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Status-Aware Signed Heterogeneous Network
Embedding With Graph Neural Networks

Wanyu Lin , Member, IEEE, and Baochun Li , Fellow, IEEE

Abstract— Many real-world applications are inherently
modeled as signed heterogeneous networks or graphs with
positive and negative links. Signed graph embedding embeds
rich structural and semantic information of a signed graph
into low-dimensional node representations. Existing methods
usually exploit social structural balance theory to capture the
semantics of the complex structure in a signed graph. These
methods either omit the node features or may discard the
direction information of the links. To address these issues,
we propose a new framework, called a status-aware graph
neural network (S-GNN), to boost the representation learning
performance. S-GNN is equipped with a loss function designed
based on status theory, a social-psychological theory specifically
developed for directed signed graphs. Extensive experimental
results on benchmarking datasets verified that S-GNN can distill
comprehensive information ingrained in a signed graph in the
embedding space. Specifically, S-GNN achieves state-of-the-art
accuracy, robustness, and scalability: it speeds up the processing
time of link sign prediction by up to 6.5× and increases accuracy
by up to 18.8% as compared with the alternatives. We also show
that S-GNN can obtain effective status scores of nodes for link
sign prediction and node ranking tasks, both of which yield state-
of-the-art performance.

Index Terms— Signed heterogeneous information networks,
signed network embedding/representation learning, status theory.

I. INTRODUCTION

IN MANY real-world applications, relationships between
two entities or users have opposite properties, such as

trust–distrust relationships in trust networks [1], friend–foe
relationships in social networks [2], and support–dissent opin-
ions in opinion networks [3]. These networks can be repre-
sented as graphs with positive and negative links or edges,
which we refer to as signed networks or signed graphs. The
link heterogeneity (with positive and negative links) conveys
a rich set of information that can be leveraged to enhance
network mining tasks, such as link sign prediction, node
ranking, and community detection [4]. In particular, predicting
the sign of links is a fundamental task in many areas, such as
personal advertising and public opinion analysis.
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Fig. 1. (a) and (b) Balanced triangles. (c) and (d) Status theory illustration.

With the prevalence of signed networks, extensive work on
representation learning on signed networks has been reported
in the literature. Signed graph embedding, or representation
learning, aims to learn a low-dimensional representation for
each node. Such a representation can then be applied to
downstream mining tasks on signed graphs. With a relatively
few exceptions (e.g., BESIDE [5]), research on signed graph
embedding has focused on characterizing social structural
balance theory (e.g., SIGNet [6], SIDE [7], SiNE [8], and
SNE [9]), which defines an organizing principle for the
complex structure on signed graphs and implies that cycles
with an even number of negative links are more plausible,
and thus, should be more prevalent in real-world networks
[e.g., a balanced triangle with zero negative shown in Fig. 1(a)
and balanced triangle with two negatives shown in Fig. 1(b)].
However, the structural balance theory omits the direction
information of links on signed graphs [2] and may lose some
aspects of information, leading to suboptimal performance.

In recent years, we have witnessed encouraging develop-
ments in deep graph convolutional neural networks (GNNs)
for representation learning on unsigned networks (networks
contain one type of link only) [10]–[13]. GNNs have been
proved to be capable of effectively and efficiently encoding
the structural and node feature information in a graph for
those unsigned networks. More specifically, feature informa-
tion from local graph neighborhoods is iteratively aggregated.
By stacking multiple convolutions, local information can be
propagated throughout the entire network. Thus, given their
advantages, excellent opportunities may exist in using GNNs
to capture the complex structural and semantic information in
a signed graph.

2162-237X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Toronto. Downloaded on April 08,2024 at 19:52:02 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7328-8039
https://orcid.org/0000-0003-2404-0974


LIN AND LI: STATUS-AWARE SIGNED HETEROGENEOUS NETWORK EMBEDDING WITH GNNs 4581

Yet, representation learning in signed networks using GNNs
is quite challenging. GNNs were originally designed to cap-
ture the homophily nature of unsigned networks [10], [13],
indicating that more similar users are more likely to connect.
The notion of homophily may not be applicable when both
positive and negative links are jointly considered for signed
graph embedding. In the context of signed graphs, the first
challenge is how to use GNNs to encode the heterogeneous
relationships into a low-dimensional vector space. Though
a few GNN-based methods have been proposed to address
the problem of representation learning on signed graphs
(e.g., SGCN [14], SNEA [15]), they were built on structural
balance theory where the direction information of links are
not explicitly aggregated and propagated, and thus, may not
work very well. Therefore, the second challenge is effectively
characterizing the direction information of links in a signed
graph.

To address these challenges, we propose a novel
status-aware graph neural network (S-GNN) for signed graph
embedding. S-GNN addresses all the issues described earlier
by applying link semantics transformation, exploiting status
theory and performing status aggregation and propagation in
two ways to generate node embeddings. The status theory is a
fundamental theory from social psychology, which provides
an organizing principle of the rich structural and semantic
information for signed directed networks [2]. Specifically,
we leverage status theory to design a new objective function.
In the theory of status [2], a positive link eu→v implies that
v has a higher status from the perspective of u [shown in
Fig. 1(c)], while a negative link eu→v indicates that v is
regarded as having a lower status, as shown in Fig. 1(d).

The key component of S-GNN is the status convolutional
layer, which employs the notion of localized graph con-
volutions [10], [13]. To capture the direction information
of links, each of our status convolutional layers consists
of two components: receptive-based status aggregation and
generative-based status aggregation. A plausible analogy for
these two components can be represented in the context of
social networks: receptive-based status aggregation is used
to characterize the status that a user endorsed by the others
(e.g., the popularity of the user), while generative-based status
aggregation is for capturing the extent that a user is willing
to endorse to the others (e.g., the deference of the user to
the others). By doing so, S-GNN can distill comprehensive
information from the heterogeneous relationships in a signed
graph based on the theory of status. Furthermore, by stacking
fully connected (FC) layers, S-GNN can obtain a status score
for each node. Therefore, the relative relationship between
any two entities can also be established with their status
scores. Specifically, S-GNN is general as compared with most
prior methods in the sense that it can deal with the link sign
prediction and node ranking tasks simultaneously.

Highlights of our original contributions are as follows. First,
we introduce a principled methodology to capture the rich
structural and semantic information of signed graphs. Second,
we design two types of status convolutions to capture the
status of each entity such that the heterogeneous relationships
can be captured in the embedding space. Third, we design an

objective function for signed heterogeneous network embed-
ding by leveraging status theory. Fourth, we demonstrate
the effectiveness and efficiency of our proposed framework
using four signed directed networks from different domains.
Our extensive array of experiments on benchmarking datasets
demonstrated that S-GNN can speedup representation learning
for link sign prediction by up to 6.5× as compared with
the alternatives. More specifically, S-GNN achieves up to
a 4× speedup, and comparable accuracy as compared with
BESIDE [5]. S-GNN also increases its accuracy by up to
18.8% compared with SIDE [7], and achieves state-of-the-
art robustness and scalability compared with the literature.
We also show that S-GNN can learn effective status scores
of each node, which can be used for link sign prediction and
node ranking and yield state-of-the-art performance.

II. PRELIMINARIES

In the following, we introduce some necessary definitions
to facilitate a better understanding of the problem and our
proposed solution.

Definition 1 (Social Status): Status is broadly defined as
the position of users, either communities or individuals, in a
social hierarchy that results from accumulated acts of def-
erence. The sociologists have widely recognized that status
is fundamentally rooted in the accumulation of deference
behaviors [16], [17]. In signed social networks, social status
can be represented in many different ways, such as the
rankings of nodes in social networks, and it represents the
prestige/trustworthiness of nodes [4].

Definition 2 (Status Theory): Status theory defines an orga-
nizing principle for signed links on signed directed networks.
In the theory of status [2], a positive link eu→v implies that
v has a higher status from the perspective of u [shown in
Fig. 1(c)], while a negative link eu→v indicates that v is
regarded as having a lower status, as shown in Fig. 1(d).
In signed networks, these relative levels of status can be
propagated and aggregated throughout the networks.

Definition 3 (Structural Balance Theory): Balance theory
[18] classifies cycles in a signed network as being balanced or
unbalanced. It implies that cycles with even negative signs are
more plausible and should be more prevalent in real networks.
For simplicity, we illustrate balanced structures with triangles.
More specifically, balanced triangles with three positives,
shown in Fig. 1(a), capture the notion that “the friend of my
friend is my friend,” while those with two negatives, shown
in Fig. 1(b), implies that “the enemy of my enemy is my
friend.” Balance theory was initially developed for undirected
networks.

Comparisons of Two Theories: The Status theory and bal-
ance theory both provide insights into ways in which users use
linking mechanisms in social computing applications. The sta-
tus theory is specialized in directional links, as it posits a status
differential from the source node of a link to its target node.
Balance theory was initially proposed for undirected networks,
though it has been widely applied to directed networks (e.g.,
SIDE [7], SigNet [6]). Structural balance theory can be viewed
as modeling like and dislike relationships [2], while in some
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important domains, such as Epinions and Wikipedia, a positive
link from u to v can be interpreted as “v has a higher status
than I do” and a negative link can be viewed as a model of “v
has lower status than I do” [19]. In these domains, the status
theory has been proven to be more expressive than balance
theory [2].

III. RELATED WORK

Our problem of signed network embedding connects to a
large body of work on network representation learning, signed
heterogeneous network embedding, and recent advancements
in applying GNNs.

A. Network Embedding

The goal of network representation learning is to learn
low-dimensional representations for all nodes, which can be
used for many different network analysis tasks, such as link
prediction [20], node classification, and community detection.
An extensive amount of work has been developed in this
area, including Node2Vec [21], Line [22], DeepWalk [23], and
GCN [13], all of which are proposed for unsigned networks.

B. Signed Network Embedding

In today’s social networks, users can express positive or
negative attitudes toward others. This link heterogeneity builds
a network topology called signed networks. With the preva-
lence of social media, signed network embedding has emerged
as a promising direction that leverages both positive and
negative links to enhance network mining performance on
signed networks [6]–[9], [15], [24]–[27].

Two social-psychological theories, structural balance theory
and status theory, have been widely used in mining signed
networks [2], [18]. According to the social theories they built
on, we can roughly divide existing works into two categories:
structural balance theory-based, including SiNE [9], SIDE [7],
SIGNet [6], SGCN [14], and SNEA [15]; status theory-based.
Most existing works mainly focused on representation learning
with structural balance theory. They typically define some
predefined balanced rules and associated optimization loss
terms.

Rare efforts were on signed networks analysis with status
theory. SLF [27] modeled four types of links in the latent
space, and it is specialized for link prediction tasks. The closest
to ours is BESIDE [5] in the sense that both BESIDE [5] and
our proposed approach can deal with the link sign prediction
and node ranking tasks simultaneously. Specifically, BESIDE
first modeled “bridge” edges with status theory and triangles
with balance theory and/or status theory. It then adopted a deep
neural network to learn from these two predefined structures.
Different from BESIDE, S-GNN captures the semantic infor-
mation of signed graphs by using the expressive capability of
graph neural networks equipped with a loss function designed
based on status theory.

Fig. 2. Signed directed network: an example.

C. Graph Neural Networks

GNNs have been proven to be powerful on representa-
tion learning on unsigned network graphs [10], [11], [13],
leading to new state-of-the-art results on benchmarks, such
as node classification and link prediction. These GNN-based
representation learning on unsigned networks consistently
outperformed techniques based upon random walks (e.g.,
node2vec [21], Line [22], and DeepWalk [23]). Therefore,
GNN-based approaches, e.g., SGCN [14], SNEA [15], and
SiGAT [26] have been proposed to solve the representation
learning on signed networks. SGCN introduced the definitions
of balanced and unbalanced paths based on structural balance
theory. SNEA [15] was built upon graph attention mechanism
(GAT [11]) to capture balance theory, whereas SiGAT [26]
incorporates graph motifs into GAT to capture balance theory
and status theory simultaneously. These existing GNN-based
approaches were proposed specifically for link signed predic-
tion tasks. Unlike prior GNN-based approaches, our proposed
framework is more general in that it can cope with link sign
prediction tasks and node ranking tasks at the same time.

IV. PROBLEM SETUP

In this article, we consider a signed directed network/graph,
denoted as G = (V, E+, E−), where V is the set of nodes, and
E+, E− represent the sets of positive links and negative links,
respectively. A node v ∈ V represents an entity in the graph,
and a link eu→v ∈ {E+∪E−} represents a directed link from u
to v associated with a positive or negative sign. More precisely,
+1 represents a positive link, and −1 denotes a negative link.
As nodes typically represent users in online social networks,
we use the terms “node” and “user/entity,” “links/edges,” and
“relationships” interchangeably in this article. To differentiate
direction information between any two nodes, we define the
source node as the creator of a link and the target node as the
receiver of a link. This reflects real-world application domains,
such as rating (upvote and downvote) Web content on Reddit1

and voting for adminship on Wikipedia (WikiRfA) [28], where
both ratings and votes are created by the source nodes of the
links.

For any node u ∈ V , let NO(u) be the set of out-neighbors of
node u, and NI (u) be the set of in-neighbors of u. In this sense,
we can define |NI (u)| and |NO(u)| to represent in-degree and

1https://www.reddit.com
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TABLE I

NOTATIONS

out-degree of u, respectively. The mathematical notations used
in this article are summarized in Table I.

Signed Network Embedding or Representation Learning:
Given a signed directed network G = (V, E+, E−), the task
of signed network embedding is to learn a mapping function
f : u → S[u], where S[u] ∈ Rd is the learned representation
of node u with dimension d . The transformation function f
preserves the complex structural and semantic information
in a signed graph, such that any representations of nodes,
in the embedding space, are effective for downstream signed
network analysis, e.g., link sign prediction and node ranking.
An example of a signed directed network is shown in Fig. 2,
which will be used throughout this article.

V. OUR PROPOSED FRAMEWORK: S-GNN

In this section, we first introduce the limitations of balance
theory on signed directed networks. Then, we introduce our
proposed S-GNN, a dedicated effort toward the construction
of graph neural networks specialized for signed graph embed-
ding.

In particular, we examine the percentage of triangles satis-
fying balance theory on real-world datasets. There are 92.4%
triangles satisfying balance theory on Epinions, 91.7% on
Slashdot, while WikiRfA contains 73.6% and WikiElec has
71.2% balanced triangles, respectively. This indicates that
signed graph convolution networks based on balance theory
may not work very well on signed directed networks. Let us
see an example in our signed directed graph, originally shown
in Fig. 2. User v links positively to user i and u links positively
to user i ; balance theory would suggest a positive link of
eu→v , as shown in Fig. 3(a). However, as shown in Fig. 3(b),
user u links positively to user j and j links negatively to
user v; balance theory would suggest a negative link of eu→v .
The predicted sign of link eu→v based on balance theory with
triangles is contradictory.

Fig. 3. Contradictory predictions of eu→v with balance theory in our example.
(a) Predicted as positive. (b) Predicted as negative.

Fig. 4. Simplified status modeling in our example: u has a status of −4 and
v has a status of −2. Status theory would, therefore, suggest a positive link
of eu→v .

Before formalizing our S-GNN, we provide some intuitions
behind our construction. Both positive and negative links need
to be jointly considered for signed graph embedding in signed
networks. The notion of homophily becomes not applicable,
which can also be explained by the theory of status. According
to the theory of status, the positive in-neighbors and the nega-
tive out-neighbors of a user increase its status [2]. In contrast,
the positive out-neighbors and negative in-neighbors decrease
their status. In this sense, signed graph embedding desires
new principles to perform status aggregation and propagation,
where the status of each node is determined by its local
topological connections.

To illustrate the modeling with the status theory in our
example, we simplify the status modeling as follows: each user
was initially assigned a status of 0. If user u links negatively
to another user, or another user links positively to user u,
we increase user u a status of 1; otherwise, we decrease the
status of u by 1. With the same rule, the status value of each
user is assigned, as shown in Fig. 4. As u has a status of
−4 and v has a status of −2, status theory [2] would suggest
a positive link of eu→v . It is worth mentioning that status is
propagated and aggregated throughout the networks, which is
more complex in the real situation. In what follows, we detail
our proposed framework for representation learning on signed
networks, the architecture of which is shown in Fig. 6.

A. Modeling Social Status of Nodes

In this article, we consider the richness of interactions
between entities within signed networks as social status. Social
status can be represented in many different ways depending
on the interpretations of positive and negative links, which
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Fig. 5. Receptive interactions (in yellow) and generative interactions (in
green): an example.

are typically distinct across different application domains.
In the context of signed social media, the status theory allows
deriving the relationship of any two users based on their status
in the social graph [2].

In particular, to be able to capture the social status of
each user, we first separate pairwise interactions of users into
two groups: receptive interactions and generative interactions.
Taking the Epinions, a who-trust-whom dataset, as an example,
receptive interactions can be interpreted as the measurement of
a user’s popularity. In this context, some users are more likely
trusted by others, such as the officials, who are referred to as
having higher popularity in a society. Therefore, the social
status of these users is relatively higher. According to the
theory of status, receptive interactions with positives increase
the social status of the receiver of the links. In contrast, those
with negatives decrease the social status of the receiver.

Similarly, generative interactions are to measure the engage-
ment of a user. In the context of Epinions, users are more likely
to trust others with higher social status; hence, their social
status is relatively lower than those users they trust. Generative
interactions with negatives increase the social status of the
creator of the link, while those with positives lower the social
status of the creator.

B. Status Convolutional Layers

Accordingly, we consider two types of status aggregation
to characterize the receptive-based status and generative-based
status, represented as Sr [u] and Sg[u], respectively. We use a
mean-aggregator to aggregate its associated interactions with
its neighbors for each of them. It is worth mentioning that,
the mean-aggregator is the main operation of aggregating
information from local graph neighborhoods [10], [13].

Let us see an example in our example social network graph,
as shown in Fig. 2. With our link modeling, the receptive
interactions of user u and v are shown in yellow in Fig. 5,
while the generative interactions are shown in green. More
specifically, for user u, there are three outgoing neighbors.
The generative-based status of u is, therefore, 1 by averaging
over its outgoing links, and the receptive-based status of u is
−1. Similarly, the receptive-based status of v is −1, while its
engagement is 1.

1) Receptive-Based Status Aggregation (R): Intuitively, the
incoming connections and associated semantics information
of these links provide direct evidence of a user’s popularity in

online social networks. We build upon this basis to aggregate
and propagate the receptive-based status between connected
users.

In particular, to model the semantic information of the links,
we first use one-hot encoding to represent positive and negative
links, respectively. More specifically, we model positive and
negative links as the following one-hot representations: [1, 0]T
and [0, 1]T . Then, S-GNN employs a linear transformation to
convert the one-hot encodings into the dense vectors through
(1) and (4). For a link with sign signu←v (v is the creator of the
link), we model the receptive-based status of u created by v as
a combination of v’s feature vector x[v] and the corresponding
latent factors of link esignu←v

esignu←v
= Wu←v · signu←v (1)

Ru←v = x[v] ⊗ esignu←v
(2)

where Wu←v ∈ RDe×2 is a trainable transformation matrix, ⊗
denotes the concatenation operation between two vectors.

We now take the element-wise mean of the vectors in
{Ru←v ,∀v ∈ NI (u)}. This mean-based aggregator is a linear
approximation of a localized spectral convolution [13], as the
following function:

Sr [u] = 1

NI (u)
·

∑
v∈NI (u)

Ru←v . (3)

2) Generative-Based Status Aggregation (G): Accordingly,
we characterize a user’s engagement through its outgoing
social connections and associated semantics of generative
links. We build upon this basis to perform the propagation
and aggregation of the generative-based status between the
connected users. Thus, the generative-based status of user u
can be captured by the following functions:

esignu→v
= Wu→v · signu→v (4)

Gu→v = x[v] ⊗ esignu→v
(5)

Sg[u] = 1

NO (u)
·

∑
v∈NO (u)

Gu→v (6)

where Gu→v denotes the engagement of user u to user v in a
signed graph.

3) Learning Status Latent Factors of Nodes: In order to
learn better latent factors of nodes for downstream signed net-
work analysis, the receptive-based status and generative-based
status are needed to be considered jointly. Here, we propose
to combine these two types of status through a standard FC
layer, where Sr [u] and Sg[u] are concatenated before feeding
into the FC. Formally, the status latent factor of node u and
S[u], can be characterized as follows:

S[u] = W · (Sr [u] ⊗ Sg[u])+ b (7)

where W is a trainable transformation matrix, b is a learn-
able bias, and ⊗ represents the concatenation operator. The
advantage of using concatenation lies in its simplicity and
expressiveness, which have been shown in a recent work of
GNNs [10].
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Fig. 6. Illustration of S-GNN framework.

4) Higher Order Status Propagation: By stacking l status
convolutional layers, a user is capable of receiving the sta-
tus (the generative-based status and receptive-based status)
propagated from its l-hop neighbors. In the lth step, the
representation of user u is recursively formulated as (8)–(12)

Rl
u←v = Sl−1[v] ⊗ {

W l
u←v · signu←v

}
(8)

Gl
u→v = Sl−1[v] ⊗ {

W l
u→v · signu→v

}
(9)

Sl
r [u] =

1

NI (u)
·

∑
v∈NI (u)

Rl
u←v (10)

Sl
g[u] =

1

NO (u)
·

∑
v∈NO (u)

Gl
u→v (11)

Sl [u] = W l · (Sl
r [u] ⊗ Sl

g[u]
)+ bl (12)

where S0[u] = x[u] is the feature vector of node u, signu→v

and signu←v are the observed signed link, and W l
u←v , W l

u→v ,
W l , and bl are the model trainable parameters, to be optimized
in an end-to-end fashion with S-GNN. Note that by stacking
multiple status convolutional layers, we enrich user embedding
with its receptive-based status and generative-based status in
signed social networks and allow controlling the range of
status propagation throughout the graph by adjusting l.

C. Modeling Relationships of Users Based on Status Theory

In the theory of status, a signed link, from creator u to
receiver v, can be interpreted as the intention of u in creating
the link to v [19]. Status theory characterizes the semantics of
the links from the relative difference of their status scores.

To further model the status score for each user, we fit the
latent factor of the user status to FC layers. In particular,
we use two different FC layers to learn the status scores for the
creator and receiver, respectively. Formally, the status scores
are formulated as (13) and (14), where Wsrc and Wrev are
trainable weight matrices defined in two FC layers, and bsrc
and brev are corresponding biases. The FC layers lead to more
effective representations of user status, as this step explicitly

injects the receptive-based status and generative-based status
of individual users in a collaborative fashion

Ssrc[u] ← Wsrc × SL [u] + bsrc (13)

Srev[v] ← Wrev × SL [v] + brev. (14)

With status theory, the link semantics can be captured by
its relative differential of the creator and receiver. Formally,
it is formulated as

S�u→v
= Ssrc[u] − Srev[v]. (15)

Therefore, the sign of link eu→v can be computed as

˜signeu→v
=

{
−1, if σ(S�u→v

) > 0.5

+1, otherwise

where σ is a sigmoid function to normalize the status dif-
ferential to the range of (0, 1), defined as sigmoid(x) =
(1/(1+ exp (−x))). The detailed forward propagation algo-
rithm of S-GNN is shown as procedure S-GNN. Specifically,
as shown in line 2 of procedure S-GNN, the node features are
treated as the initial embedding that will be updated during the
forward propagation. Lines 4–11 of the procedure show how
nodes are updated through L status convolutional layers. Lines
12 and 13 describe the process of generating status scores
through FC layers and obtaining the link sign based on the
status differential of two nodes.

D. Model Training

We define an objective function to learn the model parame-
ters in S-GNN. In particular, the objective function contains
two terms, both of which are to encourage the representations
to be able to understand associated status so as to obtain the
semantics of links based on status theory. More specifically,
the first term minimizes the status differential of positive links,
while the second term maximizes the status differential of
negative links. Our framework can be regarded as a binary
classifier for the link prediction task. Therefore, the first two
terms together are the cross entropy for training the model
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Algorithm 1
1: procedure S-GNN: REPRESENTATION GENERATION (I.E.

FORWARD PROPAGATION)
2: S0[u] ← x[u], for all u ∈ V , where X is node feature

matrix
� Status latent factors of observed nodes

3: for all u ∈ V do
4: for l = 1 · · · L do

� The latent factors of receptive status
5: for i ∈ NI (u) do
6: Rl

u←i = Sl−1[i ] ⊗ {W l
u←i · signu←i}

7: Sl
r [u] = 1

NI (u)
·∑i∈NI (u) Rl

u←i
� The latent factors of generative status

8: for i ∈ NO (u) do
9: Gl

u→i = Sl−1[i ] ⊗ {W l
u→i · signu→i }

10: Sl
g[u] = 1

NO (u)
·∑i∈NO (u) Gl

u→i

11: Sl [u] = W l · [Sl
r [u] ⊗ Sl

g[u]] + bl

� Status score
12: for all 〈u, v〉 ∈W do
13: Ssrc[u] ← Wsrc × SL [u] + bsrc
14: Srev[v] ← Wrev × SL [v] + brev
15: S�u→v

= σ(Ssrc[u] − Srev[v])

parameters. The overall objective function is formalized as
follows:

L = 1

|E+|
∑

eu→v∈E+
(signeu→v

) · σ(S�u→v
)

+ 1

|E−|
∑

eu→v∈E−
(signeu→v

) · σ(S�u→v
)

+ λ · ||�||22 (16)

where signeu→v
represents the ground-truth (17), and � =

{{W l
u←v , W l

u→v , W l }Ll=1, Wsrc, Wrev} denotes all trainable
model parameters, and λ controls the L2 regularization
strength to prevent overfitting. In particular, we adopt
Adam [29] as the optimizer in our implementation, as it has
been shown to be effective in updating the model parame-
ters [10]

signeu→v
=

{
−1, if eu→v ∈ E−
+1, if eu→v ∈ E+. (17)

Time Complexity Analysis: As we can see, the key computa-
tional operations of our framework are the notion of localized
graph convolutions [10], [30], [31]. More specifically, each
status convolutional layer performs nodewise aggregation of
information from neighbor nodes (i.e., every computation
requires only the immediate neighbors of a node). In other
words, the computation cost of our framework main comes
from the localized graph convolutions, of which the complex-
ity is coming from the model parameter complexity. And the
parameters of our proposed status convolutional layers are
shared across all nodes, making the parameter complexity
of S-GNN independent of the input graph size. Specifically,
the computation cost for each node is O(N L D2), where N

TABLE II

STATISTICAL DESCRIPTION OF THE DATASETS

denotes the number of neighbors, L is the number of status
convolutional layers, and D is the node hidden features.

As our framework inherits the inductive property of
GCNs [10], at the representation generation step, we are able
to compute embeddings for nodes that were not in the training
set. This allows us to train on a subgraph to obtain model
parameters and then generate embeddings for nodes that have
not been observed during training. Section VI empirically
verified the efficiency and scalability of our model.

VI. EXPERIMENTAL EVALUATION

A. Description of Datasets Used

To evaluate the effectiveness and efficiency of S-GNN,
we conduct experiments on four benchmark datasets: Epinions,
Slashdot [2], WikiRfA [28], and WikiElec [32], which are
publicly accessible signed social network datasets. The details
of how the signed edges are defined on these datasets can
refer to the website.2 Table II presents the statistics of these
datasets.

1) Epinions: This is a who-trust-whom online social net-
work, where users create signed directed relations to each other
indicating trust (corresponding to positive links) or distrust
relationships (represented as negative links).

2) Slashdot: Slashdot is a technology-related news website
known for its specific user community. Users in the network
designate others as “friends” (positive links) or “foes” (nega-
tive links).

3) WikiRfA: This network is defined by votes for Wikipedia
administrator candidates. Any member can cast a supporting,
neutral, or opposing vote for a Wikipedia editor. We discard
neutral votes and construct a signed directed network as did in
BESIDE [5] and [28]. WikiElec: is the elections and voting
data of Wikipedia administrator, of which the definition is
similar to that of WikiRfA.

B. Link Sign Prediction Based on Learned Node
Representations

1) Alternative Baselines: To demonstrate the effectiveness
of learned embedding, we first conduct experiments on the
task of link sign prediction. In particular, we compared
S-GNN against the state-of-the-art methods on signed net-
work embedding, and we will detail them in the following.
We do not include unsigned methods (e.g., LINE [22] and

2https://snap.stanford.edu/data/index.html
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TABLE III

SIGN PREDICTION RESULTS

Node2Vec [21]) and spectral clustering algorithms based on
signed Laplacian matrix (e.g., SSE [33]), since previous signed
network embedding work (BESIDE [6] and SGCN [14]) has
shown their superiority over these methods.

SNE [9] adopted a log-bilinear model and used random
walk sampling to generate samples. SNE was designed without
any specific theories of signed networks.

SiNE [8] proposed a multilayer neural network to learn
the embeddings by optimizing an objective function satis-
fying structural balance theory. SiNE only concentrated on
the immediate neighborhoods, rather than the global balance
structure.

SIDE [7] provided a linearly scalable approach with regard
to the number of nodes. SIDE aggregated the direction and
signed information of the links along the paths based on
structural balance theory. It was proposed to optimize the
likelihood over both directed and undirected connections.

SIGNet [6] was built upon the traditional word2vec family
of embedding approaches. It leveraged a targeted node sam-
pling strategy to maintain structural balance in higher order
neighborhoods.

SGCN [14] was a GCN specialized for signed network
analysis. Balance theory was leveraged to aggregate and
propagate the information of signed networks across signed
GCN layers.

SNEA [15] was built upon graph attention networks to
capture balance theory. In particular, it leveraged masked
self-attention layers to aggregate the rich information from
neighboring nodes.

SiGAT [26] incorporated both balance theory and status
theory to model signed directed networks based on motifs.

Specifically, they defined 38 motifs, including directed edges,
signed edges, and triangles. The graph convolution layer of
SiGAT consists of 38 GAT aggregators, each corresponding
to a neighborhood under a motif definition.

BESIDE [5] is the most relevant work to us in the lit-
erature, as both BESIDE [5] and our proposed approach
can be used for link sign prediction and node ranking tasks
simultaneously. Its core is to incorporate both balance theory
and status theory for signed network embedding. By incorpo-
rating both triangles and “bridge” edges, BESIDE can learn
embeddings for nodes and edges on signed directed net-
works. In particular, BESIDE-tri is a component of BESIDE,
which only uses triangles with balance theory to learn node
embeddings.

Among the baselines, SiNE can only deal with undirected
signed networks, and SGCN only evaluated their model on
undirected networks. In contrast, the others were designed in
the context of directed signed networks. To be comparable,
we follow the sampling method of [7] to generate associated
undirected networks of the benchmark datasets. Then we eval-
uated SiNE over the undirected signed networks. As SGCN
works for both undirected and directed networks, we run
SGCN over undirected (SGCN-UD) and directed (SGCN-D)
networks, respectively.

Evaluation Metrics: Four standard metrics are used to
measure link-sign prediction accuracy, including AUC, binary-
F1, macro-F1, and micro-F1. Note that larger values of these
metrics indicate better prediction accuracy. As commonly done
in the literature [5], all experiments were run five times to
obtain the average values. We used the average time over five
runs for efficiency and scalability.
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All the experiments are performed on a computer with
Intel Core i7-9700K eight-core 3.6-GHz CPU, GeForce
GTX 1660 Ti GPU, 32-GB RAM, and 500-GB SSD.

2) Parameter Settings: We implemented our proposed
framework in PyTorch.3,4 We split each dataset into two
parts: 80% edges for training and 20% for test. For each run,
we run with different train-test splits. Because there are no
node attributes in the datasets, we randomly initialize the node
embeddings with 64 dimensions. In terms of hyperparameters,
we applied a grid search for hyperparameters: the learning rate
was tuned amongst {0.001, 0.005, 0.01, 0.05}, the coefficient
of L2 normalization was searched in {10−5, 10−4}. The model
parameters are initialized using Xavier initializer [34]. In addi-
tion, the maximum epoch is set as 600, and an early stopping
strategy was performed, i.e., premature stopping if training
loss does not increase for ten successive epochs. Without
specification, we report the results of three status convolutional
layers [32, 64, 32], learning rate of 0.01 and normalization
coefficient of 10−5.

To evaluate the performance of learned node representations
on the task of link sign prediction, we follow the method in
BESIDE [5] to get link latent features through concatenation,
i.e., the feature of eu→v is [Ssrc[u] : Srev[v]]. Then, these
link latent features are used to train a logistic regression for
evaluating the performance of the associate method. We used
the released source code for SNE,5 SiNE,6 SIDE,7 SIGNet,8

SGCN,9 SNEA,10 SiGAT,11 and BESIDE,12 of which parame-
ters were initialized as in the corresponding papers.

a) Prediction accuracy: Table III reports the performance
comparison results, where the bold scores underlined are the
best and the ones underlined are the second best. We have the
following observations.

SNE achieves poor performance over four datasets, demon-
strating the importance of social-physiological theories on
signed network analysis. The performance of SiNE is reported
on undirected networks. SGCN-UD consistently outperforms
SiNE across all datasets, indicating that GNNs can effectively
capture the complex relationships between entities on signed
networks.

Compared with SIDE and SIGNet, the experimental results
of SIGNet verify that maintaining structural balance in
higher order neighborhoods can improve the expressiveness
of node representations. SGCN-D generally performs better
than SIGNet in Epinions and WikiElec, while slightly worse
in Slashdot and WikiRfA. Overall, the prediction performance
of SGCN and SIGNet are comparable. It makes sense since
SGCN introduces structural balance in higher-order connec-
tivity by stacking multiple graph convolutional layers. There-

3https://pytorch.org
4Our implementation: https://www.dropbox.com/sh/2vmgkr524b497nt/

AAAjBBA0pp6NZ6WG3Oc0GJS0a?dl=0
5https://bitbucket.org/bookcold/sne-signed-network-embedding/src/master/
6http://www.public.asu.edu/~swang187/codes/SiNE.zip
7https://datalab.snu.ac.kr/side/
8https://github.com/raihan2108/signet
9https://github.com/benedekrozemberczki/SGCN
10https://github.com/liyu1990/snea
11https://github.com/huangjunjie95/SiGAT
12https://github.com/yqc01/BESIDE

Fig. 7. Time comparisons.

fore, both SGCN and SIGNet demonstrate the importance of
maintaining structural balance theory in higher order neigh-
borhoods.

Both SiGAT and SNEA were built upon graph attention
networks, and we observed that these two approaches could
not achieve optimum performance. We conjecture that they
could not encode comprehensive information of signed graphs
as they do not explicitly consider the direction information of
links. BESIDE achieves the best performance among the alter-
natives in all cases. Such improvements might be attributed
to the cooperation of structural balance theory and status
theory, which incorporates both triangle and “bridge” edges
in a complementary manner. This indicates the benefits of
applying status theory in directed signed networks.

S-GNN generally yields the best performance as compared
with all of the baselines. Note that a slight improvement in
the reported evaluation metrics implies a significant increase
in the performance of link sign prediction. In particular, com-
pared with BESIDE-tri (the one that only considers structural
balance theory), S-GNN consistently performs better on all
datasets, indicating that status theory can better capture the
complex relationships in a directed signed network. Compared
with BESIDE, which incorporates structural balance theory
and status theory, our framework still provides better per-
formance gains for some datasets, including fewer triangles
satisfying balance theory (e.g., WikiRfA and WikiElec).

These observations are aligned with the statistics of bal-
anced triangles in each dataset (see Section V). As for the
dataset more aligned with balance theory (e.g., slashdot),
our proposed model performs on par with BESIDE. The
experimental results indicate that our proposed model may
implicitly capture the property of structural balance theory and
status theory even though our loss term for training S-GNN is
designed based on status theory. In a nutshell, by modeling the
heterogeneous relationships with status and stacking multiple
status convolutional layers, S-GNN can obtain more expressive
representations on signed networks in most cases.

b) Efficiency: For efficiency evaluation, we compared
the total runtime of S-GNN with the baselines. Because the
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released codes of SiNE, SIGNet, and SIDE are not available
on GPU, comparing them with those that can be run on GPU is
not expected. Therefore, we report the comparison results with
the baselines that can run on GPU. The results are shown in
Fig. 7. It is worth noting that S-GNN consistently outperforms
in all cases. In particular, S-GNN speeds up the processing time
by up to 6.5× as compared with the baselines. Compared with
the state-of-the-art literature, BESIDE and S-GNN are 4× and
2.7× faster on slashdot and Epinions, respectively.

3) Comparing S-GNN With SGCN: We observed that SGCN
performs the second-best in terms of run time. This can be
explained by the fact that SGCN also inherits the benefits
of graph neural networks like our framework: it avoids the
parameter explosion in graphs, and it allows for parameter
sharing across the graph to avoid overfitting. The incurred
overhead of SGCN may come from its complicated way of
aggregating and propagating information across the network.
Overall, Fig. 7 demonstrates that our proposed status convo-
lutional layer greatly speeds up the sign prediction process
and shows its promising that it can be applied to large-scale
network applications.

a) Robustness: We evaluated the approaches with differ-
ent training and test set ratios to measure their robustness.
The portions of the training set were set as 80%, 60%,
and 40% of the entire dataset. In Table IV, we report the
evaluation results on Epinions and WikiRfA, whereas we
omit the results on slashdot and WikiElec as they showed a
similar performance trend. Both of S-GNN and BESIDE have
good robustness. In particular, S-GNN has a minor F1-binary
decrease of 0.0026 in Epinions and 0.0054 in WikiRfA when
the size of the training set is reduced to 40% of the entire
graph, while BESIDE has a decrease of 0.0041 and 0.0106,
respectively. This indicates that our proposed framework has
better robustness to the size of the training set.

b) Scalability: The scalability of S-GNN is evaluated by
measuring the wall-clock times with a different number of
nodes and a different number of node pairs (links/edges),
respectively. Both of the selected nodes and pairs are sub-
graphs from the main graph of the dataset and each node in the
subgraphs has at least one edge (no singleton node). In Fig. 8,
we only report the results on Epinions and WikiRfA, and the
results on Slashdot and WikiElec are omitted as they showed
a similar performance trend.

Concretely, as Fig. 8(a) and (c) show, the wall-clock time
of BESIDE increases sharply with the number of nodes while
S-GNN consistently performs well as the number of nodes
increases. This is because the parameters of our proposed
status convolutional layers are shared across all nodes, making
the parameter complexity of our approach independent of the
number of nodes. For the increasing number of node pairs,
the time of BESIDE increases dramatically and shows similar
trends on both datasets, shown in Fig. 8(b) and (d). We observe
that S-GNN tends to increase slightly with the input graph size
increase. That can be explained by the fact that neighborhood
size increases when the number of users increases, leading
to more local aggregation computations. In a nutshell, S-
GNN consistently performs well on all benchmarking datasets,

TABLE IV

ROBUSTNESS

TABLE V

LINK SIGN PREDICTION ACCURACY BASED ON STATUS (%)

indicating that S-GNN is more scalable and can readily be
generalized to large-scale network applications.

C. Link Sign Prediction Based on Status

Alternative Baselines: According to the theory of status,
a positive edge indicates that the receiver has a higher status
than the creator, which can be interpreted as “I trust people
who have higher status than me” and vice versa. For example,
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TABLE VI

GLOBAL RANKING RESULTS ON WIKIRFA&WIKIELEC: NEVER ELECTED (RED), ELECTED ONCE (BLACK), AND ELECTED TWICE (BLUE)

Fig. 8. Scalability: S-GNN versus BESIDE. (a) Time versus #of nodes on
WikiRfA. (b) Time versus #of edges on WikiRfA. (c) Time versus #of nodes
on Epinions. (d) Time versus #of edges on Epinions.

if signeu→v
is +1, then Srev[v] − Ssrc[u] should be positive.

To illustrate the effectiveness of the learned status score of
each entity, we select three baselines that can obtain the status
scores of nodes. We do not include other methods (e.g., such as
prestige [35], MPR [36], and troll-trust [37]), because BESIDE
has shown its superiority over these methods.

PageRank [38] was a classical ranking algorithm for
unsigned networks. For this implementation, we follow the
same method in BESIDE to obtain the status score of each
node, applying it to the positive subgraph (graph contains
positive links only) to obtain the global values (status scores)
for nodes.

BESIDE [5] uses both triangles and “bridge” edges to train
the model and obtain associated node status. BESIDE-sta is a

component of BESIDE, which only uses “bridge” edges with
status theory to learn the status of each node.

We use 80% edges for training and 20% edges for the test.
The result is obtained by comparing the status differential of
two nodes and associated ground-truth (link sign) in the test
set. Experiments are performed on four datasets, including
Epinions, Slashdot, WikiRfA, and WikiElec. We use accuracy
as the evaluation metric, as did in BESIDE. The results
are shown in Table V, in which we have the following
observations.

In general, S-GNN outperforms all baselines over Epinions,
WikiRfA, and WikiElec, while BESIDE performs slightly
better on slashdot. More precisely, S-GNN has significantly
better results, a 2.89% improvement on WikiRfA and a 3.99%
improvement on WikiElec, respectively, which verifies that
these two datasets can be better characterized with status.
Moreover, S-GNN improves the accuracy by up to 7.12%
as compared with BESIDE-sta, indicating that our proposed
status convolutional layers can capture the status property very
well. PageRank obtains poor performance among all methods,
implying the importance of both positive and negative links in
signed network analysis.

D. Global Node Ranking Based on Status

To determine if the status scores are plausible for ranking
on the global scale, we also compare the top-ten nodes ranked
based on PageRank, BESIDE, and S-GNN, respectively. For
PageRank, each node has a single ranking score which can be
directly used to find the top-ten nodes. As for BESIDE and S-
GNN, we use the combination equation as did in BESIDE [5]
to obtain the ranking score for each node based on the learned
status scores

Sv =
∑

u∈NI (v)+

Su

No(u)
−

∑
u∈NI (v)−

Su

No(u)
. (18)

Sv is the status score of node v, NI (v)+, and NI (v)− are two
sets of source nodes pointing to the node v with positive or
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negative edges, respectively, Su is the source status score of
node u and No(u) is the out-degree of node u.

The experiments are conducted on WikiRfA and WikiElec
since they clearly indicate the global ranking. For WikiRfA,
among 3949 candidates, 1885 and 18 users are elected once
and twice, respectively. For WikiElec, there are 2391 candi-
dates, among which 1223, 11, and one user are elected once,
twice, and thrice, respectively. More times successful elections
indicate higher status. The results are shown in Table VI
with never-elected (in red), once-elected (in black), and twice-
elected (in blue), respectively.

We can observe that S-GNN and BESIDE both have three
twice-elected users on WikiRfA. In particular, the average
ranks of these twice-elected users are higher in S-GNN than
BESIDE. On WikiElec, both PageRank and BESIDE include
never-elected candidates, while the top-ten users selected by
S-GNN are all once-elected. The result indicates S-GNN can
capture better global ranking features.

1) PageRank Performs the Worst Overall: With one and
two never-elected candidates for WikiRfA and WikiElec,
respectively, indicating that excluding negative links
would not effectively rank the candidates.

2) Excluding the overlapped candidates selected by
BESIDE and S-GNN on WikiRfA, the average number
of negative links on the rest four candidates is signifi-
cantly less in S-GNN, 8.75 selected by S-GNN compared
to 123.25 by BESIDE. This result shows that S-GNN
may give lower scores for candidates with a higher
number of negative links.

3) For the twice-elected candidates on WikiRfA, “Everyk-
ing” has the highest number of negative links—334—
which might be the reason why this candidate is not
included in the top-ten selected candidates by S-GNN.

4) BESIDE has “halibutt” as one of its top-ten candidates.
This candidate has 69 positive and 28 negative links,
respectively. Allowing a high ratio of negative links may
result in inaccurate ranking.

VII. CONCLUSION

In this article, we devised a S-GNN to learn effective
network embedding in a signed heterogeneous network. The
key of S-GNN is the newly proposed status convolutional layer,
which can jointly capture the rich graph structural and seman-
tic information of the links. S-GNN is equipped with an objec-
tive designed based on status theory. Extensive experiments on
four benchmark datasets have demonstrated the rationality and
effectiveness of our proposed S-GNN. Meanwhile, it enjoys
high efficiency, scalability, and robustness due to the notion
of localized graph convolutions.
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