
On Fairness-Efficiency Tradeoffs for
Multi-Resource Packet Processing

Wei Wang, Ben Liang, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto

Abstract—Middleboxes are widely deployed in today’s data-
center networks. They perform a variety of network functions,
each requiring multiple hardware resources, such as CPU cycles
and link bandwidth. Depending on the functions they go through,
packet processing of different traffic flows may consume a vastly
different amount of hardware resources. An effective algorithm
is therefore highly desired to schedule packets in a way such
that multiple resources are shared in a fair and efficient manner.
However, we show in this paper that there exists a fairness-
efficiency tradeoff when multiple resources are scheduled. Such
a tradeoff has never been a problem for traditional single-
resource fair queueing (e.g., GPS, WFQ, SCFQ, DRR) — as
long as the queueing schemes are work conserving, both fairness
and efficiency can be achieved simultaneously — and hence has
received little attention. Therefore, a new and important research
problem arises: given a desired fairness-efficiency tradeoff, how
can we design a packet scheduling algorithm to reinforce such
a tradeoff? We present our thoughts and observations in this
paper.

I. INTRODUCTION

Middleboxes have found widespread adoption in today’s
enterprise and datacenter networks. According to [1], [2], the
sheer number of middleboxes deployed is already comparable
to the traditional L2/L3 infrastructures. These middleboxes
perform a wide range of important network functions, such
as WAN optimization, intrusion detection, and firewalls at the
network or application layers.

Unlike basic forwarding, most network functions performed
by middleboxes require deep packet processing based on the
packet contents, and hence consume a variety of hardware
resources, e.g., CPU, memory bandwidth, and link bandwidth.
Packet processing for these middlebox functions differs signif-
icantly in terms of the amount of hardware resources required.
For example, forwarding a large amount of small packets
via software routers congests the memory bandwidth [3].
The intrusion detection system, on the other hand, usually
suffers bottlenecks on the CPU, as packets of external traffic
flows need to be analyzed before being sent to the internal
destinations. In general, depending on the network functions
they go through, different traffic flows may require vastly
different types and amounts of middlebox resources [4].

Having heterogeneous resource requirements among traffic
flows significantly complicates resource scheduling in mid-
dleboxes. It is highly desirable to have a queueing algorithm
to schedule packets in a way such that multiple middlebox
resources (e.g., CPU and link bandwidth) are shared among
flows in a fair and efficient manner. By “fair” we mean that
each flow should receive predictable service isolation that

P1 P2 P3 Q1 P4 P5 P6 Q2 P7 P8 P9

P1 P2 P3 Q1 P4 P5 P6 Q2 P7 P8

CPU

Link

...

...

Time0 6 8 12 14 182 4 10 16

(a) Packet scheduling that is efficient yet unfair.

P1 P2 Q1 P3 Q2P4 P5 Q3P6

P1 ...

...

P1 P2 P3Q1

...

P4 P5Q2 P6 P7Q3CPU

Link

Time0 6 8 12 14 182 4 10 16

(b) Packet scheduling that is fair yet inefficient.

Fig. 1. The tradeoff between fairness and efficiency when multi-
ple resources are scheduled. Flow 1 sends P1, P2, ..., each requiring
〈1 CPU time, 2 Transmission time〉. Flow 2 sends Q1, Q2, ..., each requiring
〈4 CPU time, 1 Transmission time〉.

is independent of others’ demand. By “efficient” we mean
that flows should finish their services as fast as possible with
maximum resource utilization.

However, achieving both fairness and efficiency at the same
time may not be possible when multiple resources are to be
scheduled. In fact, there may exist a tradeoff between the
scheduling fairness and the scheduling efficiency. Consider the
following example. Suppose there are two traffic flows that
keep sending packets. Packets of Flow 1, denoted by P1, P2,
..., need basic forwarding only. Each of them requires 1 time
unit for CPU processing and 2 time units for link transmission.
Packets of Flow 2 (denoted by Q1, Q2, ...), on the other hand,
need encryption before transmission, each requiring 4 time
units for CPU processing and 1 time unit for link transmission.
Fig. 1a illustrates a schedule with the maximum resource
utilizations on both CPU and link bandwidth. As we will see
later in Sec. II, this schedule, though highly efficient, allocates
too much resource to Flow 1, and is unfair to Flow 2. Another
schedule, shown in Fig. 1b, allocates the same processing time
to two flows on their most congested resources, and is fair
according to the definition of Dominant Resource Fairness
(DRF) [5]. However, it is inefficient as the link bandwidth is
not fully utilized. As shown in Fig. 1b, it takes 17 time units
for the schedule to finish the service of the first 6 packets of
Flow 1 (i.e., P1, ..., P6) and the first two packets of Flow 2
(i.e., Q1, Q2). In comparison, the schedule shown in Fig. 1a
takes only 15 time units to serve the same amount of traffic.

Such a fairness-efficiency tradeoff has received little atten-

tion in the existing fair queueing literature. When there is a
single resource to schedule (i.e., link bandwidth), the tradeoff
does not exist — a fair queueing algorithm is also the most ef-
ficient as long as it is work conserving — and hence has never
been a problem in the traditional fair queueing literature [6],
[7], [8], [9]. Existing works on multi-resource fair queueing,
(e.g., [4], [10]) on the other hand, focus solely on fairness
without discussing efficiency. In fact, even how the efficiency
of a scheduling scheme should be measured is unclear. To
our knowledge, [11] is the only work that raises attention on
the fairness-efficiency tradeoff. Even there, the focus is on
allocating resources where they are concurrently shared among
users in space. However, in middleboxes, hardware resources
are limited and have to be multiplexed by multiple traffic flows
in time.

While fairness is an important concern for resource schedul-
ing, it is by no means the only objective to pursue in all
cases. Some applications may have a loose requirement on
fairness, while emphasizing more on the scheduling efficiency
for higher utilization of hardware resources. Two important
research problems therefore arise. First, how can the require-
ment of fairness-efficiency tradeoff be appropriately expressed
and specified? Further, given the specified fairness-efficiency
tradeoff, how can we design a practical scheduling algorithm
to implement it in a real-world system?

As an initial step, in this paper, we share our thoughts
and observations on the fairness-efficiency tradeoff for multi-
resource packet scheduling. In particular, we present two
efficiency measures for a scheduling scheme. One is the
aggregated processing time that has been spent on processing
the dominant resources — the one that requires the most
processing time — of all traffic flows, while the other is
simply the overall time span required to finish the services
of all flows. Based on these two efficiency measures, we
represent the fairness-efficiency tradeoff in two ways. The first
representation is based on an idealized fluid model that strictly
implements the recently proposed framework of fairness-
efficiency tradeoff for multi-resource allocations [11]. This
representation, though rigorous in theory, is very complicated
to implement in practice using a packet-by-packet scheduling
scheme. Our second representation, on the other hand, is more
of a heuristic, yet is more friendly to implement in practice.
We also discuss some insights on how this tradeoff can be
realized using packet-by-packet queueing schemes.

II. THE FAIRNESS AND EFFICIENCY MEASURES

Before we discuss the tradeoff, we shall clarify the fairness
and efficiency measures for a multi-resource schedule. We start
off by briefly reviewing the fairness measure that has been
adopted in [4], [10].

A. The Fairness Measure

The fairness of a queueing scheme is usually defined as
a set of highly desired scheduling properties [4], [10]. The
essential property of fair queueing is to offer predictable
service isolation for all traffic flows. In the multi-resource

setting, this means that for each flow, the received service is
at least at the level when every resource is equally allocated
among all flows. Further, such a service isolation should not
be compromised by strategic behaviours. This requires the
truthfulness of a schedule, in which no flow can receive better
service (i.e., finish faster) by artificially inflating the amount
of resources it does not need.

It has been shown in [10] that by strictly implement-
ing Dominant Resource Fairness (DRF) [5] at all times, a
queueing scheme offers both predictable service isolation and
truthfulness, and is therefore considered fair. That is, a fair
queueing algorithm should allocate equal processing time on
the dominant resources of all backlogged flows. The dominant
resource is defined as the one that requires the most processing
time among all resources. For example, in Fig. 1, a packet of
Flow 1 requires 〈1 CPU time, 2 Transmission time〉, so link
bandwidth is its dominant resource. A packet of Flow 2, on
the other hand, requires 〈4 CPU time, 1 Transmission time〉,
so CPU is the dominant resource. In Fig 1a, up to time 8,
Flow 1 receives 6 time units to process its dominant resource
(link bandwidth), while Flow 2 receives 4 time units for its
dominant resource (CPU).

Intuitively, the fairer a queueing algorithm, the more evenly
the processing time it allocates on the dominant resources of
traffic flows. We therefore measure the fairness of a schedule
by bounding the gap of the processing time received on
the dominant resources between two backlogged flows. The
resulting measure is referred to as the Relative Fairness Bound
(RFB) [10].

Definition 1 (Relative Fairness Bound): For any packet
arrival process, let Ti(t1, t2) be the aggregate service (pro-
cessing time) flow i receives on its dominant resource in the
time interval (t1, t2). Ti(t1, t2) is referred to as the dominant
service flow i receives in (t1, t2). Let B(t1, t2) be the set of
flows that are backlogged in (t1, t2). We define the Relative
Fairness Bound (RFB) as1

R = sup
t1,t2;i,j∈B(t1,t2)

|Ti(t1, t2)− Tj(t1, t2)| , (1)

RFB measures the degree to which the DRF allocation is
violated. The smaller the measure is, the fairer the scheduling
algorithm will be. As an example, Fig. 2a depicts the dominant
services received by both Flow 1 and Flow 2 (i.e., T1(0, t)
and T2(0, t), respectively), under the schedule of Fig. 1a. As
we have mentioned in the introduction, this schedule, though
highly efficient, allocates too many resources to Flow 1, and
is unfair for Flow 2. As time goes by, the service gap between
the two flows will become larger and larger, eventually leading
to an unbounded RFB. In comparison, the schedule of Fig. 1b
is much fairer. Fig. 2b illustrates the dominant services the
schedule allocates to the two flows. We see that both flows
receive almost the same services over time, with the service
gap bounded below 1 time unit in all time intervals.

1For simplicity, we assume that all flows are of equal weight. A more
general definition with different flow weights is given in [10].

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Time

D
o
m

in
a
n
t
S

e
rv

ic
e

Flow 1

Flow 2

(a) Services recevied in Fig. 1a.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Time

D
o
m

in
a
n
t
S

e
rv

ic
e

Flow 1

Flow 2

(b) Services recevied in Fig. 1b.

Fig. 2. Illustration of the accumulated services received by two flows on
their dominant resources, under the schedules of Figs. 1a and 1b.

B. The Efficiency Measure

Besides fairness, scheduling efficiency is another important
concern for a queueing scheme. When there is only a single
resource to schedule, the efficiency is simply the utilization
of that resource. In this case, maximizing the efficiency of a
queueing scheme is trivially achieved by requiring the scheme
to be work conserving. That is, whenever there are flows
that are backlogged in the system, the resource must be fully
utilized to serve them.

We can extend similar requirements to the multi-resource
setting. In particular, a multi-resource queueing scheme is
work conserving if whenever there is a flow that is backlogged
in the system, then at least one resource will be fully utilized
[10]. However, having this requirement will not lead to the
optimal efficiency. As a counterexample, the schedule shown
in Fig. 1b is work conserving. Yet it is clearly less efficient
than that in Fig. 1a.

The reason that the efficiency measure becomes much
more complicated in the multi-resource setting is due to
the heterogeneous resource requirements of traffic flows. In
this case, the resulting utilizations of different resources may
differ significantly. After all, which one should be used as
the efficiency measure? We explore two alternatives in the
following.

Our first idea is inspired by the fairness measure. When
measuring the fairness of a queueing scheme, we compare
the services that a pair of flows receive on their dominant
resources, while those on non-dominant resources are ignored.
Based on this insight, we measure the efficiency as the
aggregate services received on the dominant resources of all
flows.

Definition 2 (Aggregate Dominant Service): Given an
arbitrary packet arrival process, the efficiency of a schedule
up to time t is measured as the aggregate dominant services
(i.e., processing time) that all flows receive, i.e.,

Et =
∑
i

Ti(0, t) , (2)

where Ti(0, t) is the dominant service flow i receives in (0, t).
Intuitively, the more the aggregate dominant services re-

ceived, the higher the efficiency of a scheduling scheme. As
an example, Fig. 3 depicts the aggregate dominant services of
the schedules shown in Figs. 1a and 1b. We see that though the
two schedules exhibit similar efficiencies at the beginning, as

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

Time

D
o
m

in
a
n
t
S

e
rv

ic
e
 o

f
A

ll
F

lo
w

s

Efficienct−yet−unfair
Fair−yet−inefficient

Fig. 3. Aggregate dominant services received by all flows under the schedules
of Figs. 1a (referred to as Efficient-yet-unfair) and 1b (referred to as Fair-yet-
inefficient), respectively.

1 2 n

1 2 n

Resource 1

Time0 t

Resource 2

1 2 nResource m

...

...
......

...

...

...

Makespan

Fig. 4. Illustration of a makespan of a schedule serving n packets.

time goes by, the schedule of Fig. 1a becomes more efficient
than that of Fig. 1b. In fact, in Fig. 1a, up to sufficiently
long time t, Flow 1 receives roughly 6t/7 dominant services
on link bandwidth, while Flow 2 receives 4t/7 dominant
services on CPU. The aggregate dominant service is then
10t/7. In comparison, in Fig. 1b, both flows receive roughly
the same services of 2t/3 on their dominant resources, leading
to an aggregate dominant service of 4t/3. As a result, the
schedule of Fig. 1a is more efficient than that in Fig. 1b (i.e.,
10t/7 > 4t/3), and their efficiency gap (10/7−4/3)t linearly
increases with time t.

Another way to measure the efficiency is more direct. We
compute the time span required to finish all services of traffic
flows, and use it as the efficiency measure.

Definition 3 (Makespan): For any packet arrival process,
the efficiency of a scheduling algorithm is measured as the
makespan, i.e., the total time that is required to completely
process all packets.

Fig. 4 depicts the makespan of a schedule serving n packets
on m resources. Intuitively, the smaller the makespan, the more
efficient the schedule.

Though both aggregate dominant service (Definition 2)
and makespan (Definition 3) reflect the scheduling effi-
ciency and can be used as the efficiency measure, they are
not equivalent. For example, suppose there are two traffic
flows both sending 6 packets. Packet of Flow 1 requires
〈1 CPU time, 3 Transmission time〉, while packet of Flow 2
requires 〈3 CPU time, 3− ε Transmission time〉, where ε > 0
is arbitrarily small. Now consider two schedules shown in
Figs. 5a and 5b, respectively. We see that the makespans of
the two schedules are exactly the same. As a result, the two
schemes are considered equally efficient when the makespan
is used as the efficiency measure. However, as shown in
Fig. 6, if the efficiency is measured by the aggregate dominant

P1

P1

Q1

Q1

P2 Q2 P3 Q3 P4 Q4

P2 Q2 P3 Q3

P5 Q5

P4

Time0

...

...

CPU

Link

2 4 6 8 10 12 14 16 18

(a) Scheduling without waiting on CPU for Flow 2.

P1

P1

CPU

Link

Q1

Q1

P2 Q2 P3 Q3 P4 Q4

P2 Q2 P3 Q3 P4

...

...

Time0 2 4 6 8 10 12 14 16 18

(b) Scheduling with waiting on CPU for Flow 2.

Fig. 5. Two schedules, with and without waiting on CPU for Flow 2.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

Time

D
o
m

in
a
n
t
S

e
rv

ic
e
 o

f
A

ll
F

lo
w

s

Without CPU Waiting
With CPU Waiting

Fig. 6. Under the efficiency measure of aggregate dominant services, the
scheduling without waiting on CPU is more efficient than that waiting on
CPU.

services, then scheduling without CPU waiting (Fig. 5a) is
more efficient than that with CPU waiting (Fig. 5b) before
time 34, after which, both schemes are equally efficient.

Despite the difference of the two efficiency measures, the
fairness-efficiency tradeoffs generally exist for multi-resource
fair queueing. The key question is: how can such tradeoffs be
expressed as a design objective of a scheduling algorithm? We
investigate this problem in the next section.

III. THE FAIRNESS-EFFICIENCY TRADEOFF

In this section, we present two ways to represent the
fairness-efficiency tradeoff for a scheduling algorithm. The
first representation adopts the aggregate dominant service
as the efficiency measure, and is more rigorous in theory.
However, it is complicated to implement in real systems. The
second representation, on the other hand, uses the makespan as
the efficiency measure. This representation, though heuristic,
is more friendly to implement with packet-based scheduling.

A. Tradeoff Representation Using a Unifying Framework

Our first representation is based on the recent work of
[11], where a unifying framework is proposed to specify
the fairness-efficiency tradeoff for multi-resource allocation.
Though the framework is designed for sharing multiple re-
sources in space, we show that via the idealized multi-resource
fluid flow model [10], it can also be applied to resource
scheduling, where resources are multiplexed in time.

Multi-Resource Fluid Model: In the multi-resources fluid
model, flows are assumed to be served in arbitrarily small

P1

Q1

P2 P3 P4

Q2

P5 P6

4/7

3/7}
} ...

P4 P5 P7

Q2

P1 P2 P3

Q1 1/7

6/7}
}

...

CPU

Link

Time0 6 8 12 14 182 4 10 16

{
{

(a) The fluid version of the schedule shown in Fig. 1a.

...

1/6

2/3}
}

...

P1

Q1 Q2 Q3

} 1/3
2/3}

P1 P2 P3 P4 P5 P6

Q1

P2 P3 P4 P5 P6

Q2 Q3

CPU

Link

Time0 6 8 12 14 182 4 10 16

{
{

(b) The fluid version of the schedule shown in Fig. 1b.

Fig. 7. The fluid version of the two schedules shown in Figs. 1a and 1b.

increments. That is to say, a packet can be infinitely di-
vided and processed partially on every resource. Equivalently,
this implies that multiple flows can be served in parallel,
each receiving fractional resources that are consumed at the
same time. For example, Fig. 7 depicts the fluid versions
of the two packet-based schedules shown in Fig. 1. The
schedule of Fig. 1a allocates 〈3/7 CPU, 6/7 Link〉 to Flow 1
and 〈4/7 CPU, 1/7 Link〉 to Flow 2. The corresponding fluid
schedule (Fig. 7a) allocates the same amount of resources
to both flows as Fig. 1a does, except that all resources
are processed simultaneously. We see that the fluid schedule
retains the same fairness-efficiency tradeoff as the packet-by-
packet alternative: the schedule of Fig. 7a has higher resource
utilization than that of Fig. 7b, but the latter is fairer than the
former.

The Fairness-Efficiency Tradeoffs: With the fluid model,
a resource scheduling problem can be translated into a re-
source allocation problem, in which the framework of fairness-
efficiency tradeoff proposed in [11] can be applied. In partic-
ular, let B(t) be the set of flows that are backlogged at time t.
Let xti be the share (fraction) of dominant resource allocated to
flow i at time t, and xt = 〈xt1, . . . , xtn〉 the allocation vector for
all n flows. We express the fairness-efficiency tradeoff using
the following measure originally defined in [11]:

fβ,λ(xt) =

sgn(1− β)

 ∑
i∈B(t)

(
xti∑

j∈B(t) x
t
j

)1−β
 1

β
 ∑
i∈B(t)

xti

λ

.

(3)

Here, β and λ are pre-specified parameters representing the
emphasis on fairness and efficiency, respectively. As men-
tioned in [11], the measure defined by (3) is divided into two
components, one representing fairness and another efficiency.
The term ∑

i∈B(t)

xti

λ

represents efficiency and is the dominant services received by
all flows at time t. The remainder of (3) is parameterized by β
and represents the fairness of allocation. Generally speaking, a
larger β emphasizes more on fairness, while a larger λ places
efficiency at a higher priority. In extreme cases, by taking β =
1, the fairness term reduces to a constant, and efficiency is the
only objective to optimize. On the other hand, as β →∞ and
λ = 1−β

β , the measure fβ,λ reduces to max-min fairness on the
dominant shares, in which the notion of Dominant Resource
Fairness (DRF) [4] is the only objective to pursue.

With the fairness-efficiency tradeoff specified as (3), we
make resource allocation decisions xt at all times t, so that
the tradeoff measure (3) is always maximized. Specifically, let
τi,r be flow i’s packet processing time required on resource
r = 1, 2, . . . ,m. Let

γi = arg maxr{τi,r} (4)

be the dominant resource of flow i. Also, let

τ̄i,r =
τi,r
τi,γi

, r = 1, 2, . . . ,m, (5)

be the normalized processing time on resource r. Then xti τ̄i,r
is the share of resource r allocated to flow i at time t. We solve
the following optimization problem to determine the dominant
resource allocation xt for each flow at time t:

max
xt

fβ,λ(xt)

s.t.
∑
i∈B(t)

xti τ̄i,r ≤ 1, r = 1, 2, . . . ,m, (6)

where the constraints ensure that the allocations will not
exceed the resource capacities.

By solving (6), we obtain an idealized fluid schedule that
strictly implements the specified fairness-efficiency tradeoff
at all times. For example, the schedule shown in Fig. 7a
(resp., 7b) is the resulting fluid schedule when efficiency (resp.,
fairness) is the only objective to optimize.

Packet-by-Packet Scheduling: Though the idealized fluid
schedule cannot be implemented as packets are not scheduled
as entities, it can be approximated by packet-by-packet queue-
ing algorithms. Similar to how GPS [6] is approximated by
fair queueing such as WFQ [6] and PGPS [7], we can maintain
fluid schedule as a referencing system in the background.
Whenever there is a scheduling opportunity, the packet that
finishes its service the earliest in the referencing system is
scheduled. For example, Fig. 8 shows the resulting packet-by-
packet approximations to the two fluid schedules depicted in
Fig. 7. It is easy to verify that both approximations closely
track the progress of the fluid ideals. More complicated
approximation techniques, such as those adopted by WF2Q
[12], can also be applied in a similar way.

However, we emphasize that the packet-by-packet queue-
ing algorithm described above may be very complicated to
implement, mainly due to the requirement of maintaining
the referencing fluid schedule: Whenever a flow changes its
state from idle to busy or from busy to idle, we have to

P1 P2 P3Q1 P4 P5 P6Q2 P7

P1 P2 P3Q1 P4 P5 P6Q2 P7

...

...

CPU

Link

Time0 6 8 12 14 182 4 10 16

Q3

(a) Packet-by-packet approximation to the schedule of Fig. 7a.

P1 P2Q1 P3 Q2 P4 P5 Q3 P6

P1 ...

...

P1 P2 P3Q1 P4 P5Q2 P6 P7Q3CPU

Link

Time0 6 8 12 14 182 4 10 16

(b) Packet-by-packet approximation to the schedule of Fig. 7b.

Fig. 8. The packet-by-packet approximations to the two fluid schedules
shown in Fig. 7.

solve the optimization problem (6), which is generally non-
convex and incurs high computational complexity. To avoid
this complexity, packet-by-packet scheduling should track the
progress of a fluid scheme without actually emulating it.
Though this can be achieved in single-resource fair queueing,
e.g., [13], [14], it remains open how this can be done when
multiple resources are to be scheduled.

B. Tradeoff Representation as Efficiency Optimization under
Fairness Constraints

The tradeoff representation presented above unifies the two
requirements on both fairness and efficiency into a single
design objective (6), which turns out to be complicated to
implement. We now consider another tradeoff representation
that takes the fairness requirement as a design constraint,
under which we optimize efficiency. In particular, the fairness
requirement is expressed as the RFB defined in (1), and is pre-
specified by the network operator. Efficiency is measured as
the scheduling makespan. The design objective is to schedule
packets in a way such that they can be processed as quickly
as possible, as long as the specified fairness requirement RFB
is not violated. The key question here is how packets can be
scheduled “as quickly as possible”.

To answer this question, we derive some insights from
existing solutions in the literature that consider the extreme
case where efficiency is the only objective to optimize. That
is, given a sequence of packets that have already arrived, how
should they be scheduled to minimize the overall makespan?
This is equivalent to a multi-stage flow shop problem [15]. In
the flow shop problem, the equivalent of a packet is a job,
while the equivalent of a resource is a machine. A sequence
of jobs have to undergo m-stage operations on m machines,
where Operation 1 must be done first on Machine 1, followed
by Operation 2 on Machine 2, and so on. Different operations
of a job may require different processing times. No two
operations can be carried out on the same machine in parallel.
The objective is to minimize the job makespan by deciding an
optimal scheduling order.

When there are two resources (m = 2), the flow shop
problem can be optimally solved within linear time using
Johnson’s algorithm [15] as follows. Partition the packets

into two sets, such that Set I contains those whose dominant
resource is the second resource, while Set II contains all the
others. The packets in Set I are scheduled first in increasing
order of the processing time required on the first resource. The
packets in Set II follow in decreasing order of the processing
time on the second resource. Ties may be broken arbitrarily.

However, Johnson’s algorithm is no longer optimal when
there are more than two resources (m ≥ 3). In fact, the
flow shop problem is shown to be NP-hard in this case [15].
Despite its hardness, the intuition of Johnson’s algorithm may
still be applied as a good heuristic [15]. Specifically, we
divide all m resources into two resource pools, with Pool
I containing the first bm/2c resources and Pool II the rest.
Packets are also divided into two sets. Set I contains all
packets whose dominant resources fall into Pool II, while Set
II contains all the others. Packets in Set I are always scheduled
first, followed by packets in Set II. Now we have divided a
scheduling problem with m resources into two sub-problems
each with roughly m/2 resources. For each sub-problem, we
repeat the divide-and-conquer strategy above, until the number
of resources concerned is no more than 2, where Johnson’s
algorithm can be directly applied.

With Johnson’s heuristic for efficiency optimization, we
may expect a packet-by-packet scheduling algorithm to work
as follows. It keeps track of the dominant services allocated
to every traffic flow. As long as the service gap does not
exceed the specified fairness requirement, i.e., RFB in (1),
we schedule packets using Johnson’s heuristic for the sake
of higher efficiency. Once the service gap approaches the
specified fairness bound (i.e., exceeds a threshold), the flow
that receives the least service on its dominant resource will
have the highest priority to be served until the gap falls below
the threshold, after which efficiency will become the primary
concern and the whole process repeats. Compared with the
tradeoff representation defined as a unifying framework in
Sec. III-A, the representation above is heuristic, yet is more
friendly to implement using a packet-by-packet scheduling
algorithm.

Though we have briefly outlined the two tradeoff repre-
sentations and compared their pros and cons, there remains a
long way away from a concrete implementation that offers
flexible tradeoff between fairness and efficiency in multi-
resource scheduling. We share our views about the future work
in the final section.

IV. CONCLUDING REMARKS AND FUTURE WORK

Middleboxes are ubiquitous in today’s datacenter networks.
They apply complex network functions that require multiple
hardware resources, e.g., CPU, memory bandwidth, link band-
width, etc. Depending on the network functions that packets
go through, different traffic flows may require vastly different
amounts of various resources. Unlike single-resource packet
scheduling, we show that there exists a tradeoff between
fairness and efficiency in multi-resource packet scheduling. We
call attention to two important research problems: (1) how can
the fairness-efficiency tradeoff be expressed, and (2) how can

a queueing algorithm be designed to implement the specified
tradeoff. As an initial step, we present two tradeoff represen-
tations. The first is based on a unifying framework in which
both the fairness and the efficiency concerns are expressed
as a single optimization objective. This representation, though
rigorous in theory, is hard to implement directly in practice.
We also give another tradeoff representation that can be
heuristically implemented with packet-by-packet scheduling,
in which efficiency is optimized under some specified fairness
constraint.

We believe that both tradeoff representations deserve further
investigation in the future. For the first representation, the key
problem is how to closely track the fluid schedule using a
packet-by-packet scheme with low complexity. Similar chal-
lenges are also found in the traditional fair queueing literature,
where various designing insights and techniques have been
proposed to approximate GPS. Whether and how these insights
and techniques can be applied to the multi-resource scenario
is an interesting question to answer. For the second tradeoff
representation, a more concrete heuristic implementation is
still on the way. So far, it remains unclear how its performance
will be and to what extent the heuristic can accurately produce
the specified fairness-efficiency tradeoff.

REFERENCES

[1] V. Sekar, N. Egi, S. Ratnasamy, M. Reiter, and G. Shi, “Design and
implementation of a consolidated middlebox architecture,” in Proc.
USENIX NSDI, 2012.

[2] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in Proc. ACM SIGCOMM, 2012.

[3] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy,
“Towards high performance virtual routers on commodity hardware,” in
Proc. ACM CoNEXT, 2008.

[4] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica, “Multi-resource fair
queueing for packet processing,” in Proc. ACM SIGCOMM, 2012.

[5] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” in Proc. USENIX NSDI, 2011.

[6] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” in Proc. ACM SIGCOMM, 1989.

[7] A. Parekh and R. Gallager, “A generalized processor sharing approach
to flow control in integrated services networks: The single-node case,”
IEEE/ACM Trans. Netw., vol. 1, no. 3, pp. 344–357, 1993.

[8] H. Zhang, “Service disciplines for guaranteed performance service in
packet-switching networks,” Proc. IEEE, vol. 83, no. 10, pp. 1374–1396,
1995.

[9] S. Keshav, An Engineering Approach to Computer Networking: ATM
Networks, The Internet and Telephone Network. Addison-Wesley
Longman Publishing Co., Inc., 1997.

[10] W. Wang, B. Liang, and B. Li, “Multi-resource generalized processor
sharing for packet processing,” in Proc. IEEE/ACM IWQoS, 2013.

[11] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multi-resource allocation:
Fairness-efficiency tradeoffs in a unifying framework,” in Proc. IEEE
INFOCOM, 2012.

[12] J. Bennett and H. Zhang, “WF2Q: Worst-case fair weighted fair queue-
ing,” in Proc. IEEE INFOCOM, 1996.

[13] S. Golestani, “A self-clocked fair queueing scheme for broadband
applications,” in Proc. IEEE INFOCOM, 1994.

[14] P. Goyal, H. Vin, and H. Cheng, “Start-time fair queueing: A scheduling
algorithm for integrated services packet switching networks,” IEEE/ACM
Trans. Netw., vol. 5, no. 5, pp. 690–704, 1997.

[15] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems. Springer,
2012.

