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Abstract—Cloud service pricing plays a pivotal role towards
the success of cloud computing. Existing pricing schemes, how-
ever, either provide no service guarantees (e.g., Spot Instances in
Amazon EC2), or use static on-demand pricing in which the price
cannot respond quickly to market dynamics (e.g., On-demand
Instances in Amazon EC2). To overcome these problems, in this
paper we design dynamic auctions where computing instances
are periodically auctioned off to accommodate user demands
over time. We address the two main challenges of revenue
maximization and auction truthfulness. Our design encompasses
a capacity allocation scheme, which determines the amount of
instances to be auctioned off in each period, as well as the
underlying auction mechanisms, based on dynamic payment
schemes corresponding to the proposed capacity allocations over
time. We show that our design is two-dimensionally truthful,
and it is asymptotically optimal when demand is sufficiently
high. Furthermore, by identifying certain optimization structures,
we substantially reduce the computational complexity of our
solution. Extensive simulations show that our design closely
tracks market changes, while generating higher revenues than
on-demand pricing.

I. INTRODUCTION

To ensure business success, cloud vendors will need to
determine how IaaS instances can be optimally priced to cloud
users, so that the revenue is maximized. State-of-the-practice
pricing includes three types of models, i.e., reservation, on-
demand, and bid-based pricing. Reservation pricing charges
users a one-time payment to reserve an instance for months
or years [1], [2]. While reservation pricing provides long-term
risk-free income to cloud vendors, its upfront payment makes
it less attractive to users with flexible workloads. On-demand
pricing [1], [2], [3], on the other hand, sets a fixed hourly
rate and charges users for the incurred instance-hours. Despite
its popularity among cloud users, the static hourly rate fails
to capture market dynamics, which may result in a revenue
loss for a cloud vendor. To compensate for such deficiency,
Amazon has recently introduced Spot Instances, a bid-based
pricing model [1]. With Spot Instances, users periodically
submit bids to Amazon, who in turn posts a spot price for each
period. Those users who bid higher than the spot price get their
requests fulfilled in that period. This bid-based pricing offers
quick response to market dynamics, yet there is no service
guarantee in Amazon’s design: whenever the spot price goes
above the bid, the allocated instances are terminated.

Due to these drawbacks in existing pricing alternatives, we
are motivated to design a new pricing strategy that com-
bines the advantages of on-demand and bid-based pricing:
it should quickly respond to market dynamics, while still

offering service guarantees to cloud users. In this paper, we
present our design of dynamic auctions in cloud markets,
where a sequence of auctions are periodically carried out
to accommodate demands. Users bid for instances in these
auctions, and every winning user is charged a constant usage
price produced by the auction mechanism for each instance.
Requested instances are then held by winning users at the same
price until the users terminate them.

Dynamic auctions are essentially a price discovery process,
and are more agile responding to market dynamics. Unlike
EC2 Spot Instances, our design offers guaranteed services:
A winning user enjoys a constant price over time, and its
instances will never be terminated against its will. In contrast,
spot users bear the risk of price fluctuations and having all
running instances terminated whenever the spot price rises
above their bids.

Towards an optimal design of dynamic auctions in cloud
pricing, there arise two new challenges that have never been
addressed. First, to maximize the revenue, the underlying auc-
tions need to be jointly designed over different time periods.
With guaranteed services, an instance, once auctioned off, is
no longer available for future requests until it is terminated by
its user. Joint auction designs allow the vendor to optimally
reserve some available capacity for future high-bid requests
while rejecting current low bidders. Second, it is important
to ensure that the joint design is truthful in two-dimensional
domains — each user truthfully reports her bid price and the
number of requested instances. Being truthful eliminates the
user’s incentive for strategic behaviours that may harm the
auction integrity, and offers accurate demand information that
could be utilized to predict market dynamics in the future.

To address the two challenges above, we present a near-
optimal capacity allocation scheme to determine how many
instances are auctioned off in each period. We jointly design
the underlying auction mechanisms and specify dynamic truth-
ful payment schemes based on the proposed capacity alloca-
tions over time. Theoretical analyses show that the proposed
dynamic auctions asymptotically approach the optimal revenue
as the market demand becomes sufficiently high, which is
naturally the case in cloud environments. For low-demand
cases, we conduct extensive simulation studies and show that
our design still offers a close approximation, with revenue loss
less than 2%. Simulation results also indicate that our design
outperforms the regular on-demand pricing, generating a 30%

revenue gain.



II. MODEL FORMULATION

Suppose a cloud vendor has allocated a fixed capacity C
to host a type of virtual instances (e.g., EC2 small instances).
That is, at any given time, the allocated computing resources
are capable of hosting up to C instances. A sequence of
auctions, indexed by t = 1, 2, . . . , are periodically carried out
(usually hourly, as in EC2 Spot Instances) to accommodate
user requests separated in time.

A. User Model

In period t, N
t

exogenous users arrive, bidding for vir-
tual instances. We consider impatient cloud users that are
interruption-intolerant. That is, users submit requests whenever
their demands arise, and cannot be interrupted once their
instances are held1. Each user i, 1  i  N

t

, wishes to
rent nt

i

virtual instances and has a maximum affordable price
vt
i

, known as the reservation value, for renting one instance
in each period. When the context is clear, we will drop the
time index from the notation, e.g., nt

i

is written as n
i

. The
values of n

i

and v
i

are private information known only to
user i, and are distributed with joint density function f

n,v

on
the support [1, n̄] ⇥ [0, v̄]. Denote by F

n,v

the corresponding
CDF of f

n,v

. Both F
n,v

and f
n,v

can be learned based on
historical information, provided that the number of bidders
is sufficiently large [4], [5], [6], which is naturally true for
cloud markets. To join the auction, each user i submits a two-
dimensional bid (r

i

, b
i

), where r
i

is the number of requested
instances, and b

i

is the maximum price that a user wants to
pay. Unless explicitly stated, all prices referred to in this paper
are calculated per instance per period. Note that a user may
misreport by submitting b

i

6= v
i

(or r
i

6= n
i

) if it believes that
this is more beneficial.

At the beginning of each period t, the vendor carries out an
auction mechanism M

t

and clears the market by deciding
which user’s request is fulfilled and under what price. No
partial fulfilment is accepted. A user is either rejected or has
all requested r

i

instances being held, which is the case in
prevalent pricing schemes [1]. Let p

i

be the price charged
to user i. Once p

i

is set, it remains constant for user i
until all requested r

i

instances are terminated by this user2.
Specifically, let l

i,j

be the running time of instance j held for
user i. The utility for a winning user i is defined by

u
i

(r
i

, b
i

) =

8
><

>:

niX

j=1

(v
i

� p
i

)l
i,j

�
riX

j=ni+1

p
i

l
i,j

, if r
i

� n
i

;

0 , o.w.
(1)

For those rejected users, both the charged price and the
utility are zero. Note that in our model, we assume that a

1This is a valid assumption for many cloud applications where instantaneous
computations are required, e.g., website hosting, online video, and online
commerce. For users that are patient and interruption-tolerant, EC2 Spot
Instances constitute the best design in terms of revenue maximization, as
users do not care about service guarantees in this case.

2Here, the price is only effective for held instances. If more instances are
required, a user has to rebid for additional ones.

user derives no positive utility from overbooked resources.
However, the overbooking strategy may result in a lower price
p
i

, and increases the overall utility u
i

. Therefore, if a rational
user chooses to overbook, all overbooked instances would be
released in the next time period to avoid unnecessary costs,
i.e., l

i,j

= 1 for all j = n
i

+ 1, . . . , r
i

.
The problem of every user i is to find an optimal submission

(r⇤
i

, b⇤
i

) such that its utility is maximized.

B. The Problem of Dynamic Auction Design

For the cloud vendor, suppose at time t, the available re-
sources are sufficient to host C

t

virtual instances. In addition to
knowing the exact number of requests in the current time slot t,
we assume that the vendor may predict the demand in the near
future: it knows the distributions of N

⌧

, the number of users in
⌧ , for ⌧  T = t+w, with w being some prediction window.
Note that w = 0 if the prediction is unavailable. Denote by
V ⇤
⌧

(C
⌧

) the maximum expected total revenue collected from
⌧ to T . Let �Mt(Q) be the overall revenue of auctioning
Q instances to accommodate the demand in time t, using
mechanism M

t

, i.e., �Mt(Q) =

P
Nt

i=1

P
ri

j=1 pili,j . The cloud
vendor’s problem is to jointly design a sequence of auction
mechanisms {M

t

} to maximize its expected revenue collected
over the prediction window. We formulate this problem in the
following recursive form:

V ⇤
t

(C
t

) = E


max

Mt,0QtCt

�
�Mt(Qt

) + V ⇤
t+1(Ct+1)

 �
, (2)

where Q
t

is the capacity allocated to accommodate the current
demand. The boundary conditions are V ⇤

T+1(c) = 0 for all
c = 0, 1, . . . , C.

We also require the designed mechanism {M
t

} to pos-
sess some salient economic properties, notably truthfulness.
That is, for every user i, no matter how the others bid,
submitting the true reservation value and the needed num-
ber of virtual instances always maximizes its utility, i.e.,
u
i

(n
i

, v
i

) � u
i

(r
i

, b
i

) for all (r
i

, b
i

). Being truthful eliminates
the incentive for any strategic behaviours that may harm the
auction integrity, and it provides accurate market information
that could be utilized to predict future demands.

However, without any a priori information regarding the
usage patterns, i.e., the distribution of l

i,j

, it would be almost
impossible for a vendor to solve (2). To make the analysis
tractable, we assume the instance running time is i.i.d. expo-
nential3. In discrete settings, this implies that l

i,j

follows the
geometric distribution with p.m.f. P (l

i,j

= k) = q(1� q)k�1,
where q is the probability that a currently running instance will
be terminated by its user in the next period. Though this is a
simple model to allow tractable analysis, it has been shown to
give interesting insights into practical systems. We also note
that such an exponential usage pattern is widely adopted in
the literature [7], [8], [9].

3Without this assumption, the expectation operation in (2) would be taken
over the entire historical and future states of the system, and little insight can
be drawn from such a model.



We now analyze the value of C
t+1, the available capacity

in t + 1, in (2). After Q
t

instances are allocated at time t,
there are C�C

t

+Q
t

instances being held. Suppose that right
before t+1, K of them are terminated by their users. Then at
the beginning of t+1, there are C

t+1 = C
t

�Q
t

+K instances
being available for new requests. Since each hosted instance
has a probability q to be terminated in the next period, we
know K follows binomial distribution, i.e., K ⇠ Bin(C �
C

t

+Q
t

, q). We re-write (2) as

V ⇤
t

(C
t

) = E


max

Mt,0QtCt

�
�Mt(Qt

)

+E
K

⇥
V ⇤
t+1(Ct

�Q
t

+K)

⇤ �
. (3)

From the above, we see that an optimal design of dynamic
auctions decides not only the underlying mechanisms {M

t

},
but also the number of instances auctioned off in each period
(i.e., {Q

t

}). Note that the two decisions are closely coupled
with each other. On the one hand, the instance allocation
scheme is determined based on the specified underlying mech-
anisms. On the other hand, to ensure that the allocation scheme
is not affected by strategic user behaviours, the underlying
mechanisms should also take into account how the instances
are allocated over time.

III. DYNAMIC AUCTION DESIGN

This section presents our design of dynamic auction. We
first characterize the revenue of truthful auctions, which allows
us to focus on instance allocations first, i.e., to find the optimal
Q

t

. After that, we present a truthful design for the underlying
mechanisms, M

t

, where the payment schemes depend on the
specified allocations.

A. Characterizing Revenue for Truthful Mechanisms
By the Revelation Principle [10], truthful auctions are

revenue maximizing among all auctions. Hence, it suffices to
focus only on truthful mechanisms when revenue is of interest.
Subsequently, our discussion on capacity allocation focuses on
truthful mechanisms. We therefore do not differentiate between
the submitted bid (r

i

, b
i

) and the true request (n
i

, v
i

). We
derive the auction revenue �Mt as follows.

E [�Mt ] = E

2

4
NtX

i=1

niX

j=1

p
i

l
i,j

3

5

=

1

q
E

2

4
NtX

i=1

niX

j=1

p
i

3

5
=

1

q
E [�Mt ] , (4)

where the second equality holds because E[l
i,j

] = 1/q, and
�Mt is the instantaneous revenue collected at time t.

Let n = (n
i

) and v = (v
i

). It has been shown in [11] that if
partial fulfilment is not allowed, then the revenue of a truthful
auction is characterized by

En,v [�Mt ] = En,v

"
NtX

i=1

n
i

�(v
i

)x
i

(n,v)

#
, (5)
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k
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(b) Partial fulfillment occurs.

Fig. 1. The value of �̄t(Qt) in two cases, shown as the shaded area. (a) The
allocated capacity Qt is sufficient to accommodate all profitable requests. (b)
The allocated capacity Qt cannot accommodate all profitable requests. This
illustration shows the case where the last request is partially fulfilled.

where �(v
i

) = v
i

� 1�Fv(vi|ni)
fv(vi|ni)

, and x
i

(n,v) takes the value
0 or 1 depending on whether user i loses or wins, respectively.

For mathematical convenience, we take a standard regularity
assumption [12], that �(·) is increasing. This is not a restrictive
assumption as it generally holds for most distributions [10].

By (5), since partial fulfilment is not supported in the cloud
market [1], the expected revenue of an auction mechanism
only depends on who is to win (i.e., x

i

’s), not what they
pay (i.e., p

i

). Therefore, it is equivalent to write �Mt =P
Nt

i=1 ni

�(v
i

)x
i

, and designing an optimal M
t

is equivalent
to finding a set of x

i

’s to maximize �Mt , under the constraint
that the accommodated requests do not exceed the allocated
capacity. Formally, an optimal design solves the following 0-1
knapsack problem:

max

xi2{0,1}
P

Nt

i=1ni

�(v
i

)x
i

s.t.
P

Nt

i=1 ni

x
i

 Q
t

,
(6)

where Q
t

is the capacity allocated to period t.

B. Dynamic Capacity Allocation

We are now ready to derive the optimal dynamic ca-
pacity allocations. Let �⇤

t

(Q
t

) be the instantaneous revenue
obtained from the optimal mechanism. That is, �⇤

t

(Q
t

) =P
Nt

i=1 ni

�(v
i

)x⇤
i

where x⇤
i

solves the knapsack problem (6).
The optimal dynamic auction design problem (3) can now be
equivalently written as

V ⇤
t

(C
t

) = E


max

0QtCt

�
1

q
�⇤
t

(Q
t

) + µ⇤
t+1(Ct

�Q
t

)

 �
, (7)

where µ⇤
t+1(c) = E

K

⇥
V ⇤
t+1(c + K)

⇤
, with K ⇠ Bin(C �

c, q). The boundary conditions are V ⇤
T+1(c) = 0 for all c =

0, 1, . . . , C.
Unfortunately, optimally solving (7) is computationally pro-

hibitive, as calculating the optimal revenue �⇤
t

(Q
t

) requires to
solve the problem (6), which is NP-Hard. As such, we turn to
an approximate solution.

Instead of calculating �⇤
t

, we consider its upper bound
�̄
t

obtained by solving a linear programming relaxation
of (6) where fractional x

i

’s are allowed, i.e., �̄
t

(Q
t

) =

max

xi2[0,1]
P

Nt

i=1 ni

�(v
i

)x
i

, with
P

Nt

i=1 ni

x
i

 Q
t

. The
value of �̄

t

can be easily calculated as follows. Let bidders
be sorted in a decreasing order of their bidding prices, i.e.,
v1 � v2 � · · · � v

Nt . From the regularity assumption,
this implies �(v1) � · · · � �(v

Nt). To compute �̄
t

(Q
t

), we



sequentially accommodate bidders’ requests to accumulate the
revenue, from the top valued (bidder 1) to the bottom, until
all capacity is allocated. Note that those negatively valued
requests (i.e., �(v

i

)  0) will always be rejected. Figs. 1a
and 1b illustrate this process, where the shaded areas represent
the value of �̄

t

(Q
t

). One can view the upper bound �̄
t

as the
revenue obtained as if partial fulfilment were accepted.

The vendor now solves an approximate problem by replac-
ing �⇤

t

with �̄
t

in (7):

¯V
t

(C
t

) = E


max

0QtCt

�
1

q
�̄
t

(Q
t

) + µ̄
t+1(Ct

�Q
t

)

 �
. (8)

where µ̄
t+1(c) = E

K

⇥
¯V
t+1(c+K)

⇤
, K ⇠ Bin(C�c, q). The

boundary conditions are ¯V
T+1(c) = 0 for all c = 1, 2, . . . , C.

Let Q⇤
t

(C
t

) be the optimal solution to (8). The vendor then
auctions off Q⇤

t

(C
t

) instances to accommodate the current
demand.

We choose the above approximation for two reasons. First,
it closely approaches the optimal revenue. Second, it can
be efficiently calculated by identifying some optimization
structures in (8). We postpone the revenue analysis until later
in Sec. IV and focus on the structural and computational
discussions in the following.

C. Structural Results and Capacity Allocation Rules

Directly computing capacity allocations in (8) is highly inef-
ficient, especially for large vendors with enormous capacities.
Since no closed-form solution exists, a standard method is to
apply numerical dynamic programming [13], with the overall
computational complexity of O(C3

). However, in practice,
a large vendor is usually capable of holding hundreds of
thousands of instances of a certain type simultaneously. In this
case, direct computation requires a huge amount of operations,
which is prohibitive to complete within a short time.

Instead of direct computation, we identify the optimization
structure of (8) and derive a simple capacity allocation rule
that reduces the complexity to O(C2

). Let rf(n) = f(n) �
f(n � 1) be the backward difference of a discrete function
f(n). We have the following optimization structure. The proof
is given in our technical report [14].

Proposition 1: For every realization n and v at time ⌧ =

t, t+ 1, . . . , T , the optimal allocation is characterized by

Q⇤
⌧

(c) =

8
>><

>>:

max

1nc

⇢
n :

1

q
r�̄

⌧

(n) > rµ̄
⌧+1(c� n+ 1)

�
,

if 1
q

r�̄
⌧

(1) > rµ̄
⌧+1(c);

0, o.w.
(9)

Furthermore, Q⇤
⌧

(c+ 1)� 1  Q⇤
⌧

(c)  Q⇤
⌧

(c+ 1).
The second statement of Proposition 1 plays a key role in

reducing the complexity to O(C2
). It shows that previously

calculated results can be leveraged as follows. For each period
⌧ , ¯V

⌧

(c) is sequentially computed as C
⌧

= C,C � 1, . . . , 0.
Though the first computation (C

⌧

= C) requires searching
the entire solution space (i.e., Q

⌧

= 0, 1, . . . , C), subsequent
computations are much more efficient. By Proposition 1, once

Q⇤
⌧

(C
⌧

+1) is calculated, one can quickly determine Q⇤
⌧

(C
⌧

)

by choosing between two optimal candidates, Q⇤
⌧

(C
⌧

) =

Q⇤
⌧

(C
⌧

+ 1) and Q⇤
⌧

(C
⌧

) = Q⇤
⌧

(C
⌧

+ 1) � 1, and the one
resulting in higher revenue ¯V

⌧

(C
⌧

) is the optimal solution.
The entire computation only takes O(C2

) operations. We
note that the complexity reduction from O(C3

) of applying
standard dynamic programming is significant, especially for
large vendors capable of holding hundreds of thousands of
instances.

D. Designing the Underlying Auction Mechanisms

With the capacity allocation rule derived above, we are now
ready to present the underlying auction mechanisms. We have
to ensure that the designed mechanism eliminates the incentive
for any strategic behaviours by the cloud users.

One might think that the underlying auction design is
trivial once the capacity allocation Q⇤

t

has been decided: just
run existing single-round truthful mechanisms [15] to auction
off Q⇤

t

instances in each period t. However, in the single-
round auction [15], [10], [12], [16], the number of auctioned
items is given and is fixed, while in our problem, users can
manipulate the allocation Q⇤

t

by submitting different bids. For
this reason, directly applying single-period truthful auctions
fails to eliminate strategic behaviours in our problem.

To overcome the challenges above, we propose Algorithm 1
as the adopted mechanism, with C

t

and Q⇤
t

being the number
of available instances and the allocated capacity, respectively.
In this algorithm, we artificially insert a virtual bidder into
the market, who requests an infinite amount of instances at
a price ��1

(0). Introducing a virtual bidder has no effect
on the auction result, since its request is never accepted,
but it simplifies the revenue expression. Recall that bidders
are assumed to be sorted in a decreasing order of prices,
b1 � · · · � b

Nt+1. (There are N
t

+ 1 bidders including the
virtual one.) For two bidders bidding the same price, the one
requesting fewer instances ranks higher than the other.

Algorithm 1 The Truthful Mechanism M
t

with Q⇤
t

Instances
Allocated

1. Let k be the index such that
P

k

j=1 rj  Q⇤
t

<
P

k+1
j=1 rj

2. Let s =
P

k

j=1 rj
3. Let ˆb

s

= ��1
(qrµ̄

t+1(Ct

� s+ 1))

4. Top k bidders win, each paying p = max{b
k+1,ˆbs}

Algorithm 1 adopts a similar design as the (k + 1)-price
auction (i.e., top k bidders win each paying the bid of bidder
k + 1), but with different payment rules. The basic idea is to
charge every winner the least bid required to win. That is,
bidder i wins if (1) it is among the top k bidders (b

i

> b
k+1)

and (2) all top k bids are high enough so that the allocated
capacity is sufficient to accommodate all their requests. Note
that if b

k

> ˆb
s

, then by Proposition 1, at least s =

P
k

j=1 rj
instances are auctioned off: 1

q

r�̄
t

(s) = 1
q

�(b
k

) > 1
q

�(ˆb
s

) =

rµ̄
t+1(Ct

� s+ 1).



It is worth mentioning that the (k+1)-price auction is un-
truthful for multi-demand bidders [15]. However, we show that
our design completely eliminates the bidder’s incentive for
misreporting even in two-dimensional domains (v

i

and n
i

).
The proof is given in [14].

Proposition 2: Algorithm 1 is two-dimensionally truthful,
i.e., u

i

(n
i

, v
i

) � u
i

(r
i

, b
i

) for all (r
i

, b
i

), i = 1, 2, . . . , N
t

.
Corollary 1: The designed dynamic auctions {M

t

} are
truthful in two-dimensional domains.

IV. EVALUATIONS

In this section we seek to answer the following question:
How well does our design approximate the optimal solution
(7)? We evaluate the revenue performance of our design
in two scenarios: (1) When market demand is high, we
give theoretical analysis and show that the approximation is
asymptotically optimal. (2) When market demand is low, we
conduct extensive simulations and show that our design still
closely approximates the optimal one.

A. Asymptotic Optimality for High-Demand Markets
We analyze the revenue performance of our design in a

high-demand market, over the long run. Let �
t

(·) be the in-
stantaneous revenue of Algorithm 1. Let V

t

(·) be the expected
revenue collected within the prediction window by running
Algorithm 1, i.e.,

V
t

(C
t

) = E


1

q
�
t

(Q⇤
t

) +E
K

[V
t+1(Ct

�Q⇤
t

+K)]

�
, (10)

where Q⇤
t

is obtained by solving (8) and K ⇠ Bin(C �
C

t

+Q⇤
t

, q). The boundary conditions are V
T+1(c) = 0 for all

c = 0, 1, . . . , C. The following lemma conditionally bounds
the revenue of our design. Its proof is given in [14].

Lemma 1: If N
⌧

! 1 for all ⌧ = t, . . . , T , then the
approximate solution is ↵

↵�1 -competitive for any finite ↵ > 1.
Specifically, for all C

⌧

, the following inequalities hold w.p.1:

V
⌧

(C
⌧

) � (1� 1

↵
)

¯V
⌧

(C
⌧

) � (1� 1

↵
)V ⇤

⌧

(C
⌧

) . (11)

With Lemma 1, we see that our design is asymptotically
optimal as the market demand is sufficiently high, which is
naturally the case for large vendors.

Proposition 3: The expected revenue V
t

! V ⇤
t

w.p.1 if the
user number N

⌧

! 1 for all ⌧ = t, . . . , T .

B. Revenue Performance in Low-Demand Markets
Even for a market where the demand is not high, our design

still offers a close approximation to the optimal solution. We
verify this point via extensive simulations.

We adopt a typical scenario for a medium-sized vendor with
capacity C = 10

4. That is, up to 10

4 virtual instances of
a certain type can be held at one time. User demands are
separated to 300 time periods. In each period t, there are
N

t

users bidding for instances, each requesting n
i

instances
with price v

i

. Let N
t

be uniformly distributed in (1, 300), i.e.,
N

t

⇠ U(1, 300). Let n
i

⇠ U(1, 100) and v
i

⇠ U(0.05, 0.1).
Note that Proposition 3 is no longer effective in this setting,

since the market demand N
t

is not sufficiently high. We enable
short predictions and set the prediction window w = 5. (Other
values of w lead to similar results.) Each result below has been
averaged over 1000 runs.

Revenue vs. Time. We first evaluate the proposed dynamic
auction by comparing its revenue against on-demand pricing
with a fixed hourly rate (referred to as the fixed-pricing) in
a long time span (from months to years). Since it is almost
impossible to predict long-term future demands, a widely
adopted method is to set a price p⇤ such that p⇤(1� F

v

(p⇤))
is maximized [6]. Note that F

v

is the distribution of a user’s
reservation value, and 1�F

v

(p) is the probability that a user
can afford the price p. In this sense, p⇤ maximizes the expected
revenue collected from a single user. We adopt such fixed
pricing as a benchmark in our evaluation.

Fig. 2a illustrates the revenue performance of both dynamic
auction and fixed pricing, where q is set to 0.5. The revenue
is observed to be linearly increasing over time. We see that
the designed mechanism accurately captures market dynamics
and outperforms fixed pricing, leading to a 30% revenue
improvement. Also note that our design closely approaches
the theoretical revenue upper bound, with a performance gap
less than 2%.

Revenue vs. Capacity. We next verify the structural results
obtained in Sec. III-B by investigating the relationship be-
tween the revenue and the capacity. In particular, we conduct
simulations in three different market conditions by choosing
q = 0.2, 0.5, and 0.8, representing low, medium, and high
market dynamics, respectively. For each q, we start from a
low capacity setting with C = 1000, and increase it until
C = 10000. For each capacity setting, we calculate the overall
revenue collected in all 300 time periods. Fig. 2b illustrates the
results, where the solid line represents the theoretical revenue
upper bound obtained by solving (8), and the dotted line stands
for the actual revenue obtained from dynamic auctions. Again,
we see that the approximation design is almost optimal: in all
cases, the revenue gap between the upper bound and our design
is less than 2%. Also, the gap is found decreasing when more
capacity is available in the datacenter. These results suggest
that our design is preferred by large vendors.

Capacity vs. Price Dynamics. Our final observation is
that the price becomes more dynamic as capacity increases.
Fig. 2c shows the CDF of the determined prices in each time
period in all 1000 runs during the simulation, where q is set to
0.5. We see that with the same demand level, a low capacity
(C = 1000) intensifies the bid competition among users. In
this case, only those who bid very high win and have their
requests fulfilled. As a result, over 80% of the prices are
higher than 0.09. The situation changes when more capacity is
available. As supplies become more abundant, the intensity of
bid competition decreases, resulting in more dynamic clearing
prices (see C = 5000 and C = 10000).

V. RELATED WORK

Many recent works in the literature advocate the use of
auction-based mechanisms to allocate cloud resources to max-
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Fig. 2. Performance evaluation of dynamic auctions (DA) and the revenue upper bounds (UB). All results are averaged over 1000 runs.

imize the revenue of a cloud vendor. Zaman and Grosu [17]
propose two combinatorial auctions to allocate VMs to users.
Zhang et al. [18] investigate a VM allocation problem for spot
markets by solving a static optimization problem, yet without
considering any strategic behaviours among users. Danak and
Mannor [19] present two auction-based resource allocation
protocols with supply adjustments. Wang et al. [20] also
propose two combinatorial auctions to price cloud resources,
and show that their designs are truthful and collusion-free. All
these works focus on one-time resource allocations and restrict
their discussions in a single auction period. In contrast, we
consider dynamic auctions with emphasis on joint mechanism
design over different time periods.

Dynamic auction design has also been studied in the eco-
nomics literature. For example, Vulcano et al. [21] optimally
design a sequence of periodic auctions to sell a certain
amount of products to unit-demand buyers distributed over
time. However, both optimal and truthful results obtained in
[21] require the unit-demand assumption. Besides, discussions
in [21] are based on the sales market, where products are
sold to customers and are never available to sellers after a
transaction. Other works that focus on revenue maximization
in the sales market include [22], [23]. Unlike existing works,
cloud instances are leased, not sold, to users: after being
terminated by previous users, the instances can be hosted again
to accommodate new requests. In this case, the mechanism
design problem discussed in the sales market is a special case
of the problem investigated in this paper.

VI. CONCLUSIONS

In this paper, we investigate into the problem of efficient
pricing for revenue maximization by cloud service vendors.
We advocate the use of dynamic auctions to quickly adapt
to market changes while offering guaranteed services. We
formulate the optimal design of dynamic auctions as an MDP,
and show its NP-hardness. We turn to an approximate solution
that can be directly computed within O(C3

). By deriving
special optimization structures of the problem, we significantly
reduce the computational complexity to O(C2

). A sequence
of two-dimensionally truthful mechanisms are then jointly de-
signed based on the proposed capacity allocation scheme. The
construction of such mechanisms demonstrates the practical
validity of the proposed revenue model. Theoretical analysis
shows that our design asymptotically approaches the optimal

revenue as the market demand becomes sufficiently high,
which is naturally the case in reality. We show via simulations
that that even for cases where the market demand is not high,
our design still generates near-optimal revenue.

REFERENCES

[1] Amazon EC2 Pricing, http://aws.amazon.com/ec2/pricing/.
[2] GoGrid Cloud Hosting, http://www.gogrid.com.
[3] RackSpace Cloud Hosting, http://www.rackspace.com/cloud.
[4] M. Balcan, A. Blum, J. Hartline, and Y. Mansour, “Mechanism Design

via Machine Learning,” in Proc. 46th IEEE Symposium on Foundations
of Computer Science (FOCS), 2005, pp. 605–614.

[5] V. Vapnik, Statistical Learning Theory. Wiley-Interscience, 1998.
[6] I. Segal, “Optimal Pricing Mechanisms with Unknown Demand,” The

American Economic Review, vol. 93, no. 3, pp. 509–529, 2003.
[7] R. Randhawa and S. Kumar, “Usage restriction and subscription ser-

vices: Operational benefits with rational users,” Manufacturing & Ser-
vice Operations Management, vol. 10, no. 3, pp. 429–447, 2008.

[8] H. Fujiwara and K. Iwama, “Average-case competitive analyses for ski-
rental problems,” Algorithmica, vol. 42, no. 1, pp. 95–107, 2005.

[9] Y. Xu and W. Xu, “Competitive algorithms for online leasing problem
in probabilistic environments,” in Advances in Neural Networks (ISNN),
2004.

[10] R. B. Myerson, “Optimal auction design,” Mathematics of Operations
Research, vol. 6, no. 1, pp. 58–73, 1981.

[11] W. Wang, B. Li, and B. Liang, “Towards optimal capacity segmentation
with hybrid cloud pricing,” in Proc. IEEE ICDCS, 2012.

[12] J. Bulow and J. Roberts, “The simple economics of optimal auctions,”
Journal of Political Economy, vol. 97, no. 5, pp. 1060–1090, 1989.

[13] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley-Interscience, 2005.

[14] W. Wang, B. Liang, and B. Li, “Revenue Maximization with Dynamic
Auctions in Cloud Markets,” University of Toronto, Tech. Rep., 2013.
[Online]. Available: http://iqua.ece.toronto.edu/⇠bli/papers/dyauc.pdf

[15] P. Klemperer, Auctions: Theory and Practice. Princeton University
Press, 2004.

[16] W. Vickrey, “Counterspeculation, auctions, and competitive sealed ten-
ders,” The Journal of Finance, vol. 16, no. 1, pp. 8–37, 1961.

[17] S. Zaman and D. Grosu, “Combinatorial auction-based allocation of
virtual machine instances in clouds,” in Proc. IEEE CloudCom, 2010.
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