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ABSTRACT
Deep learning sits at the forefront of many on-going advances in a

variety of learning tasks. Despite its supremacy in accuracy under

benign environments, Deep learning suffers from adversarial vul-

nerability and privacy leakage (e.g., sensitive attribute inference)
in adversarial environments. Also, many deep learning systems

exhibit discriminatory behaviors against certain groups of subjects

(e.g., demographic disparity). In this paper, we propose a unified

information-theoretic framework to defend against sensitive at-

tribute inference and mitigate demographic disparity in deep learn-

ing for the model partitioning scenario, by minimizing two mutual

information terms. We prove that as one mutual information term

decreases, an upper bound on the chance for any adversary to infer

the sensitive attribute from model representations will decrease.

Also, the extent of demographic disparity is bounded by the other

mutual information term. Since direct optimization on the mutual

information is intractable, we also propose a tractable Gaussian

mixture based method and a gumbel-softmax trick based method

for estimating the two mutual information terms. Extensive eval-

uations in a variety of application domains, including computer

vision and natural language processing, demonstrate our frame-

work’s overall better performance than the existing baselines.

CCS CONCEPTS
•Mathematics of computing→ Information theory; • Com-
puting methodologies → Artificial intelligence; • Security
and privacy→ Privacy protections.
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1 INTRODUCTION
Aided by big data and over-parameterization, modern deep learning

techniques can achieve excellent performance in many learning

tasks under benign environments. Therefore, at a rapid pace, deep

learning is being deployed to diversified real-world applications,

including some privacy or fairness-critical ones [24]. For privacy-

critical applications, there is a growing concern that deep learning

would be a primary source of user privacy leakage in the future,

and forestalling privacy leakage from deep learning models is chal-

lenging, partially due to the models’ black-box nature. To mitigate

some privacy concerns in deep learning, the community has devel-

oped several distributed machine learning schemes, such as model

partitioning and federated learning [22, 27], where the clients send
representations or model updates instead of the raw data to
the cloud server. Although these newly emerging schemes address

the direct privacy leakage from the raw data, they cannot prevent
indirect privacy leakage from the representations and model up-

dates. In particular, recent work shows that the potential adversary,

with the access to the representations, can infer the associated

sensitive attributes such as gender and race [32, 33]. Although the

community already devoted some efforts into developing defenses

to censor the sensitive attributes [9, 28, 36], [33] shows that the

existing defenses, which derive from either adversarial learning or

variational auto-encoding, are not very effective against sensitive

attribute inference.

Beyond privacy concerns, deep learning also suffers from sub-

stantial group fairness issues. Due to data inadequacy or bias, many

machine learning and deep learning models exhibit discriminatory

behaviors against certain groups of subjects. In this regard, the com-

munity proposed several approaches to mitigating demographic

(statistical) disparity in machine learning and deep learning. The

existing approaches that are applicable to deep neural networks are

mainly developed on the framework of variational auto-encoding

[7, 23, 26, 28]. To our knowledge, [28] is the representative existing

work that employs mutual information as the main objective for

mitigating demographic disparity. However, [28] does not consider

the mutual information with direct influence on demographic par-

ity, i.e., the mutual information between model predictions and the

sensitive attribute. Instead, [28] proposes to minimize a variational

bound on the mutual information between the model representa-

tions and the sensitive attribute, which is a sub-optimal strategy

for mitigating demographic disparity.

In this paper, we propose an information-theoretic framework,

namely InfoCensor, to defend against sensitive attribute inference

and mitigate demographic disparity in deep learning. As model

partitioning, the system model of InfoCensor includes a feature ex-

traction network and a prediction network. The feature extraction

https://doi.org/10.1145/3488932.3517402
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network (also called encoder) is used for learning the represen-

tations, and the prediction network is used for performing the

original task. With the support of our theoretical analysis, InfoCen-

sor randomizes the representations with parameterized Gaussian

mechanisms in both training and inference stages, and learns

the parameterized Gaussianmechanisms byminimizing twomutual

information terms along with the original task loss.

In terms of sensitive attribute inference, we prove that an upper

bound on the chance for an arbitrary adversary to infer the sen-

sitive attribute will drop off, as the mutual information between

the representations and the attribute 𝐼 (𝒛, 𝒔) decreases. Based on

this theoretical result, InfoCensor mitigates the threat of sensitive

attribute inference from the representations by minimizing 𝐼 (𝒛, 𝒔).
To mitigate demographic disparity (w.r.t. a sensitive attribute 𝒔),
InfoCensor minimizes the mutual information between model pre-

dictions and the sensitive attribute 𝐼 (�̂�, 𝒔). We show that 𝐼 (�̂�, 𝒔)
has a direct influence on demographic parity since the extent of

demographic disparity is bounded by 𝐼 (�̂�, 𝒔).
All in all, our proposed objective under InfoCensor mainly in-

corporates 𝐼 (𝒛, 𝒔), 𝐼 (�̂�, 𝒔), and the original task loss, with two hy-

perparameters balancing their effects. Since 𝐼 (𝒛, 𝒔) is analytically
intractable, we first propose a Gaussian mixture based method for

estimating 𝐼 (𝒛, 𝒔), provided that 𝑝 (𝒛 |𝒙) is a Gaussian distribution

under InfoCensor. Also, direct optimization on 𝐼 (�̂�, 𝒔) is intractable,
thus we propose a gumbel-trick based method to estimate 𝐼 (�̂�, 𝒔),
which enables feasible backpropagation on 𝐼 (�̂�, 𝒔). In contrast to

some previous works [21, 28], our estimation methods do not need

to train any additional neural network beyond the feature extrac-

tion network and the prediction network for estimating the mutual

information, thus the estimations’ quality does not rely on the mod-

eling performance or training stability of any additional networks.

We demonstrate the effectiveness of InfoCensor by extensive

evaluations in different application domains. In particular, we con-

duct experiments on the Health Heritage dataset, the UTKface

dataset, and a Twitter dataset. These datasets across different appli-

cation domains represent diverse data formats—vectors, images, and

text. For each dataset, InfoCensor learns the randomized representa-

tions with commonly-used neural networks, including multi-layer

perceptions (MLP), convolutional neural networks (CNN), and long-

short termmemory networks (LSTM).We compare InfoCensor with

adversarial training [9, 36], the VAE-based information-theoretic

method [28] (evaluated in [33]), and TIPRDC [21] on all the afore-

mentioned datasets and networks. The experimental results demon-

strate the superiority of InfoCensor over those baselines.

Our contributions are summarized as follows:

(1) We propose an information-theoretical framework, namely

InfoCensor, to defend against sensitive attribute inference

and mitigate demographic disparity.

(2) We establish theoretical links between sensitive attribute in-

ference, demographic parity, and mutual information, prov-

ing that our research objective can be achieved by minimiz-

ing two mutual information terms.

(3) We propose a Gaussian mixture based method and a gumbel-

trick based method to estimate and optimize the two mutual

The code is publicly available at https://github.com/iQua/InfoCensor.

information terms, without Monte Carlo sampling or train-

ing any additional neural networks.

(4) We conduct an array of experiments in varied applications,

including computer vision and natural language processing,

which demonstrate the superior performance of InfoCensor,

compared to the existing baselines.

2 BACKGROUND AND RELATEDWORK
2.1 Definitions and Notations
In this paper, we denote a data sample and its original task output

by 𝒙 and 𝒚, respectively. For a classification problem, the original

task output is the ground-truth label. We further denote the sen-

sitive attribute (variable) by 𝒔, distributed on an alphabet S. Here
a sensitive attribute refers to any discrete attribute that should be

protected in hiring, medical, financial, real estate decisions, etc,

including but not limited to identity, gender, race, etc. We refer to a

value of 𝒔 as a sensitive class, e.g.,male or female. The systemmodel

trained under InfoCensor consists of two neural networks—one

for extracting representations and one for performing the original

prediction task based on the representations. We denote the feature

extraction network by F𝜽 (·) with parameters 𝜽 and the prediction

network by f𝝓 (·) with parameters 𝝓. We denote the prediction by

�̂� = argmax f𝝓 (𝒙). We denote the probability distribution of 𝒙 by

𝑝 (𝒙) and the mutual information between 𝒙 and 𝒛 by 𝐼 (𝒙; 𝒛). For
other variables, we adopt similar denotations for their probability

distribution and mutual information. The KL divergence between

two probability distributions 𝑝 and 𝑞 is denoted by KL(𝑝 |𝑞).

2.2 Privacy in Deep Learning
With increasing client data being engaged in the development of

deep learning systems, there is a growing concern that deep learn-

ing will be a primary source of privacy leakage. Many recent works

have investigated and confirmed privacy concerns by showing that

different levels of private information might be leaked from deep

learning models under different threat models and attacks.

The existing attacks that can cause privacy leakage include mem-

bership inference, reconstruction attack, sensitive attribute (vari-

able) inference, model extraction, etc. Membership inference attacks

aim to determine whether a data sample 𝒙 belongs to the training

set based on the model prediction on 𝒙 [31]. Reconstruction attacks,

which might also be referred to as model inversion attacks, aim

to reconstruct the training data or representative data based on

different levels of information from the models, including model

parameters, model predictions, and model gradients [12, 39]. Sensi-

tive attribute inference attacks attempt to infer sensitive attributes

such as gender and race from the representations (embeddings) of

deep learning models [32, 33]. Model extraction usually refers to

learning a substitute model that behaves similarly to the adversary-

targeted model with query access to the adversary-targeted model

[14, 29, 34]. In this paper, we mainly focus on addressing sen-
sitive attribute inference attacks in the inference stage of
the model partitioning scenario [33] by InfoCensor, and we

detail two commonly-used sensitive attribute inference attacks for

evaluating InfoCensor in Section 3.3.

https://github.com/iQua/InfoCensor
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2.3 Group Fairness in Deep Learning
Many learning systems have demonstrated much or less discrimina-

tion against certain groups of subjects, leading to one group being

deprived of benefits or opportunities if the systems are deployed for

applications such as resource allocation or qualification. There are

many ways to define and quantify the group fairness. In this paper,

we mainly focus on the concept of demographic (statistical)
parity [4] to investigate group fairness. Demographic parity is

one of most well-known definitions for studying group fairness. We

leave the research on connecting information theory and the other

definitions for future works. Under the definition of demographic

parity, a predictor satisfies demographic parity (or we can say a

predictor is unbiased) w.r.t. a sensitive attribute 𝒔 if the prediction
is independent of the sensitive attribute, i.e.,

𝑝 (�̂� |𝒔) = 𝑝 (�̂�). (1)

We note that an equivalent representation for (1) is

KL(𝑝 (�̂� |𝒔) |𝑝 (�̂�)) = 0 (2)

In this paper, demographic disparity means that the predic-
tions are unequally distributed w.r.t 𝒔, i.e., (severe) violation
of (1). Under the definition of demographic parity, we can quantify

the extent of group unfairness of a model by its deviation from

demographic parity, measured by statistical parity difference (SPD),

i.e., 𝑝 (�̂� |𝒔 = 0) − 𝑝 (�̂� |𝒔 = 1), especially when 𝒔 is a binary attribute.

Except for SPD, we can also use the ratio between the two con-

ditional probability terms to as the measure of fairness, inducing

the definition of 𝑝%-rule. There are some other measurements of

fairness such as “decision boundary fairness” in [37]. However, this

measurement is hardly applicable to deep neural networks since it

needs to compute the distance between the data and the decision

boundary, which is non-trivial for deep neural networks.

2.4 Related Work
Research on sensitive attribute inference is attracting increasing

attention from the community due to growing concerns about pri-

vacy leakage from deep learning models [32, 33]. To defend against

sensitive attribute inference, [6, 9, 13, 36] proposed to censor the

sensitive attribute from the model representations based on ad-

versarial training. The core idea of those works is involving a dis-

criminator to infer the sensitive attribute from the representations

and training the encoder to minimize the discriminator’s success.

From the information-theoretic perspective, [28] proposed to train

a variational auto-encoder (VAE) to censor a sensitive attribute by

minimizing a variational bound on the mutual information between

the representations and the sensitive attribute. [21] is another recent

work for defending against attribute inference based on adversarial

training and information theory. We detail the differences between

our work and [21, 28] in Section 2.5.

In terms of group fairness in deep learning, [38] first proposed

to learn fair representations by minimizing absolute SPD on the

representations. However, the method proposed by [38] is only

applicable to clustering models and binary sensitive variables. [23]

modified VAE to produce fair representations with the help of

maximum mean discrepancy (MMD) regularization. As mentioned

above, the adversarial training methods proposed in [9, 26, 36] and

the VAE-based method proposed in [28] can be used for training

(group) fair deep learning models. We note that the performance

of [23] is inferior to that of [28], so we only include [28] in the

comparison with our framework.

2.5 Detailed Comparison with Previous
Information Theory Related Methods

To our best knowledge, there are two well-known defensive meth-

ods against attribute inference related to information theory, i.e.,
VAE-based method [28] (NeurIPS18) and TIPRDC [21] (KDD20).

InfoCensor differs from those two methods in the following as-

pects: First, both [28] & [21] lack theoretical bounds to guarantee

the defensive performance. In contrast, we provide information-

theoretic bounds on inference attack accuracy and demographic

disparity. Second, we randomize the representations in both train-

ing and inference stages, while both [28] & [21] use deterministic

representations in the inference stage. Without randomization in

the inference stage, the encoder (feature extraction network) will

degrade into a deterministic neural network, probably leading to

larger mutual information (𝐼 (𝒙 ; 𝒛) becomes infinite with continu-

ous 𝒙) and inferior defensive performance. Third, both [28] & [21]

need to train additional neural networks for estimating mutual in-

formation, thus, the estimation quality highly relies on the training

stability and model performance of the additional neural networks

(e.g., The mini-max game based estimation method used in [21]

may suffer from training stability issues in practice). In contrast,

our analytical estimation methods do not need to train any addi-

tional networks beyond the feature extractor and the classifier for

estimating 𝐼 (𝒛; 𝒔) and 𝐼 (�̂�; 𝒔). In fact, TIPRDC [21] has similar
defensive performance as adversarial training. This is because,
for the two terms in the objective Eq. 18 in [21], the first term Eq.

15 in [21] is the same as the max-min adversary loss. [21] also

mentions that the first term is an adversarial training objective in

Section 3 in [21]. The main effect of the second term 𝐼 ( 𝐽 𝑆𝐷) (𝒙 ; 𝒛, 𝒖)
is not defending against attribute inference but retaining more

information of 𝒙 according to Section 4.3 in [21]. Consequently,

[21] achieves similar defensive performance as adversarial training.

3 PROBLEM FORMULATION
In this paper, we consider sensitive attribute inference and demo-

graphic parity. Our research objective is to defend against sensitive

attribute inference attacks on model representations and mitigate

demographic disparity in the inference stage of the model parti-

tioning scenario [33]. To achieve this goal, we propose InfoCensor

to randomize the model representations and minimize two mutual

information terms along with the original task loss. In the follow-

ing, we detail our threat model and the potential sensitive attribute

inference attacks that we attempt to address with InfoCensor.

3.1 System Model
As model partitioning [5, 19, 22, 33], the proposed system consists

of two models, a local feature extraction model (encoder) and a

prediction model. In the inference stage, the feature extraction

model is held by the client, and the prediction model is distributed

at the server side as in [5, 33]. In practice, the models can be trained

at a trusted cloud provider [5], which can be leased by the client

for a certain amount of training time. Another choice is that the
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client and the server (service provider) can follow the split learning

protocol to train the two models. In the split learning protocol,

the models can be trained by one client or multiple clients with

a pipeline training scheme. In the pipeline training scheme [11],

each client performs one or more iterations model training and then

sends the snapshot of the feature extraction model to the next client.

According to [11], this pipeline training process is functionally

equivalent to centralized training on a single device with the same

data loading order and the same initial model weights. Eventually,

in the long-term inference stage, the feature extraction model will

be distributed at the client side, and the prediction model will be

distributed at the server side [5, 33], as shown in Fig. 1.

Figure 1: In the inference stage, the server may want to infer
sensitive attributes of the data samples from the representa-
tions 𝒛 sent by the clients [33].

3.2 Threat Model
Our threat model mainly considers the threat of sensitive attribute

inference and group fairness in the inference stage of the model

partitioning scenario. In terms of sensitive attribute inference, our

threat model is similar as the threat model in [33] (ICLR20). Specif-

ically, we assume the adversary has access to the representations

and/or query access to F𝜽 (·)∗. We assume the server is honest-but-

curious, which means the server will cooperate with the clients to

train the prediction model but may want to infer sensitive attribute

from the representations in the inference stage [33]. Actually, in the

training stage, the clients can detect if the server misleads the fea-

ture extraction model to leak more information regarding 𝒔 from 𝒛.
This is because, in such case, 𝐼 (𝒛; 𝒔) will be a large value in the train-
ing stage, according to Theorem 4.1. We note that this work mainly

focuses on addressing attribute inference attacks in the inference

stage [33] and leaves detecting a malicious server in the training

stage for future work. Also, as the threat model of [33], we assume

the adversary has assess to an auxiliary dataset for training the

attack model. In the experiments, we evaluate InfoCensor against

the basic inference attack [32] (CCS20) and the state-of-the-art

de-censoring attack for attribute inference from [33] (ICLR20).

In terms of group fairness, we mainly consider the concept of

demographic disparity in this paper. Data inadequacy and bias

are the common causes of discriminatory behaviors of the modern

learning systems. Data inadequacy refers to lack of data from certain

subgroups, due to the small sizes of the subgroups or inadequate

data collection. Even if the data is sufficient to represent every

subgroup, the data itself might still reflect historical and inherent

prejudices. Our threat model assumes that the datasets might have

the issue of data inadequacy (not severe) or bias, which is the

∗
For other users or the server to use the model in the inference stage.

nature of many real-world datasets, including the datasets used

in the experiments. Our goal is to mitigate demographic disparity

with modest sacrifice of the performance on the original task.

3.3 Sensitive Attribute Inference Attacks
Note that in the following two inference attacks, we assume the

adversary has an auxiliary dataset D𝑎𝑢𝑥 ≜ {𝒙 𝑗 , 𝒔 𝑗 } and the access

to model representations to train its attack model.

Basic Sensitive Attribute Inference. Under our threat model, the

potential adversary might directly infer sensitive attributes from

the model representations, and we call it “basic inference attack”

in this paper. To conduct the basic inference attack, the adversary

learns an attack model g𝝓𝑎𝑑𝑣
(·) on {F𝜽 (𝒙𝑚), 𝒔𝑚}𝑀

𝑚=1
, expecting

that argmax g𝝓𝑎𝑑𝑣
(F𝜽 (𝒙𝑚)) = 𝒔𝑚 . Here we assume the adver-

sary optimizes g𝝓𝑎𝑑𝑣
by minimizing the cross-entropy between

g𝝓𝑎𝑑𝑣
(F𝜽 (𝒙)) and 𝒔 using the Adam optimizer on the auxiliary

dataset. After training the attack model, the adversary infers 𝒔 from
𝒛 by 𝒔 = argmax g𝝓𝑎𝑑𝑣

(𝒛). We detail the algorithm of the basic

inference attack in Alg. 1.

Algorithm 1 Basic Sensitive Attribute Inference

Require: Auxiliary dataset D𝑎𝑢𝑥 = {𝒙𝑚, 𝒔𝒎}𝑀
𝑚=1

; target encoder

F𝜽 (·); attack model g𝝓𝑎𝑑𝑣
(·);

Initialize 𝝓𝑎𝑑𝑣
1. Collect {F𝜽 (𝒙𝑚), 𝒔𝒎}𝑀

𝑚=1
with the access to F𝜽 (·)

2. Train g𝝓𝑎𝑑𝑣
(·) on {F𝜽 (𝒙𝑚), 𝒔𝒎}𝑀

𝑚=1
to minimize the cross-

entropy between g𝝓𝑎𝑑𝑣
(F𝜽 (𝒙𝑚)) and 𝒔𝑚

De-censoring Attack. Under our threat model, the potential adver-

sary might also conduct an advanced de-censoring attack, proposed

in [33], to infer 𝒔 from 𝒛. The idea of the de-censoring method is to

transform the representations into a different form that might leak

more information regarding 𝒔. To conduct the de-censoring attack,

the adversary first learns an auxiliary model onD𝑎𝑢𝑥 with an auxil-

iary feature extraction network (encoder) F𝜽𝑎𝑢𝑥 (·) and an auxiliary

prediction network f𝝓𝑎𝑢𝑥
(·), by minimizing the cross-entropy be-

tween f𝝓𝑎𝑢𝑥
(F𝜽𝑎𝑢𝑥 (𝒙𝑚)) and 𝒔𝑚 . Next, the adversary learns a trans-

form model T𝝃 (·) to transform 𝒛𝑚 = F𝜽 (𝒙𝑚) into F𝜽𝑎𝑢𝑥 (𝒙𝑚) by
minimizing the mean squared error, i.e., ∥ T𝝃 (𝒛𝑚) − F𝜽𝑎𝑢𝑥 (𝒙𝑚))∥2

2
.

Apparently, F𝜽𝑎𝑢𝑥 (𝒙) leaks more information regarding 𝒔, and the

adversary expects to transform 𝒛 into the form of F𝜽𝑎𝑢𝑥 (𝒙) us-
ing T𝝃 (·). The adversary then trains attack model g𝝓𝑎𝑑𝑣

(·) on

{T𝝃 (𝒛𝑚), 𝒔𝑚}. After all the above steps, the adversary can infer

𝒔 from 𝒛 by 𝒔 = argmax g𝝓𝑎𝑑𝑣
(T𝝃 (𝒛)). We refer the interested read-

ers to [33] for more details about this de-censoring attack. Note that

the de-censoring method usually outperforms the basic inference

attack on deterministic representations.

3.4 A Potential Measurement of Group Fairness
The previous literature utilizes SPD to quantify group fairness

(under the concept of demographic parity), which is a suitable mea-

surement for binary sensitive attributes. In a more general setting,

we propose 𝐼 (�̂�; 𝒔) as a potential measurement for measuring group

fairness, with a uniform prior assumption on 𝑝 (𝒔). We assume
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Algorithm 2 De-censoring

Require: Auxiliary dataset D𝑎𝑢𝑥 = {𝒙𝑚, 𝒔𝒎}𝑀
𝑚=1

; auxiliary en-

coder F𝜽𝑎𝑢𝑥 (·); auxiliary prediction network f𝝓𝑎𝑢𝑥
(·); target en-

coder F𝜽 (·); attack model g𝝓𝑎𝑑𝑣
(·); transform model T𝝃 (·); num-

ber of iterations 𝑇

Initialize 𝜽𝑎𝑢𝑥 , 𝝓𝑎𝑢𝑥 , 𝝓𝑎𝑑𝑣, 𝝃
1. Train F𝜽𝑎𝑢𝑥 (·) and f𝝓𝑎𝑢𝑥

(·) on the cross-entropy between

f𝝓𝑎𝑢𝑥
(F𝜽𝑎𝑢𝑥 (𝒙𝑚)) and 𝒔𝒎

2. Train T𝝃 (·) on the mean squared error between F𝜽𝑎𝑢𝑥 (𝒙𝑚) and
T𝝃 (F𝜽 (𝒙𝑚)), i.e., ∥ T𝝃 (F𝜽 (𝒙𝑚)) −F𝜽𝑎𝑢𝑥 (𝒙𝑚)∥2

2
(can be executed

along with 3 simultaneously)

3. Train g𝝓𝑎𝑑𝑣
(·) on {T𝝃 (F𝜽 (𝒙𝑚)), 𝒔𝒎}𝑀

𝑚=1
tominimize the cross-

entropy between g𝝓𝑎𝑑𝑣
(T𝝃 (F𝜽 (𝒙𝑚))) and 𝒔𝑚

that no adversary is involved in computing themeasurement,
otherwise, an adversary canmanipulate any existing fairness
measurement.We note that the real-world priors may suffer from

disparity between different sensitive classes (e.g., disparity between
𝑝 (𝒔 = 𝑖) and 𝑝 (𝒔 = 𝑗)). Then without the uniform prior assumption,

the measurement 𝐼 (�̂�; 𝒔) may induce bias against the group 𝑗 with

small 𝑝 (𝒔 = 𝑗). Specifically, for a sensitive class 𝑗 , if the 𝑝 (𝒔 = 𝑗)
is relatively very small (≪ 1/|S|), then even if the corresponding

KL(𝑝 (�̂� |𝒔 = 𝑗) |𝑝 (�̂�)) is very large (i.e., exhibiting severe discrimi-

nation against the group with sensitive class 𝑗 ), 𝐼 (�̂�; 𝒔) is still not
large. However, we expect that the measurement 𝐼 (�̂�; 𝒔) is large no
matter which sensitive class related group suffers from severe dis-

crimination. Moreover, with the uniform prior assumption, we can

bound the extent of the violation of (1) (the extent of demographic

disparity) by 𝐼 (�̂�; 𝒔) as in Theorem 4.4. Thus, we adopt a uniform

prior assumption on 𝑝 (𝒔) when computing the measurement 𝐼 (�̂�; 𝒔).
Formally, our proposed measurement can be expressed as

𝐼 (�̂�; 𝒔) = 1

|S|
∑︁
𝒔

KL(𝑝 (�̂� |𝒔) |𝑝 (�̂�)), (3)

Since KL(𝑝 (�̂� |𝒔) |𝑝 (�̂�)) ≥ 0, (3) is also greater than or equal to 0.

And if (3) is equal to 0, then the corresponding model satisfies de-

mographic parity, as detailed in Theorem 4.3 & 4.4. The proposed
measurement can apply to an arbitrary discrete sensitive
attribute. For a bounded continuous sensitive attribute 𝒔 ∈ [𝑎, 𝑏]𝑛 ,
we can employ 𝐼 (�̂�; 𝒔) =

∫
𝒔

1

(𝑏−𝑎)𝑛 KL(𝑝 (�̂� |𝒔) |𝑝 (�̂�)) as the group

fairness measurement, assuming a uniform prior on 𝒔. Note that
the empirical results in Section 5.5 further verifies the validity of

this measurement for measuring group fairness.

4 MAIN FRAMEWORK
4.1 Framework Overview
To defend against sensitive attribute inference and mitigate demo-

graphic disparity, we propose a generic objective to minimize two

mutual information terms along with the original task loss. Our

proposed objective can be formulated as

min

𝜽 ,𝝓
L(f𝝓 (𝒛),𝒚) + 𝜆𝐼 (𝒛; 𝒔) + 𝜅𝐼 (�̂�; 𝒔) (4)

𝑠 .𝑡 . 𝒛 = F𝜽 (𝒙), �̂� = argmax f𝝓 (𝒛)

where F𝜽 (·) outputs a randomized representation rather than a

deterministic one, i.e., 𝒛 ∼ N(𝝁𝜽 (𝒙), 𝚺𝜽 (𝒙)) (similar to a vari-
ational encoder [17]), as shown in Fig. 2. The main reason for

randomizing the representations is that in deterministic neural

networks with strictly monotone nonlinearities, certain mutual

information term such as 𝐼 (𝒙 ; 𝒛) is provably an infinite value or a

constant [10]. L(f𝝓 (𝒛),𝒚) refers to the loss customized for solving

the original task. For a classification task, we can define the loss as

the cross-entropy between the logit output f𝝓 (𝒛) and the ground-

truth label 𝒚. If the original task is an unsupervised task without

task output, we might replace L(f𝝓 (𝒛),𝒚) with an unsupervised

loss, e.g., reconstruction loss. In this paper, we mainly focus on
the classification task. 𝐼 (𝒛; 𝒔) refers to the mutual information

between the representations 𝒛 and the sensitive attribute 𝒔. We min-

imize 𝐼 (𝒛; 𝒔) because as 𝐼 (𝒛; 𝒔) decreases, it is more difficult for the

adversary to infer the sensitive attribute from the representation

(see Theorem 4.1 & 4.2 for more details). 𝐼 (�̂�; 𝒔) refers to the mu-

tual information between the model prediction �̂� and the sensitive

variable 𝒔. We minimize 𝐼 (�̂�; 𝒔) since the extent of demographic

disparity can be bounded by 𝐼 (�̂�; 𝒔) (see Theorem 4.4 for details).

𝜆 and 𝜅 are the hyperparameters that balance utility, resistance

against sensitive attribute inference, and group fairness. In practice,

the concrete settings of 𝜆 and 𝜅 may depend on the task and users’

requirements. In the following, we will introduce and prove our

Figure 2: The representations 𝒛 are sampled from the param-
eterized Gaussian mechanisms (N(𝝁𝜽 (𝒙), 𝚺𝜽 (𝒙))) learned by
optimizing our objective. The encoder has similar architec-
ture as a variational encoder [17].

theoretical results.

4.2 Theoretical Connections
Sensitive Attribute Inference and 𝐼 (𝒛, 𝒔). The following theorems

indicate that, as the mutual information between the model rep-

resentation 𝒛 and a sensitive attribute 𝒔 decreases, the sensitive

attribute is more difficult to be inferred (by any adversary) from

the representations.

Theorem 4.1. Let 𝒔 represents a sensitive attribute (variable) uni-
formly distributed on a finite alphabet S, 𝒙 and 𝒛 respectively refer
to the corresponding data sample and the representation learned by
an encoder. The chance for any adversary to (correctly) infer 𝒔 can be
upper-bounded by

P[𝒔 = 𝒔] ≤ 𝐼 (𝒛; 𝒔) + log 2

log |S| , (5)

where 𝒔 is the inferred attribute based on 𝒛.

Proof of Theorem 4.1. The proof is based on Fano’s inequality.
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Lemma 1 (Fano’s Ineqality). Let 𝒔 be a discrete random variable
on a finite alphabetS. Let 𝒔 be an estimate of 𝒔, we then have (Theorem
1 in [30])

𝐻 (𝒔 |𝒔) ≤ 𝐻 (𝑃𝑒 ) + 𝑃𝑒 log( |S| − 1), (6)

where 𝑃𝑒 refers to the error probability 𝑃𝑒 = P[𝒔 ≠ 𝒔], and𝐻 (·) refers
to the entropy function. 𝐼 (𝒔; 𝒔) = 𝐻 (𝒔) − 𝐻 (𝒔 |𝒔) .

Based on the above lemma, we have

𝐼 (𝒔; 𝒔) ≥ 𝐻 (𝒔) − 𝐻 (𝑃𝑒 ) − 𝑃𝑒 log( |S| − 1) (7)

Since 𝐻 (𝑃𝑒 ) ≤ log 2, we have

𝑃𝑒 log |S| ≥ 𝑃𝑒 log( |S| − 1) ≥ 𝐻 (𝒔) − 𝐼 (𝒔; 𝒔) − log 2 (8)

Since 𝒛 ∼ N(𝝁𝜽 (𝒙), 𝚺𝜽 (𝒙)), 𝒔 is inferred from 𝒛, and 𝒙 has all the

information of 𝒔, we can have a Markov chain: 𝒔 → 𝒙 → 𝒛 → 𝒔[40].
Thus, 𝐼 (𝒔; 𝒔) ≤ 𝐼 (𝒔; 𝒛). Then we have

P[𝒔 ≠ 𝒔] = 𝑃𝑒 ≥ 𝐻 (𝒔)
log |S| −

𝐼 (𝒔; 𝒔) + log 2

log |S| (9)

≥ 𝐻 (𝒔)
log |S| −

𝐼 (𝒔; 𝒛) + log 2

log |S|
If 𝒔 is uniformly distributed over S, we have 𝐻 (𝒔) = log |S|. Since
P[𝒔 = 𝒔] = 1 − P[𝒔 ≠ 𝒔], we have Theorem 4.1. □

Remark 1. If 𝒔 is not uniformly distributed on a finite alphabet S,
then the bound is P[𝒔 = 𝒔] ≤ 1 − 𝐻 (𝒔)

log |S | +
𝐼 (𝒛;𝒔)+log 2

log |S |

Moreover, we have a tighter bound for binary sensitive attributes

as follows:

Theorem 4.2. Let 𝒔 represents a binary sensitive attribute with a
uniform prior, 𝒙 and 𝒛 respectively refer to the corresponding data
sample and the representation learned by an encoder. The chance for
any adversary to (correctly) infer 𝒔 can be upper-bounded by

𝑃 [𝒔 = 𝒔] ≤
1 +

√︃
1 − (1 − 𝐼 (𝒛;𝒔)

log 2
)2

2

, (10)

where 𝒔 is the inferred attribute based on 𝒛.

Proof of Theorem 4.2. The proof is also based on Fano’s in-

equality. Since |S| = 2 for a binary attribute, according to Fano’s

inequality, we have 𝐻 (𝒔 |𝒔) ≤ 𝐻 (𝑃𝑒 ). Let 𝑔(𝑡) = −𝑡 log 𝑡 , we then
have the derivative of

𝐻 2 (𝑃𝑒 )
𝑃𝑒 (1−𝑃𝑒 ) w.r.t. 𝑃𝑒 is

( 𝐻2 (𝑃𝑒 )
𝑃𝑒 (1 − 𝑃𝑒 )

)′ = 𝑔2 (𝑃𝑒 ) − 𝑔2 (1 − 𝑃𝑒 )
𝑃2𝑒 (1 − 𝑃𝑒 )2

. (11)

Since 𝑔2 (𝑃𝑒 ) > 𝑔2 (1 − 𝑃𝑒 ) when 𝑃𝑒 ∈ (0, 1
2
), 𝐻 2 (𝑃𝑒 )

𝑃𝑒 (1−𝑃𝑒 ) is an in-

creasing function when 𝑃𝑒 ∈ (0, 1
2
). On the other hand, 𝑔2 (𝑃𝑒 ) <

𝑔2 (1− 𝑃𝑒 ) when 𝑃𝑒 ∈ ( 1
2
, 1), thus 𝐻 2 (𝑃𝑒 )

𝑃𝑒 (1−𝑃𝑒 ) is a decreasing function

when 𝑃𝑒 ∈ ( 1
2
, 1). The maximum of

𝐻 2 (𝑃𝑒 )
𝑃𝑒 (1−𝑃𝑒 ) is achieved at 𝑃𝑒 = 1

2
,

i.e., 𝐻 2 (𝑃𝑒 )
𝑃𝑒 (1−𝑃𝑒 ) ≤ 4(log 2)2. Thus, we have

𝐻2 (𝑃𝑒 ) ≤ 4(log 2)2𝑃𝑒 (1 − 𝑃𝑒 ). (12)

Since 𝐻 (𝑃𝑒 ) ≥ 𝐻 (𝒔 |𝒔) = 𝐻 (𝒔) − 𝐼 (𝒔; 𝒔) ≥ 0, 4(log 2)2𝑃𝑒 (1 − 𝑃𝑒 ) ≥
(𝐻 (𝒔) − 𝐼 (𝒔; 𝒔))2. Due to the Markov chain 𝒔 → 𝒙 → 𝒛 → 𝒔 [40],

𝐼 (𝒔; 𝒔) ≤ 𝐼 (𝒔; 𝒛), and thus𝐻 (𝒔)−𝐼 (𝒔; 𝒔) ≥ 𝐻 (𝒔)−𝐼 (𝒔; 𝒛) = 𝐻 (𝒔 |𝒛) ≥
0
†
. Therefore, we have 4(log 2)2𝑃𝑒 (1 − 𝑃𝑒 ) ≥ (𝐻 (𝒔) − 𝐼 (𝒔; 𝒛))2, i.e.,

𝑃2𝑒 − 𝑃𝑒 + (𝐻 (𝒔) − 𝐼 (𝒔; 𝒛)
2 log 2

)2 ≤ 0. (13)

With a uniform prior assumption on 𝐻 (𝒔) (𝐻 (𝒔) = log 2), we have

𝑃2𝑒 − 𝑃𝑒 + ( 1
2

− 𝐼 (𝒔; 𝒛)
2 log 2

)2 ≤ 0. (14)

According to the quadratic root formula, we have

𝑃𝑒 ≥
1 −

√︃
1 − (1 − 𝐼 (𝒔;𝒛)

log 2
)2

2

(15)

Since 𝑃 [𝒔 = 𝒔] = 1 − 𝑃𝑒 , we have

𝑃 [𝒔 = 𝒔] ≤
1 +

√︃
1 − (1 − 𝐼 (𝒔;𝒛)

log 2
)2

2

(16)

□

Based on Theorem 4.2, we have the following corollary:

Corollary 1. If 𝐼 (𝒛; 𝒔) is minimized to 0, then the adversary can
not do better than random guess to infer the binary attribute 𝒔 based
on 𝒛 under the uniform prior assumption.

Proof. If 𝐼 (𝒛; 𝒔) = 0, the quadratic inequality (14) in the proof

of Theorem 4.2 is

𝑃2𝑒 − 𝑃𝑒 +
1

4

= (𝑃𝑒 −
1

2

)2 ≤ 0. (17)

So we have 𝑃𝑒 = 1

2
, and 𝑃 [𝒔 = 𝒔] = 1

2
. With the uniform prior

assumption on the binary attribute 𝒔, this probability is equal to

the probability of correct random guess. □

Remark 2. If 𝒔 is not a uniformly distributed binary attribute,

then the bound is P[𝒔 = 𝒔] ≤
1+

√︃
1−( 𝐻 (𝒔)−𝐼 (𝒔;𝒛)

log 2
)2

2

Theorem 4.1 & 4.2 indicate that, as 𝐼 (𝒛; 𝒔) decreases, then the

upper bound on the chance for any adversary to infer the sensi-

tive attribute will also decrease. Inspired by Theorem 4.1 & 4.2,

we propose to defend against sensitive attribute inference by mini-

mizing 𝐼 (𝒛; 𝒔). Since 𝐼 (𝒛; 𝒔) is analytically intractable, we propose

a tractable Gaussian mixture based method for estimating 𝐼 (𝒛; 𝒔)
(see Section 4.3). Note that in the training stage, we assume the

prior 𝑝 (𝒔) to be a (discrete) uniform distribution on S when esti-

mating 𝐼 (𝒛; 𝒔). We do not use this assumption for estimating 𝐼 (𝒛; 𝒔)
in the inference stage. Also, we do not enforce this assumption on

the auxiliary dataset owned by the adversary
‡
. This assumption

might not characterize the true prior distribution of 𝒔 but accords
with the goal to make 𝒔 difficult to be inferred, i.e., maximizing the

uncertainty of 𝒔 in the model training process
§
.

†
Conditional entropy of a discrete variable 𝒔 is non-negative.

‡
The priors of the auxiliary datasets can be not uniform in the experiments.

§
A discrete uniform distribution has the maximum entropy.
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Sensitive Attribute Inference and 𝐼 (𝒙 ; 𝒛). In practice, we observe

that, when |S| is large, the size of the data in a minibatch is insuffi-

cient for approximating the distribution 𝑝 (𝒛 |𝒔), which is used for

estimating 𝐼 (𝒛; 𝒔). For instance, if the number of the possible values

of 𝒔 is larger than 20 (e.g., user identity in the Twitter dataset), and

the batch size is 128, then the sample size for estimating 𝑝 (𝒛 |𝒔) is
smaller than 6. Such a small sample size is insufficient for estimating

𝑝 (𝒛 |𝒔) with the dimension of 𝒛 being 64 or 128.

In such cases, we could involve 𝐼 (𝒙; 𝒛) with a small coefficient

as a regularizer in the objective, which can slightly improve the

performance of InfoCensor. This is because (i) 𝐼 (𝒙; 𝒛) is an upper

bound on 𝐼 (𝒛; 𝒔) due to the Markov chain 𝒔 → 𝒙 → 𝒛 → 𝒔 [40]; (ii)
We could obtain a more accurate estimation for 𝐼 (𝒙 ; 𝒛) than 𝐼 (𝒛; 𝒔)
with aminibatch of samples. Note that in the training stage, we need

estimate 𝑝 (𝒛 |𝒙) and 𝑝 (𝒛) for approximating 𝐼 (𝒙 ; 𝒛). Different from
𝑝 (𝒛 |𝒔), 𝑝 (𝒛 |𝒙) has an analytic form under InfoCensor (i.e., Gaussian
distribution), and 𝑝 (𝒛) can be approximated by all the samples in

the minibatch. Thus, we could usually obtain a better estimation

for 𝐼 (𝒙 ; 𝒛) than 𝐼 (𝒛; 𝒔) with a minibatch of training samples.

However, if |S| is not large, involving 𝐼 (𝒙 ; 𝒛) as a regularizer leads
to a suboptimal solution since minimizing 𝐼 (𝒙 ; 𝒛) censors all the infor-
mation, not only the information regarding 𝒔, from the representations.
Therefore, in the experiments, we only add 0.001 × 𝐼 (𝒙; 𝒛) to our

proposed objective in (4) when training the model to protect user

identity (|S| = 22) on the Twitter dataset. For all the other cases,

we do not involve 𝐼 (𝒙 ; 𝒛) in our proposed objective.

Demographic Parity and 𝐼 (�̂�; 𝒔). We propose to mitigate demo-

graphic disparity w.r.t. a sensitive attribute 𝒔 by minimizing the

mutual information between the predictions �̂� and the sensitive

attribute 𝒔, i.e, 𝐼 (�̂�; 𝒔), based on Theorem 4.3 & 4.4. Theorem 4.3

shows a simple connection between demographic parity and 𝐼 (�̂�; 𝒔).

Theorem 4.3. Let 𝒔 represents a sensitive attribute (variable), and
𝒙 and 𝒛 respectively refer to the corresponding data sample and the
representation. �̂� denotes the prediction, i.e., �̂� = f𝝓 (𝒛). The prediction
model achieves demographic parity w.r.t. 𝒔 if and only if 𝐼 (�̂�; 𝒔) is
minimized to 0.

Proof. Note that KL(𝑝 (�̂� |𝒔) |𝑝 (�̂�)) must be non-negative. So

if 𝐼 (�̂�; 𝒔) = E𝒔 [KL(𝑝 (�̂� |𝒔) |𝑝 (�̂�))] = 0, we must have for all 𝒔
such that 𝑝 (𝒔) > 0, KL(𝑝 (�̂� |𝒔) |𝑝 (�̂�)) = 0. If KL(𝑝 (�̂� |𝒔) |𝑝 (�̂�)) = 0,

we must have 𝑝 (�̂� |𝒔) = 𝑝 (�̂�) (demographic parity). On the other

hand, if the model achieves demographic parity, we must have

KL(𝑝 (�̂� |𝒔) |𝑝 (�̂�)) = 0, then 𝐼 (�̂�; 𝒔) must be minimized to 0. □

Theorem 4.4. Given the definitions in Theorem 4.1 & 4.3 and the
uniform prior assumption on 𝑝 (𝒔), we have∑�̂�∈Y |𝑝 (�̂� |𝒔) − 𝑝 (�̂�) | ≤√︁
2|S| · 𝐼 (�̂�; 𝒔) (∀𝒔 ∈ S).

Proof. With a uniform assumption on 𝑝 (𝒔), we have 𝑝 (𝒔) = 1

|S |
(discrete uniform distribution). Then we have

𝐼 (�̂�; 𝒔) = 1

|S|
∑︁
𝒔∈S

KL(𝑝 (�̂� |𝒔) |𝑝 (�̂�))

≥ 1

|S|KL(𝑝 (�̂� |𝒔) |𝑝 (�̂�)) (∀𝒔 ∈ S) (18)

According to Theorem B in [8], we have

KL(𝑝 (�̂� |𝒔) |𝑝 (�̂�)) ≥ 1

2

(
∑︁
�̂�∈Y

|𝑝 (�̂� |𝒔) − 𝑝 (�̂�) |)2 . (19)

Thus, we have the following bound, i.e.,∑︁
�̂�∈Y

|𝑝 (�̂� |𝒔) − 𝑝 (�̂�) | ≤
√︁
2KL(𝑝 (�̂� |𝒔) |𝑝 (�̂�))

≤
√︁
2|S| · 𝐼 (�̂�; 𝒔) (20)

□

Note that Y refers to the set of all possible predictions �̂�. The-
orem 4.4 indicates that the extent of the violation of demo-
graphic parity (1) can be bounded by 𝐼 (�̂�; 𝒔).

Connection between Attribute Inference and Demographic Dis-
parity. There is also a close connection between attribute infer-

ence, demographic disparity, and mutual information. Theoreti-

cally, minimizing 𝐼 (𝒛; 𝒔) also helps mitigate demographic disparity.

This is because 𝐼 (𝒛; 𝒔) is an upper bound on 𝐼 (�̂�; 𝒔). Different from
F𝜽 (·), f𝝓 (·) is a deterministic function. Since 𝑦 = f𝝓 (𝒛), we have
𝐼 (�̂�; 𝒔) ≤ 𝐼 (𝒛; 𝒔). On the other hand, we observe that minimizing

𝐼 (�̂�; 𝒔) also somehow helps defend against sensitive attribute in-

ference attacks in practice. This is because �̂� contains part of the

information in 𝒛, and thus, minimizing 𝐼 (�̂�; 𝒔) also helps weaken

the association between 𝒛 and 𝒔.

Remark 3. Some readers may think minimizing 𝐼 (�̂�; 𝒔) is not
necessary, but we note that the estimation for 𝐼 (�̂�; 𝒔) is usually more
accurate than the estimation for 𝐼 (𝒛; 𝒔) due to the relatively low
dimension of �̂�, compared to 𝒛. Also, 𝐼 (�̂�; 𝒔) has a more direct influence
on demographic parity.

4.3 Mutual Information Estimation
In this section, we introduce how to use a Gaussian mixture based

method for estimating 𝐼 (𝒛; 𝒔), and how to use a gumbel-softmax

trick based method for estimating 𝐼 (�̂�; 𝒔). Note that there are many

methods for estimating mutual information. However, the estima-

tions acquired by Monte Carto or KNN-based methods [18] are

either not differentiable or not very easy to differentiate and op-

timize. The methods proposed in [21, 28] need to train additional

neural networks. Here we propose analytical estimations for 𝐼 (𝒛; 𝒔)
and 𝐼 (𝒚; 𝒔). Compared to the previous estimation methods, our esti-

mation methods enable feasible backpropagation on the estimated

𝐼 (𝒛; 𝒔) and 𝐼 (�̂�, 𝒔), without training any additional networks.

Gaussian Mixture based Estimation. The mutual information be-

tween 𝒛 and 𝒔 can be expressed as

𝐼 (𝒛; 𝒔) = 𝐸𝒔 [KL(𝑝 (𝒛 |𝒔) |𝑝 (𝒛))] (21)

Since the true 𝑝 (𝒛 |𝒔) and 𝑝 (𝒛) are intractable, we propose to ap-

proximate both distributions by Gaussian mixtures. For any 𝒔, we

approximate 𝑝 (𝒛 |𝒔) by 𝑝 (𝒛 |𝒔) ≈ 1

𝑁𝒔

∑𝑁𝒔
𝑖=1

𝑝 (𝒛 |𝒙𝑖 ), where {𝒙𝑖 }𝑁𝒔
𝑖=1

denotes the samples with one sensitive class. Likewise, we can

approximate 𝑝 (𝒛) by 1

𝑁

∑𝑁
𝑛=1 𝑝 (𝒛 |𝒙𝑛). Recall that, under InfoCen-

sor, each 𝑝 (𝒛 |𝒙𝑖 ) is a Gaussian distribution with mean 𝝁𝜽 (𝒙𝑖 ) and
covariance 𝚺𝜽 (𝒙𝑖 ), so the approximations of 𝑝 (𝒛 |𝒔) and 𝑝 (𝒛) are
Gaussian mixtures.
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With a uniform prior assumption (in the training stage), we can

formulate an empirical approximation of (21) as

𝐼 (𝒛; 𝒔) ≈ 1

|S|
∑︁
𝒔

[KL( 1

𝑁𝒔

𝑁𝒔∑︁
𝑖=1

𝑝 (𝒛 |𝒙𝑖 ) |
1

𝑁

𝑁∑︁
𝑛=1

𝑝 (𝒛 |𝒙𝑛))] (22)

According to (22), we only need to compute the KL divergence be-

tween two Gaussian mixtures. Unfortunately, the KL divergence be-

tween twoGaussianmixtures is also not analytically tractable. Thus,

in the following, we propose to use a variational method to estimate

the KL divergence. We introduce two variational variables 𝛼𝑛,𝑖 ≥ 0

and 𝛽𝑖,𝑛 ≥ 0, such that

∑
𝑛 𝛼𝑛,𝑖 = 1/𝑁𝒔 and

∑
𝑖 𝛽𝑖,𝑛 = 1/𝑁 . We then

have 𝑝 (𝒛 |𝒔) ≈ ∑
𝑛,𝑖 𝛼𝑛,𝑖𝑝 (𝒛 |𝒙𝑖 ) and 𝑝 (𝒛) ≈

∑
𝑛,𝑖 𝛽𝑖,𝑛𝑝 (𝒛 |𝒙𝑛).

KL(𝑝 (𝒛 |𝒔) |𝑝 (𝒛)) = −
∫
𝒛
𝑝 (𝒛 |𝒔) log 𝑝 (𝒛)

𝑝 (𝒛 |𝒔)𝑑𝒛 (23)

≈ −
∫
𝒛
𝑝 (𝒛 |𝒔) log

∑︁
𝑖,𝑛

𝛽𝑖,𝑛𝑝 (𝒛 |𝒙𝑛)
𝛼𝑛,𝑖𝑝 (𝒛 |𝒙𝑖 )

𝛼𝑛,𝑖𝑝 (𝒛 |𝒙𝑖 )
𝑝 (𝒛 |𝒔) 𝑑𝒛

≤ −
∑︁
𝑛,𝑖

𝛼𝑛,𝑖

∫
𝒛
𝑝 (𝒛 |𝒙𝑖 ) log

𝛽𝑖,𝑛𝑝 (𝒛 |𝒙𝑛)
𝛼𝑛,𝑖𝑝 (𝒛 |𝒙𝑖 )

𝑑𝒛

=
∑︁
𝑛,𝑖

𝛼𝑛,𝑖 log
𝛼𝑛,𝑖

𝛽𝑖,𝑛
+
∑︁
𝑛,𝑖

𝛼𝑛,𝑖KL(𝑝 (𝒛 |𝒙𝑖 ) |𝑝 (𝒛 |𝒙𝑛))

The above inequality is derived based on Jensen’s inequality: Since

− log𝑥 is a convex function, we have

− log

∑︁
𝑖,𝑛

𝛽𝑖,𝑛𝑝 (𝒛 |𝒙𝑛)
𝛼𝑛,𝑖𝑝 (𝒛 |𝒙𝑖 )

𝛼𝑛,𝑖𝑝 (𝒛 |𝒙𝑖 )
𝑝 (𝒛 |𝒔) ≤

−
∑︁
𝑖,𝑛

𝛼𝑛,𝑖𝑝 (𝒛 |𝒙𝑖 )
𝑝 (𝒛 |𝒔) log

𝛽𝑖,𝑛𝑝 (𝒛 |𝒙𝑛)
𝛼𝑛,𝑖𝑝 (𝒛 |𝒙𝑖 )

KL(𝑝 (𝒛 |𝒙𝑖 ) |𝑝 (𝒛 |𝒙𝑛)) is the KL divergence between two Gauss-
ian distributions. According to [17], the KL divergence be-
tween two Gaussian distributions has a simple analytical
solution, which is easy to differentiate and optimize.We refer

the interested readers to the appendix in [17] for more details. Given

(23), the best approximation of KL(𝑝 (𝒛 |𝒔) |𝑝 (𝒛)) is obtained by min-

imizing

∑
𝑛,𝑖 𝛼𝑛,𝑖 log

𝛼𝑛,𝑖
𝛽𝑖,𝑛

+∑
𝑛,𝑖 𝛼𝑛,𝑖KL(𝑝 (𝒛 |𝒙𝑖 ) |𝑝 (𝒛 |𝒙𝑛)) w.r.t. 𝛼𝑛,𝑖

and 𝛽𝑖,𝑛 . Specifically, we optimize 𝛼𝑛,𝑖 and 𝛽𝑖,𝑛 by fixing one and

updating the other with its optimal solution. In each iteration, we

first fix 𝛼𝑛,𝑖 and update 𝛽𝑖,𝑛 by 𝛽𝑖,𝑛 =
𝛼𝑛,𝑖

𝑁
∑

𝑖′ 𝛼𝑛,𝑖′
. Then we fix 𝛽𝑖,𝑛

and update 𝛼𝑛,𝑖 by 𝛼𝑛,𝑖 =
𝛽𝑖,𝑛 exp(−KL(𝑝 (𝒛 |𝒙𝑖 ) |𝑝 (𝒛 |𝒙𝑛)))

𝑁𝒔
∑

𝑛′ 𝛽𝑖,𝑛′ exp(−KL(𝑝 (𝒛 |𝒙𝑖 ) |𝑝 (𝒛 |𝒙′
𝑛))) . We

execute the above operations for several iterations and fix 𝛼𝑛,𝑖 and

𝛽𝑖,𝑛 to compute the approximation. Note that we fix 𝛼𝑛,𝑖 and
𝛽𝑖,𝑛 as constants (by 𝑑𝑒𝑡𝑎𝑐ℎ() in PyTorch), when we optimize
the model parameters, to avoid backpropagation through
the above iterations. After fixing 𝛼𝑛,𝑖 and 𝛽𝑖,𝑛 , we only need to

compute the gradient of the KL divergence between two Gaussian

distributions, i.e., ∇𝜽KL(𝑝 (𝒛 |𝒙𝑖 ) |𝑝 (𝒛 |𝒙𝑛)), to optimize 𝜽 .
For 𝐼 (𝒙 ; 𝒛), we follow [28] to approximate it by

1

𝑁

𝑁∑︁
𝑛=1

1

𝑁

𝑁∑︁
𝑛′=1

KL(𝑝 (𝒛 |𝒙𝑛) |𝑝 (𝒛 |𝒙𝑛′)) .

Gumbel-Softmax Trick based Estimation. Finally, we propose a
method using the gumbel-softmax trick [15] for estimating 𝐼 (�̂�; 𝒔).

Similar to (21), we can express 𝐼 (�̂�; 𝒔) as
𝐼 (�̂�; 𝒔) = E𝒔 [KL(𝑝 (�̂� |𝒔) |𝑝 (�̂�))] . (24)

Note that both 𝑝 (�̂� |𝒔) and 𝑝 (�̂�) can be denoted by a vector, with each
element representing the probability corresponding to a possible

value of𝒚. We then estimate 𝑝 (�̂� |𝒔) and 𝑝 (�̂�) by 1

𝑁

∑
𝑛 one_hot(�̂�𝑛)

and
1

𝑁𝒔

∑
𝑖 one_hot(�̂�𝑖 ), where one_hot(�̂�) denotes the one hot vec-

tor of �̂�. Specifically, if the prediction �̂� corresponds to the
˜𝑘-th class,

then the
˜𝑘-th element of one_hot(�̂�) is 1, and all the other elements

are 0. We denote the 𝑘-th element of one_hot(�̂�) by one_hot𝑘 (�̂�).
Since one_hot(·) is not differentiable, we propose to estimate
it by the gumbel-softmax trick [15].

We define the predicted class probability vector as 𝝅 (𝒙) ≜
softmax(f𝝓 (𝒙)). Gumbel-softmax trick estimates one_hot(�̂�) by

one_hot𝑘 (�̂�) ≈
exp((log(𝝅𝑘 (𝒙)) + 𝑔𝑘 )/𝜏)∑
𝑘′ exp((log(𝝅𝑘′ (𝒙)) + 𝑔𝑘′)/𝜏)

, (25)

where 𝑔𝑘 is randomly sampled from Gumbel(0, 1) [25]. 𝝅𝑘 (𝒙) is
the k-th element of 𝝅 (𝒙), and 𝜏 is the temperature. With (25) and a

uniform prior assumption, we estimate 𝐼 (�̂�; 𝒔) by
1

|S|
∑︁
𝒔∈S

KL( 1

𝑁𝒔

∑︁
𝑖

one_hot(�̂�𝑖 ) |
1

𝑁

∑︁
𝑛

one_hot(�̂�𝑛)), (26)

where the one-hot vectors are estimated by the gumbel-softmax

trick [15] (setting 𝜏 = 0.1 in (25)), and then (26) can be differentiable

and easy to optimize.

4.4 Algorithm Design

Algorithm 3 InfoCensor

Require: Training data D = {𝒙𝑛,𝒚𝑛, 𝒔𝒏}N𝑛=1; feature extraction
network F𝜽 ; prediction network f𝝓 ; surrogate loss L(f𝝓 (𝒛),𝒚);
number of iterations 𝑇

Initialize 𝜽 , 𝝓
for 𝑡 = 1 to 𝑇 do
1. Sample a minibatch from D ({𝒙𝑛,𝒚𝑛, 𝒔𝒏}𝑁𝑛=1). The size of
the minibatch is denoted by 𝑁 . The size of samples with a

specific 𝒔 in the minibatch is denoted by 𝑁𝒔 .

2. Input the minibatch of the data samples 𝒙𝑛 into F𝜽 to acquire

the mean and covariance matrix of the representations, i.e.,
𝝁𝜽 (𝒙𝑛) and 𝚺𝜽 (𝒙𝑛).
3. Sample randomized representations 𝒛𝑛 ∼ 𝑝 (𝒛 |𝒙𝑛), where
𝑝 (𝒛 |𝒙𝑛) ≜ N(𝝁𝜽 (𝒙𝑛), 𝚺𝜽 (𝒙𝑛))
4. Input 𝒛𝑛 into f𝝓 to obtain the predictions �̂�𝑛 = f𝝓 (𝒛𝑛).
5. Update 𝜽 , 𝝓 by the Adam optimizer to minimize (4).

end for
Output F𝜽 and f𝝓

Our basic algorithm is detailed in Alg. 3. In each training it-

eration, our algorithm samples a minibatch of training data and

inputs the data into the feature extraction network F𝜽 (encoder).

The encoder outputs the mean and covariance matrix of the rep-

resentations, i.e., 𝝁𝜽 (𝒙) and 𝚺𝜽 (𝒙). Under InfoCensor, 𝑝 (𝒛 |𝒙𝑛) ≜
N(𝝁𝜽 (𝒙𝑛), 𝚺𝜽 (𝒙𝑛)), so as 𝑝 (𝒛 |𝒙𝑖 ). Given 𝑝 (𝒛 |𝒙𝑖 ) and 𝑝 (𝒛 |𝒙𝑛), we
can estimate 𝐼 (𝒛; 𝒔) by our proposed method. Then our algorithm

samples randomized representations 𝒛𝑛 from 𝑝 (𝒛 |𝒙𝑛) and input
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the representations into the prediction network f𝝓 to obtain the

predictions �̂�𝑛 = f𝝓 (𝒛𝑛), so as �̂�𝑖 . With �̂�𝑖 and �̂�𝑛 , we can esti-

mate 𝐼 (�̂�; 𝒔) by our proposed method and estimate the task loss

by L(f𝝓 (𝒛),𝒚) ≈ 1

𝑁

∑𝑁
𝑛=1 L(f𝝓 (𝒛𝑛),𝒚𝑛). Finally, we update 𝜽 , 𝝓.

We can execute the above training procedure at a trusted cloud

provider [5] or following the split learning protocol [11]. In the

split learning protocol, the client sends 𝒛𝑛 , 𝒚𝑛 to the server (for

server to update 𝝓) and receives ∇𝒛𝑛L(f𝝓 (𝒛𝑛),𝒚𝑛) from the server.

Then, the client estimates and computes the gradients of those two

mutual information terms locally and adds ∇𝜽L(f𝝓 (F𝜽 (𝒙𝑛)),𝒚𝑛)
to update 𝜽 . Interested readers can refer to [11] for more details on

split learning (we change the client’s objective into (4)).

5 EXPERIMENTS
5.1 Experimental Settings

Datasets. We use similar datasets as in [33] for evaluating
InfoCensor with varied data formats, i.e., Health Heritage [1],
UTKFace [3], and Twitter [2]. Health Heritage is a dataset with the

medical records of over 55,000 patients. The original task is to

predict whether the Charlson Index is greater than zero, and we

set the sensitive attribute as gender or age. UTKFace contains over
23000 face images labeled with age, gender, and race. We set the

original task as predicting the age and the sensitive attribute as

gender or race. Twitter refers to a dataset of tweets associated with

user information from [2]. For Twitter, we set the original task as

predicting the age of the tweeter given a tweet, and we set the

sensitive attribute as the tweeter’s identity or gender. We detail
how to preprocess the datasets in Appendix A.

We randomly split each dataset into 80% training data and 20%

testing data. The size of auxiliary dataset is 50% of the dataset

(random split). The inference attack accuracy is measured on the

remaining data. Different from [33]’s setting, we do not enforce

any assumption on the membership of the auxiliary data under this

setting, which means the auxiliary data owned by the adversary

might contain training or testing data. The adversary’s attempt is

to infer the sensitive attributes of the data it does not know, no

matter whether the data is training data or unseen data
¶
. We also

compute the inference attack accuracy against the models
under [33]’s evaluation setting, where the auxiliary data is
50% of the training data, and the inference attack accuracy is
measured on testing data. We show the results in the appen-
dix (Table 4). The results are consistent with our claim that
InfoCensor achieves the overall best performance, compared
to the baselines. Also, the difference between the attack results

against InfoCensor under those two settings is usually not large.

Baselines. We compare InfoCensor with four baselines, includ-

ing standard training (no defense), adversarial training, the VAE-

based method [28], TIPRDC [21]. Note that adversarial training

and the VAE-based method are strong baselines proposed by ICLR

or NeurIPS papers, used in the advanced attribute inference at-

tack paper [33], and verified by recent works. TIPRDC is a recent

baseline based on information theory for data outsourcing against

attribute inference attacks [21]. The experimental results show that

¶
This setting may be more suitable for some scenarios, where the adversary may also

try to infer the sensitive attributes of clients’ training data.

InfoCensor surpasses all the baselines in defending against sensi-

tive attribute inference and mitigating demographic disparity, with

modest sacrifice of the performance on the original task.

Networks. On Health Heritage, we employ an MLP with two hid-

den layers as the feature extraction network (encoder). On UTKFace,
we employ a convolutional neural network (CNN) with three con-

volutional layers followed by two fully-connected layers (similar to

the architecture of LeNet [20]) as the feature extraction network.

For Twitter, the feature extraction network (encoder) is built upon

a long-short term memory network (LSTM). For all the encoders,

there are two output layers for 𝜇 and Σ respectively as in [17].

For all the experiments, the prediction network is a single-layer

neural network (following [33]), whose input is the representation

from the encoder and output is the prediction. We employ an MLP

with two hidden layers as the attack model to infer the sensitive

attributes from the representations. We also employ an MLP with

one hidden layer as the transformer for the de-censoring method

[33].We detail the network architectures in Appendix A.

Evaluation Metrics. To evaluate the model resistance against sen-

sitive attribute inference, we employ the inference attack accuracy

by the basic inference attack or the de-censoring method as the eval-

uation metric. The attack accuracy is computed by
1

𝑁

∑𝑁
𝑛=1 1(𝒔𝑛 =

𝒔), where 1(·) is the identity function, and 𝒔𝑛 refers to the sensitive

attribute predicted by the basic inference attack or the de-censoring

method. To evaluate demographic disparity, we employ our pro-

posed general measurement 𝐼 (�̂�; 𝒔) and averaged SPD (computed

on the testing data) as the evaluation metrics. We detail how to

compute 𝐼 (�̂�; 𝒔) and averaged SPD (Avg SPD) in Section 5.5. Note

that the violation of demographic disparity can be bounded by

𝐼 (�̂�; 𝒔) as in Theorem 4.4.

Hyperparameters. By default, we set the dimension of the repre-

sentations as 128. We conduct hyperparameter study on the repre-

sentation dimension in Section 5.7. We train all the models with the

Adam optimizer [16]. By default, we set the learning rate as 0.001.

We tune the framework-specific hyperparameters for adversarial

training, VAE-based method, and InfoCensor individually for each

dataset. For adversarial training, we have 𝜆 as the hyperparameter

before the adversarial (discriminator) loss (same as 𝛾 in [33]). On

Health Heritage, we set 𝜆 as 0.1 when the sensitive attribute is set

as age, and we set 𝜆 as 1.0 when the sensitive attribute is gender.

We set 𝜆 as 0.1 on both UTKFace and Twitter. Note that larger 𝜆

(than the above settings) can lead to much worse performance on

the original task in our testbed. For instance, if we set 𝜆 as 1.0 on

Twitter for adversarial training, the model accuracy on the original

task will decrease by about 30% in our testbed. For TIPRDC, we

set 𝜆 as 0.9 (another 𝜆 defined in [21]) as in [21], and we add the

objective of [21] to the original task loss and set the hyperparameter

before the objective as the hyperparameter in adversarial training.

For the VAE-based Method, we set 𝜆 as 1 × 10
−5

and 𝛽 as 0.001 on

Health Heritage and UTKFace. On Twitter, we set 𝜆 as 1 × 10
−5

and 𝛽 as 0.0005. For InfoCensor, we set 𝜅 as 0.5 for all the datasets,

and we set 𝜆 as 0.5, 0.25, and 0.1 on Health Heritage, UTKFace, and

Twitter, respectively. Note that we conduct hyperparameter study

in Section 5.7, which shows that InfoCensor can achieve stable

performance with different 𝜆 and 𝜅 (overall better performance
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than adversarial training and VAE-based method), as long as 𝜆 and

𝜅 are set within a suitable range.

In Section 5.2, we execute the basic inference attack and the de-

censoring method against all the models with eight hyperparameter

settings
∥
, and we report the best attack accuracy in Table 1.

In the other subsections, we report the attack accuracy by
the basic inference attack with one hyperparameter setting∗∗.
Note that our implementation is based on PyTorch, while [33]’s

implementation is based on Keras. The difference between some of

our results and [33]’s results might be due to the different data pre-

processing methods and the randomness of different platforms. Our

code is publicly available at https://github.com/iQua/InfoCensor.

5.2 Empirical Results
We first show the empirical results in Table 1. In Table 1, Original
refers to the model accuracy on the original task; Basic refers to the
attack accuracy of the basic inference attack; De-censoring refers to
the attack accuracy of the de-censoring method. Table 1 shows that

InfoCensor can defend against sensitive attribute inference and mit-

igate demographic disparity with modest sacrifice of the accuracy

on the original task. In particular, InfoCensor surpasses the existing

baselines, including adversarial training, the VAE-based method

[28], and TIPRDC [21] by large margins. Also, we observe that, on

the models with deterministic representations, the de-censoring

method is usually superior to the basic inference attack. However,

on InfoCensor, the de-censoring method might overfit on the noisy

representations (obtained on the auxiliary data) in some cases, and

thus does not generalize well to the other data. In such cases, the

basic inference attack might obtain slightly better attack accuracy.

5.3 Visualization
In Fig. 3, we visualize the 2D projections of the representations

using t-Distributed Stochastic Neighbor Embedding (t-SNE) [35]

(on UTKFace’s test set), to provide an intuition on the difference be-

tween the representations learned by InfoCensor and those learned

by the other baselines. Compared with the deterministic represen-

tations learned by the other methods, the representations learned

by InfoCensor distribute in a more widespread way since we ran-

domize the representations in the inference stage. This observa-

tion is verified by Fig. 4. Fig. 4 shows that the elements of the
representations learned by InfoCensor distribute from −20
to 30, while the elements of the deterministic representa-
tions learned by the other methods distribute within a much
smaller range. Moreover, the representations learned by InfoCen-

sor with different sensitive classes (male and female) distribute in a

less distinguishable way since InfoCensor minimizes the mutual

information between the representations and the sensitive attribute.

In regard to the original task, i.e., predicting the age, the randomized

representations from different classes are separable, indicating that

the randomized representations can handle the original task.

∥
learning rate 0.001 or 0.0001; dropout rate 0.0 or 0.1; weight decay 0.0 or 2 × 10

−4
.

The number of the combinations of the above settings is 8.

∗∗
learning rate 0.001; dropout rate 0.0; weight decay 0.0.

5.4 Attribute Inference and Mutual Information
In this subsection, we study the relationship between 𝐼 (𝒛; 𝒔) and
sensitive attribute inference. For more accurate estimation on the

mutual information here, we adopt the Monte Carlo method to

estimate the KL divergence between 𝑝 (𝒛 |𝒔) and 𝑝 (𝒛) using 50000
random samples 𝒛𝑖 from the Gaussian mixture distribution 𝑝 (𝒛 |𝒔).
The Gaussian mixtures are constructed over the representations of

all the remaining data. Then, we could estimate 𝐼 (𝒛; 𝒔) by

E𝑝 (𝒔) [
1

𝑛

𝑛∑︁
𝑖=1

(log𝑝 (𝒛𝒊 |𝒔) − log 𝑝 (𝒛𝒊))],

with 𝑝 (𝒔) being estimated by
𝑁𝒔
𝑁
. 𝑁𝒔 and 𝑁 denote the number

of samples from one sensitive class and the total number of the

samples, respectively. Note that the above Monte Carlo estima-
tion is more accurate, but we could not use it in the training
stage since backpropagation on this Monte Carlo estimation
is infeasible. Under InfoCensor, we train plenty of models with

different hyperparameter settings, which yield different 𝐼 (𝒛; 𝒔). We

conduct the basic inference attack against those models. We then

plot the 𝐼 (𝒛; 𝒔) estimated by the Monte Carlo method and the corre-

sponding inference attack accuracy in Fig. 5. The empirical results

are consistent with our theoretical analysis—As 𝐼 (𝒛; 𝒔) decreases,
the inference attack accuracy will also decrease. The empirical

results also motivate the future works to utilize 𝐼 (𝒛; 𝒔) as a (sup-
plementary) measurement for measuring the threat of sensitive

attribute inference.

5.5 Statistical parity difference (SPD) and
Mutual Information

In this subsection, we study the relationship between 𝐼 (�̂�, 𝒔) and
SPD, a standard metric to measure demographic disparity (group

unfairness). To estimate 𝐼 (�̂�, 𝒔) on the testing data, we approximate

𝑝 (�̂� |𝒔) and 𝑝 (�̂�) by 1

𝑁𝒔

∑
𝑖 one_hot(�̂�𝑖 ) and 1

𝑁

∑
𝑛 one_hot(�̂�𝑛). Note

that here we do not use the gumbel-softmax trick here since we do

not need to backpropagate 𝐼 (�̂�, 𝒔) in the inference stage. To com-

pute the averaged SPD (Avg SPD), we take the average over all

the absolute values of the SPDs between any two sensitive classes.

Here we also train plenty of models with different hyperparameter

settings, which yield different 𝐼 (�̂�, 𝒔). We then plot 𝐼 (�̂�, 𝒔) and the

averaged SPD in Fig. 6. In general, as 𝐼 (�̂�, 𝒔) increases, the averaged
SPDwill also increase, indicating that 𝐼 (�̂�, 𝒔) is a valid measurement

for measuring group fairness.

5.6 Impacts of Each MI
In this subsection, we evaluate the impacts of (minimizing) each

mutual information term in our objective on sensitive attribute

inference and group fairness. Specifically, we keep either 𝐼 (𝒛; 𝒔)
or 𝐼 (�̂�; 𝒔) and remove the other term from the objective, and then

retrain the model with the remaining objective. We fine-tune 𝜆 or

𝜅 after removing 𝐼 (�̂�; 𝒔) or 𝐼 (𝒛; 𝒔) for better overall performance.

We compare the results in Table 2, where we observe that the main

effect of minimizing 𝐼 (𝒛; 𝒔) is improving the model’s resistance

against sensitive attribute inference, and minimizing 𝐼 (�̂�; 𝒔) miti-

gates demographic disparity. This observation is also verified by

Fig. 7. Moreover, we observe that minimizing 𝐼 (𝒛; 𝒔) also helps

https://github.com/iQua/InfoCensor
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Health Heritage Age Gender
Original Basic De-censoring 𝐼 (�̂�; 𝒔) Avg SPD Original Basic De-censoring 𝐼 (�̂�; 𝒔) Avg SPD

Standard Training 83.11% 29.19% 29.97% 0.127 0.266 83.11% 59.06% 59.70% 1.58 × 10
−4

0.016

Adversarial Training 83.12% 28.61% 29.71% 0.125 0.258 83.00% 59.06% 59.98% 0.57 × 10
−4

0.010

TIPRDC [21] 83.25% 29.40% 29.97% 0.126 0.265 83.25% 58.88% 60.37% 0.64 × 10
−4

0.010

VAE-based Method [28] 82.98% 27.81% 28.64% 0.117 0.250 83.08% 55.25% 58.01% 1.84 × 10
−4

0.017

InfoCensor (ours) 81.95% 20.97% 20.97% 0.092 0.216 82.83% 55.02% 55.05% 0.52 × 10−4 0.009

UTKFace Gender Race
Original Basic De-censoring 𝐼 (�̂�; 𝒔) Avg SPD Original Basic De-censoring 𝐼 (�̂�; 𝒔) Avg SPD

Standard Training 54.12% 82.20% 82.62% 0.037 0.045 54.12% 68.39% 68.40% 0.097 0.053

Adversarial Training 55.12% 78.67% 78.28% 0.036 0.047 55.08% 63.27% 63.96% 0.088 0.050

TIPRDC [21] 54.46% 76.96% 77.55% 0.034 0.047 54.12% 62.26% 63.51% 0.093 0.052

VAE-based Method [28] 55.39% 76.35% 77.28% 0.039 0.050 54.89% 56.11% 59.72% 0.091 0.051

InfoCensor (ours) 54.51% 61.42% 60.95% 0.027 0.042 54.10% 49.24% 49.20% 0.082 0.049

Twitter Identity Gender
Original Basic De-censoring 𝐼 (�̂�; 𝒔) Avg SPD Original Basic De-censoring 𝐼 (�̂�; 𝒔) Avg SPD

Standard Training 87.58% 45.77% 47.14% - - 87.58% 72.34% 74.15% 0.091 0.139

Adversarial Training 86.11% 33.28% 36.64% - - 86.89% 68.77% 71.97% 0.078 0.129

TIPRDC [21] 84.34% 35.30% 38.88% - - 87.00% 69.25% 70.76% 0.091 0.140

VAE-based Method [28] 85.42% 43.82% 48.73% - - 85.07% 73.30% 74.01% 0.079 0.132

InfoCensor (Ours) 85.65% 26.62% 26.22% - - 85.18% 68.01% 68.35% 0.067 0.122
Table 1: The best results are marked in bold. Age, Gender, Race, and Identity refer to the sensitive attribute 𝒔. Basic refers to
basic inference attack accuracy. We do not evaluate demographic disparity when we set identity as the sensitive attribute since
the prediction results �̂� completely depend on the identity 𝒔. Note that the results reported in [33] also show that adversarial
training (TIPRDC achieves similar defensive adversarial training) is not useful on Health Heritage.

Figure 3: t-SNE (normalized) plots of the representations learned by standard training, adversarial training, VAE-based
method[28], TIPRDC [21], and InfoCensor.

Health Heritage Age Gender
Original Basic De-censoring 𝐼 (�̂�; 𝒔) Avg SPD Original Basic De-censoring 𝐼 (�̂�; 𝒔) Avg SPD

InfoCensor 81.95% 20.97% 20.97% 0.092 0.216 82.83% 55.02% 55.05% 0.52 × 10
−4

0.009

Only 𝐼 (𝒛; 𝒔) 82.38% 21.40% 21.44% 0.102 0.231 82.73% 55.03% 55.05% 0.65 × 10
−4

0.010

Only 𝐼 (�̂�; 𝒔) 82.24% 22.80% 22.87% 0.095 0.221 82.93% 55.02% 55.04% 0.41 × 10
−4

0.008

UTKFace Gender Race
Original Basic De-censoring 𝐼 (�̂�; 𝒔) Avg SPD Original Basic De-censoring 𝐼 (�̂�; 𝒔) Avg SPD

InfoCensor 54.51% 61.42% 60.95% 0.027 0.042 54.10% 49.24% 49.20% 0.082 0.049

Only 𝐼 (𝒛; 𝒔) 54.78% 63.08% 62.90% 0.035 0.048 54.44% 50.11% 50.04% 0.090 0.051

Only 𝐼 (�̂�; 𝒔) 55.26% 79.78% 79.42% 0.030 0.041 54.89% 62.79% 61.82% 0.079 0.048

Table 2: Ablation study on the impacts of 𝐼 (𝒛; 𝒔) and 𝐼 (�̂�; 𝒔) in our proposed objective on model resistance against sensitive
attribute inference and demographic disparity. Note that 𝐼 (𝒛; 𝒔) and 𝐼 (�̂�; 𝒔) are correlated, i.e., 𝐼 (𝒛; 𝒔) is an upper bound on 𝐼 (�̂�; 𝒔),
so minimizing one term helps reduce the other one.
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Figure 4: Distributions of the elements of the representations (probability density can be greater than 1). Note the elements of
the representations learned by InfoCensor distribute in a much larger range (from -20 to 30), compared to the other baselines.

Figure 5: The relationship between sensitive attribute infer-
ence and 𝐼 (𝒛; 𝒔) on the remaining data (except the auxiliary
data). The models are trained by InfoCensor with different
hyperparameter settings. For Health Heritage, if we set the
sensitive attribute as “gender", 𝐼 (𝒛; 𝒔) is small for all the hy-
perparameter settings under InfoCensor (smaller than 0.005).
Thus, the results on Health Heritage (gender) are not shown.

Figure 6: The relationship between averaged SPD and 𝐼 (�̂�; 𝒔)
(computed on the testing data). The models are trained by In-
foCensor with different hyperparameter settings. For Health
Heritage, if we set the sensitive attribute as “gender", 𝐼 (�̂�; 𝒔) is
small for all the hyperparameter settings under InfoCensor.
Thus, the results on Health Heritage (gender) are not shown.

mitigate demographic disparity, and minimizing 𝐼 (�̂�; 𝒔) also helps

improve model resistance against sensitive attribute inference. This

is because 𝐼 (𝒛; 𝒔) and 𝐼 (�̂�; 𝒔) are correlated since �̂� = f𝝓 (𝒛)—Given
f𝝓 as a deterministic function, 𝐼 (𝒛; 𝒔) is an upper bound on 𝐼 (�̂�; 𝒔).

5.7 Hyperparameter Study
In this subsection, we study the sensitivity of InfoCensor to the

hyperparameter settings, including the dimension of representa-

tions, the size of the auxiliary dataset (i.e., attack budget), and the

hyperparameters 𝜆 and 𝜅 in our proposed objective.

Health Original Basic De-censoring 𝐼 (�̂�; 𝒔)
Gender

82.48%

55.04% 55.04% 0.72 × 10
−4

Age 21.27% 21.31% 0.099

UTKFace Original Basic De-censoring 𝐼 (�̂�; 𝒔)
Gender

54.46%

62.72% 62.41% 0.029

Race 49.70% 49.45% 0.086

Table 3: The scenario with multiple sensitive attributes: The
models are trained on the objective (27) (𝐼 = 2).

Hyperparameter 𝜆 and 𝜅. We train plenty of models under Info-

Censor with different 𝜆 and𝜅 and conduct the basic inference attack

against those models. The corresponding results are shown in Fig. 7.

As we increase 𝜆 and 𝜅, we observe a decrease in the original ac-

curacy, the inference attack accuracy, and 𝐼 (�̂�; 𝒔) in most cases. If

𝜆 or 𝜅 is set as a very large value, the trained model might suffer

from overfitting or completely lose the ability to solve the original

task. Note that as long as 𝜆 and 𝜅 are set within a suitable range

(as in Fig. 7), InfoCensor can improve model resistance against sen-

sitive attribute inference and mitigate demographic disparity, with

acceptable performance on the original task.

Dimension of Representations. We train models under InfoCensor

with varied dimensions of representations (𝑑) and show the results

in Fig. 8. As 𝑑 increases, we observe a slow increase in the original

accuracy and the inference attack accuracy. The results indicate

more elements in the representations may not only improve the

model performance on the original task, but also may provide the

adversary with more information to infer the sensitive attribute.

Inference Attack Budget. We conduct the basic inference attack

with different sizes of auxiliary dataset (i.e., different attack budgets)
against standard training (no defense) and InfoCensor. We show

the attack results in Fig. 9. We observe that as the attack budget

increases, the inference attack accuracy against the model with

no defense also increases. However, the attack accuracy against

InfoCensor-trained models does not have an obvious increment,

as the attack budget increases. We conjecture that this is because

𝐼 (𝒛; 𝒔) is minimized under InfoCensor, and thus, additional pairs

of (𝒛𝑎𝑢𝑥 , 𝒔𝑎𝑢𝑥 ) can not bring much more (mutual) information

regarding the association between 𝒛 and 𝒔 for the attack model.

5.8 Multiple Sensitive Attributes
In the previous experiments, we only defend against sensitive at-

tribute inference and mitigate demographic disparity w.r.t. one sen-

sitive attribute. Actually, InfoCensor can be adapted to the scenarios



InfoCensor: An Information-Theoretic Framework against Sensitive Attribute Inference and Demographic Disparity ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

Figure 7: The performance of InfoCensor with different 𝜆
and 𝜅.

Figure 8: InfoCensor with different dimensions (𝑑) of repre-
sentations.

Figure 9: The attack results with different attack budgets on
Standard Training and InfoCensor.

concerning multiple sensitive attributes {𝒔𝑖 }𝐼𝑖=1 by modifying the

objective (4) as

min

𝜽 ,𝝓
L(f𝝓 (𝒛),𝒚) +

1

𝐼

𝐼∑︁
𝑖=1

[𝜆𝐼 (𝒛; 𝒔𝑖 ) + 𝜅𝐼 (�̂�; 𝒔𝑖 )] (27)

We train models with the above objective and show the results

in Table 3 (𝐼 = 2). As shown in Table 3, InfoCensor can maintain

acceptable accuracy on the original task, and defend against in-

ference attacks and mitigate demographic disparity w.r.t. multiple

sensitive attributes. As shown in Table 1 & 3, even when con-
sidering two sensitive attributes concurrently, InfoCensor
still outperforms the baselines that consider one sensitive
attribute, in terms of the overall performance on improving model

resistance against inference attacks and mitigating demographic

disparity w.r.t. either sensitive attribute.

6 CONCLUSIONS
In this paper, we propose a unified information-theoretic frame-

work to defend against sensitive attribute inference and mitigate

demographic disparity in model partitioning, namely InfoCensor.

Except for the original task loss, InfoCensor involves two additional

mutual information terms in the main objective with theoretical

justifications. Specifically, with the mutual information between

the model representations and the sensitive attribute being mini-

mized, an upper bound on the chance for any adversary to infer

the sensitive attribute from the representations will be reduced.

With the mutual information between the predictions and the sen-

sitive attribute being minimized, demographic disparity w.r.t. the

sensitive attribute will be mitigated. To optimize the mutual infor-

mation terms, we propose a Gaussian mixture based method and a

gumbel-trick based method for estimating them, enabling feasible

backpropagation on those two mutual information terms. Extensive

evaluations in different application domains demonstrate that, with

modest sacrifice of the accuracy on the original task, InfoCensor

achieves substantial performance gains against sensitive attribute

inference on model representations and demographic disparity.
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A DATASETS AND NETWORKS
Note that a standard encoder has one output layer, while for a

variational encoder used in InfoCensor, there are two 128-dimension

output layers connected to the second-to-last layer for outputting

𝜇 and Σ respectively.

Health Heritage. We process the data into vectors associated with

labels. The information that explicitly indicates age, Charlson index,

and gender is removed from the vectors (only left in the labels).

Each vector consists of 71 features (elements) without binarization.

We employ anMLPwith two hidden layers (hidden layer dimension:

256, 128) as the feature extraction network (encoder). For the feature

extraction network, the input dimension is 71, i.e., the number of

elements per data vector in the processed Health Heritage dataset.

The output dimension is 128 by default, which is the dimension of

the model representation. The decoder is also an MLP with two

hidden layers. For the decoder, the input dimension is the sum

of the dimension of the representations and the number of all

sensitive classes. Following [28, 33], the input of the decoder is the

concatenation of the representation and the one-hot encoding of the

sensitive attribute. The output of the decoder is the reconstructed

data vector.

UTKFace. We resize all the images into 50 × 50 by torchvision.

The range of the pixel values is [0, 1]. We employ a convolutional

neural network (CNN) with three convolutional layers followed

https://www.kaggle.com/c/hhp
https://pan.webis.de/clef21/pan21-web/author-profiling.html
https://pan.webis.de/clef21/pan21-web/author-profiling.html
https://susanqq.github.io/UTKFace/
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Health Heritage Age Gender
Basic De-censoring Basic De-censoring

Standard Training 29.19% 30.42% 59.58% 60.28%

Adversarial Training 28.65% 29.51% 58.70% 59.78%

TIPRDC [21] 29.69% 29.59% 59.03% 59.81%

VAE-based Method [28] 28.81% 28.60% 55.85% 56.67%

InfoCensor (ours) 21.89% 21.94% 55.57% 55.52%

UTKFace Gender Race
Basic De-censoring Basic De-censoring

Standard Training 82.28% 82.08% 67.50% 67.64%

Adversarial Training 78.63% 79.15% 62.93% 64.05%

TIPRDC [21] 76.36% 77.74% 62.37% 63.21%

VAE-based Method [28] 75.43% 77.04% 54.78% 58.80%

InfoCensor (ours) 61.59% 61.64% 49.60% 49.56%

Twitter Identity Gender
Basic De-censoring Basic De-censoring

Standard Training 42.67% 42.09% 70.95% 71.91%

Adversarial Training 29.05% 29.86% 64.91% 68.59%

TIPRDC [21] 32.03% 35.36% 66.65% 67.89%

VAE-based Method [28] 36.52% 42.63% 69.48% 70.29%

InfoCensor (Ours) 23.25% 23.37% 64.22% 64.06%

Table 4: Here we adopt the evaluation setting of attribute in-
ference in [33], where the size of the auxiliary dataset is 50%
training data. The inference attack accuracy is onlymeasured
on the testing data. Note that the results are consistent with
our claim that InfoCensor achieves the overall best perfor-
mance. The difference between the inference attack accuracy
against InfoCensor-trained models under those two settings
is usually not large. In addition, same as Table 1, 𝐼 (�̂�; 𝒔) is
computed on the testing data.

by two fully-connected layers (similar to the architecture of LeNet

[20]) as the feature extraction network. The kernel size is 3, and

the stride is set as 1, for those convolutional layers. The decoder

for the VAE-based method consists of a fully-connected layer and

three deconvolutional layers.

Twitter. We remove the tweets with fewer than 20 words.We also

remove the tweets from the users with fewer than 500 tweets. Then

the dataset contains tweets from 22 users. We create a vocabulary

for the dataset and replace each word with the corresponding index

in the vocabulary. Before being input into the neural networks, the

word (index) is mapped into a 32-dimensional vector (embedding).

The feature extraction network (encoder) is built upon a long-short

term memory network (LSTM). We first embed each word into a 32-

dimensional vector, and then input the sequence of embeddings into

an LSTM. The input dimension of the LSTM is 32, and the output

dimension is 512. The LSTM is followed by two fully-connected

layers with output dimension 256 and 128. The decoder is also built

upon an LSTM followed by two fully-connected layers.

Other Networks. For all the experiments, the prediction network

is a single-layer neural network, whose input is the representation

from the encoder (feature extraction network) and output is the

prediction. We employ an MLP with two hidden layers as the attack

model to infer the sensitive attributes from the representations. We

also employ an MLP with one hidden layer as the transformer for

the de-censoring method [33].
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