29] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
Proceedings of the ACM SIGCOMM 2010 Conference, 2010, pp. 63–74.

[30] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible data
center network,” in Proceedings of the ACM SIGCOMM 2009 conference
on Data communication, 2009, pp. 51–62.

[31] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient
datacenter load balancing in the wild,” in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, 2017, pp.
253–266.

[32] J. Dong, L. Tan, C. Tian, Y. Zhou, Y. Wang, W. Dou, and G. Chen,
“Meet: rack-level pooling based load balancing in datacenter networks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 12,
pp. 3628–3639, 2022.

[33] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“Drill: Micro load balancing for low-latency data center networks,” in
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, 2017, pp. 225–238.

[34] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: measurement, analysis, and implications,” in Proceedings
of the ACM SIGCOMM 2011 conference, 2011, pp. 350–361.

[35] N. Shelly, B. Tschaen, K.-T. Förster, M. Chang, T. Benson, and
L. Vanbever, “Destroying networks for fun (and profit),” in Proceedings
of the 14th ACM Workshop on Hot Topics in Networks, 2015, pp. 1–7.

[36] C. Gao, S. Chu, H. Xu, M. Xu, K. Ye, and C.-Z. Xu, “Flash: Joint
flow scheduling and congestion control in data center networks,” IEEE
Transactions on Cloud Computing, vol. 11, no. 1, pp. 1038–1049, 2023.

[37] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, 2015,
pp. 123–137.

[38] J. Hu, M. P. Wellman et al., “Multiagent reinforcement learning:
theoretical framework and an algorithm.” in ICML, vol. 98. Citeseer,
1998, pp. 242–250.

[39] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. Gonzalez, M. Jordan, and I. Stoica, “Rllib: Abstractions for distributed
reinforcement learning,” in International Conference on Machine Learn-
ing. PMLR, 2018, pp. 3053–3062.

[40] S. Zou, J. Huang, W. Jiang, and J. Wang, “Achieving high utilization of
flowlet-based load balancing in data center networks,” Future Generation
Computer Systems, 2020.

[41] F. Fan, H. Meng, B. Hu, K. L. Yeung, and Z. Zhao, “Roulette wheel
balancing algorithm with dynamic flowlet switching for multipath data-
center networks,” IEEE/ACM Transactions on Networking, vol. 29, no. 2,
pp. 834–847, 2021.

Xinglong Diao received the B.E. degree in Com-
munication Engineering from Xidian University, in
2017. He is currently working toward the Ph.D. de-
gree in State Key Lab of ISN, Xidian University. His
research interests include load balancing, congestion
control, data center network, and machine learning
for networking.

Huaxi Gu is a professor affiliated with the State
Key Lab of ISN, Xidian University. Prof. Gu is the
leader of the Youth Innovation Team of Shaanxi
Universities. He is leading a project as the principal
investigator, funded by the National Key Research
and Development Program of China. He is also
the principal investigator for one key, two general
and one youth project funded by National Natural
Science Foundation. Prof. Gu has published over 200
journal and conference papers, with his research in-
terests being in the areas of networking technologies,

network on chip, optical interconnect, etc. Prof. Gu served as the TPC member
of GLOBECOM, ICC, PDCAT, etc., and the technical reviewer for multiple
journals including IEEE Transactions on Computers, IEEE Transactions
on VLSI, IEEE Transactions on Cloud Computing, IEEE/OSA Journal of
Lightwave Technology, etc.

Wenting Wei received the M.E. and Ph.D. degrees
in telecommunication and information systems from
Xidian University in 2014 and 2019, respectively.
Since 2019, she has been working at the State Key
Lab of ISN, Xidian University. Her main research
interests include data center networking, network
virtualization, cloud computing and intelligent trans-
portation.

Guoyong Jiang received the B.E. degree in Elec-
tronic Information Engineering from Qingdao Uni-
versity, in 2020. He is currently working toward the
Master degree in State Key Lab of ISN, Xidian Uni-
versity. His research interests include load balancing,
and data center network.

Baochun Li received the Ph.D. degree from the
Department of Computer Science, University of Illi-
nois at Urbana-Champaign, Champaign, IL, USA, in
2000. Since then, he has been with the Department
of Electrical and Computer Engineering, University
of Toronto, where he is currently a Professor. He
holds the Bell Canada Endowed Chair in computer
engineering since August 2005. His research inter-
ests include large-scale distributed systems, cloud
computing, machine learning, datacenter network-
ing, and wireless networks. He is a member of the

ACM and a fellow of the IEEE.

