A Cross-Layer Optimization Framework for
Multicast in Multi-nop Wireless Networks

Jun Yuan, Zongpeng Li, Wei Yu, Baochun Li
Department of Electrical and Computer Engineering
University of Toronto
{steveyuan@comm, arcane@eecg, weiyu@comm, bli@deognto.edu

Abstract— Achieving optimal transmission throughput in data  wireless network scenarios. We also take different allyorit
networks is known as a fundamental but hard problem. The perspectives: at the network layer, we discuss the problim w
situation is exacerbated in multi-hop wireless networks due to or without network coding; at the physical layer, we conside

the interference among local wireless transmissions. In this papgr the dual optimizati thod tri ing. ak
we propose a general modeling and solution framework for € dual optimization method, geometric programming, as we

the throughput optimization problem in wireless networks. In &S game theoretic designs.
our framework, data routing, wireless medium contention and The general framework proposed in this paper represents

network coding are jointly considered to achieve the optimal 3 S
network performance. The primal-dual solution method in the a cross-layer optimization strategy. It balances dkeenand

framework represents a cross-layer optimization approach. It andsupplyof link bandwidth at the network and the physical
decomposes the original problem into data routing sub-problems layers, respectively. It also provides an optimal flow rogti
at the network layer, and power allocation sub-problems at scheme and a corresponding optimal power allocation scheme

the physical layer. Various effective solutions are discussed for j, sych a balanced state. Important properties and higsligh
each sub-problem, verifying that our framework may handle the of our solution framework are as follows.

throughput optimization problem in an efficient and distributed

fashion for a broad range of wireless network scenarios. . . . .
« Comprehensiveness:lt provides a comprehensive ap-

proach for system designers to incorporate networking

|. INTRODUCTION factors from different layers into a joint optimization

Multi-hop wireless networks consist of wireless nodes that problem. Such joint consideration of network coding,
communicate with each other by relaying data flows over data routing, and wireless interference is indeed necgssar
multiple hops, without infrastructure support. Due to the to approach optimal performance in multi-hop wireless

broadcast nature of omni-directional antennas, geogealihi networks.

nearby transmissions interfere with each other. « “Divide and conquer” strategies: It explores the under-
In this paper, we study the problem of achieving optimal lying modular structure of the joint optimization problem

transmission throughput for multiple concurrent data isess from the perspective of primal-dual solutions. It applies

in multi-hop wireless networks. As unicast, broadcast and the classic technique, Lagrange relaxation combined with
group communication sessions may all be viewed as (or subgradient optimization, to decompose the original com-
transformed into) multicast sessions [1], we assume that a plex problem into smaller sub-problems that are easier to
data session is a multicast session without loss of geherali  solve. Each sub-problem resides in only one networking
A desirable solution to the problem of achieving optimal layer, it therefore provides a clear justification for lager
transmission throughput includes a routing strategy ohdat  protocol design.
flows at the network layer, as well as a power allocation « Flexibility: How each sub-problem is solved depends on
scheme that leads to high capacity at the physical layer. the specific model and the available solution techniques,
As the main original contribution of this paper, we propose a and is independent of the general framework that we
general framework to model and solve the optimal throughput propose. As new advances occur in networking technolo-
problem in wireless networks. At a high level, our framework  gies or in optimization algorithm design, the module for
maximizes the overall throughput subject to three groups of solving the corresponding sub-problem in our framework
constraints: (1) dependence of overall throughput on ip&r-I can be easily replaced to reflect such advances and to
data flow rates, (2) dependence of per-link flow rates on achieve better performance. As examples, the module for
link capacities, and (3) dependence of link capacities an pe  flow routing may be implemented as multicommodity
node radio power levels. We present a general primal-dual flow routing, tree packing and network coding; and the
method that iteratively solves two disjoint sub-problenmsl a module for power allocation can be computed with the
converges to the optimal solution of the original problem. dual optimization method, geometrical programming, and
The first sub-problem is a multi-hop flow routing problem at  a cooperative selfisigame.
the network layer, and the second sub-problem is a power. Effectiveness: Our solution framework transforms the
allocation problem at the physical layer. We further ilrast overall throughput optimization into a sequence of sim-
how each sub-problem can be solved efficiently under differe pler sub-problems. As long as the computation of each



individual sub-problem is optimal, efficient and/or disin particular, we take advantage of recent progress in isglvi
tributed, the overall solution is guaranteed to be optirton-convex problems using a dual optimization method as
mal, efficient, and/or distributed, respectively. We shafiroposed by Yuwet al [7] for Orthogonal Frequency Division
illustrate how optimality can be achieved or closeljMultiplex (OFDM) systems in which the non-convex problem
approached for each sub-problem, in an efficient ansl solved efficiently and globally in the dual domain, and the

distributed fashion. geometric programming approach proposed by Chiang [8] for
The remainder of this paper is organized as follows. Weode Division Multiple Access (CDMA) systems in which the
first discuss related work in Section II. In Section Ill, welon-convex problem is transformed into a convex one under

propose the joint optimization framework and the layerindle assumption of a high signal to interference and noise rat

approach, together with an efficient primal-dual algoritton (SINR). Finally, we also propose an approximate but near-
solve the problem. In Section IV, we discuss the modufptimal solution for the interference channel based on game
structure of sub-problems, point out several new techisigue theory.

network and physical layers, and show how the sub-problemsThe main technique used in this paper is the method of
are incorporated in the overall framework. We then presant ual decomposition for convex optimization problems. The

example to illustrate the main concept in Section V. Finallg dual decomposition technique is related to the duality yasil

discuss the limitations and extensions of this paper ini@ect Of TCP as a flow control protocol by Low [9] and Waegal
VI, and conclude in Section VII. [10], in which network congestion parameters are integatet

as primal and dual optimization variables and the TCP paitoc
is interpreted as a distributed primal-dual algorithm. @uork
is also related to the extension of the above work to multi-
In the general model of data networks, recent researchhiop wireless networks by Chiang [8], in which power levels
information theory discovers that routing alone is not sigfit and TCP window sizes are jointly optimized, and a dual
to achieve maximum information transmission rates [2], [3Variable is used as a means for cross-layer optimization. In
Rather, encoding and decoding operations at relay nodesaimelated work, Johansson, Xiao, and Boyd have also carried
addition to the sender and receivers are in general negessart a similar convex optimization approach to jointly penfio
in an optimal transmission strategy. Such coding operatiorouting and resource allocation in wireless CDMA networks
are referred to asetwork coding The pioneering work by [11], [12], where a high SINR is assumed in order to guarantee
Ahlswede, Cai, Li and Yeung [2] and Koetter and Medardonvexity. In our previous work [13], we have also studied a
[3] proves that, in a directed network with network codingdual method for the joint source coding, routing, and power
a multicast rate is feasible if and only if it is feasible for allocation problem for sensor networks, where the focus is a
unicast from the sender to each receiver. Li, Yeung and Qassy source coding problem in the application layer. All of
[4] then shows that linear coding usually suffices in achigvi the above work treat the multi-session unicast problem.only
the maximum rate. The main idea of the present work is to propose a similar
With the assistance of network coding, the problem dfamework for multicast problems in a network coding cohtex
achieving optimal throughput has been studied in undicecte For wireless multicast in ad hoc networks, Vet al [14]
networks where each link has a known capacity, shared sidied the issue of network planning and solved an energy
flows in both directions. As shown by lét al [1], [5], the minimization problem with centralized control. They also
problem of computing optimal throughput can be formulateadopt SINR to model contention at the physical layer, and
as a linear optimization problem, and distributed algongh their transmission plan involves a time sharing scheme gmon
can be designed to efficiently solve the problem by applyirayset of selected power allocation states. Both the focus and
Lagrange relaxation and subgradient optimization. Howeveolution approaches of our paper are different as compared t
the assumption of fixed link capacities is not realistic ifiLl4]. We target maximum throughput instead of minimum cost,
multi-hop wireless networks, where link capacities argettb and present a general solution framework that decomposes th
to interference from other links in the neighborhood. If weptimization into different layers. We also target disiitded
assume that two transmissions can be simultaneously actedutions and employ physical layer models, which directly
if and only if neither node in one transmission is withirconnects capacity rates to power allocation.
the communication range of the other transmission [6] (also
referred to as thdogical interference model), then even l1l. A JOINT OPTIMIZATION FRAMEWORK
optimizing link scheduling for a set of fixed multi-hop flonssi We now present a general framework to model and solve
NP-hard, since it essentially corresponds to the graphrioglo the problem of optimizing throughput in multi-hop wire-
problem. less networks. We first give a high-level formulation of the
A main contribution of this paper is to take the physicabptimization problem, which involves variables from both
layer interference into account when solving the optiméhe network layer and the physical layer. We then show
throughput problem for multi-hop wireless networks. Tosgr that Lagrange relaxation and subgradient optimizationhzan
this objective, we draw from previous studies related tapplied to decompose such an overall optimization problem
power control in wireless networks and show how physicaito a sequence of smaller sub-problems, each only invglvin
layer models can be incorporated in the overall problem wériables from either the network layer or the physical taye
optimizing throughput, with the assistance of network ogdi Interactions between the two sub-problems are then dieduss

Il. RELATED WORK



A. General Framework of Joint Optimization into the objective function:

based on the following facts. First, throughput is realibgd @

routing data flows from senders to receivers, therefore the

achievable throughput for each data session is decided ®serve that the maximization of the Lagrangian above now
the corresponding data flows of that session. Second, at e§@Rsists of two sets of variables: network layer variables
transmission link, the aggregated data flow rate can't ekced,r), and physical layer variablesp,c), where p is a

the effective capacity of that link. Third, the achievakiekl Set of link power constrained by node power budgef...
capacity is decided by SINR, which in turn is decided by thdore specifically, the Lagrangian optimization problem now

The formulation of the throughput optimization problem is .
ghput op P L:U(r)—&-ZAl[cl—Zﬁ].
l i

power level at all the senders. decouples into two disjoint parts. The network layer pat is
Let G = (V, E) be the network topology. Lef be the set of data flow routing problem:

multiple data sessions supported in the network.ri_et {r*} max  U(r) — Z A Z fi 3)

be the set of multicast rates for each session S. Fix r, ; p

let V(r) be the set of network flow rates that are needed to st. feN()

supportr. The flow ratesf is a vector{ f;}, wherei denotes _ . _
the session index € S andi denotes the link index ¢ £. The physical layer part is a power allocation problem:

Let pnax be the set of power (_:onstraints on each nod&in max Z ner (4)
Let C(pmax) be the set of achievable rates= {¢;} that the ;
physical layer can support on each lihk E. st. €€ C(Pmax)
The throughput optimization problem can now be formu-
lated as: Thus, the optimization framework naturally provides a fayg
approach to the wireless throughput optimization problem.
max Ul(r) (1) The global maximization problem decomposes into two parts:
st feN(r) routing at the network layer and power allocation at the
physical layer. The power allocation problem ensures that
¢ € C(Pmax) the maximal capacity is provided in individual network link
fo <¢, ViEFE while the routing problem ensures that underlying link sapp
i€s is efficiently utilized to maximize the multicast rates.

o - ] The decoupling of the network optimization problem also
where we seek to maximize some concave utility function of,eqis that cross-layer design can be achieved in a theoret

the throughput vectot/(r). For example, a utility that leadsjcqly optimal way. The dual variablé plays a key role in

to proportional fairness i#/(r) = >_; Ui(r") = >_;108(r").  coordinating the network layedemand” and physical layer
The constraintf € AN (r) models the inter-dependence Of‘supply". In particular, theith component of\ (\;) can be
achievable throughput and the data flow routing schenfie jnterpreted as the rate cost in lidk A higher value of);
The constrainic € C(pmax) Models the inter-dependence ojgnals to the underlying physical layer that more resirce
link capacity vector on the node power constraiptux. The  ghould be devoted to transporting the traffic in link At
constrainty_; f; < ¢ reflects the fact that the aggregated flowhe same time, it signals to the upper network layer that
rate at each link is bounded by link capacity. Heres the  yansporting bits in link is expensive and it provides incentive
index of data sessions, ards the index of links. for the network layer to find alternative routes for traffic.

The detailed characterization of the regions(r) and  The key requirement that allows the decoupling of the
C(Pmax) are independent of our general formulation and Wiletwork optimization problem into routing and resource-all
be discussed in the next section. We now proceed to invéstiggation is the underlying convexity structure of the problem
solution techniques that are applicable to our generallpnob Bejow, we first provide a justification for convexity, then
formulation. propose a primal-dual algorithm that can be used to solve the

joint network optimization problem efficiently.

B. Decomposing the Problem C. The Role of Convexity

When bothA (r) andC(pmax) are convex regions, general We start by observing that at the physical layEp,,.x) can
convex optimization methods can be used to solve the overallivays be made a convex region afigh.,.x) can always be
optimization problem (1). However, such a solution does natade a convex function g¥,,.x Vvia time sharing. If two sets
take advantage of the special problem structure and it af rates are both achievable under the same power constraint
general requires global information to be collected at @raén then their linear combination must also be achievable by
point of computation. In this paper, we instead propose simply dividing the frequency (or time) into two sub-chalme
general solution framework, within which the original plefm  and transmitting using the two different strategies in the t
is decomposed into smaller sub-problems, each of which cgub-channels.
be solved efficiently and distributively. We start by relaxi From a network routing point of view, the technique of
the link capacity constrainty", f; < ¢; and introduce prices network coding resolves the competition among flows by



introducing conceptual flowg1]. The network coded routing It remains to show that the update steps (7) solve the dual
region specifies three kinds of linear constraints for cptica  minimization problem. This is due to the fact that the update
flows: (a) the maximum flow rate must be upper boundesleps are subgradient updates ¥oit is not difficult to show
by the link capacity; (b) the law oflow conservationi.e, that(c,—Y, f/) are subgradients fox;,. Thus, as long as step
the incoming conceptual flow rate is equal to the outgoingzesy\" are chosen to be sufficiently small, the subgradient
conceptual flow rate at a relay node for every given sourcgpdate eventually converges, and it converges to the global
sink pair; and (c) the multicast rate must be less than orlegeégtimum of the overall network optimization problem. m
to the rate for each source-sink pair in every session. HenceNote that the primal-dual algorithm can be implemented
it is obvious that the constraint set of network coded raytirin a distributed fashion, if the sub-problems have distabu
region is convex. solutions. This is true because in (7), the update of dual
variable \; in the ith link only requires the local capacity

D. The Primal-Dual Solution Framework and the rates of local flows_; f;.

A direct implication of the convexity of the capacity region IV. SUB-PROBLEMMODULES

C(Pmax) and the data routing regioV(r) is that the joint  \we have so far proposed a primal-dual solution framework
network optimization problem (1) can be solved efficientlyy solve the problem of achieving optimal throughput in fiault
Further, as strong duality holds, the optimization problefy, wireless networks using joint optimization across tae n
(1) can be solved via its dual. As the dual problem has\gyrk and the physical layers. It remains to show how routing
natural decomposition, it may be solved by solving its tMo-sugyp_problem at the network layer and the power allocation
problems (3) and (4) individually and by updating the shadow,p-program at the physical layer are effectively solvee. W
price A; in succession. _ _investigate different alternative solutions in differevetwork
More specifically, we now propose the following primalscenarios. At the network layer, we examine solutions with
dual algorithm that solves the entire network optimizatiof, without the assumption of network coding. At the physical
problem: layer, we discuss different algorithmic perspectivesluding
. Lo N dual optimization, geometric programming, and coopegativ
Algorithm 1. Primal-Dual Algorithm: selfish games. These alternatives consistrafdulesto be

o (0)
1) Initialize A, ) readily plugged into the general framework that we have
2) In primal domain, giveml( ), solve the following sub- proposed.

problems:
) A. Network Layer Modules
Dﬁaf {U(r) B zl:)‘lzfl | f GN(r)} () 1) Routing based on Multicommodity Flow&Vhen net-
’ work coding is not considered and data sessions are unicast

max {Z)\zcz |ce C(pmax)} (6) sessions, the network layer is naturally modeled as a mul-
! ticommodity flow problem. The first group of constraints in
3) In dual domain, updat& using the following rule: our general framework, which characterizes the dependeince

(t4+1) o ) ; overall throughput on link flow rates, is then a standard mul-
N =Ny @ =D ) (7)  ticommodity flow polytope. The corresponding data routing
i sub-problem at the network layer can be solved using availab
4) Return to step 2 until convergence. solution techniques for multicommodity flow problems.
. 2) Routing based on Tree Packin¥hen network coding
Theorem 1:Algorithm 1 always converges to the globalg ot considered and data sessions are multicast or brstadca
optimum of the overall network optimization problem (1)gessions, routing is achieved by data forwarding and repli-
provided that the step sizes") is chosen to be sufficiently cation at each wireless node. With these assumptions, each
small. , L . atomic data flow propagates along a tree that spans every node
Proof: We outline the proof here. The crucial ingredienf, the gata session. The maximum achievable throughput can
that validates Algorithm 1 is gqnvexﬂy. Thg conveX|.tny(r) be computed by finding the maximum number of pairwise
and C(pmax) ensures an efficient numerical solution for the,acity-disjoint trees, in each of which the multicastugro
network optimization problem (1). Define the dual objectivVismains connected. Such optimization has a straightforwar
function linear programming formulation with an exponential number
9(A) = max L(r,f,p,c, A). @) of tree capacity variables. In the case of broadcast session

r.f.p,c . .
L . such a problem corresponds to tkpanning tree packing
The maximization above can be decomposed into two Su;pr'oblem in which we can work on the dual and employ

problems (5) (6). The solutions of the two sub-problemslioy,inimum spanning tree algorithms as the separation oracle.
9(A) to be evaluated. _ .. Inthe case of multicast sessions, the problem correspands t
Now, by strong duality, the overall network optimizatione steiner tree packingroblem, where this approach does
problem (1) is solved by the following dual minimization,q; \york effectively. This is due to the fact that we need to
problem: _ solve the minimum Steiner tree problem in the dual, which is
g (A) 9) exactly as hard as the Steiner tree packing problem itsg]f [1



3) Multicast Routing with Network Codingwith the ad- where ¢; is the capacity of linkl, SINR, is the signal to
vantages of network coding [2], we can model the routinigterference and noise ratio of link G;;, p;, ands? are the
problem at the network layer as follows: link gain, power, and noise, respectively,; is the interference

gain from link 5 to link [. Each node has a power budget

p’ﬂ max

max U(r Z)‘l Zf ! (10) Because of the interference, the power allocation problem

_ _ (11) is a non-convex optimization problem which is inhelent

st rt< Z 6f], Vi, Vi,V T; €V difficult to solve. In this subsection, we discuss three méce
1EZ(TY) techniques to ease the way of characterizing the feasible
ef’j < fi Vi,ViVileE capacity rggion: the dual optimizaFion method, geometric

i i S i programming, and the game theoretic approach.
Z G = Z ey Vi,Vj ¥ n e VA{s', Tj} 1) Dual Optimization Method:The main idea of thelual
ze_O(n) N Z’GI(n). optimization method7] is to recognize that although the
f1>0,¢7>0,7>0 constraints of (11) are not convex by itself, the time-ghgri

. ) ) version of these constraints always is. Further, the tiharisg
The first inequality represents the constraint that #f® yersion of the problem can sometimes be more efficiently

session multicast rate’ is less than or equal to the sum of,\eq in the dual domain by solving the Lagrangian dual
all the conceptual flow rates from sourcé to each of its problem

jth destinationT?. Here, e” is the conceptual flow rate on

link { in theith muItlcast session to itgh destinatiorﬂ“]?. The

second inequality means that the actual flow r&tef session g(p) = maXZ Aier + Z Hn | Pn,max — Z J2N
i on link [ is the maximum of all the conceptual flows from P n 1eO(n)

source to destinations in that session. It is the advantaiage]c h d by adiusti baradient updat
network coding that allows us to consider the maximum, rath r each fixedu and by adjusting. via a subgradient update.
timizing for g(u), although still not trivial, is often easier

than the summation, of the conceptual flow rates. The th|th ina th - ginal bl i al
equality constraint represents the law of flow conservation an solving the orginal problem, %&“.) IS always Convex.
(The exact evaluation ofj(z) may still take exponential

conceptual flows, wherg(n) is defined as the set of links that . e . :
complexity. However, efficient and sub-optimal algorithcas

i ing t de; and is th t of links that
are incoming to node; andO(n) is the set of links that are often be used to evaluaté.) approximately.) Under the time

outgoing from noden. . ! .
Theorem 2:For a data network with multiple multicast(frequency) sharing condition, the minimal valuegdf) over
gll positive ii’s is equal to the optimal solution of (11)

sessions, the maximum utility and its corresponding ogdtim
routing strategy can be computed efficiently and in a dis- . _
tributed fashion. ming(y) = mpé,‘x;)‘lcl

Proof: First, the utility function is a concave function.
Second, it is easy to prove that the network coding regid¥ in practical physical-layer system design, time-stwrin
constraint (linear constraint) is a convex set. Therefsoljing Can often be implemented either directly or via frequency
the sub-problem (10) is a convex optimization problem, whicsharing using (for example with OFDM modulation), the
can be solved efficiently. A distributed solution is alsogible above method gives an efficient way to solve the capacity
by further relaxation. For more detailed discussions,rrede fegion maximization problem (11).

the conceptual flow approach presented in [1] [5]. (] 2) Geometric ProgrammingRecent developments in ge-
ometric programming show that, in high SINR scenarios,

) solving the problem (11) can be efficiently accomplished by
B. Physical Layer Modules convex programming [8].

Interference management is one of the main challenges inThe idea is to first approximate the link capacity rate=
physical layer design of wireless networks. A key conceptg(1+SINR;) ~ log(SINR,) if the SINR is much larger than
in physical layer is the capacity region (rigorously spagki 1. Then by logarithmic transformation of power veciir=
the achievable rate region which characterizes a tradeofflog(p;), the transformed problem (12) is a convex function
between achievable rates at different links. The capaedion over variables:
optimization problem in the physical layer may be formutate

as follows
max: > N@ 12)

mgx ;)\zcz (11) b 7 B
t 0 g=1 ( IN ) !
s.t. ¢ =log (14 SINR,;) Vi s ¢ = log ( SINRy ~ V.

Gup TN T Gye
SINR, = L v SINR, = . vl
L u Gyt ot > Gehi + o
Z Py < Pn,max vn Z epl < pn max; VZ, vn

1€O(n) 1€O(n)



Furthermore, Chiang [8] has proposed a distributed powerAlgorithm 2: Message Passing Game Algorithm

allocation algorithm with gradient step sizeas follows: 1) Initialize p©, m©, ;). Sett = 0.
2) Setp(™) = p®) Set; = 0, iteratively updatep(™) as
follows:
) _ (@) A AsGg 6

P = nHr| g m ) S SINRY G )
b s#l UssPs (Tit1) _ A _ g () _ 91

_ . , o= W G, G

3) The Game Theoretic Approachn this section, we m;’ + n P i

explore ways to approximate the solutions of the non-convex
achievable rate maximization problem by game theory. In  Repeat untilp(") converges. Sep(*+1) = p(7i),
a power control game, each link is modeled as a player3) Update priceu, via subgradient

with an aim of maximizing its utility function. The main

idea here is to design a set of utility functions so that the

competitive equilibrium of the game is approximately the M§f+1) ZMS) +%(f) Z pl(t) — Pn,max
global optimum. As reaching the competitive equilibrium of 1€O(n)

a game is typically computationally efficient and amenable t
distributed implementation, this gives us an effective nsea
of approximately solving the physical layer power control
problem. This type of games is inherently different from

4) Update the message; using (14)

SINR{HY  SINR{HY
ml(t+1) = ZGZSAS

traditional selfish games in that hyretendingto be selfish, pory G, 8™ 1+ SINR{TY
nodes actually help achieve the joint social welfare. Such a
game is referred to as a cooperative selfish game. 5) Repeat (2-4) until convergence.

In- conventional game theoretical approaches for powehe nower update in steps (2) is based on the following. At
control [16], each link uses its own achievable rate as it3,ch step, each player tries to maximize its own utitty
utility function (while treating all other users as intedace). \yhile assuming the power levels for all other players and the
Competitive equilibria in such a game may not correspongessages are fixed. The expression for optippds obtained
to desirable operating points, especially when the interfee 1, setting the derivative); with respect top, to zero. Such
level is high. This is typified by the well-known prisoner'sy’jocajly optimalp, strikes a balance between maximizing its
dilemma. The main idea of this section is to modify the ufilit 5,y rate and minimizing its effect for other users (which is
function of each link to include not only its own achievablg;yan into account vian,). For example, a large value fou,
rate but also the detrimental effect of the interferencééia& ingjcates that linkl is producing severe interference to other
causes on other links. Under these modified fictitious wtilifjn s This is reflected in the power update as a largdeads
functions, each link then has an incentive to settle on a powg 4 lowerp;. Similarly, the value of the pricing variable,,
level that strikes a balance between maximizing its own rafgjicates the tightness of the per-node power constraihtgh
and minimizing the interference caused to others. value for pi,, signals that the supply for power is tight and it

In a distributed implementation, the amount of interfe®nGytices Jink to reduce its power. Finally, the demand for link
caused by each link has to be estimated by its neighboggycity from the upper layer is reflected in the network faye
This motivates us to propose a message-passing mechanigiyoy price);. A large value for); indicates that a higher
with which the interference information can be Commun'datecapacity rate in théth link is needed to support upper layer
between the links via a side channel. Mathematically, Weyffic and it prompts the physical layer to increase its @ow
propose the following utility function for each link Although each player appears to be selfish in maximizing

Gup its own utility only, because the utility function incorptes

>, Gupy +o7) mupr— pmpr (13)  gocial welfare, the Nash equilibrium of this game is in fact a
) i o cooperative social optimum.
where m; is the dual variable summarizing the effect of The message-passing algorithm can be implemented in a
interference from all other links ang, is the dual variable that distributed fashion. This is because the messages canallyloc
indic_:ates the _price of tr_ans_mitter power at nodeA sensible collected and broadcast to the neighbors of each link. Algino
choice form; is the derivative this power control game does not necessarily converges to

azs;ﬁz Cs the global optimum, experimental evidence suggests that it
- op performs very well in practice. Finally, we have the follogi

In other wordsyn; is the rate at which other users’ achievabléesult on the conditions for convergence.
data rates decrease with an additional amount of power. Thelheorem 3: Algorithm 2lways converges, and it converges
power price u,, reflects how tight the resource at node to a stable Nash equilibrium of the message passing game, if
is being utilized by its outgoing links under the constrairthe absolute value of eigenvalues of dynamics stabilityrisnat
2 1co(m) Pl < Pomax- are less than one.

The following algorithm implements this game theoretical Due to space constraints, a detailed analysis on the exis-
power control scheme where each link player selfishly maxence, uniqueness, stability and efficiency loss for thehNas
mizes(Q);, while continuously updating the messages. equilibrium in this message passing game is omitted.

Q1 = Nlog (1 +

(14)

m; =
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with network coding. The model for the physical layer e N Sopport M ‘_ Capacity Support
an interference channel. An OFDM transmission schem 2 N
simulated. The channel gain and interference are rand , ° ol b
generated. We define interference degree (ID) as the aw 6 g |
. . . . . 1 =
ratio between the desired link gain and the sum of all inter 4 ==
ence gains. Both the low interference case (ID2dB) and o.5t”
the high interference case (ID =2dB) are investigated. oLt Y 0
0 20 80 100 0 100 300 400

We use the proposed primal-dual algorithm to achieve Iterations lterations
optimal solution for the joint routing and power allocation (a) Low Interference (b) High Interference
problem (1). Specifically, a distributed message passimgega _
algorithm is employed in order to find the achievable rafdd: 4 Convergence between network flow rates and capagtpst.
region.

Fig. 2 illustrates the multicast rate maximization process
In both high and low interference cases, the multicast rae support network layer traffic. This process is coordidate
continuously converges to the optimal solution. Howevee, t By shadow prices as shown in Fig. 3. Eventually, the network
convergence speed is different. Convergence is much fadt@ws and capacity rates agree. This solution is optimalpén t
in the low interference scenarid.€, 60 iterations) than in Sense that the physical layer comes up with the best resource
high interference scenariad., 200 iterations). This is becausedllocation while the network layer routes the best pathmfro
that in the low interference case, it is not very important fghe source to multiple sinks. Together, the multicast réittyu
the links to exchange messages in order to arrive at a gdg@ction is maximized.
tradeoff. Instead, each link simply maximizes its own link For example, for the network in Fig. 1, the final solution

capacity to support the network traffic. in the high interference case, network flows in each link are
The convergence process for the cross-layer dual variableg: = fo = 1.98, f3 = ... = fig = 0.99; the capacity rates
illustrated in Fig. 3. The dual variables (shadow price)tomin arec; = c2 = 1.98, c¢3 = .... = c15 = 0.99; and the multicast

the inter-layer interface so that both routing in the networate isr = 2.97. Finally, it is interesting to point out that
layer and power allocation in the physical layer can reach @dr algorithm is energy efficient because there is no wasted
optimal matching point. As the shadow prices converge, tis@pacity rates in the system. All capacity rates exactlyertp
entire system reaches an optimal solution. the network flow f; = ¢;). Consequently, all the shadow
Fig. 4 shows the matching process between the netwdifces are non-zero, which means the capacity constraiats a
layer flows and the physical layer rates. At the beginning, ti&ll active in the original problem (1).
network flows oscillate in order to find a good routing strgteg This solution has a max-flow min-cut interpretation. If we
for each set of physical-layer rates. At the same time, glaysi normalize the throughput, the optimal flow and capacitysate
layer rates increase and decrease among themselves in ondiérall be one unit except for linkl and 2, where it is



network coding, data routing, and wireless interferencelza
jointly considered to achieve the overall optimal perfonte
Our solution framework decomposes the optimization proble
into smaller sub-problems: data routing at the networkdaye
and power allocation at the physical layer. Modeling and
solution algorithms for each sub-problem can be easilydune
according to a specific networking technology, as well as

atc b c

atc | as O\a:b / 1]
D/ 2

a+b [3]

T3 [4]

Fig. 5. Transmission scheme with network coding. (5]

(6]

two units. As we can see from the optimization solution, the
source can send three units of information in total to eacH]
sink, where the max-flow rate is exactly equal to the min-cut
bound as shown in Fig. 5. We further show a network codingg]
scheme to achieve this. In our example, soufcéas three
units (a, b, ¢) to send, and each of the sink&;(7»,73) can [9]
exactly receive them, by using the flow solution and coding

scheme as illustrated in Fig. 5. 1101

VI. LIMITATIONS AND EXTENSIONS (11]

This paper proposes a general modeling and solution frame-
work for the throughput optimization problem for multi-12
hop wireless networks. In this section, we point out several
limitations and possible extensions of the current franrewo [13]

« Inter-session network coding for multiple data sessions
is not considered in our framework. However, interg4]
session coding provides only marginal throughput gains
[1], while it renders the data routing sub-problem NPp5
hard. Thus, ignoring such possibilities seems justifiable.

« One of the main physical layer assumptions in thjﬁts
paper is that each link transmits and receives signals
independently. Possibilities of multi-access, broadoast
relay communications are not considered. The modéf]
presented in this paper is realistic in an ad-hoc network
where no synchronization between the nodes is possible
and interference is always regarded as noise. However,
when a moderate amount of node cooperation can be
implemented€.g, as in [17]), the utilization of multiuser
techniques in the physical layer is expected to provide
further gains.

VII. CONCLUSIONS

In this paper, we have proposed a general framework
for both modeling and solving the throughput optimization
problem in multi-hop wireless networks. In our framework,

available optimization techniques.
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