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Abstract. In peer-to-peer applications, we need to encourage selfish users to
share and contribute local resources to the global resource pool that all peers
may benefit from, by providing adequate incentives. If we assume that all users
are non-cooperative and always attempt to maximize their own net gains, at the
first glance, we could model such behavior as a non-cooperative game and derive
the equilibrium that no users deviate from. However, two observations complicate
the case. (1) In such a game, user valuation on the contribution amount fluctuates,
due to the dynamic supply-demand relationship of the shared resources; and (2)
desirable global system properties require payoff functions to be reasonably de-
signed. In this paper, we model the peer-to-peer system as a Cournot Oligopoly
game with dynamic payoff functions that incorporate system performance re-
quirements, and propose a control-theoretic solution to the problem. Throughout
the paper, we use a peer-to-peer global storage system as a running example and
case study. Simulation results have shown that the control-theoretic solution may
effectively adapt the user contributions to track system dynamics, maximize the
local net gain, and achieve satisfactory global properties.

1 Introduction

In peer-to-peer networks, each peer host contributes its local resources to serve the
common good, and may benefit from resources contributed by other peers in return.
In peer-to-peer storage systems (e.g., CFS [1], OceanStore [2], PAST [3]), peers con-
tribute their local storage space and network bandwidth to the system, and are granted
rights to store (or backup) data in the global storage pool. Similarly, other peer-to-peer
applications may require peers to contribute network bandwidth (e.g., Resilient Overlay
Networks [4]) or CPU cycles (e.g., the concept of Grid computing [5]). Based on such
a fundamental design philosophy, peer-to-peer applications provide appealing features
of enhanced system robustness, high service availability and scalability.

However, all is not rosy. The critical observation that users are generally selfish and
non-cooperative may severely undermine the expected peer-to-peer structure. For ex-
ample, the free rider phenomenon has been revealed [6, 7] in peer-to-peer file sharing
applications such as Gnutella: most users are selfish and never share any local files,
such that the peer-to-peer system is only supported by a small group of supernodes, and
degrades to a client-server-like centralized structure. The root cause of the problem is,
obviously, there exist no incentives for users to be altruistic. Therefore, if we assume



that all users are selfish and wish to maximize their own net gains at all times, engi-
neering incentives is a must to encourage contribution and maintain the robustness and
availability of peer-to-peer systems.

The question, now, turns to how incentives may be designed. We may naturally be
led to game theory for two reasons. First, incentives and costs are natural components
of the users’ net gains, which may be easily modeled by payoff functions in game the-
ory. Second, the selfishness of users guarantees that they seek to maximize their gains,
which conforms with the fundamental assumptions in game theory as well. Game the-
ory studies whether an equilibrium exists in a game, and if so, how to derive such an
equilibrium. However, the question at hand leads to the issue of how we may construct
(or design) the payoff functions in a game, such that certain desired global properties
may be achieved once the users reach their respective equilibria. This is in the domain
of inverse game (or mechanism design [8]), which is usually hard to solve.

Even if the payoff functions are designed, we need an adequate solution to drive the
users toward the desirable equilibrium. In this case, system dynamics have to be incor-
porated into the incentives and costs that constitute such time-varying payoff functions.
On one hand, user contributions dynamically affect the global system states (e.g., to-
tal amount of resources contributed); on the other hand, to maintain acceptable system
performance, their decisions on the amounts of contributed resources must be adjusted
over time based on the observed and predicted system dynamics. In order to assist
users to make such time-varying decisions with the presence of system uncertainties, a
control-theoretic approach seems more adequate than game theory.

Towards peer-to-peer incentive engineering, should the users play games with specif-
ically constructed payoff functions, or should they be controlled to make time-varying
decisions? In this paper, we attempt to combine the benefits of both worlds. We design
the payoff function in a game-theoretic perspective, such that it explicitly incorporates
the desirable global system properties. We then use such designed payoff function as
the objective function in an optimal control system deployed at every peer. The optimal
control system makes decisions on the quantity of contribution to the global pool, such
that the objective function is maximized, subject to certain constraints. Our game-based
controller design may effectively adapt the user contributions to track system dynam-
ics, maximize the local net gain, and achieve satisfactory global system performance. In
simulation studies, we compare the optimal control based solution with the pure game-
based solution. Throughout the paper, we use a peer-to-peer global storage system as a
running example and case study.

The remainder of the paper is organized as follows. Sec. 2 presents preliminaries
regarding our system models and objectives. A game-theoretic perspective of the system
is illustrated in Sec. 3, which evolves into a control-theoretic approach presented in
Sec. 4. The control performance of the proposed mechanisms is evaluated in Sec. 5.
Related work is discussed in Sec. 6, and Sec. 7 concludes the paper.

2 Preliminaries

In this paper, we are concerned about engineering sufficient incentives for users in peer-
to-peer systems, so that contribution of local resources to the common pool is encour-



aged. We assume that all users are selfish, in the sense that they seek to maximize their
net gains at all times once the incentives are provided. We believe that the net gain
of a user is equivalent to the offered incentives subtracted by the cost in providing the
resources.
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Fig. 1. Model of a peer-to-peer system: contributions, usage and bounds

Fig. 1 shows a detailed view of available resources on each of the peer users. The
type of resource may be bandwidth, storage space or CPU cycles, depending on the
features of the particular peer-to-peer application. On each peer user, there exists an
upper bound of available resources, e.g., the maximum available storage space. The
user makes one simple decision: what is the quantity of resource it should contribute to
the globally shared pool? The contributed resource may not be utilized at all times, and
may be further divided into used and unused portions.

Without loss of generality, we concentrate on the case study of a peer-to-peer stor-
age system throughout the paper, where the local storage space is the resource to be
contributed to the common pool. We proceed to present a brief description of such an
application.

Peer-to-peer storage systems are designed to aggregate contributed storage space
distributed over a network, in order to conserve the cost of proprietary high-capacity
and centralized storage devices. A good motivating example of using such a system is
off-site file system backups. A peer-to-peer storage system is by no means static: peer
users join and leave the network freely, and may dynamically adjust the quantity of
contributions. The size of the global pool of storage space varies over time, and such
dynamic behavior has become the subject of extensive research (e.g., CFS [1]). In some
of the existing proposals, user data files are stored in the granularity of blocks, which
are scattered into the contributed storage of multiple peers. Such a strategy is beneficial
to achieve load balancing, hotspot relief and robustness of data.

For our case study of peer-to-peer storage systems, we make the following reason-
able assumptions on an abstract level:

(1) Adaptive quantity of contribution. Peer users are allowed to adjust the quantities
of their contributed resources (i.e., storage space), in order to maximize their own net
gains at all times. In this case, the contributed resources may be reclaimed at a later
time. It is realistic to make such an assumption, since peer users are allowed to join or
depart the system at will.



(2) Hash-based location and lookup of data blocks. We believe that the most ef-
fective peer-to-peer storage system utilizes distributed hash tables (DHTs) to hash data
blocks into identifiers, and these identifiers are used to determine which peer users are
going to store these blocks1. In this case, operations on data blocks in one peer user are
obviously independent from other geographically nearby users.

(3) Proportional usage of contributed capacity. Effective peer-to-peer storage sys-
tems employ mechanisms to achieve almost ideal load balancing with respect to con-
tributed but unused storage resources. For example, CFS employs virtual servers with
approximately the same storage capacity, to guarantee that the usage of the contributed
storage of every user is approximately in proportion to its amount of contribution.

3 Incentives: a Game-Theoretic Perspective

Since each selfish user seeks to maximize its own net gain, i.e., the incentives minus
the cost of contributions, it is natural to model the system from a game-theoretic per-
spective. Game theory addresses multi-person decision making problems, in which the
players are autonomous and rational decision makers. Each player has a set of strate-
gies at its disposal, and a payoff function (its valuation of each combination of strategies
of all the players). Players choose strategies to maximize their own payoffs, with the
consideration that their payoffs are affected by the decisions of all the players. Thus,
information about others’ strategy and payoff functions is critical in any game.

A Nash equilibrium identifies a stable state of the game, at which no player can im-
prove its payoff by deviating from the state, if no other players do so. At the equilibrium,
each player receives a payoff that is optimal with respect to the player’s knowledge or
belief about all other players’ strategies. Formally, the condition of Nash equilibrium
may be expressed as follows.

ui(s∗−i, s
∗
i ) ≥ ui(s∗−i, si), ∀si ∈ Si, ∀i ∈ N (1)

where Si is player i’s strategy set, s∗i is the strategy selected by player i at equilib-
rium, s∗−i is the strategies selected by all the other players at equilibrium, and ui is the
payoff function for player i. Further, a static game characterizes the situation in which
all players make decisions simultaneously without following any particular sequence of
play, and decisions are made once for all. A repeated static game extends a static game
in a stage by stage manner.

3.1 The Cournot Oligopoly Game

Assume that time is discretized, we model the decision-making procedure in the peer-
to-peer system as a repeated static game, with each stage of the game corresponding to
a time slot. In our case, the players correspond to the peer users, and the strategy space
of each peer user i is represented by Si(k) = [0, Ci(k)], where Ci(k) denotes the upper
bound of available resources for user i during the time slot k. When a peer user makes
a decision on the quantity of contributed resource, it has selected a strategy within the
strategy space Si(k).

1 The reader is referred to the design of CFS [1] for further details.



Within each stage, the game closely resembles the Cournot Oligopoly game. In a
Cournot Oligopoly game, n firms act as players, each rationally decide their own pro-
ductions {qi} of a homogeneous product in the market. Let Q = q1+· · ·+qn denote the
aggregate quantity on the market, and a denotes the total demand. The market-clearing
price P (Q) is given by the inverse demand relationship: P (Q) = a − Q (assuming
Q < a, otherwise P = 0). Assume all firms have the same marginal cost c (assume
c < a), and no fixed costs exist.

Before exploring the Nash equilibrium of the Cournot Oligopoly game, we resort
to the simpler case of a Cournot Duopoly game, where only two firms are present. In
this case, the profit of either firm can be expressed by the following payoff function
(i, j = 1, 2):

ui(qi, qj) = qi · P (qi + qj) − qi · c = qi[a − (qi + qj) − c] (2)

The game assumes that both firms know that their rival has the same knowledge
of the market-clearing price P (Q) and produces at the same cost (a static game with
complete information in game theory), hence, either firm is able to decide their optimal
quantities of production by solving the following equation array:{

du1
dq1

= a − 2q1 − q2 − c = 0
du2
dq2

= a − 2q2 − q1 − c = 0
(3)

And the derived Nash equilibrium is symmetric: qi = (a − c)/3.
Fig. 2 (A) illustrates such an equilibrium. Similarly, it can be shown that the Nash

equilibrium of the Cournot Oligopoly game is qi = (a − c)/(n + 1), where n is the
number of firms as players. It is easy to see that, if n is sufficiently large, and c is rela-
tively small compared with a, the total quantity of production on the market approaches
a.

3.2 Designing the Payoff Function

In peer-to-peer systems under consideration, we aim to encourage appropriate user con-
tributions, rather than excessive contributions. In this case, we need to reach a bal-
anced trade-off between two objectives: to provision adequate total resources in order
to accommodate unpredictable future service requirements with high probability, and
to maintain high resource utilization levels. We therefore need to properly design the
payoff function, so that the incentive a user receives for its quantity of contribution, as
well as the associated costs, reflect the actual system dynamics.

In this paper, we model peer-to-peer resource contribution systems as a variant to
the Cournot Oligopoly game due to the following reasons. First, in such peer-to-peer
systems, each peer user i decides its quantity of contribution within the strategy space
of Si(k) = [0, Ci(k)], with an incentive that is dependent on the contribution of all
users. The semantics is identical to that of the Cournot Oligopoly game. Second, the
market-clearing price in the Cournot Oligopoly game is based on the principle of reverse
demand, and naturally regulates user behavior based on the supply-demand relationship.

Despite such similarities, we still need to tailor the definitions of a and c to the
specific requirements of the context. The term a, in the expression of market-clearing
price in the Cournot Oligopoly game, has been used to represent the maximum de-
mand on the market, and thus regulates the maximum achievable total production in the



game. In peer-to-peer systems, we let a reflect the total desirable quantity of resource.
Then the market-clearing price is expressed as the difference between a and the total
contribution of resources, according to the inverse demand principle as in the Cournot
Oligopoly example. The incentives towards user contribution is thus the market-clearing
price multiplied by the quantity of resource contribution.

It should be noted that it is hard to determine the total desirable quantity of resources
off-line, since peers may join and leave the system at will, and usage in the shared
resource pool is unpredictable. However, the quantity can be estimated based on the
observed history, if it varies relatively slowly over time, which is the strategy we utilize.
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Fig. 2. (A) The Cournot Duopoly game. The star denotes the Nash equilibrium. a−c
2

is the optimal
output quantity in the monopoly case. (B) The relationship among the total desirable quantity of
resource (or demand), total resource contribution (or supply), the market-clearing prices and the
engineered incentives (market-clearing price multiplied by the quantity of user contributions).

Fig. 2(B) shows that, when the market-clearing price and the user’s quantity of con-
tribution change over time, there exists a point, after which the incentives offered to the
peer user start to decrease. This implies that when there are excessive resources avail-
able in the global pool, peers should no longer benefit further by contributing additional
resources.

Beyond incentives, contributing valuable local resources to the global pool comes
with costs. In designing the marginal cost c in the payoff function, a heuristic choice is
to assume a constant cost per unit quantity, as in the original Cournot Oligopoly game.
However, in realistic peer-to-peer resource sharing applications, such an assumption
may not reflect the true associated costs. For example, in the case study of peer-to-peer
storage systems, the overwhelming cost of sharing each unit of storage space may not
be the local storage per se, the peer users may be much more concerned with the local
bandwidth being consumed by other peers accessing data contained in the contributed
storage space.

From a user’s perspective, taking the quantity of contribution as the cause, the ef-
fects of the contribution may be reflected by the observable bandwidth consumption, as
is shown by Fig. 3. Though both the cause and effects are locally observable, the system
dynamics governing these parameters are, unfortunately, not known.

We now proceed to formally design the payoff function, which engineers appropri-
ate incentives and models the true costs. With the peer-to-peer storage system as our
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Fig. 3. The cause-effect relationship between the quantity of contribution, the contributed storage
being used, and the bandwidth consumption due to such usage.

example, we list all the important notations to be used in this paper in Table 1. Since we
assume discrete time domain, the variables si(k) and bi(k) in Table 1 represent their
respective average values during slot k, and are observed at the end of slot k. The quan-
tity of contribution ci(k), as well as the upper bounds Ci(k) and Bi(k), are determined
at the beginning of slot k, however.

We design the term a as λ
∑

j sj(k), which represents the desirable quantity of total
storage (or system capacity). λ is a system wide parameter that defines the desired level
of global storage utilization. Then, market-clearing price is expressed by λ

∑
j sj(k)−∑

j cj(k), and the incentives that user i receives for contributing ci(k) is:

ci(k) · [λ
∑

j

sj(k) −
∑

j

cj(k)] (4)

Table 1. Case study of peer-to-peer storage systems: notations

Symbols Explanations

N The total number of peer users
ci(k) The storage contribution of user i in slot k
Ci(k) The upper bound of ci(k)
si(k) The amount of occupied storage contribution of user i in slot k
bi(k) The bandwidth consumption on user i in time slot k
Bi(k) The upper bound of acceptable bi(k)
c−i(k)

∑
j∈N
j �=i

cj(k)

s−i(k)
∑

j∈N
j �=i

sj(k)

Since increased storage contribution results in increased bandwidth consumption
by other peers, which is highly undesirable for the user, we model the user’s reluctance
towards further contributions as an exponentially increasing function of its bandwidth
consumption: [bi(k)/Bi(k)] · ebi(k)/Bi(k). Thus, the higher the relative bandwidth con-
sumption bi(k)/Bi(k), the higher the marginal cost.

We now have finalized the payoff function, denoted by ui(k) for user i and in time
slot k, as follows:



ui(k) = ci(k) ·
λ

∑
j

sj(k) −
∑

j

cj(k) − bi(k)
Bi(k)

· ebi(k)/Bi(k)

 . (5)

In the repeated static game we have defined, for each time slot k, every user i at-
tempts to adjust ci(k), so as to maximize its payoff in the stage, based on the prescribed
payoff function in Eq. (5). Comparing with Eq. (2), we may observe that the terms a
and c are time-variant quantities, which are dependent on the actual system states. In
addition, when the relative bandwidth consumption bi(k)/Bi(k) is sufficiently low, the
marginal cost is negligible compared to the market-clearing price (c � a). Thus, the
total storage contribution approximates a · N/(N + 1) = λ · N

∑
j sj(k)/(N + 1),

which means that the desirable system storage utilization can be adjusted by tuning the
value of λ. Assume an average storage utilization of (66 ∼ 80)%, the corresponding λ
would be (1.25 ∼ 1.5)(N + 1)/N .

As a simple illustration, the functions of the aforementioned incentives, costs and
payoffs are shown in Fig. 4.
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Fig. 4. The payoff function, including the incentives and costs.

4 Game-Based Optimal Control

Our process of engineering the incentives and the costs (that constitute the payoff func-
tion) is identical to that of inverse game theory (or mechanism design), where the payoff
function is designed, so that certain desirable global properties are achieved at the Nash
equilibrium. It may seem that we may now apply standard game theory and investigate
the properties achievable at Nash equilibrium, once the equilibrium point is derived by
solving a group of maximization problems.

However, there exist fundamental difficulties along this path. In the game we have
designed, the payoff functions of Eq. (5) are not only heterogeneous for different users
due to the user-specific parameter Bi(k), but also time-varying: users locally estimate
bi(k) and si(k), based on their views of the global storage system updated on-the-fly.

Besides, each user makes its decision on ci(k) at the beginning of time slot k. How-
ever, at this time instant, si(k) and bi(k), which denote their respective average value
during slot k, are not yet obtainable. What we are able to obtain, instead, are their old



values, si(l) and bi(l), l ≤ k − 1. A direct solution might be to use si(k − 1) and
bi(k − 1) in lieu of si(k) and bi(k), respectively. However, considering the length of
time slot k, such an estimation may be taken as a convenience at best.

In addition, from the game-theoretic perspective, the decision making procedure
potentially requires each peer to know the parameters (e.g., si(k) and bi(k)) of the pay-
off functions of all other peers before deciding their ci(k). However, such information
cannot be exchanged beforehand, since si(k) and bi(k) are still unavailable at the time
of decision making. Therefore, the exact payoff function of any user remains unknown
to all other users, which is different from the case of the Cournot Oligopoly example.

Despite these difficulties, what we do need to know is the relationship between (1)
the optimal quantity of contribution ci(k), determined at the beginning of slot k; and
(2) si(k) and bi(k) to be observed during the same time slot. Such a relationship, appar-
ently, is determined by the behavior of the external system that we have not investigated
so far.

When deciding a new value of ci(k), it is possible for each user to dynamically
identify a mathematical model for the external system based on its locally observed
values of si(k), bi(k) and ci(k). On one hand, given any ci(k), new values of si(k) and
bi(k) can be predicted, so that the objective function can be evaluated, and the optimal
value of ci(k) can be calculated; on the other hand, since new decisions are made on
the basis of the model, the user’s strategy space is in fact restricted to a set that is closer
to the probable system behavior. In this way, we are naturally led to a control-theoretic
solution to the game.

Furthermore, due to the difficulty for users to promptly exchange information about
their current payoff function, we propose that users determine new quantities of con-
tributions based on other users’ status (i.e., si(k), ci(k)) in the previous time slot, so
that they make decisions according to their observations on, rather than inference about,
other users’ behavior.

In this section, we propose a control-theoretic approach to address these problems.
We design a decentralized optimal control system in the game setting, such that the
payoff function Eq. (5), which has incorporated global system performance objectives
— in the market-clearing price and marginal cost terms — are taken as the objective
function. The control law, which is equivalent to the trajectory of contribution decisions,
is derived as the maximizing solution to the objective, subject to constraints of the
system model. Therefore, we utilize users’ selfishness in maximizing their own payoff,
and achieve the following goals simultaneously: (1) achieving sufficient total storage
capacities; (2) maintaining high storage utilization; and (3) avoiding severe bandwidth
stress at participating peers.

4.1 Design of the Optimal Control System

Towards our aforementioned objectives, the peer users rely on decentralized optimal
controllers to locally adapt their decisions on their quantities of contribution. Fig. 5
shows the block diagram of the optimal control system design.

For the local control system at peer user i, the entire global peer-to-peer system is
the plant to be controlled. However, any single peer user i acts only as a port to the plant,
and ci(k) is the only control it may impose on the plant. si(k) and bi(k) are affected not



only by peer i’s contribution quantity ci(k), but also by the quantities of contribution by
other users, as well as unknown system dynamics that are beyond control of our model.
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Fig. 5. The block diagram of the decentralized optimal control system.

More concretely, we consider the system seen by user i as a discrete time-varying
linear system, with ci(k), bi(k), and si(k) as the input, output, and state variables, re-
spectively. System dynamics with regard to storage usage and bandwidth consumption,
which are caused by the insertion, deletion and retrieval of data blocks, are modeled as
random noises.

The problem can be further formulated as a decentralized optimal control task: each
user i decides its optimal input trajectory ci(k) to the plant, which maximizes its playoff
function as shown in Eq. (5), subject to the constraints given by Eq. (6):

ci(k) = arg max ui(ci(k), c−i(k))
bi(k) = F (ci(k))
ci(k) ≤ Ci(k)
bi(k) ≤ Bi(k)

(6)

where bi(k) = F (ci(k)) represents the stochastic model of the plant. As it becomes
apparent, the correct identification of the plant is critical to the optimal control system.

4.2 The Plant: System Identification

From a control-theoretic perspective, we model the plant as a discrete-time stochastic
linear system. A state space model can be formulated as follows:{

A(q−1)si(k) = B(q−1)ci(k)
C(q−1)bi(k) = D(q−1)si(k)

where si(k) is the state variable, and the form R(q) stands for a polynomial in the
forward shift operator q, for instance, given R(q−1) = 1+2q−1+q−2, R(q−1)si(k) =
si(k) + 2si(k − 1) + si(k − 2).

Further, we have assumed that at any time slot k, the block insertion rate at user i is
roughly in proportion to its unused share of storage contribution (Sec. 2); the bandwidth
consumption bi(k) is essentially dependent on the observed usages at user i (subject to
uncertain factors). Therefore, the system model can be refined as:{

si(k) = si(k − 1) + αi[ci(k) − si(k − 1)] − βisi(k − 1) + ti(k) (7.1)
bi(k) = γi(q−1)si(k) + wi(k) (7.2)

(7)



where αi[ci(k) − si(k − 1)] stands for the amount of inserted data at user i in slot
k, βisi(k − 1) is the amount of deleted data. Apparently, αi and βi are time-varying
parameters, and the uncertainties in their variations are accounted for by the zero-mean
white noise term ti(k). Similarly, the coefficients of γi(q−1) also change over time,
and the zero-mean white noise wi(k) represents the uncertain factors from the global
system regarding bandwidth consumption at user i.

We adopt the stochastic approximation (SA) algorithm [9] to estimate the unknown
parameters αi, βi and the coefficients of γi(q−1), based on the observed values of si(k),
ci(k) and bi(k).

Consider Eq. (7.1) as an example. The equation can be written in the form of:
y(k) = φT (k)θ + ti(k), where y(k) = si(k), φT (k) = (si(k− 1), ci(k)− si(k− 1)),
both consist of observable variables, θ(k) = (1−βi(k), αi(k)) contains the parameters
to be estimated, and ti(k) is the unknown noise.

The estimated parameter vector θ̂(k) is derived as the minimizing solution to the
least-squares loss function V (θ, t) = 1

2

∑t
i=1(y(i)−φT (i)θ)2. A simplified recursive

algorithm is given by

θ̂(k) = θ̂(k − 1) + εP (k)φ(k)(y(k) − φT (k)θ̂(k − 1))

where

P (k) =

(
k∑

i=1

φT (i)φ(i)

)−1

ε is the adaptation gain which tunes the adjustment step of the estimates.
For the sake of predicting system dynamics, it is advantageous to have the esti-

mated model parameters update slower than system variables. We take the following
averaging technique to achieve smoother parameter variations: θ̂(k) = θ̂(k − 1) +
εE[P (i)φ(i)(y(i) − φT (i)θ̂(i − 1)], where the incremental term εE[P (i)φ(i)(y(i) −
φT (i)θ̂(i − 1))] is the arithmetic mean of previous corrections.

4.3 Optimization Objective: the Game-based Objective Function

We have designed the payoff function following the principles of the Cournot Oligopoly
game. We propose an optimal control solution to the game, which takes this payoff
function as the objective function in the control system. Due to the unfeasibility for user
i to observe s−i(k) and c−i(k) (defined previously in Table 1) at the time of decision
making, the objective function (we again use ui(k) as a convenience) may be defined
as follows, which is slightly different from the payoff function in Eq. (5):

ui(k) = ci(k)·{λ[
∑
j �=i

sj(k−1)+si(k)]−[
∑
j �=i

cj(k−1)+ci(k)]− bi(k)
Bi(k)

·e
bi(k)
Bi(k) }. (8)

In Eq. (8), however, the terms
∑

j �=i sj(k − 1) and
∑

j �=i cj(k − 1) are global in-
formation and may not be conveniently known or observable to the peer users. Within a
small-scale peer-to-peer group, if the decision updating period is sufficiently long, it is
feasible for each peer user to constantly observe the sj(k), cj(k) and bj(k) values of all



other peers. Thus, an arbitrary peer user i may directly use Eq. (8) as its decision mak-
ing criterion. In this case, each peer user always attempts to form its best strategy based
on the strategies selected by other peers in the previous stage, and users sequentially
make their decisions in an iterative manner. If the iteration converges, it must converge
to the Nash equilibrium.

As the network becomes larger, collecting complete information of all peers be-
comes infeasible. In such cases, certain characteristics of the peer-to-peer application
may be of assistance in estimating such global information. In peer-to-peer storage sys-
tems, for example, if we assume that the location and lookup of data blocks are based on
distributed hash [1, 3], there is a high probability that ideal load balancing is achieved.
In this case, if the user knows the total number of peers in the system (N ), it may use
(N − 1) · si(k) to estimate

∑
j �=i sj(k). Such an estimation is not as accurate, but it

eliminates the message passing overhead of exchanging peer information.
As the network scales further up (i.e., large-scale network), it is increasingly difficult

for each peer user to even have the knowledge of the total number of users. In such
cases, we modify the objective function as follows, so that users only rely on locally
observable parameters to make the decision (note that this extension has deviated from
the game setting):

ui(k) = ci(k) · [λsi(k) − ci(k) − bi(k)
Bi(k)

ebi(k)/Bi(k)] (9)

4.4 The Optimal Control System

Our game-based optimal contribution mechanism periodically calculates ci(k) that max-
imizes ui(k), subject to the estimated system behavior (the identified plant model) and
the upper bounds of ci(k) and bi(k).

Assume all users have the full knowledge of ci(k) and si(k) of one another, the
optimal control problem can be formulated as follows:

c∗i (k) = arg max ci(k){λ[
∑

j �=i sj(k − 1) + si(k)] − [
∑

j �=i cj(k − 1) + ci(k)]
− bi(k)

Bi(k)e
bi(k)/Bi(k)} (10.1)

ci(k) ≤ Ci(k) (10.2)
bi(k) ≤ Bi(k) (10.3)
si(k) = [1 − β̂i(k − 1)]si(k − 1) + α̂i(k − 1)[ci(k) − si(k − 1)] + ti(k) (10.4)
bi(k) =

∑n
j=0 γ̂i,j(k − 1)si(k − j) + wi(k) (10.5)

(10)
ti(k) and wi(k) are noises that may not be observed. We thus approximate them

with the estimation errors of si(k) and bi(k): ti(k) .= si(k)− α̂i(k−1)[ci(k)−si(k−
1)]+[β̂i(k−1)−1]si(k−1), wi(k) .= bi(k)−∑n

j=0 γ̂i(k−1)si(k−j). Since they still
cannot be evaluated as ci(k), si(k) and bi(k) are unknown for the moment, we replace
them with the average values of recent errors, i.e., ti(k) .= E(ti), and wi(k) .= E(wi).

Substitute (10.3) to (10.5), then substitute (10.5) to (10.4), we may obtain another
upper bound on ci(k):

ci(k) ≤ c̄i(k) = 1
α̂i(k−1){ 1

γ̂i,0(k−1) [Bi(k) − wi(k) −∑n
j=1 γ̂i,j(k − 1)si(k − j)]

+[α̂i(k − 1) + β̂i(k − 1) − 1]si(k − 1) − ti(k)}
Combining it with (10.2), we obtain the tight upper bound on ci(k):



ci(k) ≤ min{c̄i(k), Ci(k)} = ĉi(k).
Hence, the original problem is transformed to

c∗i (k) = arg max ui(ci(k)) = arg max ci(k){λ[
∑

j �=i sj(k − 1) + si(k)]
−[
∑

j �=i cj(k − 1) + ci(k)] − bi(k)
Bi(k)e

bi(k)/Bi(k)}
ci(k) ≤ ĉi(k)

Similarly, in the case of large-scale networks, the optimal control problem is the
following:{

c∗i (k) = arg max ui(ci(k)) = arg max ci(k)[λsi(k) − ci(k) − bi(k)
Bi(k)e

bi(k)
Bi(k) ]

ci(k) ≤ ĉi(k)

It can be shown that, in both cases, ∂2ui(ci(k))
∂ci(k)2 may not be negative definite (depend-

ing on the estimated parameters of the plant), thus, the solution to the above problem
should be chosen as c∗i (k) = arg minui(ci(k)), ci(k) ∈ {ĉi(k), {ui(c̃i(k))}}, where
{ui(c̃i(k))} are the local maximums or minimums of ui(ci(k)) that satisfy the first
order condition of the objective function.

By reforming the optimal control problem at every stage of the game, the best con-
tribution strategy of user i with respect to other users’ decisions can be derived as the
optimal control law to the dynamic system. In the example of peer-to-peer storage sys-
tems, the local controller periodically performs the following tasks:

(1) Local observations. Before the control decision is made for the kth time slot, the
upper bound of storage contribution Ci(k) and the upper bound for bandwidth contribu-
tion Bi(k) should be determined at the beginning of slot k. The actual usage of storage
si(k − 1) and bandwidth consumption bi(k − 1) must be measured and calculated at
the end of time slot (k − 1).

(2) Information exchange. Depending on different assumptions with respect to the
scale of the peer-to-peer network, peers may need to exchange their local observations
si(k − 1) and ci(k − 1) with other peers.

(3) System identification. Due to the time-variant and stochastic nature of the system
view, the model of the plant needs to be periodically estimated based on the locally
observed values of ci(k), si(k), and bi(k).

(4) Constrained optimization. Besides the upper bounds on ci(k) and bi(k), the
acceptable user strategies are further constrained by the system behavior predicted from
the estimated system model. Thus, the decision drawn will be optimal in terms of actual
system performance (e.g., bandwidth consumption).

5 Performance Evaluation

We perform simulations to compare the performance of two categories of solutions to
the incentive engineering problem in peer-to-peer systems: the proposed optimal con-
trol based solution (referred to as solution 1 henceforth) and the more primitive game-
theoretic solution (referred to as solution 2). In the following presentation, emphasis
is placed on revealing the fundamental differences between the two types of decision
making processes. Again, we take the peer-to-peer storage system as a case study in all
our evaluations.



5.1 Simulation Settings

In all the experiments, we take 50 peers with heterogeneous but constant upper bounds,
Ci and Bi, on storage contributions and bandwidth consumptions. Periodically, new
data insertion requests for the entire system are generated according to a sine function.
At different peers, the amounts of insertion requests are approximately proportional to
their contributed but unused storage space. Deletion operations are generated indepen-
dently for individual peers, which are in approximate proportion to their contributed
and used space.

The plant model is assumed as follows:{
si(k) = [1 − βi(k)]si(k − 1) + αi[ci(k) − si(k − 1)] + ti(k)
bi(k) = si(k) + 0.5si(k − 1) + wi(k)

where βi(k) stands for the deletion rate that occurs at user i in slot k, which is a
white noise with mean in [0, 1] and variance 1; αi(k) corresponds to the real insertion
rate seen by peer i, which is affected by the total amount of data insertion requests and
the total unused storage in the system, and the current contribution amount ci(k) of user
i; ti(k) and wi(k) are zero-mean white noises, representing the uncertain factors in the
external system, with regard to data insertion, deletion and bandwidth consumption.

We assume that the decision updating period is sufficiently long, so that peers ex-
change local observations on si(k) and ci(k) to assist decision making. Thus, in both
approaches to be evaluated, the objective function (in solution 1) and the payoff func-
tion (in solution 2) are periodically updated according to Eq. (8).

Solution 2 reaches the result by solving the following optimization problem:
c∗i (k) = arg max ci(k){λ∑j sj(k − 1) − [

∑
j �=i cj(k − 1) + ci(k)]

− bi(k−1)
Bi(k) ebi(k−1)/Bi(k)}

ci(k) ≤ Ci(k)
(11)

where the old values of si(k − 1) and bi(k − 1) are used to form the optimization
goal, and a single scalar c∗i (k) is derived as the optimal decision on ci(k).

Solution 1, instead, relaxes si(k) and bi(k) to be unknown, and employs three ad-
ditional constraints (the estimated system equations and the bandwidth upper bound) to
the optimization problem as in Eq. (10). Therefore, c∗i (k) is determined along with the
estimates of si(k) and bi(k).

5.2 Experimental Results

Since solution 1 relies on system identification to restrict the acceptable solution set
(strategy space), the correctness of the estimated parameters directly affects the user’s
final decision. As Fig. 6 has shown, our parameter estimation procedure gives satisfac-
tory estimates.

As will be evident in forthcoming results, in solution 2, user decisions fluctuate
evidently under system dynamics, so does the entire system capacity (Fig. 7(A)). The
reason is that, in solution 2, the cost term in the payoff function is evaluated at the band-
width consumption for the previous time slot, thus, it forms a strong negative feedback



for the contribution decision in the next slot. Since users make decisions based on their
static views (i.e., observed values of si(k), ci(k), and bi(k)) of the underlying dynamic
system, without further knowledge of its future variations, they tend to make decisions
that maximize the current payoff function, but stimulate higher bandwidth consump-
tion, equivalently, higher costs in the payoff function, for the coming slot. Hence, the
decision on contribution for the next slot may drop steeply, and further induce lower
costs subsequently.
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Fig. 6. Results of system identification. (A) Coefficients of the storage dynamic equation. (B)
Coefficients of the bandwidth dynamic equation.

System Capacity The total storage space provided by the system determines to a large
extent the benefit a user can receive. We use the notion equivalent data insertion re-
quests, which equals to the amount of insertion requests subtracted by the amount of
deleted data, to depict the variation of storage requirement in the system. As Fig. 7
has shown, both solutions render adaptable system capacity in face of system dynamics
(stimulated by the equivalent data insertion requests), but solution 2 reacts more sensi-
tively to the system variations. Besides, although decisions in solution 2 fluctuate more
heavily, the average system capacity is higher than that achieved in solution 1. Both the
significant capacity fluctuation and the augmented capacity are results of strong feed-
backs between the bandwidth consumption and the contribution decision, which come
with remarkable costs.

Bandwidth Stress As Fig. 7(B) shows, bandwidth consumption in solution 2 may
consistently exceed the prescribed upper bound; the quality of service that individual
peer users receive from the system, and that provided to the other peer users, may be
severely degraded as a result.

The reason is that, solution 2 does not explicitly consider the effects that each con-
tribution decision has on the observable system status (si(k) and bi(k)), it tends to de-
grade network performance by more aggressively consuming user bandwidth. Primitive
game-based strategies cannot avoid such phenomena, since the cost term in the payoff
function only serves as a virtual penalty on the bandwidth consumption of the pre-
vious period: contribution quantities that may significantly increase future bandwidth
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Fig. 7. Comparisons between the two solutions. (A) System capacity; (B) Bandwidth stress.

consumption are still acceptable within the context, as long as the payoff function is
maximized. On the contrary, the optimal control based solution effectively alleviates
such deterioration on system performance, by restricting user strategy space with the
estimated system model, so that the contribution decision is derived as an attempt to
maximize the control objective, subject to the constraint of possible system behavior.

Storage Utilization Fig. 8(A) shows the variations of storage usage for both solutions,
and Fig. 8(B) illustrates the corresponding storage utilization factors. It can be seen
that, the storage utilization is relatively stable for solution 1, due to its smoother con-
tribution variations. In addition, we set λ to 1.25(N + 1)/N in our simulation, which
corresponds to an expected storage utilization of 80%, and it approximately agrees with
our simulation results.
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Fig. 8. Comparisons between the two solutions. (A) Contributed and used storage; (B) Capacity
utilization.

In summary, we have verified that, in peer-to-peer applications, primitive game-
based strategies may not be readily applicable to manipulate real-time systems, due to
their inherent restrictions of considering the underlying system with a static view. The
limitation is alleviated when the physical rules governing the dynamic system behavior



are explicitly incorporated into the decision making procedure. From an optimal control
perspective, the user strategy space can be constrained by feasible system behavior, and
incentives can be more adequately engineered by properly designing payoff functions.
Therefore, distributed users may spontaneously make decisions to benefit themselves
and other users, unconsciously assisting the maintenance of optimal states in the global
peer-to-peer system.

6 Related Work

We have resorted to two theoretical tools, game theory and control theory, to address
the problem of incentive engineering. Both theories have been extensively employed in
various network-related areas, but their applications to peer-to-peer system have only
recently begun to be studied.

As a powerful tool in solving multi-person decision making problems, game theory
has been applied in multiple channel access arbitration [10], optimal routing [11–13],
as well as flow and congestion control [14]. Some of the recent work has started to
apply game theory in peer-to-peer applications. Golle et al. [15], for instance, have dis-
cussed game theory applications in peer-to-peer file sharing applications with central-
ized servers. In particular, they take into account the effect of users’ levels of altruism
on their behavior of contributing and receiving, and construct the user strategy space
accordingly. Liao et al. [16] have focused on incentive provisioning for wireless access
services, and constrained user strategy spaces with service purchasing power and price-
service menu, so that only desirable cooperative behavior is permitted. Feigenbaum et
al. [8] have studied the more general problem of mechanism design, which encourages
users to behave in the way that leads to the system desirable outcome, by properly
designing associated payoffs and specifications that are computationally tractable.

For the purpose of providing reasonable incentives and achieving desirable system
performance in peer-to-peer applications, we believe that to investigate the relationship
between user behavior and system performance, which closely depends on the mathe-
matical model of the underlying system, is the primary task we should undertake. Only
based on adequate knowledge about the relationship, can we proceed to design satis-
factory mechanisms to control user behavior. Control theory, fortunately, provides the
right concepts and techniques for modeling system dynamics, analyzing performance,
and designing appropriate controllers to regulate system behavior. We believe that em-
ploying control-theoretic techniques in peer-to-peer networks will provide a solid basis
for incentive engineering research, and will generate effective solutions. We have not
been aware of any existing work that takes a control-theoretic approach to address prob-
lems in this aspect.

7 Conclusions

In this paper, we have investigated the issue of peer-to-peer incentive engineering from
both the game-theoretic and the control-theoretic perspective. The original contribu-
tions of this paper are two-fold. First, we model the situation as a game and propose to
design the payoff function such that, as the users maximize their own net gains, the de-
sirable global system performance is obtained. Second, we propose an optimal control



solution to regulate users’ adaptive behavior of the game, by using the designed payoff
function directly as the objective function that the controller optimizes. Our experi-
mental results have demonstrated that the control solution behaves more stably in face
of system dynamics, while the primitive game solution may also achieve acceptable
performance in most cases. To the best of our knowledge, there do not exist previous
studies in the area of incentive engineering based on either the design of payoff func-
tions in a game (i.e., the principles of inverse games) to achieve global properties, or
the use of an optimal control system to adapt to system dynamics while catering to the
selfishness of users.
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