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Abstract—Pricing cloud services plays a pivotal role towards
the success of cloud computing. Existing pricing schemes, how-
ever, either provide no service guarantees (e.g., Spot Instances in
Amazon EC2), or use static on-demand pricing in which the price
cannot respond quickly to market dynamics (e.g., On-demand
Instances in Amazon EC2). To overcome these problems, in this
paper we design dynamic auctions where compting instances
are periodically auctioned off to accommodate user demands
over time. We address the two main challenges of revenue
maximization and auction truthfulness. Our design encompasses
a capacity allocation scheme, which determines the amount of
instances to be auctioned off in each period, as well as the
underlying auction mechanisms, based on dynamic payment
schemes corresponding to the proposed capacity allocations over
time. We show that our design is two-dimensionally truthful,
and it is asymptotically optimal when demand is sufficiently
high. Furthermore, by identifying certain optimization structures,
we substantially reduce the computational complexity of our
solution. Extensive simulations show that our design closely
tracks market changes, while generating higher revenues than
on-demand pricing.

I. INTRODUCTION

Infrastructure-as-a-Service (IaaS) clouds revolutionize the
large part of IT industry by commoditising computing in-
stances so that they can be traded and delivered as another
dimension of utility. To ensure business success, a cloud ven-
dor will need to determine how its instances can be optimally
priced to cloud users, so that its revenue is maximized. State-
of-the-practice pricing includes three types of models, i.e., the
reservation, on-demand, and bid-based pricing.

Reservation pricing charges users a one-time payment to
reserve an instance for months or years [1], [2]. While reser-
vation pricing provides long-term risk-free income to cloud
vendors, its upfront payment makes it less attractive to users
with flexible workloads.

On-demand pricing [1], [2], [3], on the other hand, sets a
fixed hourly rate and charges users for the incurred instance-
hours. Despite its popularity among cloud users, the static
hourly rate fails to capture market dynamics, which may result
in a revenue loss for a cloud vendor.

To compensate for such deficiency, Amazon has recently
introduced Spot Instances, a bid-based pricing model [1]. With
Spot Instances, users periodically submit bids to Amazon,
who in turn posts a spot price for each period. Those users
who bid higher than the spot price get their requests fulfilled
in that period. This bid-based pricing offers quick response
to market dynamics, yet there is no service guarantee in

Amazon’s design: whenever the spot price goes above the bid,
the allocated instances are terminated.

Due to these drawbacks in existing pricing alternatives, we
are motivated to design a new pricing strategy that com-
bines the advantages of on-demand and bid-based pricing:
it should quickly respond to market dynamics, while still
offering service guarantees to cloud users. In this paper, we
present our design of dynamic auctions in cloud markets,
where a sequence of auctions are periodically carried out
to accommodate demands. Users bid for instances in these
auctions, and every winning user is charged a constant usage
price produced by the auction mechanism for each instance.
Requested instances are then held by winning users at the same
price until the users terminate them.

Dynamic auctions are essentially a price discovery process,
and are more agile responding to market dynamics. Unlike
EC2 Spot Instances, our design offers guaranteed services:
A winning user enjoys a constant price over time, and its
instances will never be terminated against its will. In contrast,
spot users bear the risk of price fluctuations and having all
running instances terminated whenever the spot price rises
above their bids.

Towards an optimal design of dynamic auctions in cloud
pricing, there arise two new challenges that have never been
addressed. First, to maximize the revenue, the underlying auc-
tions need to be jointly designed over different time periods.
With guaranteed services, an instance, once auctioned off, is
no longer available for future requests until it is terminated by
its user. Joint auction designs allow the vendor to optimally
reserve some available capacity for future high-bid requests
while rejecting current low bidders. Second, it is important
to ensure that the joint design is truthful in two-dimensional
domains — each user truthfully reports her bid price and the
number of requested instances. Being truthful eliminates the
user’s incentive for strategic behaviours that may harm the
auction integrity, and offers accurate demand information that
could be utilized to predict market dynamics in the future.

The proposed auction design addresses the two challenges
above. Its original contributions are two-fold. First, we present
a near-optimal capacity allocation scheme to determine how
many instances are auctioned off in each period under op-
timal auctions. Second, we jointly design the underlying
auction mechanisms and specify dynamic truthful payment
schemes based on the proposed capacity allocations over time.
To accomplish these, we first characterize the revenue of
truthful auctions and model the capacity allocation problem



as a Markov decision process (MDP). We show its NP-
Completeness and present an approximate solution where di-
rect computation requires O(C3) operations, with C being the
vendor’s capacity. We identify special optimization structures
in the problem and reduce the computational complexity to
O(C2). We then design auction mechanisms that are specific
to the time-dependent capacity allocation scheme. We guaran-
tee two-dimensional truthfulness over time, so that each user
truthfully reports her bid price and the number of requested
instances even when they possess the same predictive infor-
mation that the cloud vendor does.

Theoretical analyses show that the proposed dynamic auc-
tions asymptotically approach the optimal revenue as the
market demand becomes sufficiently high, which is naturally
the case in cloud environments. For low-demand cases, we
conduct extensive simulation studies and show that our design
still offers a close approximation, with revenue loss less
than 2%. Simulation results also indicate that our design
outperforms the regular on-demand pricing, generating a 30%
revenue gain.

The remainder of this paper is organized as follows. In
Sec. II, we briefly survey the related work. Our model and
notations are introduced in Sec. III. In Sec. IV, we present our
detailed design of dynamic auctions and prove its truthfulness.
Our design is evaluated in Sec. V, where both theoretical
analysis and extensive simulation studies are given. Sec. VI
concludes the paper.

II. RELATED WORK

Many recent works in the literature advocate the use of
auction-based mechanisms to allocate virtual resources, pri-
marily in grid computing environments, e.g., [4], [5], [6]. The
main focus of these studies is from the user’s perspective,
i.e., how to achieve the allocation fairness and efficiency
via appropriate mechanisms. For auctions designed from the
vendor’s perspective, Zaman and Grosu [7] propose two com-
binatorial auctions to allocate VMs to users. Zhang et al.
[8] investigate a VM allocation problem for spot markets by
solving a static optimization problem, yet without considering
any strategic behaviours among users. Danak and Mannor
[9] present two auction-based resource allocation protocols
with supply adjustments. Wang et al. [10] also propose two
combinatorial auctions to price cloud resources, and show
that their designs are truthful and collusion-free. All these
works focus on one-time resource allocations and restrict their
discussions in a single auction period. In contrast, we consider
dynamic auctions with emphasis on joint mechanism design
over different time periods.

In terms of optimal mechanism designs, classical results
are obtained in a single-round auction with unit-demand
bidders [11], [12], where the well-known Revenue Equivalence
Theorem is given. Other single-round designs, e.g., [13],
[14], though allowing bidding for multiple units, assume one-
dimensional strategies — bidders can only misreport their
prices, while truthfully submit quantities of requested units
— and are not applicable in cloud environments where the

strategies are essentially two-dimensional (i.e., the quantities
can also be misreported).

For multi-round auction designs, Parkes and Singh [15] offer
a general framework based on MDP. However, this work is
substantially different from ours, as its objective is to maxi-
mize the sum utility of bidders (social welfare) instead of the
service vendor’s revenue. Furthermore, the MDP state in this
general model contains the entire history of the system, leading
to a complex formulation with no known solution. Finally,
its payment policies are based on computationally intensive
VCG designs. In terms of revenue maximization, Vulcano
et al. [16] optimally design a sequence of periodic auctions
to sell a certain amount of products to unit-demand buyers
distributed over time. We note that both optimal and truthful
results obtained in [16] require the unit-demand assumption,
and these results no longer extend to multi-demand bidders,
who strategize over both the bid prices and the amount of
requests. Besides, discussions in [16] are based on the sales
market, where products are sold to customers and are never
available to sellers after a transaction. Other works that focus
on revenue maximizations in the sales market include [17],
[18]. In contrast, our discussion allows cloud resources to be
leased, not sold, to users: after being terminated by previous
users, the instances can be hosted again to accommodate new
requests. For these reasons, the mechanism design problem
discussed in the sales market is a special case of the problem
investigated in this paper.

III. MODEL FORMULATION

Suppose a cloud vendor has allocated a fixed capacity C
to host a type of virtual instances (e.g., EC2 small instances).
That is, at any given time, the allocated computing resources
are capable of hosting up to C instances. A sequence of
auctions, indexed by t = 1, 2, . . . , are periodically carried out
(usually hourly, as in EC2 Spot Instances) to accommodate
user requests separated in time.

A. User Model

In period t, Nt exogenous users arrive, bidding for vir-
tual instances. We consider impatient cloud users that are
interruption-intolerant. That is, users submit requests whenever
their demands arise, and cannot be interrupted once their
instances are held1. Each user i, 1 ≤ i ≤ Nt, wishes to
rent nti virtual instances and has a maximum affordable price
vti , known as the reservation value, for renting one instance
in each period. When the context is clear, we will drop the
time index from the notation, e.g., nti is written as ni. The
values of ni and vi are private information known only to
user i, and are distributed with joint density function fn,v on
the support [1, n̄] × [0, v̄]. Denote by Fn,v the corresponding
CDF of fn,v . Both Fn,v and fn,v can be learned based on

1This is a valid assumption for many cloud applications where instantaneous
computations are required, e.g., website hosting, online video, and online
commerce. For users that are patient and interruption-tolerant, EC2 Spot
Instances constitute the best design in terms of revenue maximization, as
users do not care about service guarantees in this case.



historical information, provided that the number of bidders is
sufficiently large [19], [20], [21], which is naturally true for
cloud markets. To join the auction, each user i submits a two-
dimensional bid (ri, bi), where ri is the number of requested
instances, and bi is the maximum price that a user wants to
pay. Unless explicitly stated, all prices referred to in this paper
are calculated per instance per period. Note that a user may
misreport by submitting bi 6= vi (or ri 6= ni) if it believes that
this is more beneficial.

At the beginning of each period t, the vendor carries out an
auction mechanism Mt and clears the market by deciding
which user’s request is fulfilled and under what price. No
partial fulfilment is accepted. A user is either rejected or has
all requested ri instances being held, which is the case in
prevalent pricing schemes [1]. Let pi be the price charged
to user i. Once pi is set, it remains constant for user i
until all requested ri instances are terminated by this user2.
Specifically, let li,j be the running time of instance j held for
user i. The utility for a winning user i is defined by

ui(ri, bi) =


ni∑
j=1

(vi − pi)li,j −
ri∑

j=ni+1

pili,j , if ri ≥ ni;

0 , o.w.
(1)

For those rejected users, both the charged price and the utility
are zero. Note that in our model, we assume that a user derives
no positive utility from the overbooked resources (i.e., instance
j > ni does not generate vi, as shown in the first case of (1)).
However, the overbooking strategy may result in a lower price
pi, and increases the overall utility ui. Therefore, if a rational
user chooses to overbook, all overbooked instances would be
released in the next time period to avoid unnecessary costs,
i.e., li,j = 1 for all j = ni + 1, . . . , ri.

The problem of every user i is to find an optimal submission
(r∗i , b

∗
i ) such that its utility is maximized.

B. The Problem of Dynamic Auction Design

For the cloud vendor, suppose at time t, the available
resources are sufficient to host Ct virtual instances. In addition
to knowing the exact number of requests in the current time
slot t, we assume that the vendor may predict the demand in
the near future: it knows the distributions of Nτ , the number of
users in τ , for τ ≤ T = t+w, with w being some prediction
window. (Refer to [22] for demand prediction issues.) Note
that w = 0 if the prediction is unavailable. Denote by V ∗τ (Cτ )
the maximum expected total revenue collected from τ to T .
Let ΓMt

(Q) be the overall revenue of auctioning Q instances
to accommodate the demand in time t, using mechanism
Mt. To be exact, ΓMt(Q) =

∑Nt

i=1

∑ri
j=1 pili,j . The cloud

vendor’s problem is to jointly design a sequence of auction
mechanisms {Mt} to maximize its expected revenue collected
over the prediction window. We formulate this problem in the

2Here, the price is only effective for held instances. If more instances are
required, a user has to rebid for additional ones.

following recursive form:

V ∗t (Ct) = E

[
max

Mt,0≤Qt≤Ct

{
ΓMt

(Qt) + V ∗t+1(Ct+1)
}]
, (2)

where Qt is the capacity allocated to accommodate the current
demand. The boundary conditions are V ∗T+1(c) = 0 for all
c = 0, 1, . . . , C.

We also require the designed mechanism {Mt} to pos-
sess some salient economic properties, notably truthfulness.
That is, for every user i, no matter how the others bid,
submitting the true reservation value and the needed num-
ber of virtual instances always maximizes its utility, i.e.,
ui(ni, vi) ≥ ui(ri, bi) for all (ri, bi). Being truthful eliminates
the incentive for any strategic behaviours that may harm the
auction integrity, and it provides accurate market information
that could be utilized to predict future demands.

However, without any a priori information regarding the
usage patterns — the distribution of li,j , it would be almost
impossible for a vendor to solve (2). To make the analysis
tractable, we assume the instance running time is i.i.d. expo-
nential3. In discrete settings, this implies that li,j follows the
geometric distribution with p.m.f. P (li,j = k) = q(1− q)k−1,
where q is the probability that a currently running instance will
be terminated by its user in the next period. Though this is a
simple model to allow tractable analysis, it has been shown to
give interesting insights into practical systems. We also note
that such an exponential usage pattern is widely adopted in
the literature [23], [24], [25].

We now analyze the value of Ct+1, the available capacity
in t + 1, in (2). After Qt instances are allocated at time t,
there are C−Ct+Qt instances being held. Suppose that right
before t+1, K of them are terminated by their users. Then at
the beginning of t+1, there are Ct+1 = Ct−Qt+K instances
being available for new requests. Since each hosted instance
has a probability q to be terminated in the next period, we
know K ∼ Bin(C − Ct + Qt, q) with p.m.f. P (K = k) =
B(C − Ct + Qt, k, q), where B(n, k, q) =

(
n
k

)
qk(1 − q)n−k.

We re-write (2) as

V ∗t (Ct) = E

[
max

Mt,0≤Qt≤Ct

{
ΓMt

(Qt)

+ EK
[
V ∗t+1(Ct −Qt +K)

]}]
. (3)

From the above, we see that an optimal design of dynamic
auctions decides not only the underlying mechanisms {Mt},
but also the number of instances auctioned off in each period
(i.e., {Qt}). Note that the two decisions are closely coupled
with each other. On the one hand, the instance allocation
scheme is determined based on the specified underlying mech-
anisms. On the other hand, to ensure that the allocation scheme
is not affected by strategic user behaviours, the underlying
mechanisms should also take into account how the instances
are allocated over time.

3Without this assumption, the expectation operation in (2) would be taken
over the entire historical and future states of the system, and little insight can
be drawn from such a model.



IV. DYNAMIC AUCTION DESIGN

This section presents the design of dynamic auctions. We
first characterize the revenue of truthful auctions, which allows
us to focus on instance allocations first, i.e., to find the optimal
Qt. After that, we present a truthful design for the underlying
mechanisms, Mt, where the payment schemes depend on the
specified allocations.

A. Characterizing Revenue for Truthful Mechanisms

By the Revelation Principle [11], truthful auctions are
revenue maximizing among all auctions. Hence, it suffices to
focus only on truthful mechanisms when revenue is of interest.
Subsequently, our discussion on capacity allocation focuses on
truthful mechanisms. We therefore do not differentiate between
the submitted bid (ri, bi) and the true request (ni, vi). We
derive the auction revenue ΓMt as follows.

E [ΓMt ] = E

 Nt∑
i=1

ni∑
j=1

pili,j


=

1

q
E

 Nt∑
i=1

ni∑
j=1

pi

 =
1

q
E [γMt

] , (4)

where the second equality holds because E[li,j ] = 1/q, and
γMt

is the instantaneous revenue collected in time t.
It has been shown in [26] that if partial fulfilment is not

allowed, then the revenue of a truthful auction is characterized
by the following Lemma 1.

Lemma 1: Let v = (vi) and n = (ni). If partial fulfilment
is not accepted, then for any truthful mechanismMt, we have

En,v [γMt ] = En,v

[
Nt∑
i=1

niφ(vi)xi(n,v)

]
, (5)

where φ(vi) = vi − 1−Fv(vi|ni)
fv(vi|ni)

, and xi(n,v) takes the value
0 or 1 depending on whether user i loses or wins, respectively.

For mathematical convenience, we take a standard regularity
assumption [12], that φ(·) is increasing. This is not a restrictive
assumption as it generally holds for most distributions [11].

By Lemma 1, since partial fulfilment is not supported in
the cloud market [1], the expected revenue of an auction
mechanism only depends on who is to win (i.e., xi’s), not
what they pay (i.e., pi). Therefore, it is equivalent to write
γMt =

∑Nt

i=1 niφ(vi)xi, and designing an optimal Mt is
equivalent to finding a set of xi’s to maximize γMt , under
the constraint that the accommodated requests do not exceed
the allocated capacity. Formally, an optimal design solves the
following 0-1 knapsack problem:

max
xi∈{0,1}

Nt∑
i=1

niφ(vi)xi

s.t.
Nt∑
i=1

nixi ≤ Qt,
(6)

where Qt is the capacity allocated to period t.

Capacity0 Qt

φ(·)
φ(vk)

nk

(a) No partial fulfillment occurs.

Capacity0 Qt

φ(·)
φ(vk)

nk−1

(b) Partial fulfillment occurs.

Fig. 1. The value of γ̄t(Qt) in two cases, shown as the shaded area. (a) The
allocated capacity Qt is sufficient to accommodate all profitable requests. (b)
The allocated capacity Qt cannot accommodate all profitable requests. This
illustration shows the case where the last request is partially fulfilled.

B. Dynamic Capacity Allocation

We are now ready to derive the optimal dynamic ca-
pacity allocations. Let γ∗t (Qt) be the instantaneous revenue
obtained from the optimal mechanism. That is, γ∗t (Qt) =∑Nt

i=1 niφ(vi)x
∗
i where x∗i solves the knapsack problem (6).

The optimal dynamic auction design problem (3) can now be
equivalently written as

V ∗t (Ct) = E

[
max

0≤Qt≤Ct

{1

q
γ∗t (Qt) + µ∗t+1(Ct −Qt)

}]
, (7)

where µ∗t+1(c) = EK
[
V ∗t+1(c + K)

]
, with K ∼ Bin(C −

c, q). The boundary conditions are V ∗T+1(c) = 0 for all c =
0, 1, . . . , C.

Unfortunately, optimally solving (7) is computationally pro-
hibitive, as calculating the optimal revenue γ∗t (Qt) requires to
solve the problem (6), which is NP-Hard. As such, we turn to
an approximate solution.

Instead of calculating γ∗t , we consider its upper bound
γ̄t obtained by solving a linear programming relaxation
of (6) where fractional xi’s are allowed, i.e., γ̄t(Qt) =
maxxi∈[0,1]

∑Nt

i=1 niφ(vi)xi, with
∑Nt

i=1 nixi ≤ Qt. The
value of γ̄t can be easily calculated as follows. Let bidders
are sorted in a decreasing order of their bidding prices, i.e.,
v1 ≥ v2 ≥ · · · ≥ vNt

. From the regularity assumption,
this implies φ(v1) ≥ · · · ≥ φ(vNt). To compute γ̄t(Qt), we
sequentially accommodate bidders’ requests to accumulate the
revenue, from the top valued (bidder 1) to the bottom, until
all capacity is allocated. Note that those negatively valued
requests (i.e., φ(vi) ≤ 0) will always be rejected. Figs. 1a
and 1b illustrate this process, where the shaded areas represent
the value of γ̄t(Qt). One can view the upper bound γ̄t as the
revenue obtained as if partial fulfilment were accepted, i.e.,
the last accommodated request might be partially fulfilled.

The vendor now solves an approximate problem by replac-
ing γ∗t with γ̄t in (7):

V̄t(Ct) = E

[
max

0≤Qt≤Ct

{1

q
γ̄t(Qt) + µ̄t+1(Ct −Qt)

}]
. (8)

where µ̄t+1(c) = EK
[
V̄t+1(c+K)

]
, K ∼ Bin(C−c, q). The

boundary conditions are V̄T+1(c) = 0 for all c = 1, 2, . . . , C.
Let Q∗t (Ct) be the optimal solution to (8). The vendor then
auctions off Q∗t (Ct) instances to accommodate the current
demand.

We choose the above approximation for two reasons. First,
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q
φ(vi)
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∇γ̄t(Qt)

∇µ̄t+1(Ct −Qt + 1)Value

(a) Bidder i bids vi.
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q
φ(bi)

Qt

1

q
∇γ̄t(Qt)

∇µ̄t+1(Ct −Qt + 1)Value

(b) Bidder i bids bi.

Fig. 2. Bidders can manipulate the capacity allocation via strategic bidding.
The dotted curve represents the opportunity cost, while the solid one is the
revenue gain. Bidder i’s bid may affects the bold part of the gain curve. (a)
Q∗

t capacity is auctioned off if bidder i bids vi. (b) Q∗
t + 1 capacity is

auctioned off if bidder i raises its bid.

it closely approaches the optimal revenue. Second, it can
be efficiently calculated by identifying some optimization
structures in (8). We postpone the revenue analysis until later
in Sec. V and focus on the structural and computational
discussions in the following.

C. Structural Results and Capacity Allocation Rules

Directly computing capacity allocations in (8) is highly inef-
ficient, especially for large vendors with enormous capacities.
Since no closed-form solution exists, a standard method is to
apply numerical dynamic programming [27], with the overall
computational complexity of O(C3). However, in practice,
a large vendor is usually capable of holding hundreds of
thousands of instances of a certain type simultaneously. In this
case, direct computation requires a huge amount of operations,
which is prohibitive to complete within a short time.

Instead of direct computation, we identify some optimiza-
tion structure of (8) and derive a simple capacity allocation
rule that significantly reduces the complexity to O(C2).

First, we see that γ̄t(Qt) is concave w.r.t. Qt, as stated in
Lemma 2. We omit the proof here as it is straightforward by
consulting Figs. 1a and 1b.

Lemma 2: Given n and v, γ̄t(·) is increasing and concave
for all t, i.e., ∇γ̄t(c) := γ̄t(c) − γ̄t(c − 1) is positive and
decreasing w.r.t. c.

More importantly, we made the key observation that both
V̄t and µ̄t+1 in (8) are also concave. The proof is given in
Appendix A.

Lemma 3: In (8), for every τ = t, t+ 1, . . . , T , both V̄τ (·)
and µ̄τ+1(·) are increasing and concave.

Such concavities lead to a simple capacity allocation rule.
We refer to the recursive revenue equation (8). Suppose
instances are allocated one by one at time t, with Qt starting
from 0. Whenever an additional instance is allocated, the
revenue marginally increases by 1

q∇γ̄t(Qt) (revenue gain). At
the same time, we suffer a revenue loss ∇µ̄t+1(Ct−Qt + 1),
as the newly allocated instance will be temporarily unavailable
to serve future demands (opportunity cost). By the concavity
results (Lemma 2 and 3), as instance allocation Qt increases,
the revenue gain 1

q∇γ̄t(Qt) decreases while the opportunity
cost ∇µ̄t+1(Ct−Qt+1) increases. To maximize the revenue,
we should stop allocating more instances right before the

opportunity cost exceeds the revenue gain. Fig. 2a illustrates
an example, where the solid curve represents the revenue gain
while the dotted one corresponds to the opportunity cost. We
see that the optimal capacity allocation Q∗t is achieved when
the two curves intersect.

The above allocation rule leads to the following optimiza-
tion structure of recursive equation (8). The proof is given in
Appendix A.

Proposition 1: For every realization n and v at time τ =
t, t+ 1, . . . , T . The optimal allocation is characterized by

Q∗τ (c) =


max
1≤n≤c

{
n :

1

q
∇γ̄τ (n) > ∇µ̄τ+1(c− n+ 1)

}
,

if 1
q∇γ̄τ (1) > ∇µ̄τ+1(c);

0, o.w.
(9)

Furthermore, Q∗τ (c+ 1)− 1 ≤ Q∗τ (c) ≤ Q∗τ (c+ 1).
The second statement of Proposition 1 plays a key role in

reducing the complexity to O(C2). It shows that previously
calculated results can be leveraged as follows. For each period
τ , V̄τ (c) is sequentially computed as Cτ = C,C − 1, . . . , 0.
Though the first computation (Cτ = C) requires searching
the entire solution space (i.e., Qτ = 0, 1, . . . , C), subsequent
computations are much more efficient. By Proposition 1, once
Q∗τ (Cτ + 1) is calculated, one can quickly determine Q∗τ (Cτ )
by choosing between two optimal candidates, Q∗τ (Cτ ) =
Q∗τ (Cτ + 1) and Q∗τ (Cτ ) = Q∗τ (Cτ + 1) − 1, and the one
resulting in higher revenue V̄τ (Cτ ) is the optimal solution. The
entire computation only takes O(C2) operations. We note that
the complexity reduction from O(C3) of applying standard
dynamic programming to O(C2) of the proposed method is
significant, especially for large vendors capable of holding
hundreds of thousands of instances.

D. Designing the Underlying Auction Mechanisms
With the capacity allocation rule derived above, we are now

ready to present the underlying auction mechanisms. We have
to ensure that the designed mechanism eliminates the incentive
for any strategic behaviours by the cloud users.

One might think that the underlying auction design is trivial
once the capacity allocation Q∗t has been decided: just run
existing single-round truthful mechanisms [28] to auction off
Q∗t instances in a period t. However, this turns out to be a
significant misunderstanding. In fact, directly applying single-
period truthful auctions fails to eliminate strategic behaviours
in our problem, as users can manipulate the allocation Q∗t by
submitting different bids. To see this, we refer to Fig. 2. We
note that the revenue gain curve is decided by the submitted
bids. In Fig. 2, the bold line of the gain curve is decided by
bidder i’s submission. By the allocation rule, we see in Fig. 2a
that Q∗t instances are allocated if bidder i bids truthfully. On
the other hand, in Fig. 2b, bidder i raises its bid to change the
gain curve, leading to an allocation decision of Q∗t + 1 (by
the allocation rule). However, this can never happen in single-
round auctions [28], [11], [12], [29], [30], in which the number
of auctioned items is given and is fixed. For this reason, single-
round designs fail to remain truthful in our case.



To overcome the above challenges, we propose Algorithm 1
as the adopted mechanism, with Ct and Q∗t being the number
of available instances and the allocated capacity, respectively.
In this algorithm, we artificially insert a virtual bidder into
the market, who requests an infinite amount of instances at
a price φ−1(0). Introducing a virtual bidder has no effect
on the auction result, since its request is never accepted,
but it simplifies the revenue expression. Recall that bidders
are assumed to be sorted in a decreasing order of prices,
b1 ≥ · · · ≥ bNt+1. (There are Nt + 1 bidders including the
virtual one.) For two bidders bidding the same price, the one
requesting fewer instances ranks higher than the other.

Algorithm 1 The Truthful MechanismMt with Q∗t Instances
Allocated

1. Let k be the index such that
∑k
j=1 rj ≤ Q∗t <

∑k+1
j=1 rj

2. Let s =
∑k
j=1 rj

3. Let b̂s = φ−1(q∇µ̄t+1(Ct − s+ 1))
4. Top k bidders win, each paying p = max{bk+1, b̂s}

Algorithm 1 adopts a similar design as the (k + 1)-price
auction (i.e., top k bidders win each paying the bid of bidder
k + 1), but with different payment rules. The basic idea is to
charge every winner the least bid required to win. That is,
bidder i wins if (1) it is among the top k bidders (bi > bk+1)
and (2) all top k bids are high enough so that the allocated
capacity is sufficient to accommodate all their requests. Note
that if bk > b̂s, then by Proposition 1, at least s =

∑k
j=1 rj

instances are auctioned off:
1

q
∇γ̄t(s) =

1

q
φ(bk)

>
1

q
φ(b̂s)

= ∇µ̄t+1(Ct − s+ 1) .

It is worth mentioning that the (k+1)-price auction is un-
truthful for multi-demand bidders [28]. However, we show that
our design completely eliminates the bidder’s incentive for
misreporting even in two-dimensional domains (vi and ni).
To see this, we first show the monotonicity of the produced
price, whose proof is given in Appendix B.

Lemma 4 (Price monotonicity): For every bidder i with
price bi, fix all others’ submissions. Denote by p(ri) the price
produced by Algorithm 1 when i requests ri instances. Then
p(ri) is increasing w.r.t. ri.

By Lemma 4, all bidders’ bets on overbooking are off, as
requesting more instances results in a higher clearing price,
which decreases the bidder’s utility (see (1)). Also note that no
user has the incentive to request fewer instances than actually
needed (otherwise, the utility is 0), we see that users will
truthfully report their ni value.

Corollary 1: For every bidder i, there is no advantage to
overbook instances. Furthermore, there is no advantage to
misreport ni, i.e., given bi, ui(ri, bi) ≤ ui(ni, bi) for all ri.

Now that bidders truthfully report the quantities of requested

instances, they have only one-dimensional strategies on prices
bi. Our truthfulness proof requires the following two lemmas,
both of which are proved in Appendix B.

Lemma 5 (Bid monotonicity): Algorithm 1 is bid-
monotonic. Specifically, if bidder i wins by bidding bi, then
it also wins by bidding b′i > bi.

Lemma 6 (Critical payment): Algorithm 1 charges the
critical payment p to winners. Specifically, for every winning
bidder i ≤ k with price bi, fix all others’ submissions. Bidder
i wins again by bidding b′i > p, but loses by bidding b′i < p.

It is well known that if the bidders have one-dimensional
strategies, then an auction mechanism is truthful if and only if
it is bid-monotonic and charges the critical payment to winners
[30]. We therefore see the truthfulness of our design.

Proposition 2: Algorithm 1 is two-dimensionally truthful,
i.e., ui(ni, vi) ≥ ui(ri, bi) for all (ri, bi), i = 1, 2, . . . , Nt.

Corollary 2: The designed dynamic auctions {Mt} are
truthful in two-dimensional domains.

V. EVALUATIONS

In this section we seek to answer the following question:
How well does our design approximate the optimal solution
(7)? We evaluate the revenue performance of our design
in two scenarios: (1) When market demand is high, we
give theoretical analysis and show that the approximation is
asymptotically optimal. (2) When market demand is low, we
conduct extensive simulations and show that our design still
closely approximates the optimal one.

A. Asymptotic Optimality for High-Demand Markets

We analyze the revenue performance of our design in a
high-demand market. Let γt(·) be the instantaneous revenue
of Algorithm 1. By Lemma 1, in expectation, it is equivalent to
write γt(Q∗t ) =

∑k
i=1 niφ(i). First we present the following

lemma, whose proof is given in Appendix C.
Lemma 7: If Q∗t ≥ αn̄ for some α > 1, Algorithm 1 is
α
α−1 -competitive:

γt(Q
∗
t ) ≥ (1− 1

α
)γ̄t(Q

∗
t )

≥ (1− 1

α
)γ∗t (Q∗t ).

Lemma 7 essentially indicates that in terms of the instanta-
neous revenue, Algorithm 1 closely approximates the optimal
one provided that the allocated capacity is large compared with
a single user’s request, i.e., γt(Q∗t )→ γ∗t (Q∗t ) if α� 1. Note
that this is usually the case in practice, especially for large
vendors.

We next evaluate the revenue performance of our design
in the long run. Let Vt(·) be the expected revenue collected
within the prediction window by running Algorithm 1, i.e.,

Vt(Ct) = E

[
1

q
γt(Q

∗
t ) + EK [Vt+1(Ct −Q∗t +K)]

]
, (10)

where Q∗t is obtained by solving (8) and K ∼ Bin(C −
Ct+Q∗t , q). The boundary conditions are VT+1(c) = 0 for all



c = 0, 1, . . . , C. Lemma 8 conditionally bounds Vt(Ct). The
proof is given in Appendix C.

Lemma 8: If Nτ → ∞ for all τ = t, . . . , T , then the
approximate solution is α

α−1 -competitive for any finite α > 1.
Specifically, for all Cτ , the following inequalities hold w.p.1:

Vτ (Cτ ) ≥ (1− 1

α
)V̄τ (Cτ )

≥ (1− 1

α
)V ∗τ (Cτ ) .

With Lemma 8, we see that our design is asymptotically
optimal as the market demand is sufficiently high, which is
naturally the case for large vendors.

Proposition 3: The expected revenue Vt → V ∗t w.p.1 if the
user number Nτ →∞ for all τ = t, . . . , T .

B. Revenue Performance in Low-Demand Markets

Even for a market where the demand is not high, our design
still offers a close approximation to the optimal solution. We
verify this point via extensive simulations in this section. For
convenience, denote by UZ(a, b) and UR(a, b) the uniform
distributions defined in integer and real domains, respectively,
in the range of [a, b].

We adopt a typical scenario for a medium-sized vendor with
capacity C = 104. That is, up to 104 virtual instances of
a certain type can be held at one time. User demands are
separated to 300 time periods. In each period t, there are Nt
users bidding for instances, each requesting ni instances with
price vi. We set Nt ∼ UZ(1, 300), ni ∼ UZ(1, 100), and vi ∼
UR(0.05, 0.1). Note that Lemma 3 is no longer effective in this
setting, since the market demand is not high (Nt ≤ 300). We
enable short predictions and set the prediction window w = 5.
(We have tried other values of w and obtained similar results.)
It is worth mentioning that though the evaluation presented in
this section is based on i.i.d. demands and bid prices, similar
results are also observed in non-i.i.d. cases. Each result below
has been averaged over 1000 runs.

Revenue vs. Time. We first evaluate the proposed dynamic
auction by comparing its revenue against on-demand pricing
with a fixed hourly rate (referred to as the fixed-pricing) in
a long time span (from months to years). Since it is almost
impossible to predict long-term future demands, a widely
adopted method is to set a price p∗ such that p∗(1− Fv(p∗))
is maximized [21]. Note that Fv is the distribution of a user’s
reservation value, and 1−Fv(p) is the probability that a user
can afford the price p. In this sense, p∗ maximizes the expected
revenue collected from a single user. We adopt such fixed
pricing as a benchmark in our evaluation.

Fig. 3a illustrates the revenue performance of both dynamic
auction and fixed pricing, where q is set to 0.5. The revenue
is observed to be linearly increasing over time. We see that
the designed mechanism accurately captures market dynamics
and outperforms fixed pricing, leading to a 30% revenue
improvement. Also note that our design closely approaches the
theoretical revenue upper bound, with a performance gap less
than 2%. This is further verified by Fig. 3b, where a histogram

is presented to show statistics of the ratio of allocated capacity
Q∗t to the maximum individual request n̄. Specifically, over
85% of such ratios exceed 20, and more than 70% exceed
40. These statistics indicate that Lemma 7 is effective in most
cases: in general, the allocated capacity is much larger than
any single user’s request, which leads to a strong performance
guarantee for the designed mechanism. Similar results are also
observed when other q’s are adopted.

Revenue vs. Capacity. We next verify the structural re-
sults obtained in Sec. IV-B by investigating the relationship
between the revenue and the capacity. In particular, we conduct
simulations in three different market conditions by choosing
q = 0.2, 0.5, and 0.8, representing low, medium, and high
market dynamics, respectively. For each q, we start from a
low capacity setting with C = 1000, and increase it until
C = 10000. For each capacity setting, we calculate the overall
revenue collected in all 300 time periods. Fig. 3c illustrates the
results, where the solid line represents the theoretical revenue
upper bound obtained by solving (8), and the dotted line stands
for the actual revenue obtained from dynamic auctions. Again,
we see that the approximation design is almost optimal: in
all cases, the revenue gap between the upper bound and our
design is less than 2%. Also, the gap is found decreasing
when more capacity is available in the datacenter. In this case,
more capacity is allocated to each period, so that a better
performance guarantee is achieved due to Lemma 7. These
results suggest that our design is preferred by large vendors.

Another important observation is that all three upper bounds
are increasing and concave functions of the capacity, verifying
the structural analysis made in Lemma 3. It is interesting to
see that the concavity is gradually increased when the market
becomes more dynamic (i.e., with larger q). Note that only
q is changed in the setting, so that increasing q essentially
decreases the entire workloads and revenues, as the expected
running time of every instance is shortened. In this case,
adding capacity brings less marginal revenue to the vendor,
increasing the revenue concavity.

Capacity vs. Price Dynamics. Our final observation is
that the price becomes more dynamic as capacity increases.
Fig. 3d shows the c.d.f. of the determined prices in each time
period in all 1000 runs during the simulation, where q is set to
0.5. We see that with the same demand level, a low capacity
(C = 1000) intensifies the bid competition among users. In
this case, only those who bid very high win and have their
requests fulfilled. As a result, over 80% of the prices are
higher than 0.09. The situation changes when more capacity is
available. As supplies become more abundant, the intensity of
bid competition decreases, resulting in more dynamic clearing
prices (see C = 5000 and C = 10000).

VI. CONCLUSIONS

In this paper, we investigate into the problem of efficient
pricing for revenue maximization by cloud service vendors.
We advocate the use of dynamic auctions to quickly adapt
to market changes while offering guaranteed services. To this
end, we first analytically characterize the revenue of truthful
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Fig. 3. Performance evaluation of dynamic auctions (DA) and the revenue upper bounds (UB) in 300 simulation periods, with C = 10000, w = 5,
Nt ∼ UZ(1, 300), ri ∼ UZ(1, 100), and bi ∼ UR(0.05, 0.1). Unless explicitly stated, q is set to 0.5. All data are averaged over 1000 runs.

auctions and formulate their joint design over time as an MDP.
Since the optimal design is NP-Hard, we turn to an approx-
imate solution that can be directly computed within O(C3).
By deriving special optimization structures of the problem,
we further reduce the computational complexity to O(C2),
which is significant for cloud vendors with a large capacity. A
sequence of two-dimensionally truthful mechanisms are jointly
designed with the proposed capacity allocation scheme. The
construction of such mechanisms demonstrates the practical
validity of the proposed revenue model. Theoretical analysis
shows that our design asymptotically approaches the optimal
revenue as the market demand becomes sufficiently high,
which is naturally the case in reality. Extensive simulation
studies further indicate that even for cases where the market
demand is not high, our design still offers close approximation
to the optimal one.

APPENDIX A
ANALYSIS OF OPTIMIZATION STRUCTURES

To analyze the optimization structures, we need the follow-
ing two technical lemmas.

Lemma 9: Let f be a decreasing and concave function.
Define g by g(n) =

∑n
k=0B(n, k, q)f(k). Then g is also

decreasing and concave.
Proof sketch: Without loss of generality, we assume f(0) =

0. After some algebraic manipulation, we obtain

1

q
∇g(n) =

n−1∑
k=0

B(n− 1, k, q)∇f(k + 1) ≤ 0 ,

and

1

q2
∇2g(n+ 1) =

n−1∑
k=0

B(n− 1, k, q)∇2f(k + 2) ≤ 0

for all n > 1. Therefore, g is decreasing and concave.
Lemma 10: Let f1 and f2 be two functions that are in-

creasing and concave. Define f as follows.

f(n) = max
k=0,1,...,n

{f1(k) + f2(n− k)}. (11)

Let k∗n be an optimal solution to (11), and if there exist
multiple solutions, let k∗n be the smallest one. We have the
following four statements.

(1) f is increasing and concave.
(2) k∗n ≥ k if and only if ∇f1(k) > ∇f2(n− k + 1).

(3) k∗n = max{1 ≤ k ≤ n : ∇f1(k) > ∇f2(n− k + 1)} if
∇f1(1) > ∇f2(n); otherwise k∗n = 0.

(4) k∗n+1 − 1 ≤ k∗n ≤ k∗n+1.
Proof sketch: (1) For any discrete function h, let h̄ be its

linear interpolation, i.e., h̄(x) = h(n)+∆h(n) ·(x−n), where
n = bxc. Given n, we define g(k) = f1(k) + f2(n− k). It is
easy to see that ḡ(x) = f̄1(x) + f̄2(n−x). Since ḡ is a linear
interpolation of a discrete function g, we know its maximum
value is achieved at the integer point, i.e.,

f(n) = max
k=0,1,...,n

g(k)

= max
0≤x≤n

ḡ(x)

= max
0≤x≤n

{f̄1(x) + f̄2(n− x)}.

Let f0(y) be defined by

f0(y) = max
0≤x≤y

{f̄1(x) + f̄2(y − x)} .

Since both f1 and f2 are increasing and concave, their linear
interpolations, f̄1 and f̄2, are also increasing and concave. By
[31] (Rule 9 of Theorem 3.1.5), we know f0 is increasing,
concave and piecewise linear. Also note that f0(n) = f(n)
for all integer n. We conclude that f0 is a linear interpolation
of f , i.e., f0 = f̄ . In this case, f is increasing and concave.

(2) Let f(n) = max0≤k≤n g(k) where

g(k) = f1(k) + f2(n− k) .

Since both f1 and f2 are concave, g is concave. In this case,
k∗n ≥ k if and only if ∇g(k) > 0. We hence conclude the
proof by noticing that ∇g(k) = ∇f1(k)−∇f2(n− k + 1).

(3) This statement is a direct application of Statement 2.
(4) First we show k∗n < k∗n+1 + 1. By Statement 2, this is

equivalent to show ∇f1(k∗n+1 + 1) ≤ ∇f2(n− k∗n+1). This is
indeed the case as

∇f1(k∗n+1 + 1) ≤ ∇f2(n+ 1− (k∗n+1 + 1) + 1)

≤ ∇f2(n− k∗n+1) ,

where the first inequality is derived by applying Statement 3
to the case of n+ 1, while the second inequality is due to the
concavity of f2.

We next show that k∗n ≥ k∗n+1 − 1. By statement 2, this is
equivalent to prove ∇f1(k∗n − 1) > ∇f2(n− k∗n + 2), which



is true because

∇f1(k∗n − 1) > ∇f2(n+ 1− (k∗n − 1) + 1)

≥ ∇f2(n− k∗n + 2) ,

where the first inequality is derived by applying Statement 3
to the case of n+ 1, while the second inequality is due to the
concavity of f2.

We now prove Lemma 3 by induction.
Proof of Lemma 3: Basis: Show that the statement holds

for τ = T . In this case, since γ̄(·) is increasing, we know that
V̄T (c) = 1

qE[γ̄T (c)], which is concave by Lemma 2. It is easy
to see that µ̄T+1(c) = 0 for all c ≥ 0. We conclude that the
statement holds for the basis.

Inductive step: Suppose the statement holds for τ . We now
show it also holds for τ − 1. Let n = C − c. We have

µ̄τ (c) =

C−c∑
k=0

B(C − c, k, q)V̄τ (c+ k)

=

n∑
k=0

B(n, k, 1− q)V̄τ (C − k) .

Applying Lemma 9 to this equation, we see the concavity of
µ̄τ (·), since V̄τ (·) is concave by the induction assumptions.

For V̄τ−1(·), we inspect its definition (8). Since both µ̄τ (·)
and γ̄τ (·) are concave, applying Lemma 10 to (8) leads to the
concavity of V̄τ−1.

With Lemma 2 and 3, we see that Proposition 1 is a direct
application of Lemma 10.

Proof of Proposition 1: Since both 1
q γ̄t(·) and µ̄t+1(·) are

concave, applying Lemma 10 to (8) leads to the statement.

APPENDIX B
ANALYSIS OF TRUTHFULNESS

To see the truthfulness of our design, we start by showing
that no bidder has the incentive to overbook instances by
proving Lemma 4.

Proof of Lemma 4: It suffices to prove p(ri) ≤ p(r′i) with
r′i = ri+1. Let Q′t

∗ be the capacity allocated when i requests
r′i instances. Similar notations also extend to γ̄′t, µ̄

′
t+1, s′, and

k′. It is easy to see that ∇µ̄′t+1 = ∇µ̄t+1 and

∇γ̄′t(n) =

{
∇γ̄t(n) , if n ≤∑i

j=1 rj ;
∇γ̄t(n− 1) , o.w.

(12)

We consider the following two cases.
Case 1: i > k. By (12), we see that 1

q∇γ̄′t(n) = 1
q∇γ̄t(n) >

∇µ̄t+1(Ct − n + 1) = ∇µ̄′t+1(Ct − n + 1) for all n ≤ Q∗t ,
while 1

q∇γ̄′t(Q∗t + 1) = 1
q∇γ̄t(Q∗t + 1) ≤ ∇µ̄t+1(Ct−Q∗t ) =

∇µ̄′t+1(Ct − Q∗t ), where the inequalities are derived from
Proposition 1. This implies Q′t

∗
= Q∗t . In this case, both

submissions result in the same winning set — the top k
bidders. Therefore, s′ = s + 1. We conclude that p(ri) =
max{bk+1, b̂s} ≤ max{bk′+1, b̂s′} = p(r′i).

Case 2: i ≤ k. In this case, it is easy to show that ∇γ̄′t(n+
1) = ∇γ̄t(n) for all n > Q∗t (see (12)). Three cases are
considered: (a) 1

q∇γ̄t(Q∗t ) > ∇µ̄t+1(Ct − Q∗t ). In this case,

Q′t
∗

= Q∗t + 1 and k′ = k. (b) 1
q∇γ̄t(Q∗t ) ≤ ∇µ̄t+1(Ct−Q∗t )

and
∑k
j=1 rj < Q∗t . In this case, Q′t

∗
= Q∗t and k′ = k.

(c) 1
q∇γ̄t(Q∗t ) ≤ ∇µ̄t+1(Ct − Q∗t ) and

∑k
j=1 rj = Q∗t . In

this case, Q′t
∗

= Q∗t and k′ = k − 1. (All results above can
be verified by substituting the corresponding value of Q′t

∗ to
(9).) For cases (a) and (b), since k = k′ (submitting ri or
r′i results in the same winning set), We have s′ = s + 1,
and p(ri) = max{bk+1, b̂s} ≤ max{bk′+1, b̂s′} = p(r′i). For
case (c), however, the winning sets are different: Bidder k
loses if i submits r′i. As a result, s′ =

∑k−1
j=1 rj or s′ =∑k−1

j=1 rj + 1, depending on whether i = k. In either case,
s′ ≤ s = Q∗t . We then have 1

qφ(b̂s′) = ∇µ̄t+1(Ct− s′+ 1) ≤
∇µ̄t+1(Ct − s + 1) = 1

qφ(b̂s) ≤ ∇µ̄t+1(Ct − Q∗t + 1) <
1
q∇γ̄t(Q∗t ) = 1

qφ(bk). Thus, p(r′i) = max{b̂s′ , bk} = bk and
p(ri) = max{b̂s, bk+1} = bk+1. We see the statement holds
since bk+1 ≤ bk.

We are now ready to prove Lemma 5 and 6, which lead to
the truthfulness of the designed dynamic auctions.

Proof of Lemma 5: Let Q′t
∗ be the capacity allocated when

i bids b′i. Similar notations also extend to γ̄′t and k′. Since i
is in the winning set by submitting bi, we know i ≤ k. Now
by submitting b′i > bi, it remains in the top k bidders. In this
case, ∇γ̄′t(n) ≥ ∇γ̄t(n) for all n ≤∑i

j=1 nj and ∇γ̄′t(n) =

∇γ̄t(n) otherwise. Using these inequalities, we see Q′t
∗ ≥ Q∗t

because ∇γ̄′t(Q∗t ) ≥ ∇γ̄t(Q∗t ) > ∇µ̄t+1(Ct−Q∗t +1). On the
other hand, Q′t

∗
< Q∗t +1 because ∇γ̄′t(Q∗t +1) = ∇γ̄t(Q∗t +

1) < ∇µ̄t+1(Ct−Q∗t ). Therefore, both the capacity allocation
and the winning set remain unchanged, i.e., Q′t

∗
= Q∗t and

k′ = k, which implies that i wins again.
Proof of Lemma 6: Note that the submitted bid is of the

form (ni, bi). Let sk =
∑k
j=1 nj . For the first statement,

since b′i > bk+1, bidder i remains in the top k bidders. We
now consider ∇γ̄′t(sk) for the new submission b′i. Clearly,
∇γ̄′t(sk) = φ(b′i) if b′i is the lowest in all top k bids, otherwise
∇γ̄′t(sk) = φ(bj) for some top bidder j other than i (j ∈
{1, . . . , k}\{i}). Since j wins when i bids bi, by Proposition 1,
1
qφ(bj) = 1

q∇γ̄t(sj) ≥ 1
q∇γ̄t(sk) > ∇µ̄t+1(Ct − sk + 1).

Also, since b′i > b̂sk , we have 1
qφ(b′i) > ∇µ̄t+1(Ct− sk + 1).

All these results suggest that 1
q∇γ̄′t(sk) > ∇µ̄t+1(Ct−sk+1).

By Proposition 1, this means that all top k bidders win again
because the allocated capacity is sufficient to accommodate all
requests, i.e., Q′t

∗ ≥ sk.
For the second statement, we consider the following two

scenarios. (a) b′i < bk+1. In this case, b′i is no longer within the
top k prices, and is at most the k+1-th highest bid. However,
even in this case i is rejected, as the allocated capacity
cannot accommodate all requests of the top k + 1 bidders
(Q′t
∗
< sk+1). To see this, we have 1

q γ̄
′
t(sk+1) = 1

qφ(b′i) <
1
qφ(bk+1) = 1

q∇γ̄t(sk+1) ≤ 1
q∇µ̄t+1(Ct − sk+1 + 1), where

the last inequality is derived from the fact that Q∗t < sk+1

(see Algorithm 1). By Proposition 1, Q′t
∗
< sk+1. Therefore,

i loses by bidding b′i. (b) b′i < b̂sk , or equivalently, 1
qφ(b′i) <

∇µ̄t+1(Ct − sk + 1). From the results of (a), it suffices to
assume b′i ≥ bk+1 (i is in top k). With the similar argument



made in the proof of the first statement, we see that for every
bidder j ≤ k other than i, 1

qφ(bj) > ∇µ̄t+1(Ct − sk + 1).
Therefore, bj > b′i ≥ bk+1, which means that i ranks
in the k-th place in the new submission. However, since
1
q∇γ̄′t(sk) = 1

qφ(b′i) < 1
q∇µ̄t+1(Ct − sk + 1), we see

Q′t
∗
< sk. As a result, i is rejected because the allocated

capacity cannot accommodate all requests of top k bidders.

APPENDIX C
REVENUE ANALYSIS FOR APPROXIMATE SOLUTION

To analyze the revenues performance of our design, we first
prove Lemma 7.

Proof of Lemma 7: It suffices to prove the first in-
equality. Suppose k bidders win in Algorithm 1. We have
γ̄t(Q

∗
t ) − γt(Q

∗
t ) = (Q∗t −

∑k
i=1 ni)φ(vk+1). (Note that

(ri, bi) = (ni, vi) due to the truthfulness.) We consider the
following two cases.

Case 1: nk+1 =∞. In this case, bidder k+ 1 is the virtual
bidder with φ(vk+1) = 0. We see the statement holds with
γ̄t(Q

∗
t ) = γt(Q

∗
t ).

Case 2: nk+1 <∞. In this case, bidder k + 1 is a regular
bidder with nk+1 ≤ n̄. We see the statement holds because
γ̄t(Q

∗
t )− γt(Q∗t ) ≤ n̄φ(vk+1) ≤ Q∗tφ(vk+1)/α ≤ γ̄t(Q

∗
t )/α.

Here, the last inequality is derived from the fact that φ(v1) ≥
· · · ≥ φ(vk+1) ≥ · · · ≥ φ(vNt+1).

We now show that our design is asymptotically optimal by
proving Lemma 8.

Proof of Lemma 8: Given α, we prove the statement by
induction.

Basis: Show the statement holds for τ = T + 1. This is
indeed the case due to the boundary conditions, i.e., VT+1 =
V ∗T+1 = V̄T+1 = 0.

Inductive step: Suppose the statement holds for τ + 1. We
show it also holds for τ . To see this, we first show γτ (Q∗τ ) ≥
(1− 1

α )γ̄τ (Q∗τ ) w.p.1 for all Q∗τ by considering the following
two cases.

Case 1: Q∗τ ≥ αn̄. In this case, γτ (Q∗τ ) ≥ (1− 1
α )γ̄τ (Q∗τ )

because of Lemma 7.
Case 2: Q∗τ < αn̄. In this case, we show γτ (Q∗τ ) = γ̄τ (Q∗τ )

w.p.1. Let X be the number of top bidders with unit demand,
i.e., ni = 1 and vi = v̄. Suppose P (ni = 1, vi = v̄) =
p > 0. We know X ∼ Bin(Nt, p). For any finite k,
we have limNt→∞ P (X = k) = limNt→∞B(Nt, k, p) =
limNt→∞N (Ntp, kp(1− p)) = 0, where the second equality
is derived from the central limit theorem. This essentially
indicates that P (X ≥ Q∗τ ) = 1 for any finite Q∗τ . That is,
w.p. 1, all Q∗τ instances can be allocated to top bidders with
unit demand, which implies γτ (Q∗τ ) = γ̄τ (Q∗τ ) w.p.1.

We therefore conclude that γτ (Q∗τ ) ≥ (1− 1
α )γ̄τ (Q∗τ ) w.p.1.

Also, from the induction assumptions, EK [Vτ+1(Cτ − Q∗τ +
K)] ≥ (1− 1

α )EK [V̄τ+1(Cτ−Q∗τ +K)] w.p.1. Substituting all
these results back to (10), we see Vτ (Cτ ) ≥ (1 − 1

α )V̄τ (Cτ )
for all Cτ = 0, 1, . . . , C.
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