
APPENDIX A
ANALYZING District-D WITH UNIT-DEMAND
BUYERS

In this section, we extend Myerson’s revenue characteriza-
tion theorem to double auctions and show that Algorithm 2
is bid monotonic while Algorithm 4 returns the critical
submission for every winning seller. We start by proving
Lemma 2.

Proof to Lemma 2: We use the following
notation for convenience. Given v, let va

−m =
(a1, . . . , am−1, am+1, . . . , aM , b1, . . . , bN ) be the vector
where the mth ask is removed. Similarly, let vb

−n be the
vector where the nth bid is removed. Then we have

Ev[γ(v)] = Ev

[

∑

n

cn(v)−
∑

m

pm(v)

]

(12)

=
∑

n

Evb
−n

Ebn [cn(v)]−
∑

m

Eva
−m

Eam
[pm(v)] .

Now consider Eam
[pm(v)]. It has been shown in [22]

and [12] that, when va
−m is fixed, a truthful mechanismM

always offers a take-it-or-leave-it payment5, say p, for the
seller m . That is, the seller m wins the auction if and only
if its submitted ask does not exceed p. Therefore,

Eam
[pm(v)] = p · F s

m(p)

=

∫ p

0

(

z +
F s
m(z)

fsm(z)

)

· fsm(z)dz

= Eam
[ψm(am) · ym(v)] , (13)

where the second equality can be verified by performing
integration by parts on the right hand side.

Similar argument also applies to buyers. When va
−m is

given, the truthful M induces a take-it-or-leave-it price
p for buyer n, who wins when bidding higher than p.
Therefore,

Ebn [cn(v)] = p · (1− F b
n(p))

=

∫ ∞

p

(

z −
1− F b

n(z)

f bn(z)

)

· f bn(z)dz

= Ebn [φn(bn) · xn(v)] . (14)

Substituting (13) and (14) back to (12), we have

Ev[γ(v)] = Ev

[

∑

n

φn(bn)xn(v)−
∑

m

ψm(am)ym(v)

]

.

We now show that Algorithm 2 is bid monotonic by
proving Proposition 5.

Proof to Proposition 5: We prove the buyer’s case by
contradiction. Suppose by submitting bn (Bid 1), n wins
in the kth iteration of Algorithm 2, while by submitting
b′n > bn (Bid 2), n loses.

For notational convenience, for Bid 2, denote the other
buyers’ bids by b′j = bj , j 6= n. Let ∆φj = φj(b

′
j)− φj(bj).

5. It can be proved that this payment relies on M and v
a

−m
, but is

independent of am.

We see that ∆φj = 0 for all j 6= n while ∆φn ≥ 0. By (8),
we have

∆i,j(T , ai, b
′
j)−∆i,j(T , ai, bj) = ∆φj . (15)

Let (Tl, γl) and (T ′
l , γ′l) be the vectors containing the

transactions and total revenue after the lth iteration of
Algorithm 2 with Bid 1 and Bid 2, respectively. Since buyer
n does not win in the first k − 1 iterations in either case,
Tl = T ′

l , γl = γ′l , l = 0, . . . , k − 1. Now for any feasible
transaction pair (i, j) in the kth iteration with Bid 2, its
marginal revenue is

∆i,j(T
′
k−1, ai, b

′
j) = ∆i,j(Tk−1, ai, b

′
j)

= ∆i,j(Tk−1, ai, bj) + ∆φj , (16)

where the second equality holds because of (15).

For Bid 1, suppose n trades with m in the kth iteration.
Then, (m,n) is of the maximum marginal revenue and
maintains the budget balance, i.e.,

∆m,n(Tk−1, am, bn) = max
i∈S,j∈B

∆i,j(Tk−1, ai, bj), (17)

γk−1 +∆m,n(Tk−1, am, bn) ≥ 0 . (18)

Now inspect the marginal revenue of the same transac-
tion pair (m,n) in the kth round with Bid 2. By (16), we
have:

∆m,n(T
′
k−1, am, b

′
n) = ∆m,n(Tk−1, am, bn) + ∆φn (19)

= max
i,j

∆i,j(Tk−1, ai, bj) + ∆φn

= max
i,j

∆i,j(T
′
k−1, ai, b

′
j) . (20)

Here, the the third equality is derived from (16).

Besides, based on (18) and (19), we see that

γk−1 +∆m,n(T
′
k−1, am, b

′
n) ≥ 0 . (21)

Thus, we conclude that (m,n) should also be selected
in the kth iteration in Bid 2, because it generates the
maximum marginal revenue and maintains budget balance.
This contradicts the assumption that n loses with Bid 2.

With a similar argument, we see that the statement also
holds for the seller’s case.

We finally prove that Algorithm 4 returns the critical
submission for every winning seller.

Proof of Proposition 7: We first show that m wins by
asking for lower than pm. It suffices to consider two cases
below:

Case 1: pm = al = al(j) for some l = 1, . . . , k and some
j ∈ B. By asking for am < pm, the worst case for m is
that it loses in the first l − 1 rounds, but in the lth round,
we have ∆m,j(Tl−1, am, bj) ≥ ∆m,j(Tl−1, a

l
(j), bj) =

∆il,jl(Tl−1, ail , bjl), which implies that assigning (m, jl)
would generate more marginal revenue than assigning
(il, jl). Noticing that (il, jl) is already of the maximum
marginal revenue in the lth round when m is absent, we
know that m will be selected and trade with buyer j when
it joins the auction.

Case 2: pm = ak+1 = ak+1
(j) for some j ∈ B. In this case,



we have ∆m,j(Tk, am, bj) ≥ ∆m,j(Tk, a
l
(j), bj) = −γ, which

implies that adding the transaction (m, j) does not incur
budget deficit. Therefore, m wins and trades with buyer j.

We next show that m loses by asking for more
than pm. First we see m loses in the first k rounds.
For any l = 1, . . . , k and any j ∈ B, transac-
tion (m, j) is not the most profitable and will not
be selected: ∆m,j(Tl−1, am, bj) ≤ ∆m,j(Tl−1, pm, bj) ≤
∆m,j(Tl−1, a

l
(j), bj) = ∆il,jl(Tl−1, ail , bjl). Moreover, even

after the first k rounds, m cannot be selected to
trade with any buyer j ∈ B. Otherwise, the budget
deficit arises: ∆m,j(Tk, am, bj) ≤ ∆m,j(Tk, a

k+1, bj) ≤
∆m,j(Tl−1, a

k+1
(j) , bj) = −γ.

APPENDIX B
ANALYZING EXTENDED District-D WITH MULTI-
DEMAND BUYERS

In this section, we analyze the economic properties and
computational complexity of the extended District-D with
multi-demand buyers.

B.1 Economic Properties

For clarity, we present a complete winner determination
algorithm described in Sec. 6.1.3 in Algorithm 7.

Algorithm 7 Extended District-D Winner Determination

1. Initialization: γ ← 0, T ← ∅, and stop ← false.
2. while stop = false do

3. ∆S,n ← MaxMarginalRev(T )
4. if γ +∆S,n ≥ 0 then

5. γ ← γ +∆S,n

6. Add (S, n) to T .
7. else

8. stop ← true
9. end if

10. end while

11. return T

It is easy to see that the extension above is budget
balanced, as stated below.

Proposition 8: Extended District-D is ex ante budget bal-
anced.

Proof: Given conflict graph G, for all asks a and all bids
b, Algorithm 7 ensures that γ ≥ 0. Therefore Ev,G[γ] =
Ev,G[

∑

n∈Wb
rnφn(bn) −

∑

m∈Ws
ψm(am)] ≥ 0, where Wb

and Ws are sets of winning buyers and winning sellers,
respectively.

Besides, the winner determination is also bid monotonic.
The proof is similar to Proposition 5.

Proposition 9: Extended District-D is bid monotonic.

Proof: We prove the buyer’s case by contradiction. Sup-
pose by submitting bn (Bid 1), n wins in the kth iteration of
Algorithm 7, while by submitting b′n > bn (Bid 2), n loses.

For notational convenience, for Bid 2, denote the other
buyers’ bids by b′j = bj , j 6= n. Also let ∆φj = φj(b

′
j) −

φj(bj). We see that ∆φj = 0 for all j 6= n while ∆φn ≥ 0.
By (11), we have

∆S,j(T , b
′
j)−∆S,j(T , bj) = ∆φj . (22)

Let (Tl, γl) and (T ′
l , γ′l) be the vectors containing the

transactions and total revenue after the lth iteration of
Algorithm 7 with Bid 1 and Bid 2, respectively. Since
buyer n does not win in the first k − 1 iterations in either
case, Tl = T ′

l , γl = γ′l , l = 0, . . . , k − 1. Now for any
feasible transactions (S, j) in the kth iteration with Bid 2,
its marginal revenue is

∆S,j(T
′
k−1, b

′
j) = ∆S,j(Tk−1, b

′
j)

= ∆S,j(Tk−1, bj) + ∆φj , (23)

where the second equality holds because of (22).

For Bid 1, suppose n trades with sellers S∗ in the
kth iteration. Then, (S∗, n) is of the maximum marginal
revenue and maintains the budget balance, i.e.,

∆S∗,n(Tk−1, bn) = max
S∈S,j∈B

∆S,j(Tk−1, bj), (24)

γk−1 +∆S∗,n(Tk−1, bn) ≥ 0 . (25)

Now inspect the marginal revenue of the same transac-
tions (S∗, n) in the kth round with Bid 2. By (23), we have:

∆S∗,n(T
′
k−1, b

′
n) = ∆S∗,n(Tk−1, bn) + ∆φn (26)

= max
S∈S,j∈B

∆S,j(Tk−1, bj) + ∆φn

= max
S∈S,j∈B

∆S,j(T
′
k−1, b

′
j) . (27)

Here, the third equality is derived from (23).

Besides, based on (25) and (26), we see that

γk−1 +∆S∗,n(T
′
k−1, b

′
n) ≥ 0 . (28)

Thus, we conclude that (S∗, n) should also be selected
in the kth iteration in Bid 2, because it generates the
maximum marginal revenue and maintains budget balance.
This contradicts the assumption that n loses with Bid 2.

With a similar argument, we see that the statement also
holds for the seller’s case.

Next we show that the extended buyer pricing charges
a critical bid to every winning buyer.

Proposition 10: For every winning buyer n, Algorithm 5
returns its critical bid cn.

Proof: We first prove that n wins by bidding higher
than cn, i.e., bn > cn. It suffices to consider two cases:

Case 1: cn is finalized in the first k loops, i.e., cn =
bl = bl(S) for some l ≤ k and S ⊂ S. For n bidding

bn > cn = bl(S), the worst case is that it loses in the

first l − 1 rounds. But in the lth round, ∆S,n(Tl−1, bn) >
∆S,n(Tl−1, b

l
(S)) = ∆Sl,jl(Tl−1, bjl), where the first inequal-

ity holds due to the increasing φn(·) and (11). This implies
that making the transactions (S, n) would generate more
marginal revenue than selecting (Sl, jl). Since (Sl, jl) is
already the most profitable transactions when n is absent,
we conclude that (S, n) maximizes the marginal revenue.
Therefore, n wins by being selected to trade with a set of



sellers S.
Case 2: cn = bk+1 = bk+1

(S) for some S ⊂ S. For n

bidding bn > cn = bk+1
(S) , the worst case is that it loses

in the first k rounds. However, n can still trade with
sellers S after the first k rounds, with the marginal revenue
∆S,n(Tk, bn) > ∆S,n(Tk, b

k+1
(S) ) = −γ. Therefore, adding

transactions (S, n) to the auction results makes the total
revenue remain positive, i.e., ∆S,n(Tk, bn) + γ > 0. Based
on the winner determination algorithm (Algorithm 7), n
wins and trades with sellers S.

Next, if n bids less than cn (i.e., bn < cn), then it
loses in the first k rounds. For any l = 1, . . . , k and
any set of sellers S ⊂ S, we have ∆S,n(Tl−1, bn) <
∆S,n(Tl−1, cn) ≤ ∆S,n(Tl−1, b

l) ≤ ∆S,n(Tl−1, b
l
(S)) =

∆Sl,jl(Tl−1, bjl), where the third inequality holds because
of line 4. This essentially indicates that buyer n loses in
the first k rounds as any transactions involving it does not
generate the optimal marginal revenue.

Moreover, even if bk+1 <∞ after k rounds, n loses and
cannot trade with any set of sellers S ⊂ S. Otherwise, the
total revenue would become negative: ∆S,n(Tk, bn) + γ <
∆S,n(Tk, b

k+1) + γ ≤ ∆S,n(Tk, b
k+1
(S) ) + γ = 0.

Also, the extended District-D pays critical submissions to
every winning seller. Before we present the formal proof,
we need the following technical lemma.

Lemma 3: Given a transaction list T , for any seller m ∈ S

and buyer j ∈ B, there exists a set of sellers S∗ such that
S∗ solves the following equation

max
S∈S,|S|=rj ,m∈S

∆S,j(T ) (29)

and is independent of m’s ask am and j’s bid bj .
Proof: By (11), we have

∆S,j(T ) = rjφj(bj)− ψm(am)Im/∈T s −
∑

i6=m,i∈S

ψi(ai)Ii/∈T s

= rjφj(bj)− ψm(am)Im/∈T s −
∑

i6=m,i∈S−T s

ψi(ai) .

(30)

Therefore, maximizing ∆S,j(T ) is equivalent to minimizing
∑

i6=m,i∈S−T s ψi(ai). To achieve this objective, we need the
following two steps. First, buyer j has to trade with as
many sellers in T s as possible, because trading with those
sellers does not incur additional costs (i.e., ψi(ai)Ii/∈T s =
0), generating more marginal revenue to the auctioneer.
Second, if j has to trade with those sellers not in T s, the
selected sellers should be those who asks for the least price
for their channels.

Given T , let Sj be the set of tradable sellers of buyer
j. That is, for every seller i ∈ Sj , transaction (i, j) is
feasible given the already made transactions T . Algorithm 8
constructs the optimal sellers S∗ by formalizing the afore-
mentioned two steps, from which we see that S∗ does not
depend on the specific submissions of seller m and buyer
j.

Lemma 3 simplifies the computation of al(j) and ak+1
(j) in

line 4 and line 8 of Algorithm 7, respectively. Since both m
and j are given, the auctioneer first runs Algorithm 8 to

Algorithm 8 Construct S∗

1. X ← Sj ∩ T s.
2. if |X| ≥ rj − 1 then

3. Y ← an arbitrary subset of X with rj − 1 sellers
4. S∗ ← Y ∪ {m}
5. else

6. Z ← Sj −X
7. Y ← a set of rj − |X| − 1 sellers in Z with the least

asks
8. S∗ ← X ∪ Y ∪ {m}
9. end if

10. return S∗

calculate the corresponding S∗. It then solves the equation
∆S∗,j(Tl−1, a

l
(j)) = ∆Sl,jl(Tl−1) to obtain al(j).

We are now ready to prove that Algorithm 6 returns a
critical submission of seller m.

Proposition 11: For every winning seller m, Algorithm 6
returns its critical ask pm.

Proof: We first show that m wins by asking for lower
than pm. It suffices to consider two cases below:

Case 1: pm = al = al(j) for some l = 1, . . . , k and some
j ∈ B. With m and j as input, we run Algorithm 8 to
calculate S∗. We then have

∆S∗,j(Tl−1, a
l
(j)) = max

S⊂S,|S|=rj ,m∈S
{∆S,j(Tl−1, a

l
(j))}

= ∆Sl,jl(Tl−1) . (31)

Now by asking for am < pm, the worst case for m is that
it loses in the first l − 1 rounds, but in the lth round, we
have

∆S∗,j(Tl−1, am) ≥ ∆S∗,j(Tl−1, a
l
(j))

= ∆Sl,jl(Tl−1) ,

where the second equality is derived from (31). Given that
(Sl, jl) is already of the maximum marginal revenue in
the lth round when m is absent, we know that facilitating
(S∗, jl) generates the highest marginal revenue when m
joins the auction. Based on the winner determination (Al-
gorithm 7), (S∗, jl) would be selected and m wins because
m ∈ S∗.

Case 2: pm = ak+1 = ak+1
(j) for some j ∈ B. With m and j

as input, we run Algorithm 8 to calculate the corresponding
S∗. We have

∆S∗,j(Tk, a
k+1
(j) ) = max

S⊂S,|S|=rj ,m∈S
{∆S,j(Tk, a

k+1
(j) )}

= −γ .

Now by asking for am < pm, the worst case for m is
that it loses in the first k rounds. But after that, we have
∆S∗,j(Tk, am) ≥ ∆S∗,j(Tk, a

l
(j)) = −γ, which implies that

adding transactions (S∗, j) does not incur budget deficit.
Based on the winner determination (Algorithm 7), m wins
and trades with buyer j as m ∈ S∗.

We next show that m loses by asking for more than pm.
First we see m loses in the first k rounds. For any l =



1, . . . , k, any j ∈ B, and any S ⊂ S with |S| = rj and
m ∈ S, transactions (S, j) will not be selected as they are
less profitable than transanctions (Sl, jl):

∆S,j(Tl−1, am) < ∆S,j(Tl−1, pm)

≤ ∆S,j(Tl−1, a
l
(j))

≤ ∆S∗,j(Tl−1, a
l
(j))

= ∆Sl,jl(Tl−1) ,

where S∗ is calculated by Algorithm 8 with input m and
j.

Moreover, even after the first k rounds, m cannot be
selected to trade with any leftover buyer j ∈ B. Otherwise,
the budget deficit arises. To see this, consider any feasible
transanctions (S, j) where S ⊂ S, |S| = rj and m ∈ S. We
have

∆S,j(Tk, am) < ∆S,j(Tk, a
k+1)

≤ ∆S,j(Tk, a
k+1
(j) )

≤ ∆S∗,j(Tk, a
k+1
(j) )

= −γ , (32)

where S∗ is calculated by Algorithm 8 with input m and j.
Therefore, (S, j) will not be selected. We see that m loses
in the end.

B.2 Computational Complexity

This section analyzes the computational complexity of
the extended District-D. For the winner determination
(Algorithm 7), we see that one buyer is assigned to
trade with a set of sellers in each round of the loop,
and the loop runs at most N rounds for N buy-
ers. The complexity of each round is dominated by
MaxMarginalRev(T ). Note that MaxMarginalRev(T ) =
maxn∈B,S⊂S,|S|=rn ∆S,n(T ) = maxn∈B ∆S∗,n(T ), where
∆S∗,n(T ) = maxS⊂S,|S|=rn ∆S,n(T ). Following the idea
of Algorithm 8, one can easily see that S∗ can be similarly
calculated by Algorithm 9, which takes O(M2) time. There-
fore, MaxMarginalRev(T ) can be finalized within O(M2N)
time. We hence need O(M2N2) time for Algorithm 7.
Note that Algorithm 7 also dominates the complexity of
Algorithm 5 and 6, where the former runs N times while
the later runs M times to calculate prices for all winners.
We conclude that the extended District-D completes within
O(M2N3 +M3N2) time.

APPENDIX C
PROFIT-DRIVEN AUCTIONEER WITH MULTI-
DEMAND BUYERS

C.1 The Complete Design

This section presents a complete design of District-D for a
profit-driven auctioneer with multi-demand buyers. Algo-
rithm 10, 11, and 12 illustrate the winner determination,
buyer pricing, and seller pricing, respectively.

Algorithm 9 Construct S∗

1. X ← Sn ∩ T s.
2. if |X| ≥ rn then

3. S∗ ← an arbitrary subset of X with rn sellers
4. else

5. Z ← Sn −X
6. Y ← a set of rn−|X| sellers in Z with the least asks

7. S∗ ← X ∪ Y
8. end if

9. return S∗

Algorithm 10 Profit-Driven District-D Winner Determina-
tion

1. Initialization: γ ← 0, T ← ∅, and stop ← false.
2. while stop = false do

3. ∆S,n ← MaxMarginalRev(T )
4. if ∆S,n ≥ 0 then

5. γ ← γ +∆S,n

6. Add (S, n) to T .
7. else

8. stop ← true
9. end if

10. end while

11. return T

C.2 Economic Properties

This section shows that the profit-driven District-D is truth-
ful and individually rational, which is equivalent to prov-
ing that Algorithm 10 is bid monotonic while Algorithm 11
and 12 return critical submissions for winning buyers and
winning sellers, respectively. The proofs are similar to those
in Proposition 9, 10, and 11.

Proposition 12: Profit-driven District-D is bid monotonic.

Proof: We prove the buyer’s case by contradiction. Sup-
pose by submitting bn (Bid 1), n wins in the kth iteration
of Algorithm 10, while by submitting b′n > bn (Bid 2), n
loses.

Algorithm 11 Profit-Driven District-D Pricing for a Winning
Buyer n

1. Remove n and run Algorithm 10 to obtain the transac-
tion list T = {(S1, j1), . . . , (Sk, jk)}.

2. cn ←∞, and γ ← 0
3. for l = 1 to k do

4. bl ← minS⊂S,|S|=rn b
l
(S), where bl(S) solves the equa-

tion ∆S,n(Tl−1, b
l
(S)) = ∆Sl,jl(Tl−1, bjl).

5. cn ← min{cn, b
l}

6. γ ← γ +∆Sl,jl(Tl−1, bjl)
7. end for

8. bk+1 ← minS⊂S,|S|=rn b
k+1
(S) , where bk+1

(S) solves the

equation ∆S,n(Tk, b
k+1
(S) ) = 0

9. cn ← min{cn, b
k+1}

10. return cn



Algorithm 12 Profit-Driven District-D Pricing for a Winning
Seller m

1. Remove m and run Algorithm 10 to obtain the trans-
action list T = {(S1, j1), . . . , (Sk, jk)}.

2. pm ← −∞, and γ ← 0
3. for l = 1 to k do

4. al ← maxj∈B a
l
(j), where al(j) solves the equation

maxS⊂S,|S|=rj ,m∈S{∆S,j(Tl−1, a
l
(j))} = ∆Sl,jl(Tl−1)

5. pm ← max{pm, a
l}

6. γ ← γ +∆Sl,jl(Tl−1)
7. end for

8. ak+1 ← maxj∈B a
k+1
(j) , where ak+1

(j) solves the equation

maxS⊂S,|S|=rj ,m∈S{∆S,j(Tk, a
k+1
(j) )} = 0

9. pm ← max{pm, a
k+1}

10. return pm

For notational convenience, for Bid 2, denote the other
buyers’ bids by b′j = bj , j 6= n. Also let ∆φj = φj(b

′
j) −

φj(bj). We see that ∆φj = 0 for all j 6= n while ∆φn ≥ 0.

Let (Tl, γl) and (T ′
l , γ′l) be the vectors containing the

transactions and total revenue after the lth iteration of
Algorithm 10 with Bid 1 and Bid 2, respectively. Since
buyer n does not win in the first k − 1 iterations in either
case, Tl = T ′

l , γl = γ′l , l = 0, . . . , k − 1. Now for any
feasible transactions (S, j) in the kth iteration with Bid 2,
its marginal revenue is

∆S,j(T
′
k−1, b

′
j) = ∆S,j(Tk−1, b

′
j)

= ∆S,j(Tk−1, bj) + ∆φj . (33)

For Bid 1, suppose n trades with sellers S∗ in the kth
iteration. Then, (S∗, n) is profitable and of the maximum
marginal revenue, i.e.,

∆S∗,n(Tk−1, bn) = max
S∈S,j∈B

∆S,j(Tk−1, bj), (34)

∆S∗,n(Tk−1, bn) ≥ 0 . (35)

Now inspect the marginal revenue of the same transac-
tions (S∗, n) in the kth round with Bid 2. By (33), we have:

∆S∗,n(T
′
k−1, b

′
n) = ∆S∗,n(Tk−1, bn) + ∆φn (36)

= max
S∈S,j∈B

∆S,j(Tk−1, bj) + ∆φn

= max
S∈S,j∈B

∆S,j(T
′
k−1, b

′
j) . (37)

Here, the third equality is derived from (33).

Besides, based on (35) and (36), we see that

∆S∗,n(T
′
k−1, b

′
n) ≥ 0 . (38)

Thus, we conclude that (S∗, n) should also be selected in
the kth iteration in Bid 2, because it generates the maximum
positive marginal revenue and remains profitable. This
contradicts the assumption that n loses with Bid 2.

With a similar argument, we see that the statement also
holds for the seller’s case.

Proposition 13: For every winning buyer n, Algorithm 11

returns its critical bid cn.

Proof: We first prove that n wins by bidding higher
than cn, i.e., bn > cn. It suffices to consider two cases:

Case 1: cn is finalized in the first k loops. In this case, the
proof is exactly the same as the analysis of Proposition 10
(see Case 1 in the proof).

Case 2: cn = bk+1 = bk+1
(S) for some S ⊂ S. For n

bidding bn > cn = bk+1
(S) , the worst case is that it loses

in the first k rounds. However, n can still trade with
sellers S after the first k rounds, with the marginal revenue
∆S,n(Tk, bn) > ∆S,n(Tk, b

k+1
(S) ) = 0, indicating that transac-

tions (S, n) generates nonnegative marginal revenue to the
auctioneer. Based on the winner determination algorithm
(Algorithm 10), n wins and trades with sellers S.

Next, if n bids less than cn (i.e., bn < cn), then it loses
in the first k rounds. The proof is exactly the same as the
analysis of Proposition 10.

Moreover, even if bk+1 <∞ after k rounds, n loses and
cannot trade with any set of sellers S ⊂ S, as transac-
tions (S, n) generates negative revenue to the auctioneer:
∆S,n(Tk, bn) < ∆S,n(Tk, b

k+1) ≤ ∆S,n(Tk, b
k+1
(S) ) = 0.

Proposition 14: For every winning seller m, Algorithm 12
returns its critical ask pm.

Proof: We first show that m wins by asking for lower
than pm. It suffices to consider two cases below:

Case 1: pm = al = al(j) for some l = 1, . . . , k and some
j ∈ B. In this case, the proof is exactly the same as the
analysis of Proposition 11 (see Case 1 in the proof).

Case 2: pm = ak+1 = ak+1
(j) for some j ∈ B. With m and j

as input, we run Algorithm 8 to calculate the corresponding
S∗. We have

∆S∗,j(Tk, a
k+1
(j) ) = max

S⊂S,|S|=rj ,m∈S
{∆S,j(Tk, a

k+1
(j) )}

= 0 .

Now by asking for am < pm, the worst case for m is
that it loses in the first k rounds. But after that, we have
∆S∗,j(Tk, am) ≥ ∆S∗,j(Tk, a

l
(j)) = 0, which implies that

adding transactions (S∗, j) does not incur budget deficit.
Based on the winner determination (Algorithm 10), m wins
and trades with buyer j as m ∈ S∗.

We next show that m loses by asking for more than pm.
First we see m loses in the first k rounds. The proof is
exactly the same the analysis of Proposition 11.

Moreover, even after the first k rounds, m cannot be
selected to trade with any leftover buyer j ∈ B, as the
trade generates negative profit to the auctioneer. To see
this, consider any feasible transactions (S, j) where S ⊂ S,
|S| = rj and m ∈ S. We have

∆S,j(Tk, am) < ∆S,j(Tk, a
k+1)

≤ ∆S,j(Tk, a
k+1
(j) )

≤ ∆S∗,j(Tk, a
k+1
(j) )

= 0 , (39)

where S∗ is calculated by Algorithm 8 with input m and j.
Therefore, (S, j) will not be selected. We see that m loses



in the end.
Based on Proposition 12, 13, and 14, we have
Theorem 6: Profit-driven District-D designed for multi-

demand buyers is truthful and individually rational.


