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Abstract—Privacy-preserving similarity search plays an essential role in data analytics, especially when very large encrypted datasets

are stored in the cloud. Existingmechanisms on privacy-preserving similarity search were not able to support secure updates (addition

and deletion) efficiently when frequent updates are needed. In this article, we propose a newmechanism to support parallel privacy-

preserving similarity search in a distributed key-value store in the cloud, with a focus on efficient addition and deletion operations, both

executed with sublinear time complexity. If search accuracy is the top priority, we further leverage Yao’s garbled circuits and the

homomorphic property of Hash-ElGamal encryption to build a secure evaluation protocol, which can obtain the top-Rmost accurate

results without extensive client-side post-processing. We have formally analyzed the security strength of our proposed approach, and

performed an extensive array of experiments to show its superior performance as compared to existingmechanisms in the literature. In

particular, we evaluate the performance of our proposed protocol with respect to the time it takes to build the index and perform similarity

queries. Extensive experimental results demonstrated that our protocol can speedup the index building process by up to 800�with 2

threads and the similarity queries by up to�7�with comparable accuracy, as compared to the state-of-the-art in the literature.

Index Terms—Searchable symmetric encryption, key-value stores, data privacy, similarity search, cloud storage, efficient updates
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1 INTRODUCTION

WITH large and rapidly growing volumes of data to be
managed, it is customary to outsource the storage of

such data to the cloud. Yet, storing data in the cloud leads
to legitimate and serious concerns about the privacy of such
data. To mitigate these concerns, searchable symmetric
encryption (SSE) has been introduced to provide a rich set
of search operations on encrypted data (e.g., [1], [2], [3]).

Real-world systems that implemented SSE to support
secure search operations, such as CryptDB [4] and Seabed [5],
have all been designed as centralized databases. In contrast,
distributed key-value stores, such as Redis and MongoDB,
have emerged as prevalent data storage solutions in public
cloud storage platforms, due to their scalability, perfor-
mance, and strong support for multiple data models. As a
result, encrypted systems based on distributed key-value
stores have been proposed [6], [7] to inherit the salient
advantages in modern distributed key-value stores, such as
high performance and excellent scalability.

Given the widespread use of distributed key-value stores
in the cloud, it is important to support similarity search, which
has become indispensable in a wide range of applications

such as cloud image sharing [8], and real-time decisions [9].
EncSIM [7], a state-of-the-art mechanism to support privacy-
preserving similarity search over distributed key-value
stores in the literature, only supported efficient search opera-
tions, but failed to support efficient update operations (add-
ing and deleting data), which are naturally needed for
applications with frequent updates. For example, in the
application of cloud-assisted image sharing for mobile devi-
ces, data generated from mobile devices are updated fre-
quently. Therefore, efficient updates are essential and highly
desirable in secure distributed key-value stores. In addition,
if search accuracy is the top priority, EncSIM would have to
perform decryption and ranking at the client side, which
incurred unnecessary client-side computation.

In this paper, we propose a new privacy-preserving simi-
larity search mechanism focusing on its practicality, espe-
cially in the case where frequent updates (addition and
deletion) occur in distributed key-value stores. Specifically,
our objectives are to address the following two challenges.
First, appropriate cryptographic primitives for similarity
search need to be carefully chosen to balance security and
practicality. The selective primitives should not diminish
the advantages of distributed key-value stores and provably
secure with guaranteed strength. Second, the leakage
should be minimized while performing updates.

Essentially, the core of privacy-preserving similarity
search relies on building an inverted index, combining stan-
dard locality sensitive hashing (LSH) [9] and standard cryp-
tographic primitives, including Pseudorandom Functions
(PRFs) and Symmetric-Key Block Ciphers. Solely based on
such an inverted index, while deletion queries occur, [1], [7]
deployed a revocation list to support secure deletion, and
do not reclaim space in the server after each deletion.
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To support actual data deletion in a privacy-preserving
manner, the core of our mechanism relies on a dual index,
which uses a linked index to represent both the inverted
index and the forward index. In particular, to ensure sublin-
ear similarity search over encrypted high-dimensional data-
sets, our proposed mechanism first builds the inverted
index, combining a standard locality sensitive hashing
(LSH) [9] and SSE. It then applies SSE to develop the corre-
sponding secure forward index, deriving from the associ-
ated data identifiers, in order to support data deletion.

While studying the problem of dynamic SSE schemes, it
is crucial to support forward security. Zhang et al. [10]
highlighted that file-injection attacks become particularly
effective when the dynamic SSE is not forward-secure. For-
ward security has been extensively studied in the litera-
ture [11], [12], [13], [14], and required that newly added
records cannot be related to previous queries. Inspired
by [12], the index associated with previous queries would
be established with fresh keys after each search is per-
formed in our mechanism.

In order to maintain a high degree of parallelism, our
dual-index is designed specifically for secure and distrib-
uted key-value stores with high-dimensional datasets.
However, due to the probabilistic nature of LSH, the effec-
tiveness of similarity search relies heavily upon the perfor-
mance of LSH, which introduces false positives. In order to
further reduce such false positives, and just return the top-
R accurate results in the encrypted domain, we propose to
further apply a secure two-party computation protocol
based on Yao’s garbled circuits [15] and a homomorphic
encryption scheme, Hash-ElGamal [16], to evaluate the
query candidates. Our protocol is able to avoid expensive
decryption during circuit evaluation [17], [18], which leads
to a significant reduction of the overall query time. To fur-
ther optimize the overall query efficiency, we perform the
evaluation process in parallel across a cluster of storage
nodes.

In a nutshell, our objectives are to guarantee strong data
confidentiality and to support similarity search for forward-
secure addition and efficient deletion, while maintaining a
high degree of parallelism for the best possible perfor-
mance. Highlights of our original contributions are as fol-
lows. First, we propose a series of protocols, including
index construction and its corresponding addition, deletion
and search operations, to support similarity search with effi-
cient updates over encrypted data in distributed key-value
stores, i.e., Redis. Specifically, the encrypted database and
encrypted index are physically stored as key-value pairs in
Redis, in which they are accessible by native Redis API, i.e.,
Put, Get, Update. Second, in order to guarantee the search
accuracy and release the computation burden of the client,
we introduce a secure two-party computation protocol
based on Yao’s garbled circuit and Hash-ElGamal to effi-
ciently compute the distance of the candidates and the
query in the cloud. As such, we can obtain the top-R accu-
rate results before returning these results to the client. We
have formally analyzed the security strength of our mecha-
nism. Finally, to evaluate our proposed mechanism experi-
mentally, we have implemented it in our real-world
prototype implementation and conducted an extensive
array of performance evaluations using real-world datasets.

2 PROBLEM FORMULATION

2.1 System Architecture

In this paper, we consider a typical scenario of storing data
in the cloud, as shown in Fig. 1, where a group of users,
called data providers (DPs), upload their data to the public
cloud via a trusted local server, called an application server
(AS). Such a trustworthy application server could be
deployed in the same organization as the data providers. In
addition, we introduce two types of cloud servers, CS1 and
CS2, to jointly perform secure and accurate data operations
on the encrypted dataset.

More precisely, each data provider i has a small subset
of the data collection that can be represented as high-
dimensional data records fSig, where data can be images,
videos and websites. Take an image dataset as an example.
Each data record is a fingerprint of an image, which is a 64-
bit array in our experiments. Each data provider encrypts
its dataset fSig using a public key issued by the application
server—fS�i g, and sends both the plain and encrypted
records to the application server. The application server col-
lects the data providers’ data, and globally distributes them
within CS1 in an encrypted form S� ¼ fs�1; s�2; . . . ; s�ng.1 It is
capable of issuing similarity search, addition and deletion
queries on behalf of the users. CS1 consists of a coordinator
and a cluster of storage nodes. It is delegated by the AS to
execute specific protocols over encrypted data. CS2, on the
other hand, initializes the evaluation parameters according
to the keys pre-issued by the application server.

Our system for effective and privacy-preserving similar-
ity search with efficient updates consists of five polynomial-
time protocols SimSE = (Setup, Addition, Deletion, Search,
Evaluation). The service flow of our system is divided into
the following four phases:

Preparation. The data provider i first encrypts its data
records using the public key of Hash-ElGamal pre-issued by
the application server. After that, each data provider sends
its data, fS�i ; Sig, to the application server, where fSig is
used for subsequent construction of the secure index at the
application server, while fS�i g is for subsequent data parti-
tion and evaluation within the cloud servers. Such a data
pre-encryption process in each data provider can effectively
balance the computation overhead of the application server,
especially for applications withmassive amounts of data.

Setup. Once the application server collects the data from
all of the data providers, it enters this phase to build a

Fig. 1. The system architecture of our mechanism.

1. To be clear, fSig is a subset of data records from data provider i,
and sj or s�j represents a particular data record or an encrypted data
record.

LIN ETAL.: PRIVACY-PRESERVING SIMILARITY SEARCHWITH EFFICIENT UPDATES IN DISTRIBUTED KEY-VALUE STORES 1073

Authorized licensed use limited to: The University of Toronto. Downloaded on May 19,2021 at 07:36:46 UTC from IEEE Xplore.  Restrictions apply. 



secure, searchable index I that supports efficient search
operations with sublinear complexity in the distributed
key-value store. Our Setup protocol partitions the encrypted
database (EDB) according to the encrypted data records and
builds an encrypted searchable index for each partition sep-
arately, as performed in [6], [7]. The EDB, containing the
encrypted index I, the encrypted data and the encrypted
high-dimensional representations S�, is then deployed
evenly across the cluster of nodes. For subsequent evalua-
tions of secure candidates, the application server is dele-
gated to share a pair of Hash-ElGamal keys with CS2.

Search. In this phase, the application server generates an
encrypted query token t by executing the SearchToken proto-
col and sends it to the coordinator. The coordinator then
broadcasts the tokens to the cluster of nodes in CS1. Upon
receiving the token, the nodes are responsible for processing
the encrypted index by running the SimSearch protocol in
parallel. To eliminate false positives from the initial query
candidates, CS2 prepares garbled circuits for each node,
which securely evaluates whether the distance of the
encrypted candidates and the query is within a pre-defined
threshold by running the Evaluation protocol in parallel.
One may consider applying full homomorphic encryption
(FHE) instead, but it may be too computationally expensive
to be practical [19].

Updates. In this phase, if data is to be added, the applica-
tion server first generates indexes for the newly added
records by running the Addition protocol. By locating the
storage node via consistent hashing, the coordinator dis-
patches the indexes and encrypted records to that particular
node. CS1 outputs an updated EDB with the newly added
records and indexes. If data is to be deleted, the application
server generates the deletion token and sends it to CS1. By
executing the Deletion protocol, CS1 outputs an updated
EDB with that particular data record deleted.

2.2 Threat Assumptions

We assume that the cloud servers, CS1 and CS2, are “semi-
honest” and can be seen as adversaries [20], [21]. CS1 main-
tains the storage nodes, executes the data operation proto-
cols (Search, Addition, Deletion), and evaluates the query
results with the help of CS2 as required. We assume that
CS1 and CS2 do not collude with each other. Precisely, CS2
does not expose its Hash-ElGamal secret key to CS1. As CS1
can access the memory and disks of all the storage nodes [6],
it is “curious” and may be able to infer and analyze the EDB;
it can monitor the query protocols as well. As such, it may
learn additional information about the EDB [20], [22], the
query tokens, or access the index entries and query results.
The data application is considered trustworthy, building its
secure index properly and issuing queries for the autho-
rized users. We do not consider the case where the cloud
servers would corrupt the queries and the evaluation
process.

As a convenience, we summarize the notations to be used
throughout this paper in Table 1.

2.3 Preliminaries

Locality Sensitive Hashing (LSH). LSH provides a method to
solve the problem of fast approximate nearest neighbour

search in a high-dimensional space [9]. Basically, it hashes
input data records to a universe U, so that similar data
records are mapped into the same buckets with higher prob-
ability than those that are far apart. An LSH family H is
defined for a metric spaceM¼ ðC;DÞ. This LSH family is
ðr1; r2; p1; p2Þ-locality-sensitive if any two data records
s1; s2 2 C satisfy:

if Dðs1; s2Þ � r1, then Pr½gðs1Þ ¼ gðs2Þ� � p1; if Dðs1; s2Þ �
r2, then Pr½gðs1Þ ¼ gðs2Þ� � p2,

where C is the domain of the data records, and Dðs1; s2Þ
is the distance between the data records s1 and s2.

Searchable Symmetric Encryption (SSE). A symmetric
encryption scheme SE =(KeyGen, Enc, Dec) consists of three
algorithms: the key generation algorithm KeyGen that takes
a security parameter K as an input to return the secret keys;
the encryption algorithm Enc that takes a key K2 and a data
identifier id as inputs to return a ciphertext id�; and the
decryption algorithm Dec that takes K2 and id� as input to
return id ifK2 is exactly the secret key to encrypt id.

Pseudo-Random Function. A family of pseudo-random
functions (PRF) is defined as G : K�X ! R, if for all prob-
abilistic polynomial time, adversary A, jPr½AGðK;	Þ ¼ 1jK  
f0; 1gK� 
 Pr½Ag ¼ 1jg fFunc : X ! Rg�j < neglðKÞ,
where neglðKÞ is a negligible function in K.

Hash-ElGamal Encryption (HE).Hash-ElGamal Encryption
is a semantically secure asymmetric encryption scheme,
under the Decisional Composite Residuosity assump-
tion [16]. Let Encpk and Decsk be the HE encryption and
decryption functions with the keys pk and sk, respectively.
A Hash-ElGamal cryptosystem has the following homomor-
phic property: the ciphertext of a given message m, under
HE, is c ¼ hu; vi. With the ciphertext, one can add a random
mask m by computing cm ¼ hu; v� mi. Then the one with sk
can derivem� m based on cm.

Paillier Cryptosystem The Paillier cryptosystem [23] is a
semantically secure public key encryption scheme based on
the Decisional Composite Residuosity assumption. Let
Encpk and Decsk be the Paillier encryption and decryption
functions with the keys pk and sk, respectively. We use ½m�
to denote an encryption of a message m under Paillier cryp-
tosystem, that is, ½m� ¼ EncpkðmÞ.

TABLE 1
Notation

Symbol Meaning

K security parameter
lsh LSH parameters
gl, l 2 ½1; lshL� lshL LSH hash functions
ðpk; skÞ Hash-ElGamal public/ secret keys
HEðEncpk;DecskÞ Hash-ElGamal encryption scheme
SEðEnc;DecÞ SSE scheme
F; F1; F2; F3; F4 Pseudo-random functions
S ¼ fs1; s2; . . . ; sng high-dimensional data records collection
S� ¼ fs�1; s�2; . . . ; s�ng encrypted data records collection
id ¼ fid1; id2; . . . ; idng records’ identifiers (physical address)
CS1 the primary cloud server for DBMS
N number of storage nodes in S1

CS2 garbled circuit generator
t a search token for a query
I search index
sq similarity query
d pre-defined distance threshold
d̂ the garbled input of threshold
ŝ� the garbled input of s�
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Paillier cryptosystem is homomorphically additive.
Given the ciphers ½u� and ½v�, there exists an efficient algo-
rithm to compute the encryption of uþ v. The additive
property satisfies ½u� � ½v� ¼ ½uþ v�.

Yao’s Garbled Circuit (GC). The Yao’s Garbled Circuit is a
generic methodology for secure multi-party computa-
tion [15], with two parties holding their private inputs s�1
and s�2 respectively. It allows them to jointly compute an
arbitrary function Dðs�1; s�2Þ. After computation, the two par-
ties learn the value ofDðs�1; s�2Þ, but no party learns any other
information beyond the output value.

The basic idea of Yao’s Garbled Circuit is as follows. The
first party, called the generator, builds a “garbled” circuit
for computing D and then it sends the garbled circuit with
its garbled-circuit input values ŝ�1 to the second party, called
the evaluator. Upon receiving the circuits, the evaluator is
required to obtain the garbled-circuit input value ŝ�2 from
the generator through a 1-out-of-2 oblivious transfer proto-
col. Then, the evaluator can obtain the encrypted output of
D based on the value of ŝ�1 and ŝ�2. In this paper, we will use
ŝ� to denote the garbled-input value of s�.

3 OUR PROPOSED DESIGN

In this section, we first introduce a basic construction of
EncSIM [7], then describe the intuition of our design for
supporting forward security with efficient updates, fol-
lowed by a detail description of our proposed mechanism.

EncSIM [7] represents the state-of-the-art that supports
privacy-preserving similarity search in distributed key-
value stores, with the ability of scaling up to millions of
data records. Its architecture inherits modern features of
distributed key-value stores, including high performance,
incremental scalability, and parallel processing, yet still
maintaining data confidentiality.

By applying a standard partition algorithm — consistent
hashing [24] — the cloud server can globally distribute an
encrypted database in a cluster of storage nodes. Due to its
salient features, we follow this partition algorithm to support
similarity search in parallel, with the exception that high-
dimensional data records are encrypted using Hash-ElGa-
mal encryption by each data provider. With this particular
encryption, we guarantee that the candidates’ evaluation is
performed securely and efficiently in CS1 with the help of
CS2, ensuring the quality of the query resultswhile not incur-
ring additional client-side computation. Algorithm 1 illus-
trates our proposed partitionmechanism.

Algorithm 1. SetupðK; fS�;Sg; N; lshÞ
Require: Application server’s security parameter: K; Dataset:

fS�;Sg ¼ fhs�1; s1i; hs�2; s2i; . . . ; hs�n; snig; The number
of servers: N ; LSH parameters: lsh.

Ensure: Encrypted index: I;
1: for i ¼ 1 to n do
2: j ConsistHashðs�i Þ;
3: add si to partition Pj;
4: end for
5: for j ¼ 1 to N do
6: Ij  BuildIndexðK;Pj; lshÞ;
7: end for

While EncSIM supports efficient and secure search by
using an inverted index with a combination of LSH [9] and
SSE, semantic security precludes the possibility to support
update operations. Even though it allows for forward-
secure addition by maintaining a state table at the client
side, it is still unable to support efficient data deletion. A
naive way to support deletion is to delete data in the same
way as adding data, by just adding a “deleted ID” metadata
into the encrypted index, as if a new record is to be
added [25]. This, however, increases the index size unneces-
sarily as the number of delete operations increases, and
may not be suitable if updates are frequently made.

To describe our proposed mechanism, let us consider a
data collection with three items, each of which is represented
by its high-dimensional data si and associated identifier, as
shown in Fig. 2. We will use this as our running example to
illustrate the intuition in our proposedmechanism.

The core design of our mechanism is a dual-index that
combines the inverted index and the forward index, while
EncSIM only contains the inverted index. The former is
used to guarantee search operations with sublinear com-
plexity in distributed key-value stores, while the latter is
used for secure data deletion. Note that our design aims to
be practical for secure cloud applications with frequent
updates. More precisely, in each data partition, we first con-
struct the inverted index by combining LSH and SSE in
order to ensure efficient similarity search with sublinear
complexity. In particular, for each record, lshL tokens are
computed based on lshL pre-defined LSH functions.

By integrating LSH and SSH, both security and query
efficiency can be guaranteed. As file-injection attacks [10]
highlight the importance of forward security in dynamic
SSE, we undoubtedly need to consider forward security
while building our mechanism. Different from EncSIM, our
mechanism achieves forward security by using fresh keys
after each search has been processed: the newly added data
associated with the previously queried records would be
established with a fresh key. By doing so, the old search
tokens would be unusable, and forward security is pro-
vided as a result.

With our design, nodes in CS1 are able to proceed with
the search protocol, and obtain encrypted query candidates
in parallel. Algorithm 2 gives a formal description of the
dual-index construction. More precisely, the application
server maintains two hash tables. H is used to manage two
key-counter pairs for each LSH value (Hj represents the
hash table for partition j), where crt reflects the number of
records mapped to an LSH value in the EDB, and ucrt

Fig. 2. An example of the initial index: id1; id2; id3 are identifiers of the
data collection, while s1; s2; s3 are associated high-dimensional repre-
sentations. In this collection, s1 and s3 are similar items. In other words,
glðs1jjlÞ ¼ glðs3jjlÞ.
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represents the number of newly added records mapped to
that particular LSH value. K is the key to encrypt the data
stored before a query for that LSH value, Ku is the key for
subsequent addition operations (Hj is updated at line 20 /
23 in Algorithm 2). In our running example, Fig. 3 shows
the two hash tables maintained by the application server.
By encrypting the newly added records using new keys, the
adversary would not be able to learn the association
between the newly added records and the previously que-
ried ones.

Each entry in H
crtðidÞ

, crtðidÞ reflects the number of for-

ward index entries for a record with id. Notably, only the
counters crt and crtðidÞ are updated sequentially, when ini-
tializing an EDB. The addition counter ucrt is set to 0 ini-
tially, as no addition occurs in the beginning as shown in
Fig. 3a. The dual-index of each record consists of two
entries: the forward index in line 25 and the inverted index
in line 26 (see Algorithm 2). The former entry is used for
efficient deletion in sublinear time while the latter is to
ensure similarity search in sublinear time, where F3 and F4

are secure PRFs. Algorithms 1 and 2 are corresponding to
the Setup phase, as mentioned in Sec. 2. According to our
construction mechanism, the dual-index of our running
example is shown as Fig. 4. Note that, for simplicity, we use
PRF as a general pseudorandom function in our running
example.

Addition. To add a record, the data provider first encrypts
it via Hash-ElGamal encryption and sends both the cipher-
text and the plaintext fs�a; sag to the application server.
Notably, the pre-encryption process for each record is to
mitigate the computation overhead of the application server
such that the system can scale up to millions of data records.
When the application server receives the record to be
added, it locates the storage node via consistent hashing.
After that, lshL LSH values are computed based on lshL
hashes. By retrieving from its maintaining hash table H that
contains key/counter pairs for each LSH value (the same
process while building the index — refer to line 15 in Algo-
rithm 2), it can obtain the uploading key Ku for correspond-
ing LSH value ~tl in the plaintext.

To this end, the newly added indexes are derived from
its uploading key and LSH values. For each value, if the cor-
responding key/counter pairs are not found in H, the new

index entries encrypted by the initial uploading key will be
added. In other words, when the first time a newly LSH
value added in H, its uploading key is the one that initial-
ized it at the beginning. Notably, only the ucrt and crtðidÞ are
incremented in this phase. Algorithm 3 formally describes
the addition process.

Algorithm 2. BuildIndexðK;Pj; lshÞ
Require: The application server’s security parameter: K; The

number of servers: N ; LSH parameters: lsh.
Ensure: Encrypted Index: Ij;
1: ðK̂;K;KuÞ  f0; 1gK; //K̂ is the key to compute PRF value

of id; K is the encryption key before queries; Ku is the
encryption key for subsequently addition operations.

2: For each partition/ node, initialize the inverted index hash
tableHj, the forward index hash tableH

crtðidÞ j
and Ij, lshL;

3: for 8s 2 Pj do
4: KðidÞ  F ðK̂; idÞ;
5: for l 1 to lshL do
6: ~tl  ðglðsÞjjlÞ;
7: K1  F1ðK; ~tlÞ,K2  F2ðK; ~tlÞ;

//forward index counter updates
8: crtðidÞ  H

crtðidÞ j
:GetðKðidÞÞ;

9: if crtðidÞ 6¼ null then
10: crtðidÞ þ þ;
11: H

crtðidÞ j
:UpdateðKðidÞ; crtðidÞÞ;

12: else
13: crtðidÞ  1;
14: H

crtðidÞ j
:PutðKðidÞ; crtðidÞÞ;

15: end if
//inverted index counter updates

16: crtjjucrtjjKjjKu  Hj:Getð~tlÞ;
//track the counter and encrypted key

17: if crtjjucrtjjKjjKu 6¼? then
18: parse ðcrtjjucrtjjKjjKuÞ to get crt, ucrt,K,Ku;
19: crtþþ;
20: Hj:Updateð~tl; crtjjucrtjjKjjKuÞ;
21: else
22: crt 1, ucrt 0;
23: Hj:Putð~tl; ðcrtjjucrtjjKjjKuÞÞ;
24: end if
25: I1j :PutðF3ðKðidÞ; crtðidÞÞ; F4ðK1; crtÞÞ;
26: I2j :PutðF4ðK1; crtÞ; F3ðKðidÞ; crtðidÞÞjjEncðK2; idÞÞ;
27: end for
28: end for

We then need to guarantee forward security, i.e., previ-
ous queries do not leak any information of the newly added
records. To achieve this goal, similar to [12], the uploading
key for each LSH is updated when a query for retrieving

Fig. 3. An example construction of two hash tables maintained by the
application server. In our running example, as g1ðs1jj1Þ ¼ g1ðs3jj1Þ, the
counter crt is incremented, while the addition counter ucrt is set to 0 ini-
tially, as no addition occurs in the beginning. (Symbol � in our running
example represents the value after PRF computation, for example,
id�  F ðK̂; idÞ).

Fig. 4. An example construction of the dual-index maintained in CS1.
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that LSH value occurs, which will be shown in the search
phase later. Informally, forward security can be achieved in
the sense that the cloud could not infer the association
between the retrieved records and the newly added records,
as they were encrypted using different encryption keys.

Algorithm 3. Additionððs�a; sa; idÞ; lshÞ
Require: LSH parameters: lsh; Hash tables:H,HcrtðidÞ .
Ensure: Updated Encrypted Index: I;
1: Application Server:
2: j ConsistHashðs�aÞ;
3: KðidÞ  F ðK̂; idÞ;
4: Initial added index Iaj.
5: for l 1 to lshL do
6: ~tl  ðglðsaÞjjlÞ;

//forward index counter updates
7: crtðidÞ  HcrtðidÞ j:GetðKðidÞÞ;
8: if crtðidÞ 6¼ null then
9: crtðidÞ þ þ;
10: HcrtðidÞ j:UpdateðKðidÞ; crtðidÞÞ;
11: else
12: crtðidÞ  1;
13: HcrtðidÞ j:PutðKðidÞ; crtðidÞÞ;
14: end if

//inverted index counter updates
15: crtjjucrtjjKjjKu  Hj:Getð~tlÞ;
16: if crtjjucrtjjKjjKu 6¼? then
17: ucrtþþ;
18: Hj:Updateð~tl; crtjjucrtjjKjjKuÞ;
19: else
20: ucrt 1, crt 0;
21: K, Ku are the most initial encryption keys setup at the

beginning;
22: Hj:Putð~tl; ðcrtjjucrtjjKjjKuÞÞ;
23: end if
24: crtjjucrtjjKjjKu  Hj:Getð~tlÞ;
25: parse ðcrtjjucrtjjKjjKuÞ to get crt, ucrt,K,Ku;
26: K1  F1ðKu; ~tlÞ;
27: K2  F2ðKu; ~tlÞ;
28: I1ja:PutðF3ðKðidÞ; crtðidÞÞ; F4ðK1; ucrtÞÞ;
29: I2ja:PutðF4ðK1; ucrtÞ; F3ðKðidÞ; crtðidÞÞjjEncðK2; idÞÞ;
30: end for
31: Send I1a ; I

2
a ; s
�
a to Node j;

32: Node j:
33: Put all key-value pairs in I1ja; I

2
ja to I1j ; I

2
j ;

Deletion. As shown in Algorithm 4, deletion is quite
straightforward with the forward index. The application
server first locates the storage node via consistent hashing,
and then sends the deletion token derived from the data iden-
tifier to the storage node it found. Combining the inverted
index and the forward index would lead to twice the amount
of storage at the beginning. However, when the number of
deletion operations exceeds a certain value, our scheme
requires less storage than the solution used in [25], since it
ensures that the records are explicitly deleted from the EDB.

Let us consider the following example. Suppose we have
n records and would deletem records. Using the naive solu-
tion to support deletion for EncSIM, the storage overhead
will be ðnþmÞ 	 lshL. With the dual-index, the storage over-
head of building our index would be 2n 	 lshL: n 	 lshL for

the inverted index and n 	 lshL for the forward index. With
the deletion process, 2m 	 lshL index entries would be
deleted. It thereby costs a storage overhead of 2ðn
mÞ 	
lshL in total with our scheme. When m > ð1=3Þn, the over-
head of our scheme is less than that of the naı̈ve solution.
Another remarkable advantage is that we do not need to
rebuild the entire EDB to remove the deletion information.
Search is also more efficient since there is no need to per-
form additional searches over deleted records, as we will
explain next.

Algorithm 4. DeletionðK̂; ðs�d; sd; idÞÞ
Require: Application server’s encryption K̂.
Ensure: Updated Encrypted Index: I;
1: Application Server:
2: j ConsistHashðs�dÞ;
3: dtok F ðK̂; idÞ;
4: Send dtok to Node j;
5: Node j:
6: c 1;
7: while I1j :GetðF3ðdtok; cÞÞ 6¼? do
8: dval I1j :GetðF3ðdtok; cÞ;
9: if dval ¼ null then
10: return ? ;
11: else
12: I1j :DelðF3ðdtok; cÞÞ; I2j :DelðdvalÞ; cþþ;
13: end if
14: end while

Search.Algorithm 5 describes our search protocol. To find
similar records with a given query sq, the application server
first computes search tokens for the coordinator. Note that a
query may occur after some addition operations. As a result,
similar records to be retrieved may exist in both the original
EDB encrypted with K and the newly added records
encrypted with Ku. Accordingly, we process the query
using the tokens derived from K for the original EDB for
that LSH value, and the tokens derived from Ku for the
newly added records (see line 10-12, 21-22 in Algorithm 5).

To provide forward security, we require a re-encryption
process in the cloud server to invalidate the old search
tokens (see line 8-11 in Algorithm 6). When a record is
retrieved, the corresponding indexes are re-encrypted using
a new token nt derived from a new encryption key nK. At
the same time, the uploading key is updated as nKu for sub-
sequently secure addition operations. With this re-encryp-
tion, the application server would always maintain two
key/counter pairs for each LSH value in H. At this point,
the old search tokens associated with this query would be
unusable, and forward security is provided. In the end,
each node of CS1 holds a subset of the query candidates.

Evaluation. Due to the probabilistic property of LSH, the
initial query results can involve several false positives,
where the actual distance of the candidates and the query
record exceeds a pre-defined threshold [18]. To perform
high-quality similarity search, those false positive candi-
dates should be eliminated on the server side. Thus, we
introduce an additional evaluation step by resorting to
Yao’s GCs, whose performance has steadily increased over
the years [15].

LIN ETAL.: PRIVACY-PRESERVING SIMILARITY SEARCHWITH EFFICIENT UPDATES IN DISTRIBUTED KEY-VALUE STORES 1077

Authorized licensed use limited to: The University of Toronto. Downloaded on May 19,2021 at 07:36:46 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 5. Searchðsq; lsh; I;S�; nKÞ
Require: Query: sq; Hash table H; LSH parameters: lsh;

Encrypted indexes: I; Encrypted dataset: S�

Ensure: Candidate results: R;
1: Application Server: SearchToken
2: fnK; nKug  f0; 1gK;
3: for l 1 to lshL do
4: ~tl  ðglðsqÞjjlÞ;
5: crtjjucrtjjKjjKu  Hj:Getð~tlÞ;
6: i 0;
7: if crtjjucrtjjKjjKu 6¼? then
8: iþþ;
9: parse crtjjucrtjjKjjKu to getK,Ku;
10: tl  ðF1ðK; ~tlÞjjF2ðK; ~tlÞÞ;
11: tul  ðF1ðKu; ~tlÞjjF2ðKu; ~tlÞÞ;
12: ntl  ðF1ðnK; ~tlÞjjF2ðnK; ~tlÞÞ;
13: ðti; crti; tui; ucrti; ntiÞ  ðtl; crt; tul; ucrt; ntlÞ;
14: H:Updateð~tl; crtjjucrtjjnKjjnKuÞ;

//update the re-encryption key and the uploading key.
15: end if
16: end for
17: Send t ¼ fðt; crt; tu; ucrt; ntÞgi to the coordinator;
18: The cluster of nodes: SimSearch
19: for all ðti; crti; tui; ucrti; ntiÞ 2 t do
20: ncrti  0; Ri  ;;
21: SubSearchððti; crti; nti; ncrtiÞ;RiÞ;
22: SubSearchððtui; ucrti; nti; ncrtiÞ;RiÞ;
23: end for
24: Conduct candidates evaluation and obtain the top-R results

in parallel with the help of CS2; sends the ncrt and the R
query results to the application server;

Here, we apply a similar approach as proposed in [18],
which combines a randommasking scheme based on homo-
morphic encryptionwith Yao’s GCs to avoid data decryption
inside the circuits. Inspired by [17], we select the Hash-
ElGamal encryption scheme [16] rather than the Paillier
encryption used in [18], as it is more efficient and suffices in
our case. More precisely, once the node of CS1 locates a can-
didate, it adds randommasks to s�q and s�i , respectively. After
CS2 obtains the masked encrypted data records, it first
decrypts them via sk and then generates the garbled input of
ŝq

mq , ŝi
mi for CS1, where mq and mi are random masks for s�q

and s�i , respectively. Through a 1-out-of-2 oblivious transfer
protocol, the node of CS1 obtains the garbled input of m̂q, m̂i

and d̂, where d is the pre-defined distance threshold. Then
the node runs the evaluation and obtains a boolean result.
Fig. 5 illustrates the detailed construction of our circuit. It is
worth noting that the unmasking function inside the circuits
is just anXOR gate, i.e., s ¼ sm � m ¼ ðs� mÞ � m.

Recall that we aim to ensure that the cloud only needs to
return the top-R accurate results, where R is a configurable
parameter set up by the application server when a similarity
query is issued. Before the evaluation process, the coordina-
tor is required to collect the candidates’ identifiers from the
cluster, and to determine the top-R candidates roughly
based on the number of mapping records for each id in the
first round. This is based on the property of LSH that, if a
record in an index is highly similar to the queried one, the
number of the corresponding index is expected to be
higher [9]. After that, the coordinator dispatches the top-R

candidates to the corresponding nodes, who would run the
evaluation phase subsequently to verify the quality of their
candidates in parallel. The decision of query candidates
between the coordinator and the cluster stopped only when
the R results are qualified.

Algorithm 6. SubSearchððt; crt; nt; ncrtÞ;RÞ
Require: Search token t; New encrypted token nt.
Ensure: Updated EDB; updated query candidates; R
1: parse t! ðK1;K2Þ, parse nt! ðnK1; nK2Þ;
2: for c ¼ 1 to crt do
3: if I2j :GetðF4ðK1; cÞÞ 6¼ ?; then
4: parse I2j :GetðF4ðK1; cÞÞ to get id�  EncðK2; idÞ and F3

ðKðidÞ; crtðidÞÞ;
5: id DecðK2; id

�Þ;
6: put s�id to R;
7: ncrt ncrtþ 1;
8: I1:UpdateðF3ðKðidÞ; crtðidÞÞÞ; F4ðnK1; ncrtÞÞ;
9: I2:DelðF4ðK1; cÞÞ;
10: I2:PutðF4ðnK1; ncrtÞ; F3ðKðidÞ; crtðidÞÞjj
11: EncðnK2; idÞÞ;
12: end if
13: end for

Remarks. We target similarity services over encrypted
data in distributed key-value stores. The number of query
candidates may be considerable and they are distributed
across the cluster of nodes in CS1. According to [17], [26],
the GC only offers one-time security. In other words, each
candidate’s evaluation requires an entirely new circuit with
fresh keys. Evaluating large numbers of query candidates
will lead to long query latencies, which is not suitable for
big data analytics.

To reduce the evaluation latencies, we can further adopt
the latest advances of component-based GC [26], which
allows the use of offline pre-processing to prepare the entire
GC, with only the inputs specified during the online evalua-
tion. Hence, CS2 can pre-deploy a number of GCs across the
cluster of storage nodes. Once the candidates are located,
CS2 only needs to decrypt and garble the masked inputs of
each candidate and the query for the corresponding node of
CS1. As the evaluation function and input format are fixed
in our scenario, such offline/online GC designs [26] can sig-
nificantly reduce the overall evaluation time.

Discussions on Backward Privacy. Another relevant privacy
property for dynamic SSE schemes is Backward Privacy,
where (fresh) search queries should not leak matching

Fig. 5. An illustration of our circuit design.
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records that have been deleted. It was formally studied only
recently [13], [14], [27]. Existing schemes that ensure this
privacy would incur extra overhead in either computation
or communication, which somewhat limits its potential for
adoption in practice. In this paper, our focus is on privacy-
preserving similarity search with efficient updates in dis-
tributed key-value stores. Designing practical mechanisms
with backward privacy will be left as future work.

4 SECURITY ANALYSIS

In this section, we will evaluate the security strength of our
proposed scheme. In particular, we follow the framework of
Kim et al.’s forward secure dynamic SSE. Beyond this frame-
work, we also analyze the similarity leakage among queries
like [7], [28]. Regarding security in the evaluation phase, the
integration of Yao’s GCs and Hash-ElGamal ensures the
security for the candidates and the queries against the two
cloud servers; the output of the evaluation only reveals
whether the distance of the candidate and the query is
within a threshold.

We will first define leakage functions of our scheme,
denoted as L, that restrict the type of information leaked to
the adversaries while processing addition, deletion and
search queries, respectively. We will then define the security
notion based on L, and then prove that our scheme is
L-secure against adaptive chosen-keyword attacks.

The leakage functions are given as follows:

LSetupðS�Þ ¼ ðN; fn1; n2; . . . ; nNg; js�j; ðjlj; jvjÞÞ (1)

LAdditionðsaÞ ¼ ðjs�aj; ðjlj; jvjÞÞ (2)

LDeletionððsdÞÞ ¼ ðidÞ (3)

Lsp
SearchðsqÞ ¼ ðfjfg1ðsqÞ; . . . ; glshLðsqÞg\

fg1ðsiÞ; . . . ; glshLðsiÞgjgqi¼1Þ
(4)

Lap
SearchðsqÞ ¼ ðffhl; vigmj

; S�j gNj¼1Þ; (5)

where N is the number of partitions/storage nodes,
fn1; . . . ; nNg is the number of local encrypted records in
each node; js�j and ðjlj; jvjÞ are the bit length of the
encrypted records and the key-value pairs of the encrypted
indexes.

We observe that LSetup is the only information that can be
discovered by CS1, since the semi-honest cloud can access
both encrypted indexes and the encrypted data collection.
Because our newly added records are encrypted with a
fresh key unrelated to the previously retrieved records, the
leakage during addition queries only contains the bit length
of the added data as shown in Eq. (2). Considering the dele-
tion process, as our scheme ensures actual data deletion, it
is inevitable to leak its id. Such leakage shown above does
not reveal the actual content of the data records and
indexes.

Regarding leakage during the Search process, particularly
the search pattern, the queries’ similarity in addition to the
equality can be known according to the size of the

intersections between two queries. A token tq, consisting of
lshL LSH values for a given query, is fg1ðsqÞ; . . . ; glshLðsqÞg.
Considering another query si, if ti ¼ fg1ðsiÞ; . . . ; glshLðsiÞg
has at least one matched token as tq, sq and si are likely sim-
ilar. The more intersections between sq and si, the more
closeness [9] of these two queries. We can therefore define
the search pattern against the adversaries as shown in
Eq. (4). Since each storage node can observe the retrieved
key-value pairs and the matched encrypted data records,
the leakage function of the access pattern can be defined as
Eq. (5), where mj denotes the number of the retrieved
indexes, and jS�j j indicates the number of the retrieved can-
didates in node j.

Given the leakage functions, we can define the security
notion as follows:

Definition 1. Let
Q

= (Setup, Addition, Deletion, SearchTo-
ken, SimSearch) be the dynamic similarity encryption scheme.
Given the leakage functions

ðLSetup; LAddition; LDeletion; LspSearch; LapSearchÞ;

a probabilistic polynomial time adversaryA and a simulator S,
we can define two games, including a real game GameR;A and
a ideal gameGameS;A.

GameR;AðKÞ: A chooses a dataset S. A challenger gener-
ates secret keys under the parameter K, builds the
encrypted index I via proceeding Setup, and outputs I to A.
Then A issues addition queries. It first generates the
encrypted indexes Ia under the uploading key via proceed-
ing Addition. Then the challenger stores the newly added
record for A. To delete a record, A generates the deletion
token. With this deletion token, the challenger deletes the
corresponding data entries via Deletion for A. After a cer-
tain number of addition and deletion operations, A adap-
tively issues jqj similarity queries. For each similarity query,
the challenger generates the token sequence t via
SearchToken for A to query the server through SimSearch.
Finally,A returns a bit as the output.

GameS;AðKÞ : A chooses a dataset S. the simulator S gen-
erates simulated index Î based on LSetup. When an addition
query is issued, S generates the transcript of the newly
added data entries based on LAddition. During the simulation
of the addition operation, the simulator would also simulate
the transcript of the deletion tokens based on the record
identifiers. From LDeletion, it simulates the deletion tokens
via search from the transcript. For jqj adaptive similarity
queries, S generates simulated t̂ based on Lsp

Search and LapSearch
for A to query the server. Finally, A returns a bit as the
output.Q

is ðLSetup;LAddition;LDeletion;LspSearch;LapSearchÞ-secure
against the adaptive chosen-keyword attacks if for all prob-
abilistic polynomial time adversaries A, there exists a simu-
lator S such that

Pr½GameR;AðKÞ� 
 Pr½GameS;AðKÞ�
�
�

�
� � neglðKÞ;

where negl is a negligible function in K.
Theorem 1.

Q
is ðLSetup;LAddition;LDeletion;LspSearch;

LapSearchÞ-secure against the adaptive chosen-keyword attacks in
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the random oracle model if SE andHE are semantically secure,
and F , F1 � F4 are secure PRFs.

The Proof of Theorem 1. Setup: Given LSetup, the simulator
S generates a random string s� with the bit length of js�j
to simulate each encrypted records. For each partition j,
j 2 ½1; N�, S generates 2� lshL� nj dummy key-value
pairs with the bit length of jlj and jvj to simulate the index
entries Îj. We can observe that the real and simulated
indexes, and the real and simulated encrypted records
are computationally indistinguishable. tu
Addition. From LAddition, S can generate the transcript of

added indexes when a queryAdditionðsaÞ is issued. Particu-
larly, S generates a js�j-bit random string s� to simulate the
added record and 2� lshL dummy key-value pairs to simu-
late the corresponding index. Both of the real and simulated
indexes, and the real and simulated encrypted records are
indistinguishable if the PRFs are semantic secure.

Deletion. During the addition tokens simulation, the dele-
tion token dtok corresponding to the data records’ identi-
fiers has been generated in a deletion token transcript.
When a deletion query is issued, based on LDeletion, S can
just search the deletion token from the transcript. We
observe that the real and the simulated deletion tokens are
indistinguishable.

Search. From Lap
Search, S can simulate the first query and

the result. In particular, S generates the transcript of the
search token fðt̂i; ^crti; t̂ui; ^ucrti; n̂tiÞglshL with random
strings, when a search query SearchðsqÞ is issued. For each
partition j, j 2 ½1; N�, S uses random oracle H to find key-
value pairs. It first obtains the tokens fK̂1; K̂2g for every t
and tu. Then it locates the indexes via random oracle, i.e.,
Îj:GetðHðK̂1; cÞÞ for all tokens, where c increments from 0
and the sum of cL is equal to jmjj. By replacing EncðK̂2; idÞ
with HðK̂2jjrÞ � id, where r is a random string, id can be
derived. Simultaneously, S simulates the re-encrypted
entries under the corresponding n̂ti. Based on the fidgmj

,
the simulator can give the simulated retrieved encrypted
records fS�j g.

For the subsequent kth query, S learns the size of the
intersection token set from Lsp

Search, denoted as b. It also
learns the number of matched indexes. After that, S selects
b simulated tokens from the first query and generates ran-
dom tokens for the rest of the 2� lshL
 b tokens, which
leads to b overlapped tokens. For the tokens appeared
before, S copies previous matching indexes. Otherwise, it
follows the same way of simulating results as in the first
query. Due to the semantic security of secure PRFs, the real
and simulated tokens, and the real and simulated matching
candidates are indistinguishable.

5 EXPERIMENTAL EVALUATION

In order to evaluate the effectiveness and efficiency of our
proposed work, we have implemented a system prototype
in Java, and performed an extensive array of experiments
on Microsoft Azure. We utilized virtual machine instances
with Intel Xeon E5-2673 v4 (8 vCPU @ 2.3 GHz) and 32 GB
of RAM, running the Linux operating system (Ubuntu
Server 16.04 LTS). In our implementation, we used Java

Cryptography Architecture (JCA) to implement secure
pseudo-random functions via HMAC-SHA1.

To show the effectiveness and efficiency of candidate
evaluation using garbled circuits, we have implemented
our computation protocol based on ObliVM-GC, a well-
known secure two-party computation framework [15]. In
addition, we used the LSH parameter settings of [18], i.e.,
both lshL and lshK are set to 5. The Hash-ElGamal encryp-
tion library2 is imported to encrypt the data records for cir-
cuit evaluation.

We used the INRIACopydays dataset3 to create an EDB. It
is a real-world dataset that contains 157 unmodified images,
and a group of modifications in different JPEG qualities and
cropping percentages. As a result, we have 14,130 images as
our plaintext dataset. We use the perceptual image hashing
algorithm4 to extract fingerprints from these original images
as our data records collection, where each record is a 64-bit
array. The similarity of two images can be measured by
Hamming distance of their data records. Furthermore, in
order to evaluate the performance of our encrypted index
design, including the time of building indexes, additions,
and deletions, we also generated 1 million random finger-
prints in our experiments. Although our protocols are evalu-
ated on the image dataset, they are readily applied to other
datamodalities, such as textual data.

5.1 Performance Evaluation

Our performance evaluation focuses on building the
encrypted index, performing similarity queries, and carry-
ing out secure evaluations with garbled circuits. Since few
approaches can support parallel privacy-preserving similar-
ity search in distributed key-value stores and offer efficient
and secure updates simultaneously, we have no baseline to
have comprehensive comparisons. An alternative option is
the dynamic searchable encryption for large encrypted data-
sets, proposed by Cash et al. [1]. This scheme focuses on the
data structure design but could not ensure forward security.
For efficiency demonstration, we use Cash et al.’s scheme as
one of our baselines. For a fair comparison, we implemented
and adapted Cash et al.’s scheme into our system prototype.
We also implemented Cui et al.’s approach [18], which
focused on similarity search over encrypted near-duplicate
data with a public-key based searchable encryption for sup-
porting the “many-to-many” scenario.

Setup. Fig. 6 shows the time cost of building the
encrypted index (see Algorithm 2). We observed that the
time cost is linear to the number of data records, and the
overall speed is very fast compared with the design in [18],
completing the task in 114 seconds for one million records
with one thread. We have also tested the performance with
two threads, which further accelerated this procedure. We
observe that our time cost is slightly more than Cash et al.’
design. This is, of course, an initial one-time cost for a given
dataset, which is inevitable for security. Note that our index

2. Hash-ElGamal Lib in Java: https://github.com/harrycui/
HashElGamal

3. INRIA Copydays dataset: http://lear.inrialpes.fr/people/jegou/
data.php

4. ImageHash library: https://pypi.python.org/pypi/ImageHash
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is specialized for similarity search and ensures efficient
updates with forward security.

Further, we also measured the space consumption of the
prepared encrypted index by using Java serialization. Fig. 9
shows the size of the serialized encrypted index in different
scales. For example, for one million data records, the total
size is about 693 MB, which could be de-serialized (recon-
structed) on each storage node. Here, the index size of Cui
et al. [18] is significantly small because it is not an index
design and only stores small-sized digests (20 bytes for
each) together with encrypted identifiers (4 bytes for each).
Compared with Cash et al. ’s scheme, our construction con-
tains an approximate double size of the index, which is not
unexpected due to the dual-index design for efficient
updates and ensuring forward security.

Dynamic Updates. To evaluate the efficiency of dynamic
updates to the EDB, we further perform addition and dele-
tion operations with different numbers of data records.
More precisely, we measure the time cost on the side of AP
and storage node separately.

In Fig. 7, we observe that the setup time for dynamic
addition linearly increases with the number of added
records, while the writing time is quite stable and very
short, which does not incur much runtime overhead. We
note that most of the addition time is consumed by the AP,

which is inevitable due to the generation of those encrypted
key-value pairs. The overall time cost remains largely the
same as the index building operation due to the use of simi-
lar processing routines.

In Fig. 8, we observe that the application server com-
pletes the setup for deletion very quickly. Deletion on a stor-
age node is slower but still very efficient even for 800,000
records, taking 25 seconds. This is quite different from the
addition process, because the application server only needs
to generate a token (dtok) for each record to be deleted,
while the storage node needs to generate multiple keys for
the actual key-value pairs in the index.

Search Efficiency. Fig. 10 depicts the average time cost
when performing similarity search over the encrypted
index, built from 14,130 images. We use the original 157
images as our query dataset, and run multiple rounds on
our testing server. Specifically, Fig. 10 shows that our search
operation on each storage node is faster than that of Cui
et al. [18], at millisecond levels, and the overall time cost lin-
early increases with the number of data records. Fig. 11 fur-
ther reports the relationship between the search time cost
and its located candidates. It is worth noting that the search
time is not affected by the dynamic updates (both addition
and deletion) in our test, and is only positively affected by
the number of located candidates. That can be explained by

Fig. 6. Index building time comparison. Fig. 9. Index size comparison.

Fig. 7. Addition time (on one node).

Fig. 8. Deletion time (on one node).

Fig. 10. Search time comparison.

Fig. 11. Initial search time (on one node).
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the fact that, with the dual-index data structure, the search
operation is performed with sublinear time complexity.

Accuracy Evaluation. Fig. 12 shows the precision of the
Top-R results in the initial search phase with different LSH
parameters, where both lshL and lshK are 5 in our default
setting. Here, precision is measured by the percentage of
true positives. We can observe that the results are roughly
ranked over the number of matched LSH values that still
contain false positives (due to the inherent approximation
feature of the LSH algorithm), and the precision can be
improved by changing the LSH parameters.

In practice, increasing lshL can reduce the number of false
positives in the Top-R results (by ranking the number of
matched LSH values), but inevitably incurs extra storage
overhead. This indicates a tradeoff between query precision
and storage costs. Besides that, increasing lshK will reduce
the number of located data records, which, without a doubt,
contains fewer false positives but incurs more false negatives.
Furthermore, we observe that the precision degrades with the
increase ofR. This confirms the fact that our secure evaluation
phase is necessary for high-quality services, which return
only the true positive results to the application server.

Moreover, to understand the effect of the underlying
homomorphic encryption on the performance of our secure
candidates’ evaluation, we implemented both our design
with Hash-ElGamal encryption and Cui et al.’s scheme with
Paillier [18], based on ObliVM-GC. Table 2 illustrates a
detailed comparison between the two circuits. It shows that
the evaluation speed is faster using Hash-ElGamal, which
leads to a reduction of 40 percent on the overall evaluation
time. This can be explained by the fact that the mask
removal module implemented via an XOR gate is efficient,
leading to a significant reduction in the overall evaluation
time. In addition, our scheme can reduce the bandwidth
costs between the two cloud servers by 25 percent.

6 RELATED WORK

Encrypted Database Systems. Several practical encrypted
database systems have been proposed to support rich
queries over encrypted data (e.g., [4], [6], [7], [29]). As exam-
ples, CryptDB, one of the first fully functional systems, pro-
posed to use onion encryption for queries with different
functionalities [4]. BlindSeer, on the other hand, were
designed to achieve better search privacy and support arbi-
trary boolean queries [29]. Both of CryptDB and BlindSeer
are designed as centralized systems.

More recently, several encrypted data analytic systems
based on distributed key-value stores have been proposed
and implemented [6], [7]. They inherited the features of
modern distributed key-value stores, such as high perfor-
mance and incremental scalability, yet still enabling specific
query functions over encrypted data. EncKV [6] is specifi-
cally design for exact match and range match, while Enc-
SIM [7] specializes in similarity search on encrypted high-
dimensional data records.

Similarity Search Over Encrypted Data. Kuzu et al.’s
work [28] was one of the first works to address the problem
of sub-linear similarity search over encrypted data while
preserving data confidentiality. An LSH-based inverted
index construction scheme has been proposed, which ena-
bles privacy-preserving similarity search in sublinear time
complexity. However, dynamic update operations were not
considered. Followed by this work, Yuan et al. extended the
secure similarity index design to support over millions of
encrypted records [30]. Such a design is especially suitable
for low latency applications, where only a small number of
similar records are retrieved for each query. More Recently,
Liu et al. proposed a privacy-preserving similarity search
over distributed key-value stores [7]. Their scheme allows
for parallel similarity search over encrypted high-dimen-
sional data records, and supports data addition with
guaranteed forward security as well. Yet, it does not sup-
port secure and efficient updates, and requires client-side
post-processing after decryption.

Dynamic Searchable Symmetric Encryption (DSSE). Kamara
et al. proposed the first dynamic SSE scheme with sublinear
time [3] and later improved this construction by reducing
the leakage (of keyword hashes when performing the
update operation) at the cost of more space complexity on
the server [31]. However, their designs still not achieve for-
ward security. Recall that the information leaked by a DSSE
scheme can be captured by backward and forward security.
The backward security focuses on the EDB and the updates
to it during queries, while the forward security considers
the privacy of the EDB and previous queries during update
operations. [11], [32], and [12] were proposed to consider
forward security of DSSE. So’o& [11] is specialized for the
search and insertion operations, but does not support actual
deletion, while [12] ensures the secure updates which are
specialized for exact-keyword search [12] over encrypted
documents. Those schemes for dynamic SSE reduce the effi-
ciency of SE, especially in the communication costs between
the client and the server. Vo et al. [33] proposed an SGX-
based solution to ease the bottleneck. Specifically, they pro-
posed using SGX to take over the client’s most tasks and fur-
ther developed batch data processing and state compression
techniques to reduce the communication overhead.

Secure Two-Party Computation Using Garbled Circuits.
Huang et al. leveraged Yao’s garbled circuits to design an

Fig. 12. Precision of initial candidates.

TABLE 2
An Evaluation of the Secure Evaluation Phase

Design Num of Num of Bandwidth Time

and gate xor gate (KB) (ms)

Paillier [18] 320 1537 16 121.11
hashElGamal 192 1025 12 78.03

1082 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 5, MAY 2021

Authorized licensed use limited to: The University of Toronto. Downloaded on May 19,2021 at 07:36:46 UTC from IEEE Xplore.  Restrictions apply. 



efficient privacy-preserving fingerprint recognition sys-
tem [34]. Nikolaenko et al. proposed an efficient and secure
ridge regression protocol, combining an additive homomor-
phic encryption and Yao’s garbled circuits [35]. In [17], by
applying a more efficient encryption scheme with homo-
morphic property —Hash-ElGamal encryption, Nikolaenko
et al. built a more efficient and secure matrix factorization
scheme on top of Yao’s garbled circuits. Moreover, Zhang
et al. proposed a non-interactive framework for binary
descriptor based search [36], and Cui et al. proposed a
secure near-duplicate detection services in the context of
encrypted in-network storage [18].

7 CONCLUSION

In this paper, we have proposed an efficient and privacy-
preserving similarity search mechanism with update sup-
port in outsourced distributed key-value stores. At the core
of our construction lies a dual-index data structure, which
not only allows parallel secure search in distributed storage
nodes, but also supports forward-private addition and dele-
tion, with sub-linear time complexity. Moreover, to ensure
the quality of the search results and release the computation
burden of the client, we introduced a secure two-party com-
putation protocol based on Yao’s garbled circuit and Hash-
ElGamal to securely and efficiently eliminate false positives
among the query candidates in the cloud. We have imple-
mented a prototype on Microsoft Azure and conducted an
extensive array of performance evaluations using a real-
world dataset.
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