
First-Order Efficient General-Purpose
Clean-Label Data Poisoning

Tianhang Zheng, Baochun Li
University of Toronto, th.zheng@mail.utoronto.ca, bli@ece.toronto.edu

Abstract—As one of the recently emerged threats to Deep
Learning (DL) models, clean-label data poisoning can teach
DL models to make wrong predictions on specific target data,
such as images or network traffic packets, by injecting a
small set of poisoning data with clean labels into the training
datasets. Although several clean-label poisoning methods have
been developed before, they have two main limitations. First,
the methods developed with bi-level optimization or influence
functions usually require second-order information, leading to
substantial computational overhead. Second, the methods based
on feature collision are not very transferable to unseen feature
spaces or generalizable to various scenarios. To address these
limitations, we propose a first-order efficient general-purpose
clean-label poisoning attack in this paper. In our attack, we first
identify the first-order model update that can push the model
towards predicting the target data as the attack targeted label. We
then formulate a necessary condition based on the model update
and other first-order information to optimize the poisoning data.
Theoretically, we prove that our first-order poisoning method is
an approximation of a second-order approach with theoretically-
guaranteed performance. Empirically, extensive evaluations on
image classification and network traffic classification demonstrate
the outstanding efficiency, transferability, and generalizability of
our poisoning method.

Index Terms—efficient, general-purpose, clean-label data poi-
soning, image classification, network traffic classification

I. INTRODUCTION

In the past decade, deep learning has experienced tremen-
dous progress and proved its efficacy in computer vision
[1], natural language processing [2], game playing [3], and
network traffic analysis [4]–[7]. However, as a data-driven
technique, deep learning is unsurprisingly vulnerable to data
manipulation in both inference and training stages. In the
inference stage, potential adversaries can fool deep learning
models to make wrong predictions with high confidence by
adding imperceptible perturbation to the data. The manipulated
data is referred to as adversarial examples, which is well
studied in recent years [8]–[13]. In the training stage, the
adversaries can inject a backdoor into a deep learning model
by adding a backdoor trigger to some training data. Then, they
can activate the backdoor by adding the same backdoor trigger
to the target testing samples [14]–[16].

In addition, adversaries can also alter the predictions of
deep learning models in the inference stage by placing a small
subset of manipulated data into the training dataset, referred
to as data poisoning [17]–[23]. For instance, when it comes to
network traffic classification, a data poisoning attack can cause
the model to misclassify a traffic packet as coming from a
wrong website by injecting poisoning packets into the model’s

training dataset. In particular, the case that adversaries can
only inject manipulated data samples into the training dataset
without any control on the labeling process is called clean-
label data poisoning, i.e., the labels of the poisoning data are
assumed to be clean (correct). Since clean-label data poisoning
does not require any control over either the inference stage or
the labeling process, it is considered a very realistic threat to
deep learning models in many applications where the training
data is from untrusted sources. Thus, research on clean-label
data poisoning draws increasing attention.

Due to this trend, some clean-label data poisoning methods
have been developed, but we note that they have two main
limitations. The methods developed using bi-level optimization
[24] and influence functions [25] usually need the Hessian
w.r.t. the poisoning data and even its inverse either implicitly
or explicitly, leading to substantial computational overhead,
especially on large networks and datasets.

Compared with bi-level optimization and influence function-
based approaches, the feature collision method first proposed
in [20] is more efficient. The idea is to craft poisoning
data that is close to the target data in the feature space
but are recognized by human beings (potential victims) as
the attack targeted label. However, since different feature
extractors induce different feature spaces, the main drawback
of this poisoning method is its limited transferability to unseen
models under both black-box or gray-box settings, where the
feature extractor is unknown. Zhu et al. [21] attempts to
address the transferability issue by optimizing the poisoning
data on an ensemble of models. Specifically, in [21], the
poisoning data is optimized to form a convex polytope to
entrap the target data in the feature space of the ensemble of
models. However, the transferability of the poisoning method
in [21] is still limited and highly relies on the ensemble of
multiple network architectures [22]. Also, the feature collision-
based methods [20], [21] are not generalizable to the scenarios
where the poisoning data does not come from the attack
targeted class.

To address the above limitations, we propose an efficient
general-purpose clean-label data poisoning attack that only
needs first-order information of the surrogate models. Specif-
ically, we first identify the model update desired by the
adversary, which is the negative of the gradient of a surrogate
loss w.r.t. the target data. Here the surrogate loss can be defined
as the cross-entropy or the C&W loss [12] with the attack
targeted class as the label, in that updating the model along the
negative of the gradient of the loss will push the model towards



predicting the target data as the attack targeted label. Then, we
formulate a necessary condition based on the adversary-desired
model update and some first-order information, which should
be satisfied if we want to generate the desired model update in
the process of model training on the poisoning data. Finally,
we optimize the perturbation of the poisoning data based on
the necessary condition. To further boost the transferability,
we can also execute our proposed method on an ensemble of
surrogate models as in [21], [22].

To theoretically demonstrate the correctness and effective-
ness of our poisoning method, we first derive a second-
order poisoning attack, which guarantees the first-order ap-
proximation of the loss change caused by the update on the
perturbation of the poisoning data to be non-positive. In other
words, the update on perturbation of the poisoning data is
guaranteed to push the model towards predicting the target
data as the attack targeted label in the training process. Then
we prove that our proposed first-order poisoning method is
actually an approximation of this second-order attack.

In addition to our theoretical analysis, we also conduct
an extensive array of experimental evaluations on multiple
network architectures, including ConvNet [1], [26], VGG [27],
and ResNet [28] under different settings. Specifically, our
proposed method achieves 97.8% and over 80% (overall)
attack success rate under the gray-box setting and the black-
box setting, respectively. In addition, we demonstrate that our
attack is generalizable to other real-world tasks with a case
study on poisoning network traffic classification.

We also compare our proposed poisoning method with
recent clean-label poisoning methods proposed in [20]–[22]
with respect to efficiency, transferability, and generalizability.
We show that our proposed attack only takes half of the
computational time taken by the state-of-the-art bi-level opti-
mization based method [22] on large neural networks such as
VGG and ResNet. Furthermore, our poisoning method is more
generalizable to various scenarios, such as a self-concealment
scenario, than the feature collision methods [20], [21].

To summarize, our original contributions in this paper are
four-fold:

1) We propose a new efficient clean-label data poisoning
method that only relies on the first-order information.

2) We prove that our proposed attack is an approximation
of a second-order poisoning attack with theoretically-
guaranteed performance.

3) We conduct extensive evaluations on CIFAR-10 and
multiple network architectures to demonstrate the out-
standing efficiency, effectiveness, transferability, and
generalizability of our proposed poisoning method.

4) We conduct a case study on poisoning network traffic
classification to demonstrate the generalizability of our
attack to various real-world applications.

The remainder of the paper is organized as follows: We
begin with a brief introduction of the background and related
work in Section II. In Section III, we detail the threat model. In
Section IV, we introduce our first-order poisoning method and
prove its connection with a second-order attack. In Section V,

we conduct extensive evaluations to show the efficiency, effec-
tiveness, transferability, and generalizability of our proposed
attack. Finally, we conclude the paper in Section VI.

II. PRELIMINARIES

A. Definitions and Notations

In general, we denote a data sample and its label by x and
y. We denote the clean dataset, the poisoning subset, and the
target dataset (sample) as {Xc, Yc}, {Xp, Yp}, and {Xt, Yt}
({xt, yt}), respectively. The target sample refers to the sample
that the adversary attempts to attack. We refer to the class
(label) that the adversary wants the victim model to predict on
the target samples as attack targeted class (label). Normally,
the number of poisoning samples in {Xp, Yp} is much smaller
than the number of clean samples in {Xc, Yc}. The crafted
perturbation on Xp is denoted by δp. Also, we denote any
classification model by FΘ(·) with model parameter Θ. Here
FΘ(·) represents the logit output of the classification model,
i.e., FΘ(x) = [FΘ,1(x),FΘ,2(x), ...,FΘ,K(x)] with a total
of K classes. We refer to the models used by the adversary
for crafting the poisoning data as surrogate models. We refer to
any model that is trained on the training dataset with poisoning
data as a poisoned model. The loss function is denoted by
L(FΘ(x), y). In this paper, the loss function refers to cross-
entropy or C&W loss [12]. We apply the following definition
of C&W loss, i.e.,

max(max
k 6=yt

FΘ,k(xt)− FΘ,yt(xt),−κ), (1)

where we set κ = 100. If the above C&W loss is nega-
tive, then the model FΘ(·) will recognize the target sample
xt as attack targeted label yt. We define L(FΘ(X), Y ) as
1
N

∑
x,y∈X,Y L(FΘ(x), y,Θ), i.e., the averaged loss over the

dataset. Note that Yt (or yt) refers to the attack targeted class
not the true labels of Xt (or xt). Thus, the attempt of the
potential adversary is to minimize the loss L(FΘ(Xt), Yt).

B. Training-Stage Integrity

As introduced before, it should not be a surprise that deep
learning, as a data-driven technique, is vulnerable to malicious
data manipulation in both the training and inference stages. In
the training stage, there are mainly two types of attacks that
can compromise the integrity of deep learning models.

The first type of attacks is referred to as data poisoning.
A data poisoning attack aims at misleading deep learning
models to make wrong predictions on certain data by injecting
a small set of poisoning data into the training dataset. Here
a general requirement is that the poisoning data should be
similar to the natural data, according to human perception.
Otherwise, the poisoning data might be easily detected by the
victim in the training stage. Besides, in the data poisoning
attack, the adversary is assumed to have no control over the
inference stage. Thus, the adversary might know the target
data but can not modify it in the inference stage. This paper is
mainly focused on data poisoning, especially clean-label data
poisoning, which will be detailed in the following sections.



Another type of training-stage attacks is called the backdoor
attack. A backdoor attack plants a backdoor into a deep
learning model by training the model on the training data with
a backdoor trigger, and in the inference stage, the backdoor can
be activated by the trigger. Specifically, if the adversary adds
the backdoor trigger to a data sample, then the attacked model
will make a wrong prediction on the data sample. Compared
with data poisoning, backdoor attack induces a stricter threat
model since the adversary needs control over the inference
stage.

C. Inference-Stage Integrity

Except for training-time data manipulation, the adversary
can also compromise deep learning models by directly ma-
nipulating data in the inference stage. The manipulated data
is referred to as adversarial examples. [8] first identifies the
vulnerability of deep learning to adversarial examples, which
are indistinguishable from clean samples according to human
perception but can mislead deep learning models to make
wrong predictions with high confidence. Followed by [8],
[9]–[12] develop a variety of methods to generate adversarial
examples. To defend against adversarial examples, [13], [29]–
[31] further propose various empirical or certified defense
methods. Since this paper mainly focuses on data poisoning
and training-stage integrity, we refer the interested readers to
several surveys [32]–[34].

D. Related Work

Here we only detail some representative work on clean-label
data poisoning that is closely related to our work.

a) Influence Functions: Koh et al. [25] proposed to use a
classic tool from robust statistics, i.e., influence functions, for
characterizing the influence of training data on the prediction
(loss) of a testing data sample. Guided by the influence
functions, the adversary can change the prediction of a testing
sample by manipulating the training data. Although this influ-
ence function-guided attack is straightforward and effective, it
suffers high overhead on computing the inverse of the Hessian
of the loss w.r.t. the model parameters. Although [25] provides
an efficient method to compute the inverse of the Hessian, the
method is still not very scalable to large networks and datasets.

b) Feature Collision: Shafahi et al. [20] proposed an
efficient data poisoning method, which attempts to make the
poisoning data and the target testing sample collide in the
feature space of the target model. After the victim fine-tunes
the model layers subsequent to the feature extraction layer on
the poisoned training data, the model will predict the target
testing sample as the label of the poisoning data. Thus, a clean-
label poisoning attack can be launched by setting the label
of the poisoning data as the attack targeted label. Although
this feature collision method is very efficient, its effectiveness
relies heavily on a strong assumption that the feature extractor
cannot substantially change. So if the victim retrains the model
from scratch instead of fine-tuning the last few model layers,
then the attack will probably fail.

Zhu et al. [21] attempts to boost the transferability of the
feature collision method using the ensemble method [35], [36],
i.e., craft the poisoning data on the feature spaces of multiple
model architectures. Specifically, [21] forms a convex polytope
with the feature representations of the poisoning data and
then entraps the feature representation in the polytope on an
ensemble of model architectures. Although [21] significantly
improves the transferability of the feature collision method,
there are still two unresolved drawbacks that limit the general-
izablity and transferability to arbitrary networks and scenarios.
The first drawback is that the feature collision method requires
the dimensionality of the feature space of the target model is
identical to that of the feature spaces of the surrogate models
used for crafting the poisoning data. Otherwise, the feature
representation of the target testing sample cannot be entrapped
in the polytope formed by the feature representations of the
poisoning data. Second, to launch a clean-label poisoning
attack, the label of the poisoning data has to be the attack
targeted label. In contrast, our proposed method does not suffer
from either of these limitations.

c) Meta-poison: Huang et al. [22] recently proposed
a general-purpose poisoning method based on meta-learning
and bi-level optimization, which achieves state-of-the-art per-
formance and does not have the limitations of the feature
collision method. However, this meta-learning based method
needs differentiate through the inner-loop learning process,
thus, we can say it uses second-order information implicitly.
In contrast to [22], pure first-order meta learning does not
really backpropagate through the dynamics of gradient descent
(ignore all the second derivatives). Specifically, [22] optimizes
the poisoning data by the following procedure iteratively:

Θ1 =Θ − γ ∂L(FΘ(Xp ∪Xc), Yp ∪ Yc)
∂Θ

Θ2 =Θ1 − γ
∂L(FΘ1(Xp ∪Xc), Yp ∪ Yc)

∂Θ1
(2)

Xp = Xp−β
∂L(FΘ2(Xt), Yt)

∂Xp
(update Xp)

The second step stops the gradient on Xp but not on Θ1 in
the implementation. Thus, meta-poison needs backpropagate
through the dynamics of gradient descent regarding Θ1. That
is to say, to compute ∂L(FΘ2

(Xt),Yt)

∂ Xp
=

∂L(FΘ2
(Xt),Yt)

∂Θ2
·

∂Θ2

∂ Xp
=

∂L(FΘ2
(Xt),Yt)

∂Θ2
· ∂Θ1

∂ Xp
(The second equality is because

the second step stops gradient on Xp), [22] needs implicit
second information ∂2L(FΘ(Xp ∪Xc),Yp∪Yc)

∂Θ∂ Xp
to compute ∂Θ1

∂ Xp
.

III. THREAT MODEL

A. Clean-label Data Poisoning

In this paper, we mainly study clean-label data poisoning,
which induces a very realistic threat model from the per-
spective of the adversary. In other words, we assume that
the adversaries do not need any control over inference stage
and the labeling process. The label processing is controlled
by the victim. Thus, all the training samples are assumed
to be labeled with their correct classes (clean labels) from



Fig. 1. The threat model of clean-label data poisoning: The adversary injects a small subset of poisoning data crafted under gray-box/black-box setting into
the training dataset. After poisoning data injection, the adversary does not have any control over the remaining process. The victim trains the model on the
training dataset with the poisoning data, and then use the model to predict the label of the target data samples.

the victim’s perspective. Besides, the poisoning data samples
should be similar to natural data samples according to human
perception. Otherwise, the poisoning data might be easily
detected. To summarize, the adversary cannot attack the model
by modifying the inputs in the inference stage. As shown
in Fig. 1, the adversary can only inject a small subset of
poisoning data into the training dataset, which is crafted based
on the target (testing) data and surrogate models. Then, the
victim labels poisoning data samples as their correct labels,
and trains a model on the training dataset with poisoning data.
In the inference stage, if the attack succeeds, the model will
predict the target data (from the bird class in Fig. 1) as the
attack targeted class (dog class in Fig. 1).

Remark 1: Readers may consider a trivial poisoning strat-
egy, i.e., injecting the target image into the training dataset.
However, this trivial method is not workable in the threat
model of clean-label data poisoning, where the target image
will be labeled with its correct class in the training dataset.

B. Gray-box or Black-box Setting
In this paper, we mainly consider gray-box and black-box

settings. A general assumption under both settings is that
the adversary does not have any knowledge about the model
parameters. This assumption makes the threat model more
realistic since the adversary does not need any control over
the model training process after injecting the poisoning data.

a) Gray-box Setting: Under the gray-box setting, we
assume that the adversary knows the model architecture used
by the victim. This assumption is actually a mild one since the
number of model architectures that can achieve high accuracy
is limited. Therefore, even if the adversary makes a random
guess, it might hit a similar model architecture as the target
one. Since the adversary knows the model architecture (or
a similar architecture), the adversary can initialize surrogate
models based on this architecture to craft poisoning data.

b) Black-box Setting: Black-box setting induces a much
more realistic threat model where we assume the adversary
does not have any prior knowledge about the target model,
including the model architecture and parameters. Under such
setting, the adversary can only randomly select one/several
architectures to initialize the surrogate models. To boost the
transferability of the poisoning data, the adversary can use the
ensemble method, i.e., crafting the poisoning data on multiple
surrogate models.

IV. FIRST-ORDER CLEAN-LABEL POISONING ATTACK

A. Basic Attack Strategy

Our proposed poisoning method consists of two core steps.
The first step is to derive the first-order estimation of the
adversary-desired model update that can push the model
towards predicting the target samples as the attack targeted
label. The second step is to perturb the poisoning data so that
training the model on poisoning data is likely to generate the
adversary-desired model update.

The first-order estimation of the adversary-desired model
update is given by

δΘ = Θ̃ −Θ = −α∂L(FΘ(Xt), Yt)

∂Θ
, (3)

where Θ̃ refers to the updated model parameters from Θ
using first-order information (i.e., ∂L(FΘ(Xt),Yt)

∂Θ ). α is a
small positive constant. δΘ in (3) is a model update desired
by the adversary because after the update, the loss will be
approximately decreased by α∂L(FΘ(Xt),Yt)

∂Θ · ∂L(FΘ(Xt),Yt)
∂Θ .

As in introduced in Section II-A, here we can employ cross-
entropy or C&W loss [12] as the loss function to compute the
adversary-desired model update.

In order to generate the above adversary-desired model
update in the process of model training on the perturbed
poisoning data & the clean data, we claim that the following
condition is necessary if the model is updated by vanilla
gradient descent on {Xp + δp ∪Xc, Yp ∪ Yc}, i.e.,

L(FΘ+δΘ
(Xp + δp ∪Xc), Y ) ≤ L(FΘ(Xp + δp ∪Xc), Y ),

where Y = Yp ∪ Yc. Otherwise, the model parameters would
prefer to stop at Θ rather than shift to Θ + δΘ. Here we
employ cross-entropy as the loss function.

Since {Xc, Yc} is clean data, and we focus on the effect
of {Xp, Yp} on the loss, for simplicity, we represent the
loss by L(FΘ(Xp), Yp) instead of L(FΘ(Xp ∪Xc), Yp∪Yc).
Note that we do not really ignore {Xc, Yc} but only use
a dense representation. If we approximate both sides of the
above inequality with first-order information, we have

L(FΘ+δΘ
(Xp), Yp) + δp ·

∂L(FΘ+δΘ
(Xp), Yp)

∂Xp
≤

L(FΘ(Xp), Yp) + δp ·
∂L(FΘ(Xp), Yp)

∂Xp
.



Reorganize this first-order approximation, we have the fol-
lowing inequality, which defines a hyperplane corresponding
to the perturbation δp.

δp ·(
∂L(FΘ+δΘ

(Xp), Yp)

∂Xp
− ∂L(FΘ(Xp), Yp)

∂Xp
) ≤ (4)

L(FΘ(Xp), Yp)− L(FΘ+δΘ
(Xp), Yp).

If we assume Θ = argminΘ̃ L(Xp ∪Xc, Yp ∪ Xc, Θ̃), then
(4) can be further released as

δp ·(
∂L(FΘ+δΘ

(Xp), Yp)

∂Xp
− ∂L(FΘ(Xp), Yp)

∂Xp
) ≤ 0, (5)

which is a necessary condition for (4) under such an as-
sumption. And if δp ·(

∂L(FΘ+δΘ
(Xp),Yp)

∂ Xp
− ∂L(FΘ(Xp),Yp)

∂ Xp
)�

0, then Θ + δΘ is much more likely similar to
argminΘ̃ L(Xp + δp, Yp, Θ̃). Thus, we should update δp

along the direction of −(∂L(FΘ+δΘ
(Xp),Yp)

∂ Xp
− ∂L(FΘ(Xp),Yp)

∂ Xp
).

B. Connection between Our Method and a Second-Order Data
Poisoning Method

Actually, we can prove the correctness and effectiveness of
our attack by connecting our proposed attack strategy with a
second-order poisoning method. The connection is that our
proposed method, i.e., updating δp along the direction of
−(∂L(FΘ+δΘ

(Xp),Yp)

∂ Xp
− ∂L(FΘ(Xp),Yp)

∂ Xp
), is an approximation

of a second-order poisoning method. To prove this connection,
in the following, we first derive the second-order attack. Given
training data as Xc ∪Xp, the vanilla gradient descent method
updates the model parameters Θ with step size γ by

Θ̃ = Θ − γ ∂L(FΘ(Xp), Yp)

∂Θ
. (6)

Note that since {Xc, Yc} always remains the same in the
training stage, we also simplify {Xc ∪Xp, Yc ∪ Yp} into
{Xp, Yp}. Then, the first-order approximation of the loss
change on the target data after the above update is

−γ ∂L(FΘ(Xp), Yp)

∂Θ
· ∂L(FΘ(Xt), Yt)

∂Θ
(7)

If we add δp to Xp, the additional loss change caused by δp
can be approximated by (assuming Θ is approximately fixed)

−γ ∂
2L(FΘ(Xp), Yp)

∂Θ∂Xp
· δp ·

∂L(FΘ(Xt), Yt)

∂Θ
(8)

Since the adversary wants to decrease the loss L(FΘ(Xt), Yt)
so that the model can predict Xt as Yt, the additional loss
change caused by δp in (8) is expected to be smaller than 0.
The following proposition gives such a δp.

Proposition 4.1: If γ, ε > 0, and δp = ε
∂2L(FΘ(Xp),Yp)

∂ Xp ∂Θ ·
∂L(FΘ(Xt),Yt)

∂Θ , (8) is at most 0 (non-positive). Therefore, up-
dating δp along the direction of ∂2L(FΘ(Xp),Yp)

∂ Xp ∂Θ · ∂L(FΘ(Xt),Yt)
∂Θ

is a (second-order) poisoning attack.
Proof The proof of Proposition 4.1 is simple. For sim-
plicity, we denote ∂2L(FΘ(Xp),Yp)

∂ Xp ∂Θ by H. Then δp =

εHT ·∂L(FΘ(Xt),Yt)
∂Θ . Since (8) is a scalar, we can rewrite (8)

as Trace(−γεH ·HT ·∂L(FΘ(Xt),Yt)
∂Θ · ∂L(FΘ(Xt),Yt)

∂Θ ), which
is equal to Trace(−γε∂L(FΘ(Xt),Yt)

∂Θ ·H ·HT ·∂L(FΘ(Xt),Yt)
∂Θ ).

Denote HT ·∂L(FΘ(Xt),Yt)
∂Θ by h, then we can rewrite (8) as

−γεhT h ≤ 0. So we have Proposition 4.1.

Next, we show that our first-order poisoning method is an
approximation of the second-order attack by Proposition 4.2.

Proposition 4.2: The update reference for δp in our attack,
i.e., −(∂L(FΘ+δΘ

(Xp),Yp)

∂ Xp
− ∂L(FΘ(Xp),Yp)

∂ Xp
), is actually an

approximation of α∂2L(FΘ(Xp),Yp)
∂ Xp ∂Θ · ∂L(FΘ(Xt),Yt)

∂Θ .

Proof The proof for Proposition 4.2 is also simple. When
δΘ is small, −(∂L(FΘ+δΘ

(Xp),Yp)

∂ Xp
− ∂L(FΘ(Xp),Yp)

∂ Xp
) is ap-

proximately −∂2L(FΘ(Xp),Yp)
∂ Xp ∂Θ · δΘ. According to (3), δΘ =

−α∂L(FΘ(Xt),Yt)
∂Θ , so we have Proposition 4.2.

According to Proposition 4.2, updating δp along the direc-
tion of −(∂L(FΘ+δΘ

(Xp),Yp)

∂ Xp
− ∂L(FΘ(Xp),Yp)

∂ Xp
) (i.e., our first-

order method) is an approximation of updating δp along the
direction of ∂2L(FΘ(Xp),Yp)

∂ Xp ∂Θ · ∂L(FΘ(Xt),Yt)
∂Θ (i.e., second-order

attack defined in Proposition 4.1). Note that the the direction
of ∂2L(FΘ(Xp),Yp)

∂ Xp ∂Θ · ∂L(FΘ(Xt),Yt)
∂Θ is same as the direction of

α
∂2L(FΘ(Xp),Yp)

∂ Xp ∂Θ · ∂L(FΘ(Xt),Yt)
∂Θ if α > 0.

C. Boosting Transferability by an Ensemble Method

Note that in a general-purpose poisoning attack, we want
the poisoning data crafted on surrogate models transferable
to agnostic models, i.e., to maintain the effectiveness of the
poisoning data after model retraining under the black-box or
gray-box setting. Inspired by [21], [22], [35], [36], in the
process of updating the perturbation δp, we can further boost
the performance by updating an ensemble of surrogate models,
and simultaneously update δp based on all the models. We

Algorithm 1 First-order Poisoning Attack (Ensemble)
Require: Training sets {Xc, Yc}, {Xp, Yp}, and {Xt, Yt};

M randomly initialized models {Fm,Θm
}i=1,2,...,M ; loss

function L(FΘ(X), Y ); step size α, γ; perturbation size
ε; number of crafting steps T ; Adam optimizer.

1: Pretrain the M models and add uniform random noise
U(−ε, ε) to the poisoning data

2: for t = 0 to T − 1 do
3: for m = 1 to M do
4: δΘm

= −α∂L(FΘm (Xt),Yt)
∂Θm

5: end for
6: Compute the averaged update gt as (9)
7: Update the perturbation δp using gt as the gradient with

Adam optimizer
8: Clip the perturbation δp into a valid range ([−ε, ε])
9: for m = 1 to M do

10: Update Θm as in (6) batch by batch.
11: end for
12: end for
13: Return Xp + δp



denote the ensemble of models by {Fm,Θm
}i=1,2,...,M , where

Fm,Θm refers to the m-th model. Here we adopt the average of
−(∂L(FΘ+δΘ

(Xp),Yp)

∂ Xp
− ∂L(FΘ(Xp),Yp)

∂ Xp
) over the ensemble of

models as an efficient and effective estimation for the update
direction of δp, i.e.,

− 1

M

M∑
m=1

∂L(Fm,Θm+δΘm
(Xp), Yp)

∂Xp
− ∂L(Fm,Θm(Xp), Yp)

∂Xp

(9)

Based on the above estimation, we develop a first-order poi-
soning algorithm to update the perturbation of the poisoning
data with Adam optimizer, which is detailed in Alg. 1.

D. Boosting Performance by Color Perturbation

To further boost the attack performance, we follow [22],
[37] to apply recolor function f c(·) to the poisoning images
besides the common additive perturbation [9], [22]. Formally,
given a natural sample x, its corresponding poisoning data
sample xp can be represented as

xp = fc(x) + δ, (10)

where fc(·) a pixel-wise color remapping with parameter c,
and δ represents the additive perturbation. We denote the
parameters c for all the poisoning samples (subset) by C.
To apply the color perturbation in Alg. 1, we update C by
substituting the gradients ∂L

Xp
in (9) with ∂L

∂C , i.e.,

− 1

M

M∑
m=1

∂L(Fm,Θm+δΘm
(Xp), Yp)

∂C
− ∂L(Fm,Θm

(Xp), Yp)

∂C

(11)

As introduced in Section III, the poisoning data should be
similar to the natural data. So we not only bound the additive
perturbation by ‖ δ ‖∞ < ε, but also bound the color perturba-
tion by ‖ fc(x)−x ‖∞ < εc. Therefore, the total perturbation
of the poisoning data sample is bounded by ε + εc. More
concretely, to incorporate color perturbation into Alg. 1, in
line 6 & 7, we compute gt1 as (9) and gt2 as (11) and update
both color and additive perturbation. In line 8, we clip the
additive perturbation δ into [−ε, ε], and the color perturbation
fc(x)− x into [−εc, εc].

E. Boosting Performance by Watermarking

According to [20], the attack performance could be boosted
by superimposing a 30% watermark of the target image on
the poisoning images. However, we do not suggest add 30%
watermark in a poisoning attack due to the following two
reasons. First, 30% watermark of the target image can cause
very large perturbation locally. Let us consider an extreme
case. If the value of a pixel of the target image is 255,
then 30% of the pixel value is 77. And if the corresponding
pixel value of the original image is 0, then the perturbation
on this pixel is 77/255. Different from watermark, both the
additive perturbation and the color perturbation are bounded
by relatively small values. Second, 30% watermark of the
target image might make the poisoning image look abnormal

Fig. 2. Watermark trick: original image (left), target image (middle),
0.7×original image + 0.3× target image (right)

Fig. 3. Meta Poison (εc = 0.04): original image (left), color perturbation +
additive perturbation (middle), poisoning image (right)

or artificial. As shown in Fig. 2, the dog image with the
watermark (right) looks abnormal after adding 30% watermark
of a bird image (middle). Also, we can clearly see the
watermark in the right image of Fig. 2. This kind of abnormal
or artificial images might be easily detected by the victim and
removed from the training dataset. Therefore, we only apply
10% watermark of the target images to the poisoning images.

V. EXPERIMENTS

A. Dataset and Network Architectures

We follow [20]–[22] to conduct the experiments mainly on
CIFAR-10. We also conduct a case study on a network traffic
dataset, which is detailed in Section V-E. CIFAR-10 consists
of 50000 training samples and 10000 testing samples. For
all the experiments, the budget of poisoning data is less than
10% of the training dataset. By default, we set the poisoning
budget as 1%, i.e., 500/50000 poisoning samples. Therefore,
the model can still achieve high accuracy on the other testing
samples (other than the target samples). We evaluate our
method on multiple network architectures. Specifically, we use
a 6-layer ConvNet architecture with batch normalization (Con-
vNet/ConvNetBN), which is a commonly-used lightweight
network for CIFAR-10. In addition to ConvNet, we also
evaluate our attack on VGG-13 and ResNet-20 [22]. Both are
commonly-used model architectures for computer vision tasks.

B. Implementation and Experiment Details

Our implementation is based on pytorch and the code from
[20], [22]. By default, we simply set α = 0.001 (in Alg. 1),
ε is set as 8/255 or 16/255, and εc is set as 0.02 instead of
0.04 in [22]. This is because we find that the color perturbation
of εc = 0.04 can dramatically change the basic color of the
object, which also makes the image look artificial. In Fig. 3,
we display a poisoning image crafted by [22] with color
perturbation size of εc = 0.04. We can see the color of the
dog is changed into green. To our knowledge, there are barely
any green dogs. Thus, the victim might consider the poisoning
dog image artificial and remove it from the training set. Also,



Fig. 4. Visualization of the poisoning data generated by our attack: original
image (left), perturbation (middle), poisoning image (right).

as introduced in Section IV-E, we apply 10% watermark to the
poisoning data before executing the attack algorithm. We show
several poisoning images crafted by our proposed method in
Fig. 4. Compared with the poisoning samples in Fig. 2 & 3,
the poisoning images crafted by our attack settings look more
natural and similar to the original images.

By default, we attack data samples from the bird class and
set the dog class as the targeted class following [21], [22].
We craft the poisoning data on 8 surrogate models with the
same model architecture (different from [21]). According to
Table I, running our proposed attack on 8 surrogate models
(e.g., VGG-13) usually only cost the computational time to run
meta-poison [22] on 4 surrogate models.

Attack success rate is defined as the number of successful
attack attempts divided by the total number of attack attempts.
Here an attack attempt refers to retraining a model on the
training dataset with the poisoning data from scratch. A
successful attack attempt means the retrained model is misled
to predict the target samples as the attack targeted class (or
other than the correct class in the self-concealment scenario
introduced in Section V-D).

C. Attack Performance

In this subsection, to evaluate the performance of our pro-
posed attack, under each setting (introduced in Section III-B)
and on each model architecture, we conduct 3 experiments to
craft poisoning data with different target data samples and 10
attack attempts for each experiment.

a) Gray-box Setting: Under the gray-box setting, we
assume that the adversary knows the model architecture. In
such a case, the optimal strategy for the adversary is to craft
the poisoning data on surrogate models with the same model
architecture. In Fig. 5, we show the number of successful
attempts out of 10 attack attempts on each model architec-
ture for each experiment with a different target sample. As
we can see, our attack achieves 97.8% attack success rate
(88/90) overall. On ConvNetBN and ResNet-20, our method
achieves 96.7% success rate (29/30), and on VGG-16, our

Fig. 5. Gray-box setting: Number of successful attack attempts

Fig. 6. Box plot of the C&W losses in the attack attempts under the gray-box
setting. C&W losses can be interpreted as the negative of the confidence of
the victim model to predict the target sample as the attack targeted label.

method achieves 100% success rate. Therefore, compared with
ConvNetBN and ResNet-20, VGG-16 seems more vulnerable
to our poisoning method under the gray-box setting. This
observation is further verified by Fig. 6. Fig. 6 shows the
statisitics of the final C&W losses of the target sample (1,
2, 3) in each attack attempt. According to the definition in
Section II-A (Eq. 1), C&W loss can be interpreted as the
negative of the confidence of the model to predict the target
sample xt as attack targeted label yt. Negative C&W loss
indicates a successful attack attempt, and smaller C&W loss
indicates higher confidence, i.e., better attack performance. As
shown in Fig. 6, the C&W losses of the VGG-13 models on the
target sample are smaller than the C&W losses of ConvNetBN
or ResNet-20 models, which verifies our observation. Fig. 7
shows that the number of successful attack attempts increases
as the number of poisoning data samples increases.

b) Black-box Setting: Under the black-box setting, we
assume that the adversary does not know the model archi-
tecture. As introduced in Section III-B, under such a setting,
the adversary tends to randomly choose one or a few model
architectures to build several surrogate models and then craft
poisoning data on these surrogate models. To evaluate our
attack under the black-box setting, we assume that the victim
might use ConvNetBN, VGG-13, or ResNet-20, and the adver-
sary crafts the poisoning data on one of the other two model
architectures. In Fig. 8, we show the number of successful
attack attempts on each model architecture under the black-
box setting. Employing ConvNetBN, VGG-13, and ResNet-20



Fig. 7. Number of successful attack attempts (out of 10 attempts) vs number
of poisoning samples: The poisoning data is crafted on ConvNetBN, and 10
attack attempts are executed on ConvNetBN for each target sample (1, 2, 3).
Note that the total number of training samples is 50000.

Model # poison data Meta Poison [22] Our Method

ConvNetBN 50/50000 13.5s 9.3s
500/50000 25.4s 16.0s

VGG-13 50/50000 35.5s 22.3s
500/50000 71.7s 36.4s

ResNet-20 50/50000 48.6s 30.1s
500/50000 95.4s 48.1s

TABLE I
AVERAGED COMPUTATIONAL TIME PER CRAFTING STEP ON A SINGLE

MODEL ON A SINGLE TITAN GPU.

as the surrogate model architecture, the attack success rates
are respectively 80.0% (48/60), 75.0% (45/60), and 88.3%
(53/60). Considering that ConvNetBN, VGG-13, and ResNet-
20 are very different model architectures, the performance of
our proposed attack under the black-box setting is remarkable.

D. Comparison with Previous Work

In this subsection, we mainly compare our poisoning
method with the clean-label poisoning methods introduced in
Section II-D on efficiency, transferability, and generalizability.

a) Efficiency: Note that the meta-poison method pro-
posed in [22] is currently the most efficient second-order
clean-label poisoning method, which uses second-order in-
formation implicitly. The other second-order methods that
explicitly use Hessian or its inverse are not scalable to
large networks like VGG and ResNet [25]. Thus, we mainly
compare our proposed method with [22] to show the better
efficiency of our proposed attack than the class of second-
order poisoning methods. As shown in Table I, on all the
three model architectures, our proposed attack is faster than
the meta-poison method. Moreover, as the network architecture
becomes more complicated, our proposed attack can save more
computational time compared with [22]. Specifically, on VGG-
13 and ResNet-20, our attack only needs roughly half of the
computational time required by the meta-poison method [22]
to achieve comparable attack success rate.

b) Transferability: Here transferability refers to the
transferablity of the effectiveness of the poisoning data crafted
on surrogate models to other (unseen) models. By merging
the results in Section V-C, we show the transferability of our
proposed poisoning method across different models and model

Model ConvNetBN VGG-13 ResNet-20 Overall
ConvNetBN 96.7% 76.7% 93.3% 88.9%

VGG-13 76.7% 100% 83.3% 86.7%
ResNet-20 73.3% 76.7% 96.7% 83.3%

TABLE II
TRANSFERABILITY OF THE EFFECTIVENESS (QUANTIFIED BY ATTACK
SUCCESS RATE) OF THE POISONING DATA CRAFTED BY OUR ATTACK

ACROSS DIFFERENT MODEL ARCHITECTURES.

architectures in Table II. We claim that our proposed attack
indeed has good tranferability since the attack success rate (as
a metric to quantify effectiveness) of the poisoning data across
different model architectures is over 70%. Previous work such
as [21], [22] can also achieve good transferability. However,
as introduced in Section II-D, the method proposed in [21] has
to craft the poisoning data on an ensemble of multiple model
architectures. While our proposed method and [22] only need
craft the poisoning data on a single model architecture (but
multiple surrogate models) to achieve good transferability.

c) Generalizability: Here generalizability refers to the
generalizability of a poisoning method to different scenarios.
As introduced in Section II-D, a main drawback of feature
collision methods [20], [21] is that the label of the poisoning
data has to be the attack targeted label, which limits the
generalizability of this method to other scenarios. In contrast
to [20], [21], our attack is generalizable to various scenarios.
To verify the above claim, we consider a “self-concealment”
scenario in [22], where we set the targeted class as airplane,
and also craft the poisoning data from the airplane class. We
select different target samples from the airplane class in the
testing dataset, and the attempt of the poisoning attack here
is to make the victim model misclassify the target airplane
images into another class.

In this experiment, we do not apply any watermark to
the poisoning data samples. This is because the poisoning
data also comes from the correct class (airplane). Adding
the watermark of the target sample to the poisoning data
samples motivates the model to recognize the target sample as
the ground-truth class (airplane), which contradicts the attack
attempt. Thus, instead of adding watermark, we boost the
attack performance by increasing the additive perturbation size
to from 8/255 to 16/255. We craft the poisoning data on
ConvNetBN, and attack ConvNetBN, VGG-13, and ResNet-
20 with 10 independent attack attempts for each architecture.
In Fig. 9, we show the number of successful attack attempts on
each model architecture. Notably, our attack achieves 96.7%
attack success rate overall in this scenario.

E. Case Study: Poisoning Network Traffic Classification

In the subsection, we verify the generalizability of our
poisoning method across various real-world applications and
scenarios by a case study on poisoning network traffic classi-
fication.

We employ the USTC-TFC2016 dataset [4], [5] for the case
study. [4] details how to preprocess the raw traffic data in
the dataset into images and train a CNN-based model for
classification. Specifically, the continuous raw traffic data is
first split to discrete traffic units. Then, the MAC address and



Fig. 8. Black-box setting: Number of successful attempts (out of 10 attack attempts). The legends indicate the model architecture of the surrogate models.

Fig. 9. Self-concealment scenario: The poisoning data is crafted on Con-
vNetBN and evaluated on ConvNetBN, VGG-13, and ResNet-20 with 10
attack attempts for each architecture. The results are better than the results
in Fig. 8. This is because the attack here only needs to mislead the model to
classify the target sample into any other classes (other than the correct class).

Fig. 10. The averaged number of packets whose predictions are changed by
our attack over 10 attack attempts for each class.

IP address in the data link layer are randomized for traffic
anonymization/sanitization, and the empty or duplicated files
generated by the packets without the application layer or dupli-
cated packets are removed. Finally, all the files are trimmed or
padded to 784 bytes, and the resulting files are converted into
28×28 (784) gray images with one pixel representing one byte.
A two-layer CNN architecture (similar to LeNet-5 [38]) is used
to classify these resulting gray images. In this experiment, We
sample 20000 images and 2000 images from 10 classes to form
the training and testing dataset. The attempt of our attack is
to mislead the model to make wrong predictions on the target
data from different classes. For each class, we conduct an

experiment by selecting 10 target packets and applying 0.3/1.0
additive perturbation, which is a commonly-used perturbation
size for gray images in the previous literature [13], [36], [39],
[40], to the training data from the class. We execute 10 attack
attempts for each experiment, i.e., retrain 10 models from
scratch on the poisoning data plus the remaining clean training
data for each class.

In Fig. 10, we show the averaged number of packets
whose predictions are flipped by our attack over the 10 attack
attempts for each class. Specifically, for the 10 classes, our
poisoning method successfully attacks 10, 8.8, 10, 10, 10, 10,
8.3, 10, 10, and 10 packets out of the 10 target packets on
average in the 10 attack attempts. Note that “FaceTime” and
“Skype” are videotelephony apps, so we conjecture that the
relatively poor performance of our poisoning attack on the
“FaceTime” and “Skype” class is because the video streaming
traffic has some peculiar features compared with the traffic
from the other classes so that the poisoned model can still
recognize a few target packets from those two classes. We also
note that in all the attack attempts, the model can still achieve
over 80% (even 90%) accuracy on the other traffic packets in
the testing dataset. Therefore, the poisoned models still seem
normal but only perform poorly on the target samples.

VI. CONCLUSION

In this paper, we propose an efficient general-purpose clean-
label data poisoning method that only employs first-order
information of the surrogate models. The basic idea of our
proposed poisoning method is to first identify the first-order
model update desired by the adversary, and then perturb the
poisoning data to match the update on the poisoning data with
the adversary-desired update based on a necessary condition.
Theoretically, we prove that our proposed first-order attack
is an approximation method for a second-order information
driven poisoning method with theoretically-guaranteed perfor-
mance. Empirically, we show that our attack is more efficient
than the state-of-the-art second-order poisoning method, and
more generalizable to different scenarios than feature collision
based methods. All these theoretical and empirical results
demonstrate the outstanding performance and efficiency of our
proposed clean-label poisoning method. We expect that our
work can inspire the ensuing development of efficient clean-
label data poisoning and defense methods.



REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[2] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[4] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic
classification using convolutional neural network for representation
learning,” in 2017 International Conference on Information Networking
(ICOIN). IEEE, 2017, pp. 712–717.

[5] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end
encrypted traffic classification with one-dimensional convolution neural
networks,” in 2017 IEEE International Conference on Intelligence and
Security Informatics (ISI). IEEE, 2017, pp. 43–48.

[6] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “State-of-the-art deep learning: Evolving machine intel-
ligence toward tomorrow’s intelligent network traffic control systems,”
IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2432–
2455, 2017.

[7] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, “Deep
packet: A novel approach for encrypted traffic classification using deep
learning,” Soft Computing, vol. 24, no. 3, pp. 1999–2012, 2020.

[8] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[9] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[10] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning
at scale,” arXiv preprint arXiv:1611.01236, 2016.

[11] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Security and Privacy (EuroS&P), 2016 IEEE European Symposium
on. IEEE, 2016, pp. 372–387.

[12] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in Security and Privacy (SP), 2017 IEEE Symposium on.
IEEE, 2017, pp. 39–57.

[13] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in International
Conference on Learning Representations, 2018.

[14] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[15] B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor attacks,”
in Advances in Neural Information Processing Systems, 2018, pp. 8000–
8010.

[16] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 707–723.

[17] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” arXiv preprint arXiv:1206.6389, 2012.

[18] B. Li, Y. Wang, A. Singh, and Y. Vorobeychik, “Data poisoning attacks
on factorization-based collaborative filtering,” in Advances in neural
information processing systems, 2016, pp. 1885–1893.

[19] O. Suciu, R. Marginean, Y. Kaya, H. Daume III, and T. Dumitras, “When
does machine learning fail? generalized transferability for evasion and
poisoning attacks,” in 27th USENIX Security Symposium (USENIX
Security 18), 2018, pp. 1299–1316.

[20] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein, “Poison frogs! targeted clean-label poisoning attacks
on neural networks,” in Advances in Neural Information Processing
Systems, 2018, pp. 6103–6113.

[21] C. Zhu, W. R. Huang, H. Li, G. Taylor, C. Studer, and T. Goldstein,
“Transferable clean-label poisoning attacks on deep neural nets,” in
International Conference on Machine Learning, 2019, pp. 7614–7623.

[22] W. R. Huang, J. Geiping, L. Fowl, G. Taylor, and T. Goldstein,
“Metapoison: Practical general-purpose clean-label data poisoning,”
arXiv preprint arXiv:2004.00225, 2020.

[23] F. Suya, S. Mahloujifar, D. Evans, and Y. Tian, “Model-targeted poison-
ing attacks: Provable convergence and certified bounds,” arXiv preprint
arXiv:2006.16469, 2020.

[24] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li,
“Manipulating machine learning: Poisoning attacks and countermeasures
for regression learning,” in 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 2018, pp. 19–35.

[25] P. W. Koh and P. Liang, “Understanding black-box predictions via in-
fluence functions,” in Proceedings of the 34th International Conference
on Machine Learning-Volume 70, 2017, pp. 1885–1894.

[26] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning, 2015, pp. 448–456.

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[29] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against
adversarial examples,” arXiv preprint arXiv:1801.09344, 2018.

[30] E. Wong and Z. Kolter, “Provable defenses against adversarial examples
via the convex outer adversarial polytope,” in International Conference
on Machine Learning, 2018, pp. 5283–5292.

[31] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified
robustness to adversarial examples with differential privacy,” arXiv
preprint arXiv:1802.03471, 2018.

[32] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning
in computer vision: A survey,” IEEE Access, vol. 6, pp. 14 410–14 430,
2018.

[33] H. Xu, Y. Ma, H. Liu, D. Deb, H. Liu, J. Tang, and A. K. Jain,
“Adversarial attacks and defenses in images, graphs and text: A review,”
International Journal of Automation and Computing, vol. 17, no. 2, pp.
151–178, 2020.

[34] K. Ren, T. Zheng, Z. Qin, and X. Liu, “Adversarial attacks and defenses
in deep learning,” Engineering, 2020.

[35] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transfer-
able adversarial examples and black-box attacks,” arXiv preprint
arXiv:1611.02770, 2016.

[36] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks and defenses,” in
International Conference on Learning Representations, 2018.

[37] C. Laidlaw and S. Feizi, “Functional adversarial attacks,” in Advances
in neural information processing systems, 2019, pp. 10 408–10 418.

[38] Y. LeCun, L. Jackel, L. Bottou, C. Cortes, J. S. Denker, H. Drucker,
I. Guyon, U. A. Muller, E. Sackinger, P. Simard et al., “Learning
algorithms for classification: A comparison on handwritten digit recog-
nition,” Neural networks: the statistical mechanics perspective, vol. 261,
p. 276, 1995.

[39] T. Zheng, C. Chen, and K. Ren, “Distributionally adversarial attack,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 2253–2260.

[40] D. Zhang, T. Zhang, Y. Lu, Z. Zhu, and B. Dong, “You only propagate
once: Accelerating adversarial training via maximal principle,” in Ad-
vances in Neural Information Processing Systems, 2019, pp. 227–238.


