Guardian: Evaluating Trust in Online Social Networks with Graph Convolutional Networks

Wanyu Lin, Zhaolin Gao, Baochun Li
University of Toronto
Almost 4.57 billion people were active internet users as of April 2020.

— Statista
Social trust is the basis of online social networks.
Estimates of social trust help indicate to what extent a user could expect someone else to perform given actions, therefore has many applications, such as trust-based recommendations.
Network graph: an example
Can A trust E? And, to what extent?
Large-scale
Wait a second ...
Graph convolutional neural networks — an efficient variant of convolutional neural networks on graphs.
Representation learning with graph convolutional networks
The complexity of model parameters are independent of the input graph size.
Preliminaries: trust properties
Asymmetry: one user may trust someone else more than she is trusted back.

Trust properties
Propagative nature: trust may be passed from one user to another, creating chains of social trust that connects two users who are not connected.
Composable nature: trust needs to be aggregated if several chains of social trust exit.
An effective way of evaluating trust should be able to capture these trust properties simultaneously.
Guardian: an end-to-end learning framework for social trust evaluation.
Embedding layer

We use a pre-trained embedding layer that maps each user into a vector.
Two types of trust interactions:

popularity trust and **engagement trust**
Popularity trust: the overall trust of a user endorsed by others (accumulated from the incoming links)
Engagement trust: the willingness of a user to trust others (accumulated from the outgoing links)
Two types of trust aggregation
Trust convolutional layer

To capture the **composable and asymmetric nature** of trust
Stack multiple trust convolutional layers

To capture the propagative nature of trust
Prediction layer
Our experimental results...
Datasets Used

Advogato and Pretty-Good-Privacy (PGP) adopt the concept of the “web of trust”, and both contain four different levels of trust.

<table>
<thead>
<tr>
<th>DATASET</th>
<th># OF NODES</th>
<th># OF EDGES</th>
<th>AVG. DEGREE</th>
<th>DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVOGATO</td>
<td>6,541</td>
<td>51,127</td>
<td>19.2</td>
<td>4.82</td>
</tr>
<tr>
<td>PGP</td>
<td>38,546</td>
<td>317,979</td>
<td>16.5</td>
<td>7.7</td>
</tr>
</tbody>
</table>
Accuracy

Evaluation Accuracy on Advogato

<table>
<thead>
<tr>
<th>APPROACHES</th>
<th>F1-SCORE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guardian</td>
<td>74.3%</td>
<td>0.082</td>
</tr>
<tr>
<td>NEURALWALK</td>
<td>74.0%</td>
<td>0.081</td>
</tr>
<tr>
<td>OPINIONWALK</td>
<td>64.3%</td>
<td>0.228</td>
</tr>
<tr>
<td>MATRI</td>
<td>65.6%</td>
<td>0.127</td>
</tr>
</tbody>
</table>
Accuracy

Evaluation Accuracy on PGP

<table>
<thead>
<tr>
<th>Approaches</th>
<th>F1-Score</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guardian</td>
<td>87.1%</td>
<td>0.083</td>
</tr>
<tr>
<td>NEURALWALK</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>OPINIONWALK</td>
<td>67.3%</td>
<td>0.249</td>
</tr>
<tr>
<td>Matri</td>
<td>68.3%</td>
<td>0.122</td>
</tr>
</tbody>
</table>
Efficiency

![Efficiency Graph](image)

- Guardian
- NeuralWalk
- OpinionWalk
- Matri

Wall-Clock Time (s)

- Advogato
- PGP
Scalability

Time vs. # of pairs
Scalability

Time vs. # of users
Guardian is an end-to-end learning framework, that can achieve the best possible performance for social trust evaluation in online social networks.
Wanyu Lin, Zhaolin Gao, Baochun Li
University of Toronto