
1

Optimal Online Multi-Instance Acquisition
in IaaS Clouds

Wei Wang, Student Member, IEEE, Ben Liang, Senior Member, IEEE, and Baochun Li, Fellow, IEEE

Abstract—Infrastructure-as-a-Service (IaaS) clouds offer diverse instance purchasing options. A user can either run instances on
demand and pay only for what it uses, or it can prepay to reserve instances for a long period, during which a usage discount is entitled.
An important problem facing a user is how these two instance options can be dynamically combined to serve time-varying demands
at minimum cost. Existing strategies in the literature, however, require either exact knowledge or the distribution of demands in the
long-term future, which significantly limits their use in practice. Unlike existing works, we propose two practical online algorithms, one
deterministic and another randomized, that dynamically combine the two instance options online without any knowledge of the future.
We show that the proposed deterministic (resp., randomized) algorithm incurs no more than 2 − α (resp., e/(e − 1 + α)) times the
minimum cost obtained by an optimal offline algorithm that knows the exact future a priori, where α is the entitled discount after
reservation. Our online algorithms achieve the best possible competitive ratios in both the deterministic and randomized cases, and
can be easily extended to cases when short-term predictions are reliable. Simulations driven by a large volume of real-world traces
show that significant cost savings can be achieved with prevalent IaaS prices.

Index Terms—IaaS cloud computing, cost management, reserved instance, multi-instance reservation, online algorithm.

F

1 INTRODUCTION

Enterprise spending on Infrastructure-as-a-Service (IaaS)
cloud is on a rapid growth path. According to [2], the
public cloud services market is expected to expand from
$109 billion in 2012 to $207 billion by 2016, during
which IaaS is the fastest-growing segment with a 41.7%
annual growing rate [3]. IaaS cost management therefore
receives significant attention and has become a primary
concern for IT enterprises.

Maintaining optimal cost management is especially
challenging, given the complex pricing options offered
in today’s IaaS services market. IaaS cloud vendors,
such as Amazon EC2, ElasticHosts, GoGrid, etc., apply
diverse instance (i.e., virtual machine) pricing models at
different commitment levels. At the lowest level, cloud
users launch on-demand instances and pay only for the
incurred instance-hours, without making any long-term
usage commitments, e.g., [4], [5], [6]. At a higher level,
there are reserved instances wherein users prepay a one-
time upfront fee and then reserve an instance for months
or years, during which the usage is either free, e.g.,
[5], [6], or is priced under a significant discount, e.g.,
[4]. Table 1 gives a pricing example of on-demand and
reserved instances in Amazon EC2.

Acquiring instances at the cost-optimal commitment
level plays a central role for cost management. Simply
operating the entire load with on-demand instances can
be highly cost inefficient. For example, in Amazon EC2,

• W. Wang, B. Liang and B. Li are with the Department of Electrical and
Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4.
E-mail: {weiwang, liang}@ece.utoronto.ca, bli@ece.toronto.edu

• Part of this paper has appeared in [1]. This new version contains substan-
tial revision with additional derivations, proofs, and explanations.

TABLE 1
Pricing of on-demand and reserved instances (Light

Utilization, Linux, US East) in Amazon EC2, as of Feb.
10, 2013.

Instance Type Pricing Option Upfront Hourly

Standard Small On-Demand $0 $0.08
1-Year Reserved $69 $0.039

Standard Medium On-Demand $0 $0.16
1-Year Reserved $138 $0.078

three years of continuous on-demand service cost 3 times
more than reserving instances for the same period [4].
On the other hand, naively switching to a long-term
commitment incurs a huge amount of upfront payment
(more than 1,000 times the on-demand rate in EC2 [4]),
making reserved instances extremely expensive for spo-
radic workload. In particular, with time-varying loads, a
user needs to answer two important questions: (1) when
should I reserve instances (timing), and (2) how many
instances should I reserve (quantity)?

Recently proposed instance reservation strategies, e.g.,
[7], [8], [9], heavily rely on long-term predictions of
future demands, with historic workloads as references.
These approaches, however, suffer from several limita-
tions in practice. First, historic workloads might not be
available, especially for startup companies who have just
switched to IaaS services. In addition, not all workloads
are amenable to prediction. In fact, it is observed in real
production applications that workload is highly variable
and statistically nonstationary [10], [11], and as a result,
history may reveal limited information about the future.
Moreover, due to the long span of a reservation period
(i.e., months to years), workload prediction is usually
required over a very long period of time, say, years. It

2

would be very challenging, if not impossible, to make
sufficiently accurate predictions over such a long term.
For all these reasons, instance reservations are usually
made conservatively in practice, based on empirical
experiences [12] or professional recommendations, e.g.,
[13], [14], [15].

In this paper, we are motivated by a practical yet
fundamental question: Is it possible to reserve instances
in an online manner, with limited or even no a priori
knowledge of the future workload, while still incurring
near-optimal instance acquisition costs? To our knowl-
edge, this paper represents the first attempt to answer
this question, as we make the following contributions.

With dynamic programming, we first characterize the
optimal offline reservation strategy as a benchmark al-
gorithm (Sec. 3), in which the exact future demand is
assumed to be known a priori. We show that the optimal
strategy suffers “the curse of dimensionality” [16] and
is hence computationally intractable. This indicates that
optimal instance reservation is in fact very difficult to
obtain, even given the entire future demands.

Despite the complexity of the reservation problem in
the offline setting, we present two online reservation
algorithms, one deterministic and another randomized,
that offer the best provable cost guarantees without any
knowledge of future demands beforehand. We first show
that our deterministic algorithm incurs no more than
2−α times the minimum cost obtained by the benchmark
optimal offline algorithm (Sec. 4), and is therefore (2−α)-
competitive, where α ∈ [0, 1] is the entitled usage discount
offered by reserved instances. This translates to a worst-
case cost that is 1.51 times the optimal one under the
prevalent pricing of Amazon EC2. We then establish the
more encouraging result that, our randomized algorithm
improves the competitive ratio to e/(e − 1 + α) in ex-
pectation, and is 1.23-competitive under Amazon EC2
pricing (Sec. 5). Both algorithms achieve the best possible
competitive ratios in the deterministic and randomized
cases, respectively, and are simple enough for practical
implementations.

While our online algorithms are designed without as-
suming knowledge of future demand, with minor modi-
fications, they can be applied to accommodate workloads
for which short-term prediction is reliable (Sec. 6). We
show that for such workloads, our algorithms make
better decisions of instance reservation by leveraging
the prediction results, leading to even lower instance
acquisition cost.

In addition to our theoretical analysis, we have also
evaluated both proposed online algorithms via large-
scale simulations (Sec. 7), driven by Google cluster-usage
traces [17] with 40 GB workload demand information of
933 users in one month. Our simulation results show
that, under the pricing of Amazon EC2 [4], our algo-
rithms closely track the demand dynamics, realizing sub-
stantial cost savings compared with several alternatives.

Though we focus on cost management of acquiring
compute instances, our algorithms may find wide ap-

plications in the prevalent IaaS services market. For ex-
ample, Amazon ElastiCache [18] also offers two pricing
options for its web caching services, i.e., the On-Demand
Cache Nodes and Reserved Cache Nodes, in which our
proposed algorithms can be directly applied to lower the
service costs.

2 OPTIMAL COST MANAGEMENT

We start off by briefly reviewing the pricing details of the
on-demand and reservation options in IaaS clouds, based
on which we formulate the online instance reservation
problem for optimal cost management.

2.1 On-demand and Reservation Pricing
On-Demand Instances: On-demand instances let users
pay for compute capacity based on usage time without
long-term commitments, and are uniformly supported in
leading IaaS clouds. For example, in Amazon EC2, the
hourly rate of a Standard Small Instance (Linux, US East)
is $0.08 (see Table 1). In this case, running it on demand
for 100 hours costs a user $8.

On-demand instances resemble the conventional pay-
as-you-go model. Formally, for a certain type of instance,
let the hourly rate be p. Then running it on demand for h
hours incurs a cost of ph. Note that in most IaaS clouds,
the hourly rate p is set as fixed in a very long time period
(e.g., years), and can therefore be viewed as a constant.

Reserved Instances: Another type of pricing option
that is widely supported in IaaS clouds is the reserved
instance. It allows a user to reserve an instance for a
long period (months or years) by prepaying an upfront
reservation fee, after which, the usage is either free, e.g.,
ElasticHosts [5], GoGrid [6], or is priced with a heavy
discount, e.g., Amazon EC2 [4]. For example, in Amazon
EC2, to reserve a Standard Small Instance (Linux, US
East, Light Utilization) for 1 year, a user pays an upfront
$69 and receives a discount rate of $0.039 per hour within
1 year of the reservation time, as oppose to the regular
rate of $0.08 (see Table 1). Suppose this instance has run
100 hours before the reservation expires. Then the total
cost incurred is $69 + 0.039×100 = $72.9.

Reserved instances resemble the wholesale market.
Formally, for a certain type of reserved instance, let
the reservation period be τ (counted by the number of
hours). An instance that is reserved at hour i would
expire before hour i + τ . Without loss of generality, we
assume the reservation fee to be 1 and normalize the on-
demand rate p to the reservation fee. Let α ∈ [0, 1] be the
received discount due to reservation. A reserved instance
running for h hours during the reservation period incurs
a discounted running cost αph plus a reservation fee,
leading to a total cost of 1+αph. In the previous example,
the normalized on-demand rate p = 0.08/69; the received
discount due to reservation is α = 0.039/0.08 = 0.49; the
running hour h = 100; and the normalized overall cost
is

1 + αph = 72.9/69 .

3

In practice, cloud providers may offer multiple types
of reserved instances with different reservation periods
and utilization levels. For example, Amazon EC2 offers
1-year and 3-year reservations with light, medium, and
high utilizations [4]. For simplicity, we limit the discus-
sion to one type of such reserved instances chosen by a
user based on its rough estimations. We also assume that
the on-demand rate is far smaller than the reservation
fee, i.e., p� 1, which is always the case in IaaS clouds,
e.g., [4], [5], [6].

2.2 The Online Instance Reservation Problem

In general, launching instances on demand is more cost
efficient for sporadic workload, while reserved instances
are more suitable to serve stable demand lasting for a
long period of time, for which the low hourly rate would
compensate for the high upfront fee. The cost manage-
ment problem is to optimally combine the two instance
options to serve the time-varying demand, such that the
incurred cost is minimized. In this section, we consider
making instance purchase decisions online, without any a
priori knowledge about the future demands. Such an on-
line model is especially important for startup companies
who have limited or no history demand data and those
cloud users whose workloads are highly variable and
non-stationary — in both cases reliable predictions are
unavailable. We postpone the discussions for cases when
short-term demand predictions are reliable in Sec. 6.

Since IaaS instances are billed in an hourly manner,
we slot the time to a sequence of hours indexed by
t = 0, 1, 2, . . . At each time t, demand dt arrives, meaning
that a user requests dt instances, dt = 0, 1, 2, . . . To
accommodate this demand, the user decides to use ot
on-demand instances and dt − ot reserved instances. If
the previously reserved instances that remain available
at time t are fewer than dt−ot, then new instances need
to be reserved. Let rt be the number of instances that
are newly reserved at time t, rt = 0, 1, 2, . . . The overall
cost incurred at time t is the on-demand cost otp plus the
reservation cost rt + αp(dt − ot), where rt is the upfront
payments due to new reservations, and αp(dt−ot) is the
cost of running dt − ot reserved instances.

The cost management problem is to make instance
purchase decisions online, i.e., rt and ot at each time t,
before seeing future demands dt+1, dt+2, . . . The objec-
tive is to minimize the overall instance acquiring costs.
Suppose demands last for an arbitrary time T (counted
by the number of hours). We have the following online
instance reservation problem:

min
{rt,ot}

C =

T∑
t=1

(otp+ rt + αp(dt − ot)) ,

s.t. ot +

t∑
i=t−τ+1

ri ≥ dt ,

ot, rt ∈ {0, 1, 2, . . . }, t = 1, . . . , T .

(1)

Here, the first constraint ensures that all dt instances
demanded at time t are accommodated, with ot on-
demand instances and

∑t
i=t−τ+1 ri reserved instances

that remain active at time t. Note that instances that are
reserved before time t− τ + 1 have all expired at time t,
where τ is the reservation period. For convenience, we
set rt = 0 for all t ≤ 0.

The main challenge of problem (1) lies in its online
setting. Without knowledge of future demands, the on-
line strategy may make purchase decisions that turn out
later not to be optimal. Below we clarify the performance
metrics to measure how far away an online strategy may
deviate from the optimal solution.

2.3 Measure of Competitiveness

To measure the cost performance of an online strategy,
we adopt the standard competitive analysis [19]. The idea
is to bound the gap between the cost of an interested
online algorithm and that of the optimal offline strategy.
The latter is obtained by solving problem (1) with the
exact future demands d1, . . . , dT given a priori. Formally,
we have

Definition 1 (Competitive analysis): A deterministic
online reservation algorithm A is c-competitive (c is a
constant) if for all possible demand sequences d =
{d1, . . . , dT }, we have

CA(d) ≤ c · COPT(d) , (2)

where CA(d) is the instance acquiring cost incurred by
algorithm A given input d, and COPT(d) is the optimal
instance acquiring cost given input d. Here, COPT(d) is
obtained by solving the instance reservation problem (1)
offline, where the exact demand sequence d is assumed
to know a priori.

A similar definition of the competitive analysis also
extends to the randomized online algorithm A, where the
decision making is drawn from a random distribution.
In this case, the left-hand side of (2) is simply replaced
by E[CA(d)], the expected cost of randomized algorithm
A given input d. (See [19] for a detailed discussion.)

Competitive analysis takes an optimal offline algo-
rithm as a benchmark to measure the cost performance
of an online strategy. Intuitively, the smaller the com-
petitive ratio c is, the more closely the online algorithm
A approaches the optimal solution. Our objective is to
design optimal online algorithms with the smallest com-
petitive ratio.

We note that the instance reservation problem (1)
captures the Bahncard problem [20] as a special case
when a user demands no more than one instance at
a time, i.e., dt ≤ 1 for all t. The Bahncard problem
models online ticket purchasing on the German Federal
Railway, where one can opt to buy a Bahncard (reserve
an instance) and to receive a discount on all trips within
one year of the purchase date. It has been shown in [20],
[21] that the lower bound of the competitive ratio is 2−α
and e/(e− 1 + α) for the deterministic and randomized

4

Time (hour)1 2 3 4 5 6 7

D
em

an
d
d
t

Virtual user 1

Virtual user 2

Virtual user 3

Virtual user 4

R1 R1 R1 R1

R2 R2 R2 R2

8

(a) Each virtual user optimally reserves instances
separately.

Time (hour)1 2 3 4 5 6 7

D
em

an
d
d
t

Virtual user 1

Virtual user 2

Virtual user 3

Virtual user 4

R1 R1 R1 R1

R2 R2 R2

R2

8

(b) Optimal instance reservations.

Fig. 1. Simply separating the instance reservation prob-
lem into a set of independent Bahncard problems leads
to inefficient use of reserved instances. In the example,
the on-demand hourly rate is 0.4. The reservation fee is
1, and the reservation period is 4 hours. The reservations
are highlighted as shaded areas.

Bahncard algorithms, respectively. Because the Bahncard
problem is a special case of our problem (1), we have

Lemma 1: The competitive ratio of problem (1) is at
least 2− α for deterministic online algorithms, and is at
least e/(e− 1 + α) for randomized online algorithms.

However, we show in the following that the instance
reserving problem (1) is by no means a trivial exten-
sion to the Bahncard problem, mainly due to the time-
multiplexing nature of reserved instances.

2.4 Challenges

A natural way to extend the Bahncard solutions in [20]
is to decompose problem (1) into separate Bahncard
problems. To do this, we introduce a set of virtual users
indexed by 1, 2, . . . Whenever demand dt arrives at time
t, we view the original user as dt virtual users 1, 2,
. . . , dt, each requiring one instance at that time. Fig. 1a
illustrates an example with 4 virtual users. Virtual user
1 demands one instance in the first 5 hours and hour 8;
virtual user 2 demands one instance in hour 2 to hour
4; both virtual users 3 and 4 have demands in hour 3
and 4. Each virtual user then reserves instances (i.e.,
buy a Bahncard) separately to minimize its cost, which
is exactly a Bahncard problem [20].

However, such a decomposition does not lead to an
equivalent problem as the original one. To see this,
consider the following example. Suppose the on-demand

hourly rate is p = 0.4. The reservation fee is 1, and the
reservation spans 4 hours. Fig. 1a shows the reservation
outcome with decomposition, where each virtual user
optimally reserves instances based on its demand. We see
that two reservations, denoted R1 and R2, are made by
virtual users 1 and 2. Reservation R1 is used to serve
the demands of virtual user 1 from hour 1 to hour 4,
while reservation R2 is used to serve the demands of
virtual user 2 from hour 2 to hour 4. Such a reservation
result is obviously not optimal. As we see from Fig. 1b,
in the optimal scheme, reservation R2 should be used
by virtual user 1 to serve its demand in hour 5, during
which virtual user 2 has no demand.

In general, letting each virtual user reserve instances
independently leads to inefficient use of reserved in-
stances: An instance reserved by one virtual user, even
idle, cannot be shared with another, who still needs to
pay for its own demand, incurring unnecessary costs.

A “simple” fix is to allow virtual users to use idle
reservations of others. While conceptually simple, the
algorithm needs to specify how idle reservations are
distributed. In particular, suppose there are k reserved
instances idle at time t, required by m > k busy virtual
users. Should these k instances be randomly distributed
to k out of m virtual users? Or should they be distributed
to k least-indexed virtual users? Given that different
distribution strategies result in different algorithmic be-
haviours — whether a virtual user has been awarded
“free” instances in the past would critically determine its
future reservation decisions — one needs to justify which
alternative gives the best cost performance. However,
such justification remains a non-trivial open problem. We
shall revisit this discussion in Sec. 7.

All challenges above reveal that the instance reserva-
tion problem (1) is a more complex generalization of the
Bahncard problem. Indeed, as we shall see in the next
section, even with full knowledge of the entire future
demand, the best offline algorithm we are aware of is
computationally prohibitive, which is not the case for
the Bahncard problem.

3 THE OPTIMAL OFFLINE STRATEGY AND ITS
INTRACTABILITY

In this section we consider the benchmark offline cost
management strategy for problem (1), in which the exact
future demands are given a priori. The offline setting is an
integer programming problem and is generally difficult
to solve. We derive the optimal solution via dynamic
programming. However, such an optimal offline strategy
suffers from “the curse of dimensionality” [16] and is
computationally intractable.

We start by defining states. A state at time t is defined
as a (τ−1)-tuple st = (st,1, . . . , st,τ−1), where st,i denotes
the number of instances that are reserved no later than t

5

#
 r

e
s
e
rv

e
d
 i

n
s
ta

n
c
e
s

... Time

...

st,1

st,2 st,τ−2st−1,1 st−1,2
st−1,3 st−1,τ−1 st,τ−1

tt− 1 t+ 1 t+ τ − 1

rt

Fig. 2. Illustration of a transition into state st =
(st,1, . . . , st,τ−1) from state st−1 = (st−1,1, . . . , st−1,τ−1)
according to (3). The shaded area stands for the rt
reservations made at time t.

and remain active at time t+ i, i.e.,

st,i =

t∑
j=t+i−τ+1

rj , i = 1, . . . , τ − 1 .

We use a (τ − 1)-tuple to define a state because an
instance that is reserved no later than t will no longer
be active at time t+τ and thereafter. Clearly, st,1 ≥ · · · ≥
st,τ−1 as reservations gradually expire.

We make an important observation, that state st only
depends on states st−1 at the previous time, and is inde-
pendent of earlier states st−2, . . . , s1. Specifically, suppose
state st−1 is reached at time t− 1, and at the beginning
of the next time t, rt new instances are reserved. These
newly reserved rt instances will add to the active reser-
vations starting from time t, leading state st−1 to transit
into state st following the transition equations below:

st,i =

{
st−1,i+1 + rt, i = 1, . . . , τ − 2;
rt, i = τ − 1 .

(3)

To see st,τ−1 = rt, let us consider state st shown in Fig. 2.
By definition of st, at time t + τ − 1, there are st,t+τ−1
reservations that remain effective. All these reservations
must be made at time t, because instances reserved
before t have all expired at time t+ τ − 1.

Let V (st) be the minimum cost of serving demands
d1, . . . , dt up to time t, conditioned upon the fact that
state st is reached at time t. We have the following
recursive Bellman equations:

V (st) = min
st−1

{
V (st−1) + c(st−1, st)

}
, t > 0, (4)

where c(st−1, st) is the transition cost, and the minimiza-
tion is over all states st−1 that can transit to st following
the transition equations (3). The Bellman equations (4)
indicate that the minimum cost of reaching st is given
by the minimum cost of reaching a previous state st−1
plus the transition cost c(st−1, st), minimized over all
possible previous states st−1. Let

X+ = max{0, X} .
The transition cost is defined as

c(st−1, st) = otp+ rt + αp(dt − ot) , (5)

where
rt = st,τ−1,

ot = (dt − rt − st−1,1)+,

and the transition from st−1 to st follows (3). The ra-
tionale of (5) is as follows. By the transition equations
(3), state st−1 transits to st by reserving rt = st,τ−1
instances at time t. Adding the st−1,1 instances that have
been reserved before t, we have rt + st−1,1 reserved
instances remain active at time t. We therefore need
ot = (dt−rt−st−1,1)+ on-demand instances at that time.

The boundary conditions of Bellman equations (4) are

V (s0) = s0,1, for all s0 = (s0,1, . . . , s0,τ−1), (6)

because an initial state s0 indicates that a user has
already reserved s0,1 instances at the beginning.

With the analyses above, we see that the dynamic
programming defined by (3), (4), (5), and (6) optimally
solves the offline instance reserving problem (1). There-
fore, it gives the optimal cost COPT(d) in theory.

We now analyze the complexity of dynamic program-
ming presented above. To solve the Bellman equations
(4), one has to go through all t = 1, 2, . . . , T and compute
V (st) for all states st. For every time t, since a state st
is defined in a high-dimensional space — recall that st
is defined as a (τ − 1)-tuple — the number of states is
O(d̄τ−1), where d̄ = maxt dt is the peak demand. For
each state st, computing V (st) requires looping over all
states st−1 that can transit to it. By (3), there could be as
many as O(d̄) such states. Therefore, computing V (st)
for all states st at time t requires O(d̄τ) time. The overall
computational complexity is O(T d̄τ). Dynamic program-
ming hence offers a pseudo-polynomial time solution (i.e.,
the algorithm is polynomial given bounded peak de-
mand d̄ and reservation period τ). However, given that
d̄ and τ could be very large in practice, the algorithm
is computationally intractable. This is known as “the
curse of dimensionality” suffered by high-dimensional
dynamic programming [16].

While it remains open to show whether the offline
problem (1) is NP-hard, dynamic programming is the
best algorithm we are aware of. Its computational in-
tractability suggests that optimal cost management in
IaaS clouds is in fact a very complicated problem, even if
future demands can be accurately predicted. Note that this is
not the case for the aforementioned Bahncard problem,
where the demand is bounded by 1 at all times (i.e.,
d̄ = 1), in which dynamic programming reduces to an
O(T) algorithm. This serves as another evidence that the
instance reservation problem (1) is by no means a simple
extension to the Bahncard problem.

4 OPTIMAL DETERMINISTIC ONLINE STRAT-
EGY

In this section, we present a deterministic online reser-
vation strategy that incurs no more than 2−α times the

6

minimum cost. As indicated by Lemma 1, this is also the
best that one can expect from a deterministic algorithm.

4.1 The Deterministic Online Algorithm

We start off by defining a break-even point at which a user
is indifferent between using a reserved instance and an
on-demand instance. Suppose an on-demand instance is
used to accommodate workload in a time interval that
spans a reservation period, incurring a cost c. If we use a
reserved instance instead to serve the same demand, the
cost will be 1 + αc. When c = 1/(1 − α), both instances
cost the same, and are therefore indifferent to the user.
We hence define the break-even point as

β = 1/(1− α) . (7)

Clearly, the use of an on-demand instance is well justi-
fied if and only if the incurred cost does not exceed the
break-even point, i.e., c ≤ β.

Our deterministic online algorithm is summarized as
follows. By default, all workloads are assumed to be
operated with on-demand instances. At time t, upon the
arrival of demand dt, we check the use of on-demand
instances in a recent reservation period, starting from
time t− τ + 1 to t, and reserve a new instance whenever
we see an on-demand instance incurring more costs than
the break-even point. Formally, let 1(·) be an indicator
function, i.e.,

1(X) =

{
1, X is true;
0, otherwise.

Algorithm 1 presents the detail of the aforementioned
deterministic online algorithm.

Algorithm 1 Deterministic Online Algorithm Aβ

1. Let xi be the number of reserved instances at time i,
Initially, xi ← 0 for all i = 0, 1, . . .

2. Upon the arrival of demand dt, loop as follows:
3. while p

∑t
i=t−τ+1 1(di > xi) > β do

4. Reserve a new instance: rt ← rt + 1.
5. Update the number of reservations that can be

used in the future: xi ← xi + 1, i = t, . . . , t+ τ − 1.
6. Add a “phantom” reservation to the recent period,

indicating that the history has already been “pro-
cessed”: xi ← xi + 1, i = t− τ + 1, . . . , t− 1.

7. end while
8. Launch on-demand instances: ot ← (dt − xt)+.
9. t← t+ 1, repeat from 2.

Fig. 3 helps to illustrate Algorithm 1. Whenever de-
mand dt arrives, we check the recent reservation period
from time t − τ + 1 to t. We see that an on-demand
instance has been used at time i if demand di exceeds
the number of reservations xi (both actual and phantom),
i = t−τ+1, . . . , t. The shaded area in Fig. 3 represents the
use of an on-demand instance in the recent period, which
incurs a cost of p

∑t
i=t−τ+1 1(di > xi). If this cost exceeds

tt- +1τ Time

D
em

an
d

tt- +1τ Time

D
em

an
d

t+ -1τ

xNewly updated

xOriginal

dDemand curve

xReservation curve

Fig. 3. Illustration of Algorithm 1. The shaded area in
the top figure shows the use of an on-demand instance
in the recent period. An instance is reserved at time t if
the use of this on-demand instance is not well justified.
The bottom figure shows the corresponding updates of
the reservation curve x.

the break-even point β (line 3 of Algorithm 1), then such
use of an on-demand instance is not well justified: We
should have reserved an instance before at time t− τ + 1
and used it to serve the demand (shaded area) instead,
which would have lowered the cost. As a compensation
for this “mistake,” we reserve an instance at the current
time t (line 4), and will have one more reservation to use
in the future (line 5). Since we have already compensated
for the misuse of an on-demand instance (the shaded
area), we add a “phantom” reservation to the history so
that such a mistake will not be counted multiple times
in the following rounds (line 6). This leads to an update
of the reservation number {xi} (see the bottom figure in
Fig. 3).

As a concrete example, we apply Algorithm 3 to the
example of Fig. 1. It is easy to verify that two instances
are reserved: the first reservation is made at time 3, while
the second is made at time 4.

Unlike the naive extension of the Bahncard algorithm
described in Sec. 2.4, Algorithm 1 jointly reserves in-
stances by taking both the currently active reservations
(i.e., xt) and the historic records (i.e., xi, i < t) into con-
sideration (line 3), without any knowledge of the future.
We will see later in Sec. 7 that such a joint reservation
significantly outperforms the Bahncard extension where
instances are reserved separately.

4.2 Performance Analysis: (2− α)-Competitiveness
The “trick” of Algorithm 1 is to make reservations
“lazily”: no instance is reserved unless the misuse of
an on-demand instance is seen. Such “lazy behaviour”
turns out to guarantee that the algorithm incurs no more
than 2− α times the minimum cost.

Let Aβ denote Algorithm 1 and let OPT denote the
optimal offline algorithm. We now make an important
observation, that OPT reserves at least the same amount
of instances as Aβ does, for any demand sequence.

7

Lemma 2: Given an arbitrary demand sequence, let
nβ be the number of instances reserved by Aβ , and let
nOPT be the number of instances reserved by OPT. Then
nβ ≤ nOPT.

The proof of Lemma 2 is given in the appendix.1

Lemma 2 can be viewed as a result of the “lazy be-
haviour” of Aβ , in which instances are reserved just
to compensate for the previous “purchase mistakes.”
Intuitively, such a conservative reservation strategy leads
to fewer reserved instances.

We are now ready to analyze the cost performance
of Aβ , using the optimal offline algorithm OPT as a
benchmark.

Proposition 1: Algorithm 1 is (2−α)-competitive. For-
mally, for any demand sequence,

CAβ ≤ (2− α)COPT , (8)

where CAβ is the cost of Algorithm 1 (Aβ), and COPT is
the cost of the optimal offline algorithm OPT.

Proof: Suppose Aβ (resp., OPT) launches ot (resp., o∗t)
on-demand instances at time t. Let Od(Aβ) be the costs
incurred by these on-demand instances under Aβ , i.e.,

Od(Aβ) =

T∑
t=1

otp . (9)

We refer to Od(Aβ) as the on-demand costs of Aβ . Sim-
ilarly, we define the on-demand costs incurred by OPT
as

Od(OPT) =

T∑
t=1

o∗t p . (10)

Also, let

Od(Aβ\OPT) =

T∑
t=1

(ot − o∗t)+p (11)

be the on-demand costs incurred in Aβ that are not
incurred in OPT. We see

Od(Aβ\OPT) ≤ βnOPT (12)

by noting the following two facts: First, demands∑T
t=1(ot − o∗t)

+ are served by at most nOPT reserved
instances in OPT. Second, demands that are served by
the same reserved instance in OPT incur on-demand
costs of at most β in Aβ (by the definition of Aβ). We
therefore bound Od(Aβ) as follows:

Od(Aβ) ≤ Od(OPT) + Od(Aβ\OPT)

≤ Od(OPT) + βnOPT . (13)

Let S be the cost of serving all demands with on-
demand instances, i.e.,

S =

T∑
t=1

dtp .

1. The appendix is given in an online supplementary document.

We bound the cost of OPT as follows:

COPT = Od(OPT) + nOPT + α(S −Od(OPT)) (14)
≥ Od(OPT) + nOPT + αβnOPT (15)
≥ nOPT/(1− α) . (16)

Here, (15) holds because in OPT, demands that are
served by the same reserved instance incur at least a
break-even cost β when priced at an on-demand rate p.

With (13) and (16), we bound the cost of Aβ as follows:

CAβ = Od(Aβ) + nβ + α(S −Od(Aβ))

≤ (1− α)Od(Aβ) + nOPT + αS (17)
≤ (1− α)(Od(OPT) + βnOPT) + αS + nOPT (18)
= COPT + nOPT (19)
≤ (2− α)COPT . (20)

Here, (17) holds because nβ ≤ nOPT (Lemma 2). Inequal-
ity (18) follows from (13), while (20) is derived from (16).

By Lemma 1, we see that 2 − α is already the best
possible competitive ratio for deterministic online algo-
rithms, which implies that Algorithm 1 is optimal in a
view of competitive analysis.

Proposition 2: Among all online deterministic algo-
rithms of problem (1), Algorithm 1 is optimal with the
smallest competitive ratio of 2− α.

As a direct application, in Amazon EC2 with reserva-
tion discount α = 0.49 (see Table 1), algorithm Aβ will
lead to no more than 1.51 times the optimal instance
purchase cost.

Despite the already satisfactory cost performance of-
fered by the proposed deterministic algorithm, we show
in the next section that the competitive ratio may be
further improved if randomness is introduced.

5 OPTIMAL RANDOMIZED ONLINE STRATEGY

In this section, we construct a randomized online strat-
egy that is a random distribution over a family of deter-
ministic online algorithms similar to Aβ . We show that
such randomization improves the competitive ratio to
e/(e−1+α) and hence leads to a better cost performance.
As indicated by Lemma 1, this is the best that one can
expect without knowledge of future demands.

5.1 The Randomized Online Algorithm

We start by defining a family of algorithms similar to the
deterministic algorithm Aβ . Let Az be a similar deter-
ministic algorithm to Aβ with β in line 3 of Algorithm 1
replaced by z ∈ [0, β]. That is, Az reserves an instance
whenever it sees an on-demand instance incurring more
costs than z in the recent reservation period. Intuitively,
the value of z reflects the aggressiveness of a reservation
strategy. The smaller the z, the more aggressive the
strategy. As an extreme, a user will always reserve when
z = 0. Another extreme goes to z = β (Algorithm 1), in

8

which the user is very conservative in reserving new
instances.

Our randomized online algorithm picks a z ∈ [0, β]
according to a density function f(z) and runs the result-
ing algorithm Az . Specifically, the density function f(z)
is defined as

f(z) =

{
(1− α)e(1−α)z/(e− 1 + α), z ∈ [0, β),
δ(z − β) · α/(e− 1 + α), o.w.,

(21)

where δ(·) is the Dirac delta function. That is, we pick
z = β with probability α/(e − 1 + α). It is interesting
to point out that in other online rent-or-buy problems,
e.g., [22], [21], [23], the density function of a randomized
algorithm is usually continuous.2 However, we note
that a continuous density function does not lead to the
minimum competitive ratio in our problem. Algorithm 2
formalizes the descriptions above.

Algorithm 2 Randomized Online Algorithm
1. Randomly pick z ∈ [0, β] according to a density

function f(z) defined by (21)
2. Run Az

The rationale behind Algorithm 2 is to strike a suitable
balance between reserving “aggressively” and “conser-
vatively.” Intuitively, being aggressive is cost efficient
when future demands are long-lasting and stable, while
being conservative is efficient for sporadic demands.
Given the unknown future, the algorithm randomly
chooses a strategy Az , with an expectation that the
incurred cost will closely approach the ex post minimum
cost. We see in the following that the choice of f(z) in
(21) leads to the optimal competitive ratio e/(e− 1 +α).

5.2 Performance Analysis: e/(e − 1 + α)-
Competitiveness
To analyze the cost performance of the randomized algo-
rithm, we need to understand how the cost of algorithm
Az relates to the cost of the optimal offline algorithm
OPT. The following lemma reveals their relationship. The
proof is given in the appendix.

Lemma 3: Given an arbitrary demand sequence
d1, . . . , dT , suppose algorithm Az (resp., OPT) launches
oz,t (resp., o∗t) on-demand instances at time t. Let CAz
be the instance acquiring cost incurred by algorithm Az ,
and nz the number of instances reserved by Az . Denote
by

Dz =

T∑
t=1

(o∗t − oz,t)+p (22)

the on-demand costs incurred by OPT that are not by
algorithm Az . We have the following three statements.

(1) The cost of algorithm Az is at most

CAz ≤ COPT − nOPT + nz + (1− α)(znOPT −Dz). (23)

2. The density function in these works is chosen as f(z) = ez/(e−
1), z ∈ [0, 1], which is a special case of ours when α = 0.

(2) The value of Dz is at least

Dz ≥
∫ β

z

nwdw − (β − z)nOPT . (24)

(3) The cost incurred by OPT is at least

COPT ≥
∫ β

0

nzdz . (25)

With Lemma 3, we bound the expected cost of our
randomized algorithm with respect to the cost incurred
by OPT.

Proposition 3: Algorithm 2 is e/(e − 1 + α)-
competitive. Formally, for any demand sequence,

E[CAz] ≤
e

e− 1 + α
COPT , (26)

where the expectation is over z between 0 and β accord-
ing to density function f(z) defined in (21).

Proof: Let F (z) =
∫ z
0
f(x)dx, and EF =

∫ z
0
xf(x)dx.

From (23), we have

E[CAz] ≤ COPT − nOPT +

∫ β

0

f(z)nzdz

+ (1− α)

∫ β

0

f(z)(znOPT −Dz)dz (27)

≤ COPT − αnOPTEF +

∫ β

0

f(z)nzdz

− (1− α)

∫ β

0

nw

∫ w

0

f(z)dzdw (28)

= COPT +

∫ β

0

(f(z)− (1− α)F (z))nzdz

− αnOPTEF , (29)

where the second inequality is obtained by plugging in
inequality (24).

Now divide both sides of inequality (29) by COPT and
apply inequality (25). We have

E[CAz]

COPT
≤ 1 +

∫ β
0

(f(z)− (1− α)F (z))nzdz − αnOPTEF∫ β
0
nzdz

.

(30)
Plugging f(z) defined in (21) into (30) and noting that
nβ ≤ nOPT (Lemma 2) lead to the desired competitive
ratio.

By Lemma 1, we see that no online randomized
algorithm is better than Algorithm 2 in terms of the
competitive ratio.

Proposition 4: Among all online randomized algo-
rithms of problem (1), Algorithm 2 is optimal with the
smallest competitive ratio e/(e− 1 + α).

We visualize in Fig. 4 the competitive ratios of both
deterministic and randomized algorithms against the
hourly discount α offered by reserved instances. Com-
pared with the deterministic algorithm, we see that intro-
ducing randomness significantly improves the competi-
tive ratio in all cases. The two algorithms become exactly
the same when α = 1, at which the reservation offers

9

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

Discount α

C
o
m

p
e
ti
ti
v
e
 R

a
ti
o

2−α
e/(e−1+α)

α=0.49

Deterministic
Randomized

Fig. 4. Competitive ratios of both deterministic and ran-
domized algorithms.

no discount and will never be considered. In particular,
when it comes to Amazon EC2 with reservation discount
α = 0.49 (standard 1-year reservation, light utilization),
the randomized algorithm leads to a competitive ratio
of 1.23, compared with the 1.51-competitiveness of the
deterministic alternative.

6 COST MANAGEMENT WITH SHORT-TERM
DEMAND PREDICTIONS

In the previous sections, our discussions focus on the ex-
treme cases, with either full future demand information
(i.e., the offline case in Sec. 3) or no a priori knowledge
of the future (i.e., the online case in Sec. 4 and 5). In this
section, we consider the middle ground in which short-
term demand prediction is reliable. Note that this is not
an uncommon case in practice. For example, websites
typically see diurnal patterns exhibited on their work-
loads, based on which it is possible to have a demand
prediction window that is weeks into the future. Both
our online algorithms can be easily extended to utilize
these prediction results to improve reservation decisions.

We begin by formulating the instance reservation
problem with limited information of future demands. Let
w be the prediction window. That is, at any time t, a user
can predict its future demands dt+1, . . . , dt+w in the next
w hours. Since only short-term predictions are reliable,
we can safely assume that the prediction window is less
than the reservation period, i.e., w < τ . The instance
reservation problem resembles the online reservation
problem (1), except that the instance purchase decisions
made at each time t, i.e., the number of reserved in-
stances (i.e., rt) and on-demand instances (i.e., ot), are
based on both history and future demands predicted,
i.e., d1, . . . , dt+w. The competitive analysis (Definition 1)
remains valid in this case.

The Deterministic Algorithm: We extend our de-
terministic online algorithm as follows. As before, all
workloads are by default served by on-demand instances.
At time t, we can predict the demands up to time
t + w. Unlike the online deterministic algorithm, we
check the use of on-demand instances in a reservation
period across both history and future, starting from time

tt+w- +1τ Time

D
em

an
d

D
em

an
d

t+ -1τ

xNewly updated

xOriginal

dDemand curve

xReservation curve

t+w

tt+w- +1τ Time

Fig. 5. Illustration of Algorithm 3. The shaded area in the
top figure shows the use of an on-demand instance in
[t + w − τ + 1, t + w]. An instance is reserved at time t
if the use of this on-demand instance is not well justified.
The bottom figure shows the corresponding updates of
the reservation curve x.

t+w− τ + 1 to t+w. A new instance is reserved at time
t whenever we see an on-demand instance incurring
more costs than the break-even point β and the currently
effective reservations are less than the current demand
dt. Algorithm 3, denoted Awβ , formalizes the description
above.

Algorithm 3 Deterministic Algorithm Awβ with Predic-
tion Window w

1. Let xi be the number of reserved instances at time i,
Initially, xi ← 0 for all i = 0, 1, . . .

2. Upon the arrival of demand dt, loop as follows:
3. while p

∑t+w
i=t+w−τ+1 1(di > xi) > β and xt < dt do

4. Reserve a new instance: rt ← rt + 1.
5. Update the number of reservations that can be

used in the future, i.e., xi ← xi + 1, i = t, . . . , t +
τ − 1.

6. Add a “phantom” reservation to the history, in-
dicating that the history has already been “pro-
cessed”, i.e., xi ← xi + 1 for all i = t + w − τ +
1, . . . , t− 1.

7. end while
8. Launch on-demand instances: ot ← (dt − xt)+.
9. t← t+ 1, repeat from 2.

Fig. 5 illustrates an example of applying Algorithm 3
with the same demand input as Fig. 3. In the top figure,
at time t, we know the demand curve up to time t+w.
The shaded area represents the use of an on-demand
instance in [t + w − τ + 1, t + w]. Since the incurred
on-demand cost exceeds the break-even point, a new
instance is reserved at time t, and the reservation curve
is updated accordingly as shown in the lower figure.

The Randomized Algorithm: The randomized algo-
rithm can also be constructed as a random distribution
over a family of deterministic algorithms similar to Awβ .
In particular, let Awz be similarly defined as algorithm Awβ

10

with β replaced by z ∈ [0, β] in line 3 of Algorithm 3.
The value of z reflects the aggressiveness of instance
reservation. The smaller the z, the more aggressive the
reservation strategy. Similar to the online randomized,
we introduce randomness to strike a good balance be-
tween reserving aggressively and conservatively. Our
algorithm randomly picks z ∈ [0, β] according to the
same density function f(z) defined by (21), and runs
the resulting algorithm Awz . Algorithm 4 formalizes the
description above.

Algorithm 4 Randomized Algorithm with Prediction
Window w

1. Randomly pick z ∈ [0, β] according to a density
function f(z) defined by (21)

2. Run Awz

It is easy to see that both the deterministic and the
randomized algorithms presented above improve the
cost performance of their online counterparts, due to
the knowledge of future demands. Therefore, we have
Proposition 5 below. We will evaluate their performance
gains via trace-driven simulations in the next section.

Proposition 5: Algorithm 3 is (2−α)-competitive, and
Algorithm 4 is e/(e− 1 + α)-competitive.

Finally, while both algorithms can be applied when the
prediction window is longer than the reservation period
(i.e., w > τ), demand information predicted beyond the
reservation period will have no effect on the algorithms.
This suggests that one might need to develop alternative
algorithms when long-term prediction is reliable. Discus-
sions on such algorithms are beyond the scope of this
paper.

7 TRACE-DRIVEN SIMULATIONS

So far, we have analyzed the cost performance of the
proposed algorithms in a view of competitive analysis.
In this section, we evaluate their performance for practi-
cal cloud users via simulations driven by a large volume
of real-world traces.

7.1 Dataset Description and Preprocessing
Long-term user demand data in public IaaS clouds are
often confidential: no cloud provider has released such
information so far. For this reason, we turn to Google
cluster-usage traces that were recently released in [17].
Although Google is not a public IaaS cloud, its cluster-
usage traces record the computing demands of its cloud
services and Google engineers, which can represent the
computing demands of IaaS users to some degree. The
dataset contains 40 GB of workload resource require-
ments (e.g., CPU, memory, disk, etc.) of 933 users over 29
days in May 2011, on a cluster of more than 11K Google
machines.

Demand Curve: Given the workload traces of each
user, we ask the question: How many computing in-
stances would this user require if it were to run the same

200 250 300 350 400
0

300

600

900

Time (hour)

In
s
ta

n
c
e

User 552

Fig. 6. The demand curve of User 552 in Google cluster-
usage traces [17], over 1 month.

0 50 100 150 200
0

50

100

150

200

Demand Mean µ

D
e

m
a

n
d

 S
td

 σ

σ = 5µ
σ = µ

Fig. 7. User demand statistics and group division.

workload in a public IaaS cloud? For simplicity, we set
an instance to have the same computing capacity as a
cluster machine, which enables us to accurately estimate
the run time of computational tasks by learning from
the original traces. We then schedule these tasks onto
instances with sufficient resources to accommodate their
requirements. Computational tasks that cannot run on
the same server in the traces (e.g., tasks of MapReduce)
are scheduled to different instances. In the end, we
obtain a demand curve for each user, indicating how
many instances this user requires in each hour. Fig. 6
illustrates such a demand curve for a user.

User Classification: To investigate how our online
algorithms perform under different demand patterns, we
classify all 933 users into three groups by the demand fluc-
tuation level measured as the ratio between the standard
deviation σ and the mean µ.

Specifically, Group 1 consists of users whose demands
are highly fluctuating, with σ/µ ≥ 5. As shown in Fig. 7
(circle ‘o’), these demands usually have small means,
which implies that they are highly sporadic and are best
served with on-demand instances. Group 2 includes users
whose demands are less fluctuating, with 1 ≤ σ/µ < 5.
As shown in Fig. 7 (cross ‘x’), these demands cannot
be simply served by on-demand or reserved instances
alone. Group 3 includes all remaining users with rel-
atively stable demands (0 ≤ σ/µ < 1). As shown in
Fig. 7 (plus ‘+’), these demands have large means and
are best served with reserved instances. Our evaluations
are carried out for each user group.

Pricing: Throughout the simulation, we adopt the
pricing of Amazon EC2 standard small instances with
the on-demand rate $0.08, the reservation fee $69, and
the discount rate $0.039 (Linux, US East, 1-year light
utilization). The break-even point is 1683 instance-hours,
or 70 days. Since the Google traces only span one month,
we proportionally shorten the on-demand billing cycle
from one hour to one minute, and the reservation period

11

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Normalized Cost

All−reserved
Separate
Deterministic
Randomized

(a) Cost CDF (all users)

0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

Normalized Cost

All−reserved
Separate
Deterministic
Randomized

(b) Cost CDF (Group 1)

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Normalized Cost

All−reserved
Separate
Deterministic
Randomized

(c) Cost CDF (Group 2)

0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Normalized Cost

All−reserved
Separate
Deterministic
Randomized

(d) Cost CDF (Group 3)

Fig. 8. Cost performance of online algorithms without a priori knowledge of future demands. All costs are normalized
to All-on-demand.

from 1 year to 6 days (i.e., 24 × 365 = 8760 minutes =
6 days) as well. The break-even point is linearly scaled
to 28 instance-hours.

7.2 Evaluations of Online Algorithms
We start by evaluating the performance of online algo-
rithms without any a priori knowledge of user demands.

Benchmark Online Algorithms: We compare our
online deterministic and randomized algorithms with
three benchmark online strategies. The first is All-on-
demand, in which a user never reserves and operates all
workloads with on-demand instances. This algorithm,
though simple, is the most common strategy in practice,
especially for those users with time-varying workloads
[12]. It is worth mentioning that the proposed online
algorithms reduce to All-on-demand for workload that
ends before the break-even time, which is the optimal
strategy as the use of a reserved instance is not well
justified. The second algorithm is All-reserved, in which
all computational demands are served via reservations.
The third online algorithm is the improved Bahncard
extension described in Sec. 2.4, where virtual users re-
serve instances separately. We consider two distribution
strategies: (1) randomly distributing idle reservations
(if any) to busy virtual users, and (2) distributing idle
reservations to the least-indexed virtual users. We have
found that the former incurs slightly less cost than the
latter in most cases. We hence adopt it as the third
benchmark algorithm, referred to as Separate. All three
benchmark algorithms, as well as the two proposed
online algorithms, are carried out for each user in the
Google traces. All the incurred costs are normalized to
All-on-demand.

Cost Performance: We present the simulation results
in Fig. 8, where the CDF of the normalized costs are
given, grouped by users with different demand fluctu-
ation levels. We see in Fig. 8a that when applied to all
933 users, both the deterministic and randomized on-
line algorithms realize significant cost savings compared
with all three benchmarks. In particular, when switching
from All-on-demand to the proposed online algorithms,
more than 60% users cut their costs. About 50% users
save more than 40%. Only 2% incur slightly more costs
than before. For users who switch from All-reserved to

our randomized online algorithms, the improvement is
even more substantial. As shown in Fig. 8a, cost savings
are almost guaranteed, with 30% users saving more
than 50%. We also note that Separate, while generally
outperforming All-on-demand and All-reserved, incurs
more costs than our online algorithms.

We next compare the cost performance of all five
algorithms at different demand fluctuation levels. As
expected, when it comes to the extreme cases, All-on-
demand is the best fit for Group 1 users whose demands
are known to be highly busty and sporadic (Fig. 8b),
while All-reserved incurs the least cost for Group 3 users
with stable workloads (Fig. 8d). These two groups of
users, should they know their demand patterns, would
have the least incentive to adopt advanced instance
reserving strategies, as naively switching to one option
is already optimal. Even in these extreme cases, our on-
line algorithms, especially the randomized one, remain
highly competitive, incurring only slightly higher cost.

However, the acquisition of instances is not always a
black-and-white choice between All-on-demand and All-
reserved. As we observe from Fig. 8c, for Group 2 users,
a more intelligent reservation strategy is essential, since
naive algorithms, either All-on-demand or All-reserved,
are always highly risky and can easily result in skyrock-
eting cost. Our online algorithms, on the other hand,
become the best choices in this case, outperforming all
three benchmark algorithms by a significant margin.

Table 2 summarizes the average cost performance for
each user group. We see that our online algorithms
remain highly competitive in all cases. In addition, the
complexity of our online algorithms is also very low,
both operating in O(τ d̄) time, where d̄ is the peak
demand. Note that this complexity is also required by
Separate. Only naive strategies (i.e., All-on-demand and
All-reserved) have lower complexity of O(1), but at a
price of much higher instance acquisition cost.

7.3 The Value of Short-Term Predictions
While our online algorithms perform sufficiently well
without knowledge of future demands, we show in
this subsection that more cost savings are realized by
their extensions when short-term demand predictions
are reliable. Since we are not concerned with the detailed

12

TABLE 2
Average cost performance (normalized to

All-on-demand).

Algorithm All users Group 1 Group 2 Group 3
All-on-demand 1.00 1.00 1.00 1.00
All-reserved 16.48 48.99 1.25 0.61
Separate 0.86 1.02 0.96 0.70
Deterministic 0.81 1.00 0.89 0.67
Randomized 0.76 1.02 0.79 0.63

workload prediction techniques, we set the future work-
load available to both the deterministic and randomized
extensions (i.e., Algorithm 3 and 4) within the predic-
tion window. Specifically, we consider three prediction
windows that are 1, 2, and 3 months into the future,
respectively. To fit these numbers into the one-month
Google traces, we apply the same linear scaling men-
tioned in Sec. 7.1 (i.e., one hour is linearly scaled down
to one minute), after which the prediction windows used
in the simulations are 12, 24, and 36 hours, respectively.
For each prediction window, we run both Algorithm 3
and 4 for each Google user in the traces, and compare
their costs with those incurred by the online counterparts
without future knowledge (i.e., Algorithm 1 and 2).
Figs. 9 and 10 illustrate the simulation results, where
all costs are normalized to Algorithm 1 and 2, respectively.

As expected, the more information we know about
the future demands (i.e., longer prediction window), the
better the cost performance. Yet, the marginal benefits of
having long-term predictions are diminishing. As shown
in Figs. 9a and 10a, long prediction windows will not see
proportional performance gains. This is especially the
case for the randomized algorithm, in which knowing
the 2-month future demand a priori is no different from
knowing 3 months beforehand.

Also, we can see in Fig. 9b that for the determinis-
tic algorithm, having future information only benefits
those users whose demands are stable or with medium
fluctuation. This is because the deterministic online algo-
rithm is almost optimal for users with highly fluctuating
demands (see Fig. 8b), leaving no space for further
improvements. On the other hand, we see in Fig. 10b that
the benefits of knowing future demands are consistent
for all users with the randomized algorithm.

8 RELATED WORK

On-demand and reserved instances are the two most
prominent pricing options that are widely supported
in leading IaaS clouds [4], [5], [6]. Many case studies
[12] show that effectively combining the use of the two
instances leads to a significant cost reduction.

There exist some works in the literature, including
both algorithm design [7], [8], [24], [25] and prototype
implementation [9], focusing on combining the two in-
stance options in a cost efficient manner. All these works
assume, either explicitly or implicitly, that workloads
are statistically stationary in the long-term future and

0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Normalized Cost

1−month

2−month

3−month

(a) Cost CDF

Low Medium High
0.8

0.9

1

1.1

Demand Fluctuation

A
v
e
ra

g
e
 N

o
rm

a
liz

e
d
 C

o
s
t

1−month
2−month
3−month

(b) Average cost in different
user groups

Fig. 9. Cost performance of the deterministic algorithm
with various prediction windows. All costs are normalized
to the online deterministic algorithm (Algorithm 1) without
any future information.

0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Normalized Cost

1−month

2−month

3−month

(a) Cost CDF

Low Medium High
0.8

0.9

1

1.1

Demand Fluctuation

A
v
e

ra
g

e
 N

o
rm

a
liz

e
d

 C
o

s
t

1−month
2−month
3−month

(b) Average cost in different
user groups

Fig. 10. Cost performance of the randomized algorithm
with various prediction windows. All costs are normalized
to the online randomized algorithm (Algorithm 1) without
any future information.

can be accurately predicted a priori. However, it has
been observed that in real production applications, rang-
ing from enterprise applications to large e-commerce
sites, workload is highly variable and statistically non-
stationary [10], [11]. Furthermore, most workload pre-
diction schemes, e.g., [26], [27], [28], are only suitable
for predictions over a very short term (from half an
hour to several hours). Such limitation is also shared
by general predicting techniques, such as ARMA [29]
and GARCH models [30]. Some long-term workload
prediction schemes [31], [32], on the other hand, are re-
liable only when demand patterns are easy to recognize
with some clear trends. Even in this case, the prediction
window is at most days or weeks into the future [31],
which is far shorter than the typical workload span.
All these factors significantly limit the practical use of
existing works.

Our online strategies are tied to the online algorithm
literature [19]. Specifically, our instance reservation prob-
lem captures a class of rent-or-buy problems, including
the ski rental problem [22], the Bahncard problem [20],
and the TCP acknowledgment problem [21], as special
cases when a user demands no more than one instance
at a time. In these problems, a customer obtains a single
item either by paying a repeating cost (renting) per

13

usage or by paying a one-time cost (buying) to eliminate
the repeating cost. A customer makes one-dimensional
decisions only on the timing of buying. Our problem is
more complicated as a user demands multiple instances at
a time and makes two-dimensional decisions on both the
timing and quantity of its reservation. A similar “multi-
item rent-or-buy” problem has also been investigated in
[23], where cloud servers are dynamically turned on and
off to serve time-varying workloads with a minimum
energy cost. It is shown in [23] that, by dispatching
jobs to servers that are idle or off the most recently,
the problem reduces to a set of independent ski rental
problems, through which online algorithms are proposed
that achieve the best possible competitive ratios for
both deterministic and randomized algorithms with or
without future look-ahead information. Our problem
does not have such a separability structure and cannot
be equivalently decomposed into independent single-
instance reservation (Bahncard) problems, mainly due
to the possibility of time multiplexing multiple jobs on
the same reserved instance as shown in Sec. 2.4. It is
for this reason that the problem is challenging to solve
even in the offline setting. In fact, the Bahncard problem
contains the ski rental problem as a special case [20].
Even without the convenient separability structure as in
[23], our proposed algorithms have achieved optimality
in competitive ratio for the more general multi-instance
Bahncard problem.

Besides instance reservation, online algorithms have
also been applied to reduce the cost of running a file
system in the cloud. The recent work [33] introduces
a constrained ski-rental problem with extra information of
query arrivals (the first or second moment of the dis-
tribution), proposing new online algorithms to achieve
improved competitive ratios. This work is orthogonal
to this paper as it takes advantage of additional de-
mand information to make rent-or-buy decisions for a
single item. Other related work orthogonal to this paper
includes [34], where an online auction is designed for
cloud providers to price cloud resources.

9 CONCLUDING REMARKS AND FUTURE
WORK

Acquiring instances at the cost-optimal commitment
level for time-varying workloads is critical for cost man-
agement to lower IaaS service costs. In particular, when
should a user reserve instances, and how many instances
should it reserve? Unlike existing reservation strategies
that require knowledge of the long-term future demands,
we propose two online algorithms, one deterministic and
another randomized, that dynamically reserve instances
without knowledge of the future demands. We show
that our online algorithms incur near-optimal costs with
the best possible competitive ratios, i.e., 2 − α for the
deterministic algorithm and e/(e − 1 + α) for the ran-
domized algorithm. Both online algorithms can also be
easily extended to cases when short-term predictions are

reliable. Large-scale simulations driven by 40 GB Google
cluster-usage traces further indicate that significant cost
savings are derived from our online algorithms and their
extensions, under the prevalent Amazon EC2 pricing.

One of the issues that we have not discussed in
this paper is the combination of different types of re-
served instances with different reservation periods and
utilization levels. For example, GoGrid offers monthly
and yearly reservations with 25% and 50% discounts,
respectively, while Amazon EC2 offers 1-year and 3-year
reserved instances with light, medium, and high uti-
lizations. Effectively combining these reserved instances
with on-demand instances could further reduce instance
acquisition costs. We note that when a user demands no
more than one instance at a time and the reservation
period is infinite, the problem reduces to Multislope Ski
Rental [35]. However, it remains unclear if and how the
results obtained for Multislope Ski Rental could be ex-
tended to instance acquisition with multiple reservation
options.

REFERENCES

[1] W. Wang, B. Li, and B. Liang, “To reserve or not to reserve:
Optimal online multi-instance acquisition in IaaS clouds,” in Proc.
USENIX Intl. Conf. on Autonomic Computing (ICAC), 2013.

[2] “Gartner Says Worldwide Cloud Services Market to Surpass
$109 Billion in 2012,” https://www.gartner.com/it/page.jsp?id=
2163616.

[3] “The Future of Cloud Adoption,” http://cloudtimes.org/2012/
07/14/the-future-of-cloud-adoption/.

[4] Amazon EC2 Pricing, http://aws.amazon.com/ec2/pricing/.
[5] ElasticHosts, http://www.elastichosts.com/.
[6] GoGrid Cloud Hosting, http://www.gogrid.com.
[7] Y. Hong, M. Thottethodi, and J. Xue, “Dynamic server pro-

visioning to minimize cost in an IaaS cloud,” in Proc. ACM
SIGMETRICS, 2011.

[8] C. Bodenstein, M. Hedwig, and D. Neumann, “Strategic decision
support for smart-leasing Infrastructure-as-a-Service,” in Proc.
32nd Intl. Conf. on Info. Sys. (ICIS), 2011.

[9] K. Vermeersch, “A broker for cost-efficient qos aware resource
allocation in EC2,” Master’s thesis, University of Antwerp, 2011.

[10] C. Stewart, T. Kelly, and A. Zhang, “Exploiting nonstationarity for
performance prediction,” ACM SIGOPS Operating Systems Review,
vol. 41, no. 3, pp. 31–44, 2007.

[11] R. Singh, U. Sharma, E. Cecchet, and P. Shenoy, “Autonomic mix-
aware provisioning for non-stationary data center workloads,” in
Proc. IEEE/ACM Intl. Conf. on Autonomic Computing (ICAC), 2010.

[12] AWS Case studies, http://aws.amazon.com/solutions/case-
studies/.

[13] “Cloudability,” http://cloudability.com.
[14] “Cloudyn,” http://www.cloudyn.com.
[15] “Cloud Express by Apptio,” https://www.cloudexpress.com.
[16] W. Powell, Approximate Dynamic Programming: Solving the curses

of dimensionality. John Wiley and Sons, 2011.
[17] “Google Cluster-Usage Traces,” http://code.google.com/p/

googleclusterdata/.
[18] “Amazon ElastiCache,” http://cloudability.com.
[19] A. Borodin and R. El-Yaniv, Online Computation and Competitive

Analysis. Cambridge University Press, 1998.
[20] R. Fleischer, “On the Bahncard problem,” Theoretical Computer

Science, vol. 268, no. 1, pp. 161–174, 2001.
[21] A. Karlin, C. Kenyon, and D. Randall, “Dynamic TCP acknowl-

edgment and other stories about e/(e-1),” Algorithmica, vol. 36,
no. 3, pp. 209–224, 2003.

[22] A. Karlin, M. Manasse, L. McGeoch, and S. Owicki, “Competitive
randomized algorithms for nonuniform problems,” Algorithmica,
vol. 11, no. 6, pp. 542–571, 1994.

14

[23] T. Lu, M. Chen, and L. L. Andrew, “Simple and effective dynamic
provisioning for power-proportional data centers,” IEEE Trans.
Parallel Distrib. Syst., vol. 24, no. 6, pp. 1611–1171, 2013.

[24] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource
provisioning cost in cloud computing,” IEEE Trans. Services Com-
put., vol. 5, no. 2, pp. 164–177, 2012.

[25] W. Wang, D. Niu, B. Li, and B. Liang, “Dynamic cloud resource
reservation via cloud brokerage,” in Proc. IEEE ICDCS, 2013.

[26] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao,
“Energy-aware server provisioning and load dispatching for
connection-intensive internet services,” in Proc. USENIX NSDI,
2008.

[27] B. Guenter, N. Jain, and C. Williams, “Managing cost, perfor-
mance, and reliability tradeoffs for energy-aware server provi-
sioning,” in Proc. IEEE INFOCOM, 2011.

[28] Í. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Torres, and R. Bian-
chini, “Greenhadoop: leveraging green energy in data-processing
frameworks,” in Proc. ACM EuroSys, 2012.

[29] G. Box, G. Jenkins, and G. Reinsel, Time Series Analysis: Forecasting
and Control. Prentice Hall, 1994.

[30] T. Bollerslev, “Generalized autoregressive conditional het-
eroskedasticity,” Journal of Econometrics, vol. 31, no. 3, pp. 307–327,
1986.

[31] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal, “Dynamic pro-
visioning of multi-tier internet applications,” in Proc. IEEE/ACM
Intl. Conf. on Autonomic Computing (ICAC), 2005.

[32] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Capacity
management and demand prediction for next generation data
centers,” in Proc. IEEE Intl. Conf. on Web Services (ICWS), 2007.

[33] A. Khanafer, M. Kodialam, and K. P. N. Puttaswamy, “The
constrained ski-rental problem and its application to online cloud
cost optimization,” in Proc. IEEE INFOCOM, 2013.

[34] H. Zhang, B. Li, H. Jiang, F. Liu, A. V. Vasilakos, and J. Liu, “A
framework for truthful online auctions in cloud computing with
heterogeneous user demands,” in Proc. of IEEE INFOCOM, 2013.

[35] Z. Lotker, B. Patt-Shamir, D. Rawitz, S. Albers, and P. Weil, “Rent,
lease or buy: Randomized algorithms for multislope ski rental,”
in Proc. Symp. on Theoretical Aspects of Computer Science (STAC),
2008.

Wei Wang received the B.Engr. and M.A.Sc.
degrees from the Department of Electrical Engi-
neering, Shanghai Jiao Tong University, in 2007
and 2010. He is currently a Ph.D. candidate
in the Department of Electrical and Computer
Engineering at the University of Toronto. His
general research interests cover the broad area
of distributed system, with special emphasis on
cloud computing, data analytic systems, and
computer networks. He is also interested in
problems at the intersection of cloud computing

and economics.

Ben Liang received honors-simultaneous B.Sc.
(valedictorian) and M.Sc. degrees in Electri-
cal Engineering from Polytechnic University in
Brooklyn, New York, in 1997 and the Ph.D.
degree in Electrical Engineering with Computer
Science minor from Cornell University in Ithaca,
New York, in 2001. In the 2001 - 2002 academic
year, he was a visiting lecturer and post-doctoral
research associate at Cornell University. He
joined the Department of Electrical and Com-
puter Engineering at the University of Toronto in

2002, where he is now a Professor. His current research interests are in
mobile communications and networked systems. He is an editor for the
IEEE Transactions on Wireless Communications and an associate editor
for the Wiley Security and Communication Networks journal, in addition
to regularly serving on the organizational or technical committee of a
number of conferences. He is a senior member of IEEE and a member
of ACM and Tau Beta Pi.

Baochun Li received the B.Engr. degree from
the Department of Computer Science and Tech-
nology, Tsinghua University, China, in 1995 and
the M.S. and Ph.D. degrees from the Depart-
ment of Computer Science, University of Illinois
at Urbana-Champaign, Urbana, in 1997 and
2000. Since 2000, he has been with the Depart-
ment of Electrical and Computer Engineering at
the University of Toronto, where he is currently a
Professor. He holds the Nortel Networks Junior
Chair in Network Architecture and Services from

October 2003 to June 2005, and the Bell Canada Endowed Chair
in Computer Engineering since August 2005. His research interests
include large-scale multimedia systems, cloud computing, peer-to-peer
networks, applications of network coding, and wireless networks. Dr.
Li was the recipient of the IEEE Communications Society Leonard G.
Abraham Award in the Field of Communications Systems in 2000. In
2009, he was a recipient of the Multimedia Communications Best Paper
Award from the IEEE Communications Society, and a recipient of the
University of Toronto McLean Award. He is a member of ACM and a
Fellow of IEEE.

15

Time

D
e
m
a
n
d

1 1 1 1 1 2
2 2

2
2

k k
kk
k

...

1 2 3 4 5 6 7 tk...

Fig. 11. A reservation can be pictorially represented as
a reservation strip. For example, reservation 2 is repre-
sented as (2, 2, 2, 1, 1) with t2 = 3.

APPENDIX A
PROOF OF LEMMA 2
We first present a general description for a reserved
instance, based on which we reveal the connections
between reservations in Aβ and OPT.

Suppose an algorithm reserves n instances 1, 2, . . . , n
at time t1 ≤ t2 ≤ · · · ≤ tn, respectively. Also suppose
at time t, the active reservations are i, i + 1, . . . , j. Let
demand dt be divided into levels, with level 1 being the
bottom. Without loss of generality, we can serve demand
at level 1 with reservation i, and level 2 with i+1, and so
on. This gives us a way to describe the use of a reserved
instance to serve demands. Specifically, the reservation k
is active from tk to tk+τ−1 and is described as a τ -tuple
(lktk , l

k
tk+1, . . . , l

k
tk+τ−1), where lkt is the demand level that

k will serve at time t = tk, . . . , tk + τ − 1. Such a tuple
can be pictorially represented as a reservation strip and is
depicted in Fig. 11.

We next define a decision strip for every reserved
instance in Aβ and will show its connections to the reser-
vation strips in OPT. Suppose an instance is reserved at
time t in Aβ , leading xi’s to update in line 5 and 6 of
Algorithm 1. We refer to the bottom figure of Fig. 3 and
define the decision strip for this reservation as the region
between the original x curve (the solid line) and the
newly updated one (the dotted line). Fig. 12 plots the re-
sult, where the shaded area is derived from the top figure
of Fig. 3. Such a decision strip captures critical informa-
tion of a reserved instance in Aβ . As shown in Fig. 12, the
first τ times of the strip, referred to as the pre-reservation
part, reveal the reason that causes this reservation: serv-
ing the shaded area on demand incurs more costs than
the break-even point β. The last τ times are exactly the
reservation strip of this reserved instance in Aβ , telling
how it will be used to serve demands. We therefore
denote a decision strip of a reservation k as a (2τ − 1)-
tuple lk = (lktk−τ+1, . . . , l

k
tk
, . . . , lktk+τ−1), where lkt is the

demand level of strip k at time t = tk−τ+1, . . . , tk+τ−1.
The pre-reservation part is (lktk−τ+1, . . . , l

k
tk

), while the
reservation strip is (lktk , . . . , l

k
tk+τ−1).

We now show the relationship between decision strips
of Aβ and reservation strips of OPT. Given the demand
sequence, Algorithm Aβ makes nβ reservations, each
corresponding to a decision strip. OPT reserves nOPT

instances, each represented as a reservation strip. We say
a decision strip of Aβ intersects a reservation strip of OPT
if the two strips share a common area when depicted.
The following lemma establishes their connections.

tt- +1τ Time

D
e
m
a
n
d

t+ -1τ

Pre-reservation

Reservation

Fig. 12. Illustration of a decision strip for a reserved
instance in Fig. 3.

Lemma 4: A decision strip of Aβ intersects at least a
reservation strip of OPT.

Proof: We prove by contradiction. Suppose there exists
a decision strip of Aβ that intersects no reservation strip
of OPT. In this case, the demand in the pre-reservation
part (the shaded area in Fig. 12) are served on demand in
OPT, incurring a cost more than the break-even point (by
the definition of Aβ). This implies that the cost of OPT
can be further lowered by serving these pre-reservation
demands (the shaded area) with a reserved instance,
contradicting the definition of OPT.

Corollary 1: Any two decision strips of Aβ intersect
at least two reservation strips of OPT, one for each.

Proof: We prove by contradiction. Suppose there exist
two decision strips of Aβ , one corresponding to reser-
vation i made at time ti and another to reservation j
made at tj , i < j, that intersect only one reservation
strip of OPT. (By Lemma 4, any two decision strips
must intersect at least one reservation strip of OPT.) By
the analyses of Lemma 4, the reservation strip of OPT
intersects the pre-reservation parts of both decision strip
i and j. It suffices to consider the following two cases.

Case 1: Strip i and j do not overlap in time, i.e.,
ti + τ − 1 < tj − τ + 1. As shown in Fig. 13a, having a
reservation strip of OPT intersecting the pre-reservation
parts of both i and j requires a reservation period that
is longer than τ , which is impossible.

Case 2: Strip i and j overlap in time. In this case, the
reservation strip of OPT only intersects strip i. To see
this, we refer to Fig. 13b. Because i < j, strip i is depicted
below j, i.e., lit < ljt for all t in the overlap. Suppose
the reservation strip of OPT intersects decision strip j at
time t. Clearly, t must be in the overlap and lit < ljt . This
implies that at time t in OPT, OPT serves the demand at
a lower level lit by an on-demand instance while serving
a higher level ljt via a reservation, which contradicts the
definition of the reservation strip.

With Lemma 4 and Corollary 1, we see that the nβ
decision strips of Aβ intersect at least nβ reservation
strips of OPT, indicating that nβ ≤ nOPT.

APPENDIX B
PROOF SKETCH OF LEMMA 3
Statement 1: Following the notations used in the proof of
Proposition 1, let S be the total costs of demands when
priced at the on-demand rate, and Od(Az) be the on-

16

Time

......

......Strip j

Strip i

τ τ

(a) Strip i and j do not overlap in time.

Time

......

......Strip j

Strip i

τ

(b) Strip i and j overlap in time.

Fig. 13. Two cases of strip i and j. They either overlap in
time or not.

demand costs incurred by algorithm Az . It is easy to see{
CAz = nz + (1− α)Od(Az) + αS;
COPT = nOPT + (1− α)Od(OPT) + αS.

(31)

Plugging (31) into (23), we see that it is equivalent to
proving

Od(Az) ≤ Od(OPT) + znOPT −Dz . (32)

Denote by Od(Az\OPT) :=
∑T
t=1(oz,t − o∗t)+p the on-

demand costs incurred by Az that are not incurred by
OPT. With similar arguments as we made for (12), we
see Od(Az\OPT) ≤ znOPT. We therefore derive

Od(Az) = Od(OPT) + Od(Az\OPT)−Dz

≤ Od(OPT) + znOPT −Dz ,

which is exactly (32).
Statement 2: For any given demands {dt}, let L(n, z)

be the minimum, over all purchase decisions D = {rt, ot}
with n reserved instances, of the on-demand cost that has
been incurred in D but has not been incurred in Az , i.e.,

L(n, z) := inf{rt,ot}
∑T
t=1(ot − oz,t)+p

s.t.
∑T
t=1 rt = n,

ot +
∑t
i=t−τ+1 ri ≥ dt,

ot, rt ∈ {0, 1, 2, . . . }, t = 1, . . . , T .

(33)

We show that for any u > v ≥ z,

L(nu, z) ≥ (v − z)(nv − nu) + L(nv, z) . (34)

To see this, let Du = {ru,t, ou,t} be the purchase decision
that leads to L(nu, z) and define decision strips for Av
and reservation strips for Du similarly as we did in
Appendix A. With similar arguments of Corollary 1, we
see that a reservation strip of Du intersects at most one
decision strip of Av . As a result, among all nv decision
strips of Av , there are at least nv − nu ones that do
not intersect any reservation strips of Du. We arbitrarily
choose nv − nu such decision strips and denote their
collections as B. Each of these decision strips contains
a pre-reservation part with an on-demand cost v3, of
which at most z is also incurred on demand in Az (by
definition of Az). As a result, an on-demand cost of at

3. This is true when p� 1.

least (v− z)(nv−nu) is incurred in both Du and Av that
is not incurred in Az , i.e.,

T∑
t=1

(min{ov,t, ou,t} − oz,t)+p ≥ (v − z)(nv − nu) , (35)

where ov,t is the number of on-demand instances
launched by Av at time t. We now reserve a new
instance at the starting time of each decision strip in
B. Adding to the existing reservations made by Du, we
have D′ = Du ∪ B as new reserving decisions with nv
reserved instances (because |B| = nv − nu). Therefore

L(nu, z) = Od(Du\Az)
≥ Od(D′\Az) + (v − z)(nv − nu)

≥ L(nv, z) + (v − z)(nv − nu) , (36)

where the second inequality holds due to the definition
of L(nv, z) and the fact that D′ consists of nv reserved
instances.

The rest of the proof follows the framework of [21].
Taking u = v + dv and integrating from z to w, for any
z < w ≤ β, we have

L(nw, z)− L(nz, z) ≥
∫ w

z

nvdv − (w − z)nw . (37)

Observing that L(nz, z) = 0, and that nv ≤ nw for v > w,
we have

L(nw, z) ≥
∫ β

z

nvdv − (β − z)nw . (38)

Taking nw = nOPT and noting that Dz ≥ L(nOPT, z)
yields the statement.

Statement 3: By (31) and noting that Od(OPT) ≥ Dz ,
we have

COPT ≥ nOPT + αS + (1− α)Dz

≥ nOPT +Dz , (39)

where the second inequality is derived by noting S ≥
Dz . Letting z → 0 and plugging (24) establishes the
statement.

