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Abstract

Graph-based semi-supervised learning has been shown

to be one of the most effective classification approaches, as

it can exploit connectivity patterns between labeled and un-

labeled samples to improve learning performance. How-

ever, we show that existing techniques perform poorly when

labeled data are severely limited. To address the prob-

lem of semi-supervised learning in the presence of severely

limited labeled samples, we propose a new framework,

called Shoestring1, that incorporates metric learning into

the paradigm of graph-based semi-supervised learning. In

particular, our base model consists of a graph embedding

network, followed by a metric learning network that learns

a semantic metric space to represent the semantic similar-

ity between the sparsely labeled and large numbers of unla-

beled samples. Then the classification can be performed by

clustering the unlabeled samples according to the learned

semantic space. We empirically demonstrate Shoestring’s

superiority over many baselines, including graph convolu-

tional networks, label propagation and their recent label-

efficient variations (IGCN and GLP). We show that our

framework achieves state-of-the-art performance for node

classification in the low-data regime. In addition, we

demonstrate the effectiveness of our framework on image

classification tasks in the few-shot learning regime, with

significant gains on miniImageNet (2.57% ∼ 3.59%) and

tieredImageNet (1.05% ∼ 2.70%).

1. Introduction

The availability of large quantities of labeled samples has
made it possible for deep learning to achieve remarkable
performance breakthroughs in speech recognition, natural
language processing, and computer vision [6, 18]. How-

1Code will be made publicly available.
This research was supported in part by the NSERC Discovery Re-

search Program.

ever, the reliance on large amounts of labeled samples in-
creases the burden of data collection, making it difficult to
apply deep learning to the low-data regime where labeled
samples are extremely rare and are difficult to collect.

With semi-supervised learning (SSL), small amounts of
labeled samples are used with a relatively large number of
unlabeled samples for classification. Among existing semi-
supervised learning models, graph-based methods, such as
graph convolutional networks and label propagation, have
been demonstrated as one of the most effective approaches
for semi-supervised classification, as they are capable of ex-
ploiting the connectivity patterns between labeled and unla-
beled samples to improve classification performance. Given
their advantages, in previous work on few-shot image clas-
sification, quick knowledge from a few samples is acquired
by considering relationships between instances and repre-
senting the data into a graph [4, 7, 8, 13].

Yet, even with such graph-based semi-supervised learn-
ing, model learning performance degrades quickly with a
diminishing number of labeled samples per class [11]. The
performance degradation can be explained as follows. In
general, labels work as “anchors,” and are used to force
the learning models to fit these labeled samples with cer-
tain confidence, so that the information extracted from them
can be reliably propagated to unlabeled samples. How-
ever, when the labeled samples are severely limited, there
is a good chance they will exhibit a large testing error even
though their training error is small—i.e., overfitting these
limited labeled data. Taking graph convolutional networks
as an example, they indeed lead to state-of-the-art accura-
cies on node classification tasks with two convolutional lay-
ers in the presence of a sufficient amount of labeled sam-
ples. However, when only a few labeled samples are given,
it would not be able to effectively propagate the labels to
the entire data graph [11].

Nevertheless, humans are exceptional learners capable
of generalizing their learned knowledge to novel concepts,
and capable of learning from very few examples. In this
paper, we aim to tackle the problem of graph-based semi-
supervised learning where labeled data are severely limited.

4174



There has been a major push in recent research, particu-
larly on the image classification task, towards generalizing
deep learning models to learn tasks in a data-efficient way
through few-shot learning.

Among the best-performing methods (e.g., gradient-
based [3], metric-learning based [16, 19] and model-
based [15]) for few-shot learning, metric-learning ap-
proaches have been demonstrated as one of the simplest
and most efficient methods in the few-shot setting. Metric-
learning methods aim to optimize the transferable embed-
dings by learning a distance-based prediction rule over the
embeddings. Motivated by this finding, in addition to ex-
ploiting the connectivity patterns between labeled and un-
labeled samples, we seek to transfer as much knowledge as
possible from limited labeled samples to a large number of
unlabeled samples in the embedding space.

The main contribution in our proposed framework,
called Shoestring, is that it is the first to incorporate a met-
ric learning network into the settings of graph-based semi-
supervised learning. It is simple yet effective that can be
applied to boost the learning performance of typical graph-
based semi-supervised learning methods. In essence, our
framework is proposed based on the idea that in the low-
dimensional semantic space, there exists an embedding in
which points cluster around a single prototype representa-
tion for each class. More specifically, Shoestring jointly
learns a non-linear mapping of each instance into a seman-
tic space using a graph embedding network, and learns a
metric space with a metric learning network to represent the
semantic similarity between the labeled and unlabeled sam-
ples. Classification, for an embedded unlabeled sample, is
then performed by finding its nearest class prototype based
on the learned semantic metric.

Highlights of our original contributions are as follows.
First, to verify the effectiveness of our framework, we re-
visited several graph-based semi-supervised learning mod-
els, such as graph convolutional networks, label propaga-
tion and their recent label-efficient variations proposed from
the perspective of graph filters (IGCN and GLP), and em-
pirically demonstrate the superiority of our framework over
these baselines. We show that our framework leads to state-
of-the-art node classification performance in the low-data
regime, by incorporating these graph learning models as the
base models. Second, we empirically analyze the underly-
ing distance functions used in the metric learning network,
such as cosine similarity and squared Euclidean distance.
We find that the choice of a similarity metric is critical, as
the performance of different metrics varies from different
datasets as well as various label rates. Finally, we demon-
strate the effectiveness of Shoestring on image classification
tasks in the few-shot learning regime, and achieve state-of-
the-art results on miniImageNet and tieredImageNet.

2. Problem Setup

We consider the task of semi-supervised node classifica-
tion on graphs. Formally, a graph G = (V,A,X ) is given
with n = |V| vertices, where V = {v1, v2, · · · , vn} is the
set of vertices, A ∈ {0, 1}n×n is the adjacency matrix rep-
resenting the connections, and X = {x1, x2, · · · , xn}T ∈
Rn×m is the feature matrix of vertices, and xi ∈ Rm is the
m-dimensional feature vector of vertex vi.

We follow the standard semi-supervised classification
setting, which is commonly employed in various litera-
ture [1, 9]. Given a set of labeled nodes Vl ⊂ V , with class
labels from Y = {y1, y2, y3, · · · , yK} and a set of unla-
beled nodes Vu ⊂ V/Vl, the goal of node classification is
to map each node v ∈ V to one class in Y . We assume that
the data domain is sparsely labeled so that the number of
node-label pairs is much smaller than the number of unla-
beled nodes, |Vl| $ |Vu|. In particular, we are especially
interested in cases where |Vl| is severely limited, e.g., 1 or
2 labeled samples per class which may arise in situations
where obtaining an unlabeled sample is cheap and easy for
novel classes, while labeling the sample is expensive or dif-
ficult. Our ultimate goal is to produce an effective classifier
for semi-supervised node classification on graphs, for which
only very few labeled samples are available.

3. Revisiting Graph-based Semi-Supervised
Learning

We do not attempt to provide a comprehensive litera-
ture review on graph-based semi-supervised learning. In-
stead, we selectively provide the baseline methods adopted
by top performers on node classification tasks, such as
graph convolutional networks and label propagation, ei-
ther in terms of their simplicity or expressiveness. Fur-
thermore, we think that these methods are of great value,
not the least because they lead to state-of-the-art node clas-
sification with small numbers of labeled data in the lit-
erature and can readily be applied to image classification
tasks in the few-shot learning regime [4, 13]. As prototypi-
cal examples, let us consider semi-supervised classification
with graph convolutional networks [9] and label propaga-
tion methods [1, 21, 22].

Graph convolutional networks: Graph convolutional
neural networks (GCNs) is a generalization of traditional
convolutional neural networks to the graph domain. In [9],
the GCN model applied for semi-supervised classification
is a two-layer GCN followed by a softmax classifier on the
output features:

Z = softmax(ÂReLU(ÂXΘ(0))Θ(1)) (1)

where Ã = A + I , D̃ii =
∑

j Ãij , Â = D̃− 1

2 ÃD̃− 1

2 ,

softmax(xi) = 1
Z
exp(xi) with Z =

∑
i exp(xi). The
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optimization loss function is defined as the cross-entropy
error over all labeled samples:

Lce = −
∑

i∈Vl

K∑

k=1

Yik lnZik (2)

where Vl is the set of node indices that have labels, and
K is the number of classes/labels.

Label propagation: Label propagation is a simple and ef-
fective principle of using the graph structure to spread labels
from labeled samples to the entire data set. Starting with
nodes with their known labels, each node starts to propagate
its label to its neighbors, and the process is repeated until
convergence. Due to its simplicity and effectiveness, there
are several variations in the literature [1, 21, 22] and have
been widely used in many scientific research fields and nu-
merous industrial applications. An alternative method orig-
inating from smoothness considerations yields algorithms
based on graph regularization, which naturally leads to a
regularization term based on the graph Laplacian. Formally,
the objective is to find an embedding matrix Z that agrees
with the label matrix Y while being smooth on the graph
such that nearby vertices have similar embeddings.

Z = argmin{||Z − Y ||22 + αTr(ZTLZ)} (3)

where L = D − A is the graph Laplacian, D is the de-
gree matrix, and α is a parameter controlling the degree of
Laplacian regularization. Then a closed-form solution can
be obtained by taking the derivative of the objective func-
tion and setting it to zero.

Analysis In essence, for semi-supervised learning to
work, a certain assumption, called the smoothness assump-

tion, has to hold. It implies that if two inputs x1, x2 in
a high-density region are close, then so should be the cor-
responding outputs y1, y2. Semi-supervised GCN and label
propagation methods have been proved to perform very well
on many classification tasks.

These can be explained as follows. For GCN, graph con-
volution is a special form of Laplacian smoothing, which
computes the new representation of a vertex by averaging
over itself and its neighbors. Regarding label propagation,
the second term of its objective function is a regulariza-
tion term motivated by the smoothness assumption. When
the number of labeled samples is large enough, both GCN
and label propagation can effectively learn the shape of the
manifolds near which the data concentrate in the embedding
space, leading to superior performance on node classifica-
tion tasks.
Why do these methods fail? Graph convolutional net-
works and label propagation essentially fall into the cate-
gory of local learning algorithms in semi-supervised learn-
ing, relying on a neighborhood graph to approximate mani-
folds near which the data density is assumed to concentrate.

Table 1: Classification accuracy on Cora and CiteSeer, with
one labeled sample per class (%). The performance of graph
filtering-based variations are insignificant in the severely
low-data regime.

DATASET GCN IGCN(RNM) IGCN(AR) LP GLP(RNM) GLP(AR)

CORA 39.5 41.5 42.3 43.6 38.4 37.7

CITESEER 34.1 33.1 33.0 30.6 37.0 37.4

When there are only a few labeled samples, one cannot gen-
eralize properly and the model performance degrades very
quickly.
Graph filtering-based variations of GCN and LP with

severely limited labeled samples. [12] aims to address the
problem of label efficient semi-supervised learning from the
perspective of graph filtering. They proposed a framework
that draws graph structure into data features by taking them
as signals on the graph and applying a low-pass graph fil-
ter to extract data representations for downstream classifi-
cation tasks. Indeed, it can achieve label efficiency, to some
extent, by adjusting the strength of the graph filter. Un-
der this framework, generalized label propagation (GLP)
and improved graph convolutional networks (IGCN) were
proposed with two types of variations respectively, either
relying on the renormalization (RNM) filter or the auto-
regressive (AR) filter.

We evaluated the task of document classification with
different semi-supervised learning methods on Cora [14]
and CiteSeer [5] respectively, each of which has one la-
beled sample per class. The results are shown in Table 1.
We observed that with severely limited labeled samples,
the performance of graph filtering-based variations are non-
significant. More specifically, IGCN performs worse than
GCN on CiterSeer, while GLP leads to degraded perfor-
mance on Cora. In this paper, we are interested to exploit
the intrinsic structure of the data to boost classification ac-
curacy with further gains when the number of labeled sam-
ples is severely limited.

4. Proposed Framework

In this section, we introduce our framework, called
Shoestring, to address the problem of graph-based semi-
supervised learning in the presence of severely limited la-
beled samples. The architecture of Shoestring is illustrated
in Fig. 1, which composed of two modules: a typical graph-
based semi-supervised learning module/a graph embedding
network to learn a non-linear mapping of each instance into
an embedding vector (e.g., a two-layer GCN or label prop-
agation module), and a metric learning module that learns
the semantic similarity between each node representation
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Figure 1: Illustration of the Shoestring framework: As an example, the input graph contains three types of node labels in three
different colors, where the solid nodes are labeled and the rest are unlabeled. (1) A graph embedding network (a typical graph-
based semi-supervised learning module, e.g., GCN) to learn a non-linear mapping of each node into an embedding vector;
(2) A metric learning network to learn pair-wise similarity between each node representation and the centroid representation
of each class in the low-dimensional semantic space. To optimize Shoestring, the full pipeline in our architecture is used.

and the centroid representation of each class in the low-
dimensional semantic space. For simplicity, we first take
semi-supervised GCNs as our prototypical model to illus-
trate our framework. We shall also discuss how to fit other
semi-supervised learning methods into our framework, such
as recent variations with graph filtering, IGCN and GLP.

Before we present our proposed framework, we first
introduce the manifold assumption and cluster assump-

tion [2], which are different from the smoothness assump-
tion, but form the basis of our construction. The mani-

fold assumption forms the basis of several semi-supervised
learning methods in the literature, which indicates that the
high-dimensional data lie on a low-dimensional manifold.
The cluster assumption is one of the earliest forms of semi-
supervised learning, which implies if data points/nodes are
in the same cluster, they are likely to be of the same class.

As we discussed previously, the design basis of graph
convolutional networks is the smoothness assumption
(Laplacian smoothing). Its superior performance on semi-
supervised classification tasks with sufficient labeled sam-
ples can also be interpreted as follows. The two-layer con-
volutional transformation tends to encourage the graph rep-
resentations to lie on a low-dimensional manifold, such
that the nodes can be classified distinctly in the embedding
space. Motivated by this intuition, we seek to exploit the
intrinsic structure of the data distribution in the embedding
space, while the semi-supervised classification task is per-
formed under fairly limited numbers of labeled samples.

More specifically, the first component of Shoestring is
a classical graph-based semi-supervised learning module,

a two-layer GCN in our prototypical example, which is
able to inject the graph structure into data representations
by convolutional operations. With this transformation, the
graph representations of the data are encouraged to lie on
a low-dimensional manifold. In addition, we exploit a
metric learning network that is able to learn a semantic
metric space to represent the semantic similarity between
the sparsely labeled and large numbers of unlabeled sam-
ples. Label assignments, for the unlabeled samples, are per-
formed through transferring the semantic knowledge of the
labeled samples.

Our metric learning network includes a similarity net-
work to learn the semantic similarity between each node
representation and the centroid representation of each class
(the colored cross sign in Fig. 1). In particular, the per-class
centroid is the element-wise mean of its labeled samples in
the embedding space (the output of the graph embedding
network), shown in Fig. 2a:

cyk
=

1

|Vk|

∑

(xl,yl)∈Vk

ZΘ,xl
(4)

where Vk ⊂ Vl and ZΘ,xl
is the embedding vector of

node xl. Therefore, the output of the metric learning mod-
ule contains the similarity values of each node to each class.
Followed with a softmax (the output layer), the label of
each unlabeled sample can be assigned to the class with the
highest similarity value (its nearest class centroid), shown
in Fig. 2b:

4177



(a) Per class centroid. (b) Label assignment.

Figure 2: Our metric learning network for semantic similar-
ity learning and label assignments: (a) Three types of solid
nodes are labeled samples in three classes, respectively. The
class centroid of each class is calculated by the element-
wise mean of the labeled samples in each class, as shown
in cross signs. (b) Each unlabeled sample is assigned to the
label of its nearest class centroid in the learned metric space.

pΘ(i = k|xl) =
exp [sim(zΘ,xl

, cyk
)]

∑K
i=1 exp [sim(zΘ,xl

, cyi
)]

(5)

where sim is the distance function for similarity mea-
surement in the low-dimensional embedding space. The un-
derlying design intuition is that in the embedding space, the
graph representations tend to lie on a low-dimensional man-
ifold, in which closely clustered node representations tend
to be assigned similar labels (the “cluster assumption”). The
underlying similarity function can be cosine similarity, or
negative square Euclidean distance, etc. We will show the
choice of a similarity metric is critical, where the perfor-
mance varies from different datasets as well as various label
rates.

Objective function of Shoestring. To optimize
Shoestring, the full pipeline in our architecture is used.
There are two components in our objective function. (1)
The typical graph-based semi-supervised learning loss. (2)
The metric-based learning loss. More specifically, in the
GCN module, the first term is the cross-entropy loss as de-
fined in Eq. (2), while the second term is the metric-based
cross-entropy loss.

Assume we have |Vk| labeled samples from each class in
the target domain. We compute the centroid representation
cyk

for each class, by taking the element-wise mean of the
|Vk| labeled samples, in the embedding space (the output
of the classical graph embedding network). Thus, we can
have the similarity vector for each labeled sample, where
the kth element is the similarity between this sample and
the centroid of class cyk

. Therefore, the metric-based loss2

2Here we use term “metric-based loss” to differentiate the metric-based
cross-entropy loss from the cross-entropy defined in Eq. (2).

can be formulated as:

Lme = −
∑

(xl,yl)∈Vl

log
exp[sim(zxl

, cyl
)]

∑K
i=1 exp [sim(zxl

, cyi
)]

(6)

Formally, the objective function of Shoestring is defined
as follows:

LShoestring = Lce + λLme (7)

where λ is to control the degree of metric-based learning
loss. After the optimization, Shoestring uses the forward
propagation through the graph embedding network and the
metric learning network, followed by a softmax (the output
layer) to obtain the final label assignment.

Our proposed framework is fairly general that can be
used to further boost the classification performance of sev-
eral graph-based semi-supervised learning methods, while
the number of labeled samples are severely limited. In par-
ticular, to fit label propagation, the label-efficient variations
with graph filtering (IGCN, GLP) into our framework, we
can just simply replace the graph embedding network mod-
ule with any of these methods. In the experimental section,
we will show empirically that Shoestring can indeed dra-
matically improve the classification accuracy of these meth-
ods, especially when there are only a few labeled samples.

Table 2: Statistics description of citation networks.

DATASET NODES EDGES CLASSES FEATURES

CORA 2, 708 5.429 7 1, 433

CITESEER 3, 327 4, 732 6 3, 703

PUBMED 19, 717 44, 338 3 500

LARGE CORA 11, 881 64, 898 10 3, 780

5. Experiments

We evaluate and compare Shoestring with state-of-the-
art methods on semi-supervised document classification in
citation networks, as well as a few-shot learning task for im-
age classification on two datasets, e.g., miniImageNet and
tieredImageNet.

5.1. Performance Evaluation on Citation Networks

Datasets. Following [11, 12], we select four citation net-
works: Cora [14], CiteSeer [5], PubMed [17] and Large
Cora. The statistics of these datasets are summarized in Ta-
ble 2. More specifically, for each citation network, we test
several scenarios, each of which the number of labeled sam-
ples per class varies from 1 ∼ 5. In particular, we also test
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Table 3: Document classification accuracy on citation networks (%).

Label Rate 1 label per class 2 labels per class 5 labels per class

Dataset Cora CiteSeer PubMed Large Cora Cora CiteSeer PubMed Large Cora Cora CiteSeer PubMed Large Cora

LP 43.6(0.1) 30.6(0.1) 49.8(0.2) 24.3(0.3) 53.1(0.1) 33.0(0.1) 56.1(0.2) 37.2(0.3) 60.6(0.1) 41.5(0.1) 64.5(0.2) 42.1(0.3)

GCN 39.5(0.6) 34.1(0.9) 50.8(4.8) 28.1(3.8) 51.7(0.7) 45.5(1.0) 59.9(5.0) 39.6(3.9) 68.7(0.6) 57.0(0.9) 69.6(4.8) 51.8(3.8)

ST-CT 54.7(5.3) 48.5(8.4) 59.3(51) 31.8(36) 62.7(5.5) 51.3(8.4) 67.3(51) 41.6(35) 73.1(5.6) 63.5(8.8) 71.0(53) 53.4(36)

IGCN(RNM) 41.5(0.6) 33.1(1.0) 51.4(4.9) 30.9(4.2) 62.6(0.7) 44.5(1.0) 60.4(5.3) 44.9(4.5) 71.2(0.6) 57.6(0.9) 70.5(4.9) 55.4(4.2)

IGCN(AR) 42.3(1.0) 33.0(1.3) 52.1(5.7) 31.6(8.8) 62.7(1.7) 44.9(1.9) 61.6(8.1) 45.3(9.4) 72.1(1.0) 58.1(1.2) 71.1(5.7) 55.7(8.8)

GLP(RNM) 38.4(0.4) 37.0(0.7) 54.7(0.8) 30.2(2.2) 59.6(0.4) 46.0(0.6) 60.6(0.6) 45.2(2.0) 72.2(0.4) 59.2(0.7) 69.9(0.8) 55.4(1.5)

GLP(AR) 37.7(4.0) 37.4(19) 55.8(9.1) 27.8(26) 57.7(3.4) 46.1(16) 61.7(7.6) 44.8(26) 71.1(3.9) 59.4(19) 71.2(9.0) 55.7(13)

GCN 60.2(0.9) 52.2(1.3) 60.3(6.1) 48.0(4.0) 68.3(0.9) 57.7(1.3) 63.5(5.7) 52.8(4.1) 73.0(1.2) 64.2(1.5) 68.6(6.3) 58.9(4.5)

IGCN(RNM) 69.1(1.0) 57.9(1.4) 63.3(6.2) 54.6(4.4) 73.0(1.0) 61.7(1.4) 64.9(6.2) 57.3(4.5) 76.4(1.3) 65.8(1.6) 69.0(7.1) 61.4(5.1)

IGCN(AR) 70.1(2.4) 58.3(2.7) 64.7(11) 56.0(8.3) 73.3(2.4) 61.9(2.7) 66.4(11) 58.1(8.5) 76.5(3.0) 65.9(3.4) 70.0(13) 61.6(9.5)

GLP(RNM) 69.3(0.6) 57.6(0.8) 63.3(0.8) 54.2(2.2) 72.8(0.6) 61.3(0.8) 65.0(0.8) 56.4(2.7) 75.7(0.8) 65.0(1.1) 67.9(1.3) 59.9(3.3)

S
h
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S

GLP(AR) 69.8(3.7) 58.1(17) 65.2(7.7) 55.5(26) 73.5(3.7) 61.7(17) 66.2(7.6) 57.7(26) 76.3(4.9) 65.4(21) 69.7(11) 61.5(32)

GCN 60.7(1.3) 51.0(1.5) 62.1(6.1) 46.5(4.7) 67.4(1.2) 55.5(1.5) 64.6(6.1) 53.9(4.7) 74.2(1.3) 62.2(1.5) 71.4(6.0) 62.0(4.7)

IGCN(RNM) 69.6(1.4) 54.5(1.7) 64.4(6.7) 53.3(5.2) 73.1(1.4) 58.6(1.7) 67.1(6.7) 57.7(5.1) 76.4(1.4) 63.8(1.7) 71.7(6.8) 62.0(5.1)

IGCN(AR) 70.1(2.8) 54.9(3.2) 66.4(12) 53.2(9.2) 73.4(2.8) 59.3(3.2) 67.3(12) 57.6(9.0) 76.7(2.8) 64.3(3.2) 73.1(12) 61.7(9.1)

GLP(RNM) 68.1(0.9) 52.3(1.1) 64.1(1.2) 49.7(2.8) 72.3(0.9) 57.3(1.1) 65.5(1.2) 56.4(2.8) 75.8(0.9) 62.5(1.1) 72.1(1.1) 61.3(2.8)

S
h

o
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g
-L

2

GLP(AR) 68.0(4.2) 53.5(17) 65.5(8.3) 49.1(27) 72.9(4.1) 57.9(17) 66.5(8.2) 56.9(26) 76.7(4.1) 63.3(17) 74.0(8.2) 63.1(26)

our framework under 20 labeled samples per class to eval-
uate the performance of Shoestring with sufficient labeled
samples.

Baselines. As Shoestring aims for boosting the learning per-
formance of graph-based semi-supervised learning meth-
ods, we implemented several existing models as the base
models of Shoestring and compared with their original im-
plementations. These methods are GCN [9], IGCN(RNM),
IGCN(AR), GLP(RNM), and GLP(AR). In addition, we also
compared with the methods that training GCN with self-
training and co-training [11] (For simplicity, we call this set
of methods ST-CT). Experimental results are averaged over
20 runs to ensure statistical significance.

It is worth mentioning that IGCN and GLP [12] are the
state-of-the-art methods for semi-supervised learning un-
der limited labeled samples. They are variations of GCN
and LP [21] from the perspective of graph filtering. More
specifically, IGCN(RNM) and IGCN(AR) change the renor-
malization of the adjacency matrix of the original GCN
to Auto-Regressive filter (AR) and renormalization filter
(RNM), respectively. GLP(RNM) and GLP(AR) propagate
node features through the graph instead of propagating la-
bels in LP. The input node features are filtered using Auto-
Regressive filter (AR) or renormalization filter (RNM) for
GLP(AR) and GLP(RNM) respectively. A classifier is trained
on propagated features to generate the labels.

For ST-CT [11], there are four different proposals, in-
cluding co-training, self-training, union, and intersection
to train GCN so as to improve the learning performance.
More specifically, co-training is a GCN with a random walk

model that can add the nearest neighbors of the labeled
nodes to expand the labeled set iteratively. Self-training is
an iterative process, where a classifier assigns the labels for
the unlabeled samples which have been classified with con-
fidence in the previous step. Union expands the training
set with both random walk and GCN. Intersection, similar
to union, also uses two methods but only uses the predic-
tions that are in common. Due to the space limitation, we
reported the best accuracy among these four methods.

Similarity metrics. In our similarity network, we used three
types of similarity metrics: distance-based similarity ac-
cording to L1 and L2 respectively (negative distance value
as the similarity), and cosine similarity. More specifically,
L1 calculates the distance between two nodes by adding the
absolute differences of their feature embeddings, while L2
adds the squares differences of the feature embeddings. Co-
sine similarity (COS), on the other hand, is a similarity mea-
surement between two non-zero vectors of an inner product
space.

All the experiments were performed on a machine with
Intel Core i7-9700K 8-core 3.6GHz CPU, 32GB RAM,
500GB SSD, and GeForce GTX 1660 Ti GPU.

Parameter settings. For LP, GCN, IGCN, and GLP, we
use the same setting as in [12]: 0.01 learning rate, 0.5
dropout rate, 5 ∗ 10−4 weight decay, 200 epochs, 16 hidden
units for Cora, CiteSeer, PubMed and 64 hidden units for
Large Cora. The weight of the metric-based cross-entropy
loss is tuned amongst {0.001, 0.01, 0.05, 0.1} and is set to
0.01, 0.05, 0.001 for COS, L1 and L2 similarity metrics re-
spectively.

4179



Results analysis. The results for 1, 2, and 5 labeled samples
are reported in Table 3. We highlighted the top-3 classifi-
cation accuracies in bold. Due to the space limitation, we
reported the results for 3 and 4 labeled samples and all of
the results using L1 distance metric in the Appendix. A
first conclusion that we can draw from these experiments
is that no similarity metric is uniformly better than the oth-
ers. We can also observe that IGCN(AR) and GLP(AR) under
Shoestring with cosine similarity perform the best in overall
cases. In particular, for 5 labeled samples per class, there
is a ∼ 5% improvement with our proposed framework as
compared to the original implementation. As the label rates
get smaller, the improvement increases significantly, up to
32.1% performance gain on Cora for GLP(AR) with 1 la-
beled sample per class, which shows the label-efficiency of
our methods.

To further investigate the performance of our model on
datasets with a larger portion of labeled samples, we test
the scenario with 20 labeled samples per class. The results
are shown in Table 4 with the best accuracy highlighted in
bold. One of the interesting results of our framework is
when the labeled samples are sufficiently large enough. In-
deed, it has been shown that semi-supervised learning meth-
ods under our Shoestring can be very useful and the results
from Table 4 exhibit better classification performance over
the baseline methods. There could be a possible explanation
on this fact that these semi-supervised learning models have
already been effective and reliable to generate smooth and
representative features for subsequent classification, when
the number of labeled samples is significantly large. Aug-
mented with a metric learning network, which is designed
on the basis of the manifold assumption and cluster assump-
tion in the embedding space, it can achieve a further perfor-
mance gain, up to 1.7% on Large Cora.

The reason for high performance even with severely lim-
ited labeled samples is that, Shoestring can locate the cen-
troid for each class and generate labels based on the cluster
assumption and manifold assumption, which enables trans-
ferring as much knowledge as possible from sparsely la-
beled samples to a large number of unlabeled samples in
the embedding space. To clearly visualize the improvement,
Fig. 3 shows the raw features of Cora, its feature embed-
dings learned with one labeled sample per class based on
the original GCN [9], and the feature embeddings learned
based on Shoestring-COS and Shoestring-L2, respectively.
The results show that GCN performs poorly with one la-
beled sample per class, while our proposed framework can
cluster more compactly, as shown in Fig. 3c and Fig. 3d.
The feature embeddings learned with 5 labels and 20 labels
with Shoestring-COS are also shown in Fig. 3e and Fig. 3f,
respectively.

Computation cost. The time needed for computing cen-
troid and relative distance for similarity measurement in

(a) Raw representations of Cora (b) GCN with 1 label per class

(c) Shoestring-COS with 1 label

per class

(d) Shoestring-L2 with 1 label

per class

(e) Shoestring-COS with 5 la-

bels per class

(f) Shoestring-COS with 20 la-

bels per class

Figure 3: Visualization of Cora features.

each iteration is corresponding with the number of classes.
As the benchmarking datasets do not have a significant
amount of classes, the time efficiency of Shoestring is com-
parable with the original implementations. As reported in
Table 3, the numbers in brackets are the computation time
of each model to perform classification. For 1-labeled sam-
ple per class, there is only a 0.5 second increase in time on
average with a 20% performance gains on average.

5.2. Performance Evaluation on Few-Shot Image
Classification

Our proposed framework can also be used for few-shot
image classification. Few-shot learning [3] is to learn a clas-
sifier that generalizes well even when trained with a lim-
ited number of training instances per class. An episodic
meta-learning strategy [20], due to its generalization perfor-
mance, has been adopted by many works on few-shot learn-
ing. To achieve lager improvements with limited numbers
of training instances, several previous works proposed to
consider the relationships between instances and represent-
ing the data into a graph [4, 13]. In particular, TPN [13] pro-
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Table 4: Document classification accuracy on citation net-
works with 20 labeled samples (%).

Label Rate 20 labels per class

Dataset Cora CiteSeer PubMed Large Cora

LP 67.8(0.1) 47.7(0.1) 73.3(0.2) 52.5(0.3)

GCN 79.8(0.7) 68.1(0.9) 78.0(5.4) 67.4(3.8)

ST-CT 80.1(5.8) 70.1(9.1) 77.6(54) 66.0(18)

IGCN(RNM) 80.9(0.7) 68.4(1.0) 77.6(5.5) 68.5(3.9)

IGCN(AR) 81.3(1.4) 68.6(1.7) 78.5(8.5) 68.8(6.4)

GLP(RNM) 80.7(0.3) 67.7(0.4) 77.7(0.4) 68.1(1.5)

GLP(AR) 81.2(1.8) 68.4(8.6) 78.8(3.9) 68.7(13)

Ours 81.9(2.1) 69.5(2.4) 79.7(4.4) 70.5(4.7)

posed to propagate labels between data instances for unseen
classes via episodic meta-learning. Here, we replace the
label propagation module with Shoestring in each episode
training of TPN and test its performance on the few-shot
image classification task.

Datasets. For fair comparisons with previous works, we use
two datasets, miniImageNet and tieredImageNet, and fol-
low the data preprocessing and split from [13]. The miniIm-
ageNet dataset is a subset of ImageNet dataset and designed
for few-shot classification. It has 100 classes with 64 classes
for training, 16 for validation, 20 for test, and 600 examples
per class. Similar to miniImageNet, tieredImageNet is also
a subset of ImageNet dataset, which has 608 classes and the
average number of examples for each class is 1, 281. It has
a hierarchical structure with 34 categories which are sepa-
rated to 20 for training, 6 for validation, and 8 for test.

Baselines. Except for TPN [13], we also compared with
the state-of-the-art method, MetaOptNet [10]. This model
adapted the meta-learning framework with different convex
base learners for few-shot learning. In particular, the frame-
work was incorporated with ridge regression and support
vector machines, called MetaOptNet-RR and MetaOptNet-
SVM, respectively. For fair comparisons, both TPN and
MetaOptNet used the standard 4-layer convolutional net-
work with 64 filters per layer as their feature embedding
architecture.

Parameter settings. Our implementation followed the pa-
rameter settings in [13], where the hyper-parameter k of
the k-nearest neighbor graph is set to 20, label propaga-
tion parameter α is set to 0.99, the query number is 15,
and the results are averaged over 600 randomly generated
episodes from the test set. In addition, the learning rate
is set to 10−3 initially and then is halved every 10, 000
episodes for miniImageNet and 25, 000 episodes for tiered-
ImageNet, respectively. The tests are conducted under the
semi-supervised condition with 5-way 1-shot and 5-way 5-

Table 5: Classification accuracy (%) on few-shot im-
age classification on miniImageNet and tieredImageNet (5-
way).

miniImageNet tieredImageNet

Model 1-shot 5-shot 1-shot 5-shot

TPN 52.78 66.42 55.74 71.01

MetaOptNet-RR 53.23 69.51 54.63 72.11

MetaOptNet-SVM 52.87 68.76 54.71 71.79

Shoestring-TPN(COS) 55.35 70.01 56.79 73.71

shot for both datasets.
Results analysis. The results are shown in Table 5 with
the top accuracy of each category highlighted in bold.
The results of benchmarking datasets are directly obtained
from their papers. From experiments, we observe that
the cosine similarity is best suited for image classification
and, therefore, we only include results from this method.
Shoestring-TPN(COS) outperformed all baseline methods. In
particular, Shoestring-TPN(COS) achieved significant gains
on miniImageNet (2.57% ∼ 3.59%) and tieredImageNet
(1.05% ∼ 2.70%), respectively. In addition, TPN under
Shoestring leads to state-of-the-art performance as com-
pared to MetaOptNet, demonstrating the effectiveness of
Shoestring on few-shot image classification tasks. We can
observe that the improvement for 1-shot learning is even
higher than that of 5-shot, 1.765% and 1.05% respectively,
showing that Shoestring can provide with more superior
performance in severely limited labeled samples.

6. Concluding Remarks

In this paper, we advanced the graph-based semi-
supervised learning paradigm towards a scenario where la-
beled data are severely limited. We proposed a new frame-
work, called Shoestring, which is designed on the basis of
the manifold assumption and cluster assumption in the em-
bedding space. The experiments for both document classi-
fication on citation networks and few-shot learning image
classification show strong benefits of using Shoestring, re-
sulting in new state-of-the-art results across overall cases.
The key factor that determines the performance of our pro-
posed framework is that, with the metric learning network,
Shoestring can transfer the semantic knowledge of a lim-
ited number of labeled samples to a large number of unla-
beled samples. Therefore, even with just a few labeled sam-
ples, Shoestring can outperform all of the baseline methods.
We empirically show the choice of similarity metrics in our
framework is critical. One strategy to fit different datasets
with different similarity metrics is to learn an adaptive sim-
ilarity function. We leave this as our future work.
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