
1

Outreach:Peer-to-Peer Topology Construction
towards Minimized Server Bandwidth Costs
Tara Small,Member, IEEE,Baochun Li,Senior Member, IEEE,and Ben Liang,Member, IEEE

Abstract— On-demand and live multimedia streaming applica-
tions (such as Internet TV) are well known to utilize a significant
amount of bandwidth from media streaming servers, especially as
the number of participating peers in the streaming session scales
up. To scale to higher bit rates of media streams and larger
numbers of participating peers, overlay tree or mesh topologies
are typically constructed, such that peers utilize their available
upload capacities to alleviate the excessive bandwidth demands
on stream servers. Previous works rely on random selections
of upstream peers, without optimizing the topologies towards
maximized utilization of peer upload bandwidth, and as a result,
minimized bandwidth costs on streaming servers.

We propose Outreach, a distributed algorithm to construct
overlay topologies among participating peers in streaming ses-
sions. The design objective ofOutreach is to optimize the quality
of overlay topologies towards scalability, with respect to the
number of participating peers in the session. To be scalable,
Outreach seeks to maximize the utilization of available upload
bandwidth on each participating peer, and consequently minimize
the total bandwidth costs on streaming servers. With analysis,
we show that Outreach constructs topologies such that peers
can fully utilize their upload capacities, and present a practical
distributed algorithm. With simulation-based comparison studies,
we show that Outreach effectively achieves its goals in a high-
churn peer-to-peer network with an assortment of peer uplink
capacities and link delays.

Index Terms— Peer-to-peer multimedia streaming, overlay
topology construction, server bandwidth optimization.

I. I NTRODUCTION

“The media streaming server is not responding.” Frequently,
we are greeted with messages such as this when attempting
to open a multimedia stream from a media streaming server.
The streaming server is overloaded with an overwhelming
number of simultaneous streams that it is serving. Due to the
bandwidth-intensive nature of multimedia streams, it is chal-
lenging andcostly to deploy streaming servers with sufficient
uplink bandwidth to satisfy the needs of a large number of
users. For example, it may take months to deploy an OC-12
uplink (622 Mbps), and it costs around $25,000 a month to
operate the link. With a typical streaming bit rate of 800 Kbps
for near-DVD video quality, even an OC-12 link is saturated
with only 800 users.

To scale to a larger number of simultaneous users (possibly
up to millions) in a multimedia streaming session without
overwhelming the streaming servers, it has been proposed

This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada and Bell Canada’s support through its Bell
University Laboratories R&D program.

The authors are with the Department of Electrical and Computer
Engineering, University of Toronto (emails:{tsmall@eecg, bli@eecg,
liang@comm}.toronto.edu).

that a peer-to-peeroverlay be constructed at the application
layer. The main advantage of the peer-to-peer communication
paradigm is obvious: each peer contributes its own uplink
bandwidth to assist streaming to other peers in the same
session, thus alleviating the bandwidth load on dedicated
streaming servers. The corresponding disadvantage is that
peers aretransient in nature: they join and leave the session
arbitrarily and unpredictably. The advantage of reduced server
load clearly outweighs the disadvantage of transient peers,
leading to the conclusion that peer-to-peer streaming offers
compelling benefits to be implemented in real-world appli-
cations. Several emerging peer-to-peer streaming implementa-
tions, such asCoolStreaming[1], have clearly supported this
observation.

In contrast to its potential benefits, most of the existing work
in peer-to-peer streaming failed to offer sufficient insights
towards the construction of peer-to-peer overlay topologies
thatmaximizepeer bandwidth contributions, and consequently
minimize the load on dedicated servers. We argue that fully
decentralized algorithms that construct such topologies are
critical towards the scalability of peer-to-peer streaming ses-
sions, to potentially serve millions of peers with minimal
server bandwidth costs.

In this paper, we presentOutreach, a peer-to-peer topology
construction algorithm that seeks to achieve such an objective
of scalability. Our original contributions are the following.
First, we develop a rigorous analytical framework that min-
imizes server bandwidth cost in an ideal environment with
complete knowledge of all participating peers in the streaming
session. Such a framework allows peers to select “neighbors”
in an optimal fashion, so that peer upload bandwidth is most
effectively utilized.Second, based on our analytical insights,
we further present theOutreachalgorithm to construct topolo-
gies based on local knowledge, in a fully decentralized manner.
Since strict optimality is not possible with transient peers,
we use the average bandwidth cost at the streaming server as
our optimization objective.Finally, we show that Outreach is
resilient to churn with arbitrary distributions of peer lifetimes.

The remainder of this paper is organized as follows. In
Sec. II, we first highlight our contributions in the context
of related work. The peer-to-peer network model that we
consider is presented in Sec. III. In Sec. IV, we present
our analytical framework that provides important insights
towards the design of the Outreach algorithm. We present the
decentralized Outreach algorithm in Sec. V. We evaluate the
performance of Outreach in Sec. VI. Finally, we conclude the
paper in Sec. VII.

2

II. RELATED WORK

We categorize existing work towards topology construction
for peer-to-peer streaming into two groups:tree-basedand
random-neighbortopologies.

Tree-based topologies in peer-to-peer streaming, such as
Coopnet [2] and Splitstream [3], are vulnerable to high
“churn” (departure) rates of peers, since the departure of one
peer affects all of its children. Algorithms such as NICE
[4] and ZIGZAG [5] propose repair algorithms and use hi-
erarchical clustering to keep the control overhead low while
scaling to hundreds of peers. Such maintenance algorithms
are complicated and may not be effective in a high-churn
environment. Due to the transient nature of participating peers
in a streaming session, we believe that tree-based topologies
are not particularly suitable for peer-to-peer streaming.

In contrast, Bullet [6] constructs mesh-based topologies that
are based on tree topologies where each peer distributes its
received data messages among its children with the most
spatial diversity possible. Higher throughput is achievedthan
using tree topologies alone, since peers locate messages they
have not yet received in the peer-to-peer session, and the
downloading processes proceed in parallel. Bullet emphasizes
that a high aggregate upload bandwidth is needed in the
downloading session, due to the transient nature of peers
and heterogeneous peer upload capacities. However, the mesh
topologies constructed by Bullet are still quite rigid, as they
are based on trees. We concur that mesh-based topologies are
superior with respect to the total available uplink capacities,
and seek to construct the best possible mesh to minimize
bandwidth costs on streaming servers.

Several recent papers, such as CoolStreaming [1], PRM
[7], GridMedia [8], and Chunkyspread [9], have proposed
to “spread” data torandomlychosen neighbors, using either
“push” or “pull” techniques. While these techniques are robust
to dynamic changes (churn), peers can only improve their
utilization using local information; therefore, these strategies
do not choose neighbors to globally optimize any particular
metric, such as bandwidth costs at the servers.

With respect to upload and download bandwidth capacities
of participating peers, BitTorrent [10] assumes that the uplink
and downlink bandwidth of peers are symmetric, and requires
altruistic peers to contribute their uplink bandwidth if this
assumption is not valid. CoolStreaming [1] assumes that a
peer may be served by the uplink of anyone of its many
neighbors. ChunkySpread [9] assumes that peers are fair in
that they provide as much uplink bandwidth as their downlink
bandwidth. We firmly believe that peers haveasymmetric
uplink and downlink bandwidth capacities (with considerably
smaller uplink capacities), as they are mostly served by ADSL
or cable broadband connections. Each peer may receive data
from multiple upstream peers, and the gap between the total
available download and upload capacities in the streaming
session should be bridged by dedicated streaming servers.
Such views are shared by PROMISE [11] and PALS [12]. Our
objective is to minimize the bandwidth required from these
dedicated servers.

III. O UTREACH: PRELIMINARIES

A peer-to-peer streaming session (or a peer-to-peer “net-
work”) is a collection of peers that rely not only on a small
number of multimedia streaming servers to receive their data
messages, but also on the uplink bandwidth of the participating
peers themselves. Each participating peer contributes itsuplink
bandwidth to serve other peers, relieving the burden that would
otherwise be imposed on the dedicated streaming servers. In
the streaming session, peers must receive data messages at a
constant bit rate in order to guarantee high-quality playback.
While our discussions in this paper are focused on peer-to-
peer streaming applications, the constructed topologies apply
equally well in content distribution sessions of bulk data (e.g.,
file downloading).

Without loss of generality, we assume that the peer-to-peer
network consists ofone multimedia source (known as “the
server”) andN − 1 peers. In the case of multiple streaming
servers, they are functionally equivalent to one server with the
same total uplink bandwidth. Our goal is to stream media from
the server to each of the participating peers, to maximize the
peer upload bandwidth used so that we minimize the cost at the
dedicated server for a given number of peers, and consequently
maximize scalability. We assume that peers can upload at a
random rateU , and that the media must be played back at
a fixed ratep. Values ofU are sampled from a distribution
that accounts for varying peer upload capabilities at the peers.
The number of peersN may vary over the duration of the
experiment, since peers are more likely to participate in the
streaming session at peak time periods in a day or a week.

Typically, in a mesh-based peer-to-peer topology, “avail-
ability maps” of buffered messages that have been recently
received by a peer are advertised to its neighbors, who
may subsequently request specific messages, depending on
their rarity and playback deadlines. We assume that recent
coding techniques (e.g., network coding[13]) are used, rather
than advertisements of availability. With network coding,for
example, peers could compute and send linear combinations
of previously received messages with randomly chosen coeffi-
cients as in [14] and [15]. Since the original data message can
be decoded from a number of coded messages that consist
of independent linear combinations, all coded messages are
equally useful when received, and there is no need to “pull” or
“push” the rarest message, or to exchange availability maps.
We assume that such state-of-the-art coding techniques are
used in the streaming session, so that a peer can serve any
of its neighbors by streaming information at a constant bit
rate. It may be necessary to use a small amount of additional
control overhead to send the coefficients at the beginning ofthe
linear combination of data packets. We could account for this
additional overhead by increasing the playback rate slightly.

The dedicated streaming server continuously generates data
messages that form the multimedia stream. Whenever possible,
each peer receives the coded media stream from (possibly
several of) their peers. If the serving peers are unable to
jointly send messages at the bit ratep, the remaining unserved
rate is served from the dedicated server. Hence, the choice
of topology has a significant effect on the bandwidth cost

3

to the server. Furthermore, one peer can only serve another
if it has already received the data stream. This means that
either the peers must query each other to find out which
ones have already received the data stream, or they must
know which nodes have packets in some other way with
only local information (such as ordering in a tree). Therefore,
the manner in which peers are chosen to serve can have a
substantial impact on the cost to the server, the unused upload
bandwidth at peers, and the overall performance of the peer-
to-peer streaming session.

IV. OUTREACH: ANALYSIS AND CENTRALIZED

ALGORITHM

In Outreach, we seek to construct the best possible topolo-
gies to minimize server bandwidth costs. To design such
high-quality topologies, we first gain insight by studying the
characteristics of tree-based and random neighbor topologies
that are previously proposed in related work.

A. Tree-Based Topologies

Tree-based peer-to-peer topology constructions arrange par-
ticipating peers as a tree, by running centralized algorithms at
the streaming server to “place” every peer in the topology. A
bandwidth-optimized tree constrains the out degree of a peer
by its uplink bandwidth. IfU < p, this implies that the tree
can only be organized as a set ofchains of peers1 and no
parent is able to serve its child completely. The number of
chains in the topology depends on the server bandwidth. If
the last peer in the chain has the lowest upload bandwidth,
this topology would be optimal with respect to the bandwidth
cost at the server. The disadvantage of a chain topology is that
the delay very quickly becomes intolerably long.

Recall that mesh-based topologies, such asBullet, use
underlying trees as the basis to distribute data, and then each
peer in the mesh requests the messages that it has not yet
received from its neighbors. Ideally, such mesh-based topolo-
gies would find the peers with available uplink bandwidth
(i.e., the leaves of the trees) to serve the remaining messages;
however, finding these peers requires additional control traffic
overhead and additional delay. It would be preferable to design
an underlying topological structure that did not need such
additional overhead.

Fig. 1(a) shows an example of a binary tree topology. Peer
0 is the multimedia server, which serves all the peers in the
session to guarantee their playback bit rate. The shaded peers
are those that receive the media in time to relay the data to
other peers that have not yet received it. The unshaded peers
are those that cannot use their upload bandwidth to help serve
because all peers have already received the data. Clearly, there
are several peers in the binary tree topology that cannot use
their upload bandwidth.

1If only one peer connects directly to the server and every peer has exactly
one child, we call this type of tree topology achain.

0

1 2

7 8 9 10 11 12 13

3 4 5 6

(a) Tree-based

0

5

6

7

3

10

13

8

11

9

4

12

1

2

(b) Random neighbors,M = 3

0

1 3 4 7 8 911 12 13

5

2 6 10

(c) Outreach,U = u, p = 3u

Fig. 1. Possible peer-to-peer topologies withN = 14.

4

B. Topologies Involving Random Neighbors

Another possible approach of arranging peers in a topology
requires each peer, including the server, to chooseM random
peers as “partners” that could potentially serve the media
stream. The structure of such a topology is unaffected by
different peer uplink capacities and different link latencies
between peers. When new peers are added to the topology,
they search forM neighbors and are connected to the server
(in one large connected component) with high probability;
however, the topology is not optimized with respect to any
particular metric or objective.

Fig. 1(b) shows an example of the random neighbor topol-
ogy with M = 3. Compared to a binary tree topology, we
observe that more peers are able to assist the server and use
their upload bandwidth to serve other peers (represented by
shaded circles), but there are still several peers with unused
uplink bandwidth (represented by unshaded circles).

C. The Outreach Topologies

With escalating server bandwidth costs when higher-
bandwidth uplink are deployed, we seek to take advantage
of the upload bandwidth of participating peers as much as
possible. Unlike tree-based topologies,Outreach constructs
optimized topologies that not only minimize the server band-
width cost, but also achieves reasonable delays by allowinga
peer to be served by multiple other peers in the session.

We construct the Outreach topology ofN peers “from the
ground up,” in the sense that we first consider peerl, the
peer that receives the data stream atthe latesttime. Peerl
could not forward any portions of the stream to any other
peer because all other peers would already have received it;
therefore, the upload bandwidth of peerl must remain idle.
We would achieve the best result if peerl had the least upload
bandwidth, and peerl was the only peer to receive the stream
last (allowing all other peers to assist in serving). In practice,
when we introduce peer dynamics and churn into the peer-to-
peer session, it may not be beneficial to force the peer with
the smallest upload bandwidth as peerl at all times, as this
would be highly disruptive in a highly dynamic peer-to-peer
environment. For this reason, there is only one peer who is
the latest to receive the stream in Outreach topologies, though
it may not always have the lowest upload bandwidth of any
peer.

We next consider the peers serving peerl. We choose a set
of peers from the remainingN − 2 such that the combined
upload capacity of the peers is as close as possible top (but
not greater). These peers are referred to as the(l−1)-peers. In
a similar fashion, we assign a collection of peers to serve each
of the (l − 1)-peers; however, we allow some of the excess
peer upload bandwidth to serve the small unserved portion of
peer l. This process is repeated until all peers are filled into
positions in the topology, and any remaining peer that is not
served by other peers is served by the server. We can refer to
the set of peers served by the server as1-peers, the peers they
serve as2-peers, and so on.

The server bandwidth cost in a peer-to-peer topology is the
difference between the bandwidth required by the peers to

stream the data messages and the uplink bandwidth contributed
by the peers. Since, by construction, this topology uses the
most possible upload bandwidth from the peers, it imposes
minimial server cost. Every peer except peerl is using its
entire upload bandwidth to serve other peers.

Fig. 1(c) shows an example of the Outreach topology where
all peers have identical upload bandwidthU = p/3. From the
comparison in Fig. 1, we see that Outreach has the smallest
number of peers with idle uplink bandwidth, and therefore
most efficiently utilizes server bandwidth.

Clearly, this topology cannot be implemented by recon-
structing the network as described above each time a peer
arrives or departs. Luckily, the Outreach topology can be
approximated by inserting peers using the greedy Algorithm
1, with no topology reconstruction upon peer departure.

D. Outreach: Centralized Algorithm

Algorithm 1. Immediately before a new peer joins the
streaming session, let the bandwidth difference between the
k- and (k + 1)-peers be

δk :=

(
∑

j∈Pk
ej) − (|Pk+1| ∗ p −

∑

m∈Pk+1
sm)

for 1 ≤ k < l
∑

j∈Pl
uj for k = l,

where p is the playback rate of the media,uj is the total
upload bandwidth of peerj, ej is the unused (excess) upload
bandwidth of peerj, sm is the bandwidth served to peerm
from other peers, andPi is the set ofi-peers. Letk∗ =
max arg

k
{|δk|}. If δk∗ < 0, the new peer is inserted as ak∗-

peer, which can potentially be served by any(k∗−1)-peer and
to help serve any(k∗ + 1)-peers. Ifδk∗ > 0, the new peer is
inserted as a(k∗ + 1)-peer, to be served by thek∗-peers and
to serve the(k∗ + 2)-peers. Note that|δk∗ | > 0 because there
is necessarily idle upload bandwidth available at thel-peers
(i.e., there existsk such that|δk| > 0).

When placing peers in the network according to Algorithm
1, we consider an ideal peer-to-peer network environment
where:

1) The incoming bandwidth at a peer does not affect its
ability to upload to other peers since the server supplies
any missing bandwidth to receive the data stream suc-
cessfully;

2) Any k-peer can serve any(k+1)-peer and the bandwidth
is infinitely divisible, that is, no assumption is made for
minimum packet size.

Lemma 1:Algorithm 1 places peers in a directed graph
such that the server cost is increased as little as possible each
time a new peer is inserted.

Proof: First note thatδk of Algorithm 1 is the sum of
two parts: the total unused upload from thek-peers and the
total amount left to be served at the(k+1)-peers. Only one of
these two parts will be non-zero. If they were both greater than
zero, then thek-peers with idle upload bandwidth would serve
the (k + 1)-peers that were not completely served. Therefore,
if δk < 0, there is no idle upload bandwidth from any of thek-
peers, but there are some(k+1)-peers that are not completely

5

served. Ifδk > 0 then there is available upload bandwidth at
somek-peers, so a new peer would be partially served by
those peers if it became a(k + 1)-peer. Note that if peers are
added as described above,δk > 0 implies that a peer which
was previously part of the network failed or went offline.

The additional server bandwidth cost∆C of adding a new
peeri is

∆C = p − (ui − ei) − si = p − ui + ei − si.

Peeri may add to the server cost because it requires reception
of the media stream at ratep and contributes onlyui; however
this cost can be lessened by its choice of insertion position.
Peer i can be placed after a peera that has some idle
bandwidth, and can place itself ahead of a peerb that needs
to be served (and serve peerb). By finding k∗ and δk∗ from
Algorithm 1, we select the location that maximizes the sum
of the upload bandwidth to the other peers from peeri, and
the upload bandwidth from other peers to serve peeri (i.e., it
maximizes[ui−ei]+si). Sincep is constant,∆C is minimized.

Theorem 1:Inserting each peer according to the locally-
optimal Algorithm 1 either creates an Outreach topology from
the peers in the network or the network disappears.

Proof: By Lemma 1, we know that Algorithm 1 is locally
optimal because it minimizes the increase in server cost at
each step; this does not necessarily assure global optimality.
However, since our topology allows anyk-peer to serve any
(k+1)-peer, all idle bandwidth from the peers can be used and
will be considered for every new peer insertion. This means
that the server cost is not only minimized in a local sense, but
also in a global sense because the placement of a peer at an
early stage will never hamper peer placements at later stages.
Furthermore, Algorithm 1 minimizes the unserved bandwidth2

for the k-peers by definition ofδk. Therefore, Algorithm 1
constructs an Outreach topology.

If the rate of peer departure is greater than the rate of
insertion of new peers, we move toward Outreach each time
a peer is inserted, but eventually the number of peers goes to
zero and we say that the network disappears.

For a more detailed constructive proof, the interested reader
is referred to the Appendix.

V. OUTREACH: DISTRIBUTED ALGORITHM

A scalable algorithm cannot be centralized, so we imple-
ment Algorithm 1 in a distributed fashion. We assume that
the server is too busy to assign positions to all peers entering
the system, so the incoming peers are forwarded randomly to
deputies(1-peers). These deputy peers do not have complete
network knowledge, but they retain a small cache of peers that
were previously placed in the network and can communicate
with the cached peers to learn about the network. This creates
two manners by which the distributed algorithm can acquire
different levels of knowledge about the system: the number of
peers in its cache, and the accuracy of the bandwidth difference
(δk) estimates of the cached peers, wherek is the distance for

2This is the bandwidth required to serve the peers that is not provided by
other peers.

the cached peer. For simplicity, we assume that the size of
the cache remains constant and vary the accuracy of theδk

estimates. Deputy caches are continually updated to include
the most recently inserted peers.

Each cached peerc estimates aδk value based on its
knowledge of the network. Letw represent a randomly-
chosen fraction of the peers for which peerc has approximate
knowledge of their uplink and downlink bandwidth usage.
As w increases, peerc has more knowledge of the network
and can give a more precise estimate ofδk. For example,
if w = 0.1, this represents the physical scenario where
peer c receives beacons from10% of the peers, and can
communicate with them to send or receive data.3 This method
is designed to recover peers that become disconnected from
the connected component of the server; though, since peers
express preferential connectivity toward high-degree peers, the
network will remain connected with high probability [17].
Algorithm 2 adds peers to the network in a distributed manner.

Algorithm 2. (Distributed version of Algorithm 1.)
Step 1: A new peer i contacts the server to request

insertion into the streaming session.
Step 2:Peeri is assigned a deputy (1-peer) for placement.
Step 3: The assigned deputy queries all cached peers

for estimates of the bandwidth differenceδk at their
locations in the network, from which it chooses the
peerpmax which reported the largest|δk|.

Step 4:Peeri is assigned a distancedi, where

di =

[

d(peer servingpmax) + d, if δk∗ < 0

dpmax
+ d, if δk∗ ≥ 0

and distanced is chosen from some link delay
distribution.

Step 5:Peeri connects with other peers in its neighbor-
hood to serve them, to be served by them, or to keep
as “similar peers” to assist in futureδk estimates by
using the following rules:
For each peerj with distancedj and link lij between
peer i and peerj, and assuming the average link
delay isE(L),

• Peerj forms a link to serve peeri, with prob-
ability w, if (dj + lji < di) and (dj + lji >
di −

1
2E(L));

• Peerj forms a link to be served by peeri, with
probability w, if (di + lij < dj) and (di + lij >
dj −

1
2E(L));

• Peerj forms a link to communicate with the new
peer as a “similar peer,” with probabilityw, if
[(dj + lji > di) and (dj < di)] or [(di + lij >
dj) and (di < dj)].

Let us elaborate briefly on a cached peer’s calculation
of δk in Step 3. The cached peerc adds up the avail-
able upload bandwidth for itself and its “similar peers”
and subtracts from this valuep ∗ |peers it could serve| −
(amount already served at those peers). This is a simple gen-
eralization of the formula in Algorithm 1. Also note that if the

3As an alternative to beacons, RanSub [16] could be used to obtain a
random set of partners.

6

network is small — for example, with less than 20 peers —
we assumew = 1 in Algorithm 2, so that the network does
not partition. Note that the calculations ofδk impose only a
small additional control overhead.

VI. PERFORMANCEEVALUATION

In our performance evaluation using a simulation-based
study, we compare the performance of Outreach to the other
topologies discussed in Sec. IV in the presence of churn.
Churn refers to the removal and insertion of peers, which is
nearly always present in a practical peer-to-peer topologyand
has the potential to occur at a high rate. New peer arrivals
follow a Poisson distribution at rateλ, and peers depart once
their heavy-tailed (Zipf-distributed)4 lifetimes expire. In each
case, the system begins with400 peers, then depending on
the relative rates of arrival and expiration, the number of
peers increases and decreases over the600 time-steps of the
simulation. The connections of points in the curves indicate
points adjacent in time in the simulation. When the rate of
insertion of nodes in the network is large, we see points closer
to the right side of the curves. When the rate of insertion is
lower, then more nodes are expiring than are being introduced;
so we see the points of the curve moving toward the left.

First, we compare Outreach to the performance of two tree-
based topologies. Thefirst tree-based topology is bandwidth-
optimized, with four peers connected directly to the server
and the other peers forming chains down from those four.
This is similar to the chain topology described in Sec. IV-A.
By constructing four chains of peers from the server instead
of only one, the delays in receiving media streams can be
reduced by a factor of four, while introducing only a small
amount of additional server cost due to idle bandwidth at leaf
peers. Thesecondtree topology is a binary tree. In this case,
each peer monitors its own reception rate and then checks that
its parent is experiencing a similar rate, for tree maintenance
and repair. If a peer is removed due to churn in this system, all
of its descendents become temporarily disconnected from the
server. If any peer experiences a significantly different rate
from its parent, then the peer assumes that it is the highest
parent of a disconnected subtree and requests reattachment
from the central server. We consider the best case scenario
where the server is always able to reattach the broken subtrees
quickly. Note that this is a conservative estimate, assuming
central knowledge and ignores the main drawback of the tree
infrastructure.

Recall that the Bullet scheme sends disjoint data sets
through the networks, then nodes independently locate the
rest of the information. We argue that network coding already
sends innovative information in its packets alleviating the need
to impose rules for sending disjoint information through the
distribution tree. Also, the remaining packets do not need to be
located because all information can be retrieved from the data
pushed through the topology from the source. In this sense,
we say that the tree-based topology that underlies Bullet is
already being compared in this performance evaluation.

4The Zipf distribution has been shown to represent the onlinelifetimes of
human users [18].

We then consider topologies constructed with random selec-
tions of neighbors (serving peers). If a peera has fewer than
M neighbors, it tries to partner with another peerb at random.
A neighbor is refused if a peerb already hasM neighbors.
The peers can receive from a neighbor if that neighbor is
closer to the server (determined by means of a Breadth First
Search tree). Any time that a peer has fewer thanM neighbors
(likely due to peer failures), it has270 tries in the simulation
to find new neighbors5, chosen from the network uniformly
at random. This means that almost all peers can find new
neighbors in one step, a very conservative estimate for the
sake of comparison.

Outreach performs as described by Algorithm 2 of the
previous section. If an Outreach peer has no serving peers
(because all serving peers failed, went offline or were serving
other peers), then that peer is reinserted into the network by
a deputy.

A. Outreach Performance Advantage

In our first experiment, we compare Outreach with tree-
based and random neighbor topologies with respect to the
following quality metrics: (1) the distance (latency) fromthe
streaming server; (2) the serving bit rate from the server; and
(3) the total idle upload bandwidth at the peers. Our first
experiment uses a simplified network where the link lengths
are normalized to1 and the upload capacities are constant. In
Fig. 2, each link has play ratep = 225 [kbps], and upload rate
U = 100 [kbps] identical for all peers. The rate of insertion
of peers varies throughout the simulation to represent times
when there are more and fewer peers online.6 The insertion
process is Poisson, with rate oscillating between36 peers/min
and1.5 peers/min. The lifetimes of the peers are chosen from
a heavy-tailed Zipf distribution, where there is high probability
of smaller lifetimes and low probability of long lifetimes.We
truncate the Zipf distribution so that the mean is45 minutes.

In Fig. 2(a), we compare the average distance to the server
(the delay of the data messages) as a function of the number of
peers,N , in the system. The number of peers varies due to the
different rates of insertion and removal. Since Outreach places
many peers close to the server, the time from transmission
from the server to reception at the peers is very short on
average. Normally, one would expect that lowering the delay
of packet reception would increase the cost to the media
server. Fig. 2(b) shows that the opposite is true, even with
conservative assumptions for recovery in the random neighbor
and the tree topologies. Outreach achieves lower delay than
the other topologies while using less server bandwidth than
either the binary tree or the random neighbor topology. The
server cost for the centralized tree with four chains achieves
cost similar to Outreach. Fig. 2(c) explains this fact. Outreach
is specifically designed to use the peer uplink bandwidth
and reduce the cost to the server. The4-chain topology also
uses all peer bandwidth except the final four leaves; therefore

5Such a large number of tries means that there is a very high rate of
recovery.

6For example, there may be more peers streaming multimedia in the
evenings or on the weekends.

7

Centralized 4-tree
Centralized binary tree

RN (M=3)
Outreach (w=0.1)
Outreach (w=0.5)
Outreach (w=1.0)

(a) Average delay at peers (b) Total bandwidth cost at the server

(c) Total idle upload bandwidth from any peer

4-tree

binary tree
RN (M=3)

Outreach

 100

 50

 20

 10

 5

 1
 200 300 400 500 600 700

D
is

ta
nc

e
fr

om
 s

er
ve

r

Number of peers ,N

 100

 80

 60
 50

 40

 30

 20
 200 300 400 500 600 700

S
er

vi
ng

 r
at

e
[M

bp
s]

Number of peers ,N

4-tree

Outreach

binary tree

RN (M=3)

 30

 10
 5

 1
 0.5

 0.1
 200 300 400 500 600 700

Id
le

 B
W

 a
t p

ee
rs

 [M
bp

s]
Number of peers ,N

4-tree

Outreach

binary tree
RN (M=3)

Fig. 2. Comparison-based studies of Outreach, tree-based and random neighbor topologies (assuming fixed identical upload bandwidthu at all peers, and
link delays are all1).

Centralized 4-tree
Centralized binary tree

Outreach (w=0.1)
Outreach (w=0.5)
Outreach (w=1.0)

(a) Average delay at peers (b) Total bandwidth cost at the server

(c) Total idle upload bandwidth from any peer

 100

 50

 20

 10

 5

 1
 150 200 250 300 350 400 450

D
is

ta
nc

e
fr

om
 s

er
ve

r

Number of peers, N

 80

 60

 50

 40

 30

 20
 150 200 250 300 350 400 450

S
er

vi
ng

 r
at

e
[M

bp
s]

Number of peers, N

 10

 5

 1

 0.5

 0.1
 150 200 250 300 350 400 450

Id
le

 B
W

 a
t p

ee
rs

 [M
bp

s]

Number of peers, N

Fig. 3. The qualities of Outreach, tree-based and random neighbor topologies in a highly dynamic peer-to-peer environment.

8

Centralized 4-tree
Centralized binary tree

RN (M=3)
Outreach (w=0.1)
Outreach (w=0.5)
Outreach (w=1.0)

(a) Average delay at peers (b) Total bandwidth cost at the server

(c) Total idle upload bandwidth from any peer

 100

 50

 20

 10

 5

 1
 200 300 400 500 600 700

D
is

ta
nc

e
fr

om
 s

er
ve

r

Number of peers, N

 100
 80

 60
 50
 40

 30

 20

 200 300 400 500 600 700

S
er

vi
ng

 r
at

e
[M

bp
s]

Number of peers, N

 30

 10
 5

 1
 0.5

 0.1
 200 300 400 500 600 700

Id
le

 B
W

 a
t p

ee
rs

 [M
bp

s]
Number of peers, N

Fig. 4. Outreach, tree-based and random neighbor topologies with peer uplink bandwidth following a Zipf distribution.

achieving similar server costs. Since the other topologiesdo
not optimize for uplink bandwidth utilization at the peers,the
server cost is higher.

B. Effects of High Churn Rate

Next, we increase the rate of peer churn,i.e., the number of
peers arriving and departing at each time-step. This changehas
little effect on centralized approaches because they have global
knowledge and can adapt quickly, but it can be detrimental to
a decentralized approach. However, the graphs in Fig. 3 have
demonstrated the fact that, Outreach is extremely resilient to
churn. We increase the rate of churn by roughly100 times by
setting the rate of increaseλ oscillating between200 and400,
and by decreasing the average lifetime by20. We consider the
worst case scenario (in terms of variance) at each time-stepby
first removing all the peers that expire in that time step, then
adding all the peers dictated by the Poisson arrival distribution.
Note that the server cost depends primarily on the number of
peers in the system, and did not perform differently when the
peers arrive faster than they depart, for example. The random
neighbor case is not shown in these figures because the rate of
churn was so high that neighbors could not be found efficiently
and peers were almost never connected to the server.

C. Variable Upload Bandwidth and Link Delay

Since it is quite unlikely that all peers will have identical
upload bandwidth, Fig. 4 shows the performance of these
topologies when the upload capacity is chosen from a Zipf
distribution. By using this distribution, we are attempting to
take into account that peers have different inherent upload
capacities, and that the peers are likely multitasking and using

some of their uplink bandwidth for other purposes. As before,
the insertion process is Poisson with rate oscillating slowly
between36 peers/min and1.5 peers/min and the lifetimes are
heavy-tailed.

Fig. 4(a) shows that the delays for the tree and random
neighbor topologies do not change from Fig. 2. This is
consistent because the number and choice of neighbors in
these approaches are completely independent from their uplink
bandwidth. On the other hand, Outreach does depend on peer
uplink bandwidth, so Fig. 4(a) has slightly larger values than
Fig. 2(a). If one peer has a particularly high uplink bandwidth,
for example ratep, it can serve a peer entirely by itself. As
a result, that peer needs fewer similar peers, and new peers
are placed at its downstream in the directed graph, so the
delays are increased somewhat for Outreach. This increase is
not significant, since as the number of peers becomes large,
the number of actuali-peers is close to the number ofi-peers
that would be used in Outreach if each peer had the average
uplink bandwidth. We also see from Figures 4(b) and 4(c)
that the knowledge fraction,w, is more pronounced. When
churn exists in Outreach, the departure of a peera and the
insertion of a new peerb in the same position may have a
detrimental effect because the graph was built using uplink
information from peera. In particular, with little knowledge of
the system, there is a lower chance that peerb can be placed in
a way that compensates for the departure of peera. In the other
topologies, the server cost is increased because the variation
in uplink bandwidth is not accounted for, so high-bandwidth
peers cannot help the lower-bandwidth peers to serve. Though
all topologies perform worse in this case, Outreach improves
upon the others.

Finally, the metrics in Fig. 5 represent a network where the

9

Centralized 4-tree
Centralized binary tree

RN (M=3)
Outreach (w=0.1)
Outreach (w=0.5)
Outreach (w=1.0)

(a) Average delay at peers (b) Total bandwidth cost at the server

(c) Total idle upload bandwidth from any peer

 100

 50

 20

 10

 5

 1
 200 300 400 500 600 700

D
is

ta
nc

e
fr

om
 s

er
ve

r

Number of peers, N

 100
 80

 60
 50
 40

 30

 20

 200 300 400 500 600 700

S
er

vi
ng

 r
at

e
[M

bp
s]

Number of peers, N

 30

 10
 5

 1
 0.5

 0.1
 200 300 400 500 600 700

Id
le

 B
W

 a
t p

ee
rs

 [M
bp

s]

Number of peers, N

Fig. 5. Evaluating Outreach, tree-based and random neighbor topologies with uplink bandwidth from a Zipf distribution, and link delays taken from ping
data between PlanetLab node pairs.

link delays are chosen from a realistic distribution of ping
times between pairs of PlanetLab nodes7. Having different
delays of links has very little effect on either the tree topology
or the random neighbor topology, again because link delays
are not considered in the topology design and there is no
loss; however, the delays affect the distributed algorithmof
Outreach. The main observation here is that there are fewer
opportunities for a newly inserted peer to compensate directly
for a removed peer, particularly when the knowledgew is
reduced.

VII. C ONCLUSION

In this paper, we have presentedOutreach, a peer-to-peer
topology construction algorithm that efficiently uses peer-to-
peer uplink bandwidth resources to facilitate scalable multi-
media streaming. By introducing a small amount of structure,
Outreach optimizes construction of the peer-to-peer overlay
with respect to server bandwidth costs, while additionally
providing improvement in the delay experienced by the peers.
Outreach incorporates a many-to-one service model between
peers, since the playback bit rate is often higher than the uplink
bandwidth of individual peers. Outreach encourages peers to
utilize their uplink bandwidth as completely as possible, while
also achieving low latencies.

Our algorithm in Outreach is completely distributed, but is
based on an analytical minimization of server cost for high-
bandwidth applications in an ideal peer-to-peer network with
global knowledge. Since Outreach accommodates more real-
istic models of uplink capacities and link delays, the Outreach

7Data taken on December 5, 2005,http://mybook.uc.edu/ping/.

topology achieves better performance than previous topologies
in realistic scenarios, and its efficiency allows applications
to scale to larger network sizes that may previously have
overwhelmed a multimedia source.

In our future work, we plan to implement the Outreach
topology construction algorithm in a real-world peer-to-peer
streaming application, incorporating advanced coding solu-
tions such as network coding. Once such an implementation
is deployed, we plan to collect real-world statistics on its
performance in highly dynamic peer-to-peer environments.

APPENDIX

PROOF OFTHEOREM 1

Theorem 1:Inserting each peer according to the locally-
optimal Algorithm 1 either creates an Outreach topology from
the peers in the network or the network disappears.

Proof: Since the number of peers in the system changes
as peers are inserted and removed, average idle upload band-
width per peer is a fair metric to compare the efficiency of
different intermediate topologies as we perform Algorithm1.
We will show that the average idle upload bandwidth→ 0 as
the number of peers→ ∞, regardless of the removal strategy
of the peers.

First suppose that there are no peer failures, only new
peer insertions into an initial directed graphτ . We will show
that after some finite time,|δk| < p, ∀k. By Algorithm 1,
k∗ < l (peers are inserted into the middle part of the graph) if
δk∗ >

∑

j∈l-peersuj . Once the bandwidth difference|δk| is
less than

∑

j∈l-peersuj , ∀k, an inserted peer will be added to
the bottom of the graph to use the upload bandwidth of thel-
peers. Then, the number of hops until the last peer receives the

10

message,l, will increase. After some finite time, at each point
just beforel is increased, it is necessarily true that|δk| < p
∀k < l because the next peer placed at the bottom of the graph
would be served at mostp and would not serve any other peer.

Suppose we wish to place a new peeri that has upload
bandwidth ui in the network. If peeri is placed as ak∗-
peer then we know that there is no idle bandwidth from any
k∗-peer (as discussed in the proof of Lemma 1) and that
the bandwidth needed to serve the(k∗ + 1)-peers is at least
∑

j∈l-peersuj . After this insertion, either the(k∗ + 1)-peers
are served completely and there is at mostp−

∑

j∈l-peersuj

idle upload at thek∗-peers, or all of the upload capacity of
peeri is used. Sincek∗ maximizes|δk|, if any idle bandwidth
remains at thek∗-peers means that∀k |δk| < p before the
placement of peeri. However, we have introduced a newk∗-
peer, soδk∗−1 is decreased byp. This decrease may cause a
ripple effect. If new(k∗ − 1)-peers are added to compensate
for δ(k∗−1), δ(k∗−2) will decrease and so on possibly until
1-peers are added. The1-peers can always be served without
introduction of new peers since they are connected directlyto a
server that serves them completely. After this ripple,|δk| < p,
∀k. If peer i uses all of its upload bandwidth to serve the
(k∗ + 1)-peers, thenδk∗ > p before the peer insertion. It is
possible thatδk∗ > p after the insertion, butδk∗ is necessarily
decreased byp. Therefore, this value ofk∗ could not be chosen
indefinitely and the process would haveδk∗ < p in finite time.
In this case, a ripple may still be induced fromδ(k∗−1) up to
δ1; however, there it may pause if there are otherk such that
|δk| > p. Luckily, ripples of peer additions do not interfere, so
there are no conflicts and theδk whereδk > p are decreased
(allowing for ripples) after each insertion.

Alternatively, if peeri is placed as a(k∗ + 1)-peer then
we know that there is at least

∑

j∈l-peersuj idle bandwidth
from thek∗-peers and that all other(k∗ + 1)-peers are served
completely. After this insertion, either the(k∗ + 1)-peers
including peeri are served completely and the upload at the
k∗-peers is reduced byp, or peeri is partially served and there
is no remaining upload bandwidth at thek∗-peers. If peeri is
only partially served, that means there was less thanp unused
upload bandwidth at thek∗-peers, and∀k, |δk| < p before the
placement of the peer becausek∗ maximizes|δk|. After the
peer is placed, we may again need to use the ripple technique,
but in the other direction (away from the server). Since we
have introduced a new(k∗ + 1)-peer,δ(k∗+1) is increased by
ui. If new (k∗ +2)-peers are added,δ(k∗+2) will increase and
so on possibly until a new peer is added to the bottom of the
graph (after the previousl-peers). After this ripple,|δk| < p,
∀k. If peer i is served completely then|δk∗ | > p before the
peer insertion. It is possible thatδk∗ > p after the insertion,
but |δk∗ | is necessarily decreased byp so this choice could
not be repeated indefinitely andδk∗ < p in finite time. In
this case, a ripple may still be induced fromδ(k∗+1) down to
δl; however, it may pause if there are other|δk| > p. Note
that ripples do not conflict with each other. If there is a case
wherek-peers are added to provide upload bandwidth, then
(k + 1)-peers, thenk-peers again to as dictated, in a type of
iteration on two adjacentk-values, the process could not iterate

forever. In fact, if this process iterated, the|δk−1| and |δk+1|
would quickly grow large creating ripples both fromk toward
the server and fromk toward the bottom of the graph. Since
oscillations cannot be created due to the ripples, we say that
ripples do not interfere.

Once the discrepancy between upload bandwidth provided
by the k-peers and bandwidth used by the(k + 1)-peers is
bounded top, ∀k, the newly inserted peer will be added to
the bottom of the graph. This insertion may increase the total
idle upload bandwidth of the peers slightly if the upload of
peer i is larger that

∑

j∈l-peersuj ; however, this increase is
bounded byp because upload capacities were defined to have
size between0 andp.

Therefore, the total idle upload bandwidth from the peers
is bounded bylp, wherel increases with the number of peers
in the network. AsN becomes large, the numberk-peers also
becomes large for allk, exceptk close tol that contain very
few peers. We know from the law of large numbers thatU1 +
U2+ ...+Un ≈ u∗n, for largen andu = E(U). Therefore the
number of peers one hop from the server approaches(p

u)l and

the total number of peers approaches
∑l

i=1(
p
u)i = 1−(p/u)l+1

1−(p/u) .
This meansl ∼ O(log N) for a system withN peers, for large
N . The average idle upload bandwidth for a peer,O(log N)

N ,→
0 asN → ∞.

Next, consider peers that expire.
If the rate of adding peers to the network is greater than the

rate of peer removal(λ > µ), then more peers are introduced
into the system. If a peer fails, then one of the new peers
can replace it. The remaining new peers follow insertions as
described above and the average idle upload bandwidth for a
peer O(log N)

N → 0 asN → ∞.
If (λ < µ), then the network size reduces until there are no

more peers, so we say that the network disappears. If(λ = µ),
then by Lemma 1 the server cost is minimized as much as
possible; however, depending in initial topology and depending
on the method by which peers are removed, Algorithm 1 will
bring the topology closer to Outreach at each step, but may
never reach actually reach an Outreach topology.

Since this topology approaches the minimum server band-
width and has multiple peers serving other peers at the same
time, either it approximates Outreach or there are no more
peers in the network because the peers expire more quickly
than they are inserted.

REFERENCES

[1] X. Zhang, J. Liu, B. Li, and T. P. Yum, “CoolStreaming/DONet: A Data-
Driven Overlay Network for Efficient Live Media Streaming,” in Proc.
INFOCOM 2005, March 2005.

[2] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai,“Distribut-
ing streaming media content using cooperative networking,” in Proc.
12th International Workshop on Network and Operating Systems Support
for Digital Audio and Video, May 2002.

[3] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: High-bandwidth content distribution in a
cooperative environment,” inProc. 2nd International Workshop on Peer-
to-Peer Systems, February 2003.

[4] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable Applica-
tion Layer Multicast,” inProc. SIGCOMM‘02, August 2002.

[5] D. Tran, K. Hua, and T. Do, “A Peer-to-Peer Architecture for Media
Streaming,” in IEEE Journal on Selected Areas in Communications,
vol. 22, January 2004, pp. 121–133.

11

[6] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: high
bandwidth data dissemination using an overlay mesh,” inProc. 19th
ACM Symposium on Operating Systems Principles, October 2003.

[7] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan, “Resilient
Multicast using Overlays,” inProc. SIGMETRICS‘03, June 2003.

[8] M. Zhang, L. Zhao, J. L. Y. Tang, and S. Yang, “GridMedia: APeer-to-
Peer Network for Streaming Multicast Through the Internet,”in Proc.
ACM Multimedia 2005, November 2005.

[9] V. Venkatraman and P. Francis, “ChunkySpread Overlay Multicast,” in
Proc. 2nd Symposium on Networked Systems Design and Implementa-
tion, May 2005.

[10] B. Cohen, “Incentives Build Robustness in BitTorrent,” in Proc. Work-
shop on Economics of Peer-to-Peer Systems, June 2003.

[11] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “PROMISE:
peer-to-peer media streaming using CollectCast,” inProc. ACM Multi-
media 2003, November 2003.

[12] R. Rejaie and A. Ortega, “PALS: Peer-to-Peer Adaptive Layered Stream-
ing,” in Proc. 13th International Workshop on Network and Operating
Systems Support for Digital Audio and Video, June 2003.

[13] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network Information
Flow,” in IEEE Transactions on Information Theory, vol. 46, no. 4, July
2000, pp. 1204–1216.

[14] C. Gkantsidis and P. Rodriguez, “Network Coding for Large Scale
Content Distribution,” inProc. IEEE INFOCOM 2005, April 2005.

[15] J. Widmer and J. L. Boudec, “Network Coding for Efficient Communica-
tion in Extreme Networks,” inProc. WDTN Workshop at SIGCOMM‘05,
August 2005.

[16] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and A. Vahdat, “Using
Random Subsets to Build Scalable Network Services,” inProc. USENIX
Symposium on Internet Technologies and Systems, March 2003.

[17] S. Saroiu, P. Gummadi, and S. Gribble, “A measurement study of
peer-to-peer file sharing systems,” inProc. Multimedia Computing and
Networking 2002, January 2002.

[18] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The Fea-
sibility of Supporting Large-Scale Live Streaming Applications with
Dynamic Application End-Points,” inProc. SIGCOMM‘04, September
2004.

Tara Small is currently a Postdoctoral Fellow in
the Department of Electrical and Computer Engi-
neering at the University of Toronto. Tara studied
Mathematics and Physics as an undergraduate at
the University of New Brunswick, earning the Gov-
ernor General’s medal for highest standing at the
university at her graduation in 2000. In graduate
school at Cornell University, Tara concentrated on
Applied Mathematics, earning her M.S. in January
2004. With the support of an O’Brien Foundation
Fellowship, she completed her Ph.D. dissertation the

next year and received her Ph.D. degree in August 2005. She ispresently
interested in research involving mathematical modeling and optimization of
multimedia streaming applications with network coding. Her email address is
tsmall@eecg.toronto.edu.

Baochun Li received his B.Engr. degree in 1995
from Department of Computer Science and Tech-
nology, Tsinghua University, China, and his M.S.
and Ph.D. degrees in 1997 and 2000 from the De-
partment of Computer Science, University of Illinois
at Urbana-Champaign. Since 2000, he has been
with the Department of Electrical and Computer
Engineering at the University of Toronto, where he is
currently an Associate Professor. He holds the Nortel
Networks Junior Chair in Network Architecture and
Services since October 2003, and the Bell University

Laboratories Endowed Chair in Computer Engineering since August 2005. In
2000, he was the recipient of the IEEE Communications Society Leonard
G. Abraham Award in the Field of Communications Systems. His research
interests include application-level Quality of Service provisioning, wireless
and overlay networks. He is a senior member of IEEE, and a member of
ACM. His email address is bli@eecg.toronto.edu.

Ben Liang received honors simultaneous B.Sc.
(valedictorian) and M.Sc. degrees in electrical en-
gineering from Polytechnic University in Brooklyn,
New York, in 1997 and the Ph.D. degree in electri-
cal engineering with computer science minor from
Cornell University in Ithaca, New York, in 2001. In
the 2001 academic year, he was a visiting lecturer
and post-doctoral research associate at Cornell Uni-
versity. He joined the Department of Electrical and
Computer Engineering at the University of Toronto
as an Assistant Professor in 2002. His current re-

search interests are in mobile networking and multimedia systems. He won
an Intel Foundation Graduate Fellowship in 2000 to complete his Ph.D.
dissertation and the Best Paper Award at the IFIP Networkingconference
in 2005. He is a member of Tau Beta Pi, IEEE, and ACM. His email address
is liang@comm.utoronto.ca.

