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Abstract—With network coding, intermediate nodes between research literature on network coding that is rapidly exioam
the source and the receivers of an end-to-end communication it js a well known result that network coding — by using linear

session are not only capable of relaying and replicating data .q4eg only — may achieve better network throughput in some
messages, but also afoding incoming messages to produce coded .
of the network topologies.

outgoing ones. It has been the traditional wisdom in information .
theory that network coding improves the capacity of multicast [N recent years, peer-to-peer (P2P) architectures haee als
sessions in directed networks. Recent studies have also showntthabeen shown to offer high performance, better scalability, a
network coding is beneficial for content distribution in peer-to- well as superb resilience to peer failures and departutes. |
peer networks, since it resolves the “last block” problem, and has been increasingly natural to design Internet appicati

eliminates content reconciliation. In this paper, we show that ina th t hitect th ti tapli
such benefits of network coding does not come without costs using the peer-to-peer architecture, the most importapi-ap

and trade-offs. In particular, we refute the previous claim that cation being bulk content distributiore.g., BitTorrent [2]).
peers receive linearly independent coded blocks with very high As end hosts at the edge of the Internet possess abundant

probabilities. Using example scenarios and extensive simulations, computational resources with current-generation pracess
we show that it is very likely for peers to receive linearly s na1rg) to consider taking advantage of the power of netwo

dependent non-innovative blocks, thus decreasing their efficiey ding i t licati by allowi d host
as these redundant blocks consume bandwidth. We observe that ©20ING 1N peer-o-peer applications, by allowing en S

such redundancy of network coding is critically dependent on Not only forward and replicate, but to code as well.
the randomness and sparsity of the P2P topology. We conclude  Recent work on network coding has gradually shifted its

with suggestions on topologies of certain characteristics that are focus from a more theoretical point of view to a more pradtica
preferred over others, in order to minimize the network coding  getting. The following critical question naturally emesge
redundancy, the time to distribute data, and the server cost. Given a content distribution Session in peer-to-peer Nyo
|. INTRODUCTION is network coding indeed able to offer a better throughput —
. rEeSt measured in the time to complete downloading at the
X . : : eers, as compared to using a protocol without coding (such
theory [1], and has since received extensive researcmat_ne_n as BitTorrent)? Recent studies (most notably the Avalanche

) ; 4 . X gproject [3]) have shown that network coding is beneficial for
a paradigm shift to allow coding at intermediate nodes ben/veContent distribution in peer-to-peer networks, since sbrees

the source and the receivers in multicast communicatk".)'qe “last block” problem, and eliminates content recoatitin

sessions, assuming that communication links are free ofserr These observations are derived from the insight #iatoded

ngrfforjd:geg:l iflf:m dpt'gr:OO];eet:;(:]r;;e.zsl.glll:_sbssézm'm' SbIocks are treated equallywithout the need of finding the
P P W (du ISSI Pzt rarest blocks that can be downloaded first. The conclusion

:(?gg g:jodt?:ssla ) Ittﬁsscrﬁgﬁgﬁdetgeiortee‘:‘fe?;cnhcor\]/vr;]?é\;]voodf':e@n seems to be certain: network coding leads to shorter down-
Y 9 ¢ oading times due to these benefits.

- . . I
lead to the most difficult problems in the field of network In this paper, we show that such benefits of network coding

|nf_<|)_Lmaft|orzj theor;t/.l insiaht of network coding is that inf do not come without costs and trade-offs. In particular, we
ne fundamental Insight of network coding 1S that INf0M e te the claim from previous work that peers receive lilyea
mation to be transmitted from the source in a session ¢

. . . ependent coded blocks (usually referred toirasvative
be inferred or decoded, by the intended receivers, and do cIEs) with very high proba(bilitiesy Theoretically, thitaim
not have to be transmitted verbatim. It has also focus? : '

the codi bilit £ int diat des. in addit correct, provided that all coding is performed at the seur
on the coding capabiiiies of ntermediate nodes, in adaitio eer, or at intermediate peers after complete decoding-to re

to _f_orwardmg and replicating Incoming messages. With the ver the original blocks. However, we show that, when peers
ability to code at relay nodes in a session, we may forwarg0

: ; ) L i lock f hey full
replicate and code information flows, as opposed to trawitio ode outgoing blocks before they fully decode and recover

dity i h v f ding is allowed. | riginal blocks in realistic P2P topologies, it is very ligdor
commodity Tlows, where only forwarding 1s aflowed. In receW(geers to receive linearly depend&an-innovativeblocks, thus

This work was supported in part by Bell Canada through it Belversity (sometimes significantly) decreasmg their efficiency as¢h
Laboratories R&D program. redundant blocks consume bandwidth.



With analysis of two example networks and extensive sinarea of network coding, from theoretical studies on aclukva
ulations with a common small-world topology, we study hodlow rates and code assignment algorithms, to more practical
the redundancy introduced by network coding is affected Isgudies on applying network coding in a practical settingcts
the sparsityof the topology, quantitatively represented by tha shift of focus has been marked by the work by ‘ftual.
average number of neighbors that peers have, as well as [Ble in which the authors have concluded that randomized
randomnesf the topology, quantitatively characterized byietwork coding can be designed to be robust to random
the rewiring probability of a small-world topology. We also packet loss, delay, as well as any changes in network topolog
study other vital system performance metrics, including trand capacity. It was shown that sessions with randomized
time delay in data distribution and the bandwidth cost to theetwork coding can achieve close to the theoretically ogitim
P2P server. Finally, we seek to quantitatively identify tyyges performance.
of topologies to optimize system performance should ndkwor The Avalancheproject by Microsoft Research [3], [9] has
coding be applied. further proposed that randomized network coding can be used

The remainder of this paper is organized as follows. Sec.fir bulk content distribution, in competition witBitTorrent,
reviews related work. Using examples and intuitive explanane of the most successful P2P content distribution prégoco
tions, Sec. lll illustrates why network coding leads to &ng at the time of this writing. The work has made the claim that
dependent blocks. The effects of randomness and netwgedeformance benefits provided by network coding in terms
sparsity are analyzed in Section IV with empirical studiesf throughput can be more than two to three times better
In Sec. V, we further provide insights on preferred topodsgi than transmitting original blocks. In this sense, one may
that optimizes system performance when network coding denclude that network coding can indeed be practically im-
used. plemented, and does offer significant advantages as cothpare
to BitTorrent. However, Wangt al. [10] has focused on the
computational complexity of network coding, and has shown

The pioneering work by Ahlswedet al. [1] and Koetteret that coding complexity may lead to significant increase wit
al. [4] proves that, in a directed network with network codingespect to downloading times in content distribution seEsi
support, a multicast rate is feasible if and only if it is fikds especially as the number of blocks increases.
for a unicast from the sender to each receivert al. [5] has In this work, we show that the likelihood of receiving
further proved that linear coding usually suffices in acimgv linearly dependent blocks is much higher, leading to a lower
the maximum rate. These results are significant in the sereeel of efficiency when network coding is used. Suebun-
that, with network coding, the cut-set capacity bounds afancyintroduced by network coding depends on the topology,
unicast flows from the source to each of the receivers can gt nevertheless leads to higher bandwidth consumption and
achieved in a multicast session. In other words, networlngpd inevitably, longer downloading times.
helps to alleviate competition among flows at the bottleneck
thus improving session throughput in general. I11. THE PROBLEM OFLINEARLY DEPENDENTBLOCKS

To practically implement the paradigm of network coding, In this paper, the peer-to-peer session that we intend ¢ty stu
one needs to address the challenges of computiming is modeled as a collection d¥ peers, self-organized into a
coefficientsto be used by each of the intermediate nodes peer-to-peetopologywith application-layer links. One of the
the session, so that the coded messages at the receiverspeees is theserver or the sourceof content distribution. The
guaranteed to be decoded. This process is usually refasrewtiginal content on the source is segmented inteoriginal
as code assignmentlthough deterministic code assignmenblocks [by, s, ..., b,], eachb; has a fixed number of bytes
algorithms have been proposed and shown to be polynomia(referred to as the block size). All other peers intend to
time algorithms €.g, [6]), they require extensive exchangegsomplete their downloads of the original content within the
of control messages, which may not be feasible in dynamionstraints of the peer-to-peer topology. We make thestiali
peer-to-peer networks. As an alternative, Ebal. [7] has assumption that a fractiop, of the peers serves as direct
been the first to propose the conceptrafdomized network downstream peers of the server. The server sends codedblock
coding With randomized network coding, an intermediatéo these direct downstream peers with a perigdi.e., the
node transmits on each outgoing link a linear combination eérver upload bandwidth to each peekjss. Upon receiving
incoming messages, specified by independently and randoméyv coded blocks, a peer produces new coded blocks for its
chosencode coefficientsver some finite field. Het al. show downstream peers in the topology.
that by allowing peers to locally encode data using coefiisie ) )
from sufficiently large Galois fields, received coded bloeks A- Randomized Network Coding
downstream peers are decodable with a very high probability We briefly summarize the concept of randomized network
on the order of the inverse of the size of the finite fielccoding [3], [7], [8], [11]. At the time of encoding for
For example, if the field size i8®%, the lower bound of this downstream peep, a peer (including the source) indepen-
probability is > 0.989. dently and randomly chooses a set of coding coefficients

Since the landmark paper on randomized network coding By, c5, - -+, ¢2,](m < n) in the Galois field GF®) for the
Ho et al,, there has been a gradual shift in research focus in thewnstream peep. It then randomly chooses: blocks —

Il. RELATED WORK



(b7, 05, ..., b2 ] — out of all the blocks it has received so far
(all the original blocks if it is a source of the session), and
produces one coded bloekof & bytes:
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The ratiom/n is referred to aslensityin this paper, as a
low ratio leads to sparse decoding matrices. A coded block 2128 then

x is self-contained in that the coding coefficients used to

encodeoriginal blocksto x are embedded in the header ofig. 1. Network coding leads to linearly dependent blocke: first example
the coded block. Since the embedded coding coefficients afé a small topology.

related to the original blocks, we need a totahotoefficients, two examples — with smaller and larger topologies — that
leading to a header overhead wfbytes per coded block (if Heers may easily receive linearly dependerdntinnovativi
uncompressed). These coding coefficients to be embeddedy|gcks when aggressiveness< 1. When this phenomenon

can easily be computed by multiplyirigy, - - - , ¢f;,] with the  occurs, we claim that thefficiencyof network coding is lower,
m xn matrix of coding coefficients embedded in the incomings it introducesredundancy Naturally, such redundancy is
blocks (b7, b5, .. ., b7, ]. undesirable as it consumes bandwidth.

As the session proceeds, a peer accumulates coded blocksyr first example involves a network topology that re-
from its upstream peers into its local buffer, and encod®s n@emples the structure in Fig. 1. We show that, when peers
coded blocks to serve its downstream peers. When serviggcome more aggressive and code as they receive, network
multiple downstream peers, it needs to independently apgding leads to linearly dependent blocks. Let us assume
randomly choose a new set of coding coefficients for each @fzt peers forward data to their downstream neighbors with
its downstream peers. In order to reduce the delay intmﬂu%gressiveneswn; that is, data is forwarded immediately
by waiting for new coded blocks, the peer produces a Nngyhon reception of an innovative block. Further, we let peer
coded block upon receiving- n coded blocks{{ < a < 1), in 1 gend two linearly independent coded blocksand B to its
which the tunable parameteris referred to asggressiveness gownstream peera and 3, respectively.
in this paper. A smallea leads to a shorter waiting time and, peer2 sends coded forms ofl using randomly generated
potentially, shorter delay in the process of content distion.  coefficients, saBA and5A, to its peerst and 5. Similarly,

In other words, the peer is more “aggressive.’ peer3 encodes’ and send€B to its downstream peelr. Due

As soon as a peer has received a totahofoded blocks tg the stochastic nature of arrivals, peemay receive either
x = [21,22,...,7,], it starts the decoding process. To decod@oded block before the other. If peereceivess A first, then it
it first forms an x n matrix A, USing then COding coefficients sendsk; -5 A to peers (for some random Coeﬁ‘icieml)_ Since
embedded in each of thecoded blocks it has received. Eactheer5 may already have receivet# from peer2, k; - 54 is
row in A corresponds tm coded coefficients of one coded”nea”y dependent (redundant). On the other hand if geer
block. If vectors in all the rows aréinearly independentit (eceives2B first, it then sendg - 2B (for some randoni:,)
may then recover the original blocks= [b1,bs,...,b,] by  to peer5. Though peers has already received two linearly

b= A-1xT independent blocks containing and B, when the number of
blocksn > 2 (which implies that peeb has not received aft
In this equation, it first needs to compute the inverseAgf coded blocks yet), peerwould further sendcs -5A+ k4 - 2B
using Gaussian elimination. It then needs to multialy! and to peer5 upon receiving54, since it is to produce one new
x, which takesn? - k multiplications of two bytes in GF(256). coded block to its downstream peers upon receiving a new
The inversion ofA is only possible when its rows are linearlyinnovative block. The third block from peef is obviously

independentj.e., A is full rank. linearly dependent and redundant on p&eilt appears that
) the problem of linearly dependent blocks comes from the fact
B. The Problem of Linearly Dependent Blocks that both peer2 and4 are direct upstream peers of peer

We concur with the claims in previous work that peerbut peer2 serves pee# at the same time. Such a “shortcut”
would receive linearly independeninfovativg blocks with from peer2 to 5 appears to be the cause of our problem in
a very high probability, provided that all coding is perfath this particular example.
at the source peer, or at intermediate peers after they hav&@he redundancy of using bandwidth with network coding,
completed the decoding process and recovered all origisdlown in the example above on pegy is categorically
blocks (so that they become source peers). In other wordgferent from the problem ofank deficiencyof the decoding
we assume that peers wait forcoded blocks to arrive before matrix A, when the min-cut between the sender and the
producing coded blocké.e., the aggressivenesslisHowever, receiver is not large enough. In Fig. 1, p8esnly has one link
this assumption is made against the intuitive benefit of agtw from peerl, so it is not able to fully decode within one time
coding — the ability to code as peers receive. We now shalot (the time to transmit a coded block), as its decodingimat



topologies, consuming bandwidth. The fundamental insight
in our observations are the following.
>> Redundancy in network coding may be introduced by
the stochastic nature of overlay link delays, such that
peers receive linearly dependent blocks from some of
their upstream peers first, before they receive innovative
blocks from others.
>> Redundancy in network coding is heavily dependent on
the topology itself. From our examples, it appears that
topologies with higher densities are more likely to induce
redundancy with network coding. Further, we have also
shown that neighborhoods that contain many “shortcuts”
— where direct upstream peers serve one another as
well — may be the culprit that causes problems of
redundancy, simply because they exchange coded blocks
faster than the rate of sending innovative blocks into the
neighborhood!
Is a sparse topology any bette@On second thought, this
may not be the case. Though dense topologies may lead to

(a) Some common neighh) Many common neighbors in dense topologies2dditional redundancy, they may also be helpful to rapidly

"

b
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bors in sparse topologies disseminate innovative blocks across the topology, simply
Fig. 2. Network coding leads to linearly dependent blocke second because the distance of travel (m .terms of .the link delays) I
example with random topologies. much shorter. On the other hand, if topologies are too sparse

coded blocks may not be able to travel effectively through

Amlzlgfr?'ko(\j/ifrl(;en;ris;zi,ohn()ewc?r\/tev:/,ostlijrﬁzrzlgtzn(l dz d‘;ﬁzirre‘nttne topology, and ineffective travel may lead to redundancy
b . P P 990 small clusters of peers that are unlikely to receive new

the stochastic progress of block propagation), it has vede innovative blocks. What constitutes a “good” topology that

mc?rrﬁ blocks tgan It neltads. | | | h minimizes redundancy introduced by network coding? The
e second example involves a larger topology, shown 1B ¢ 1hig paper is to explore, through extensive simuati

Fig. 2, which is an example of a random topology that i§tudies, two important characteristics of topologisgarsity

often used in P2P networks today. In this figure, an identiﬁ%drandomness
is indicated for each peer, as well as the pair of the numlfers o
{independent, dependénblocks received by each peer after ~ |IV. TOPOLOGYEFFECTS ON THEEFFICIENCY OF

every peer receives = 3 coded blocks to successfully decode NETWORK CODING
the desired data. This example illustrates the resultsr@sta  \We developed an event-driven simulator in C++ to evaluate
from our simulations. the performance of network coding in a broad spectrum of

In Fig. 2(a), peer7 receives two independent blocks intopologies with various levels of sparsity and randomneés.
succession from peer 8 and forwards them to its downstregeek to understand the way that redundancy, block disivibut
neighbors, peers and 6. Peer3 is an upstream neighbortimes, and server costs vary. Thiock redundancyf a peer
of peer 6 and a downstream neighbor of pe@r so the is the quotient of the number of coded blocks it receives
information sent from peeB to peer6 is almost always and the number needed to successfully decode the segment.
redundant. In more densely-connected topologies, peers Redundancy of implies that only linearly independent blocks
even more likely to have direct downstream neighbors bre received at the peer. Tliistribution timeis the time
common. In Fig. 2(b), peer produces coded blocks to peeiinterval from initial forwarding of a block from the serves t
3, its downstream neighbor; however, the existing blocks @my of its downstream peers until all peers in the networlkehav
peer7 may be received from pe&; making it likely for the successfully received independent coded blocks. Therver
freshly produced blocks from peg&rto be linearly dependent costis the number of blocks forwarded from the server to any
on the coded blocks from pe&rwho has pees as one of its of its downstream peers. Note that the server stops sending
downstream neighbors as well. In addition to pgewe show when all of its downstream peers (though not necessarily all
from simulation results that peer4 and5 have also received peers in the network) have receivedindependent blocks.
various numbers of non-innovative blocks as well. The remaining peers that have not yet receivéddependent

To summarize our discoveries so far, we have observed frdilocks request new coded blocks from their upstream neigh-
both smaller and larger topologies that, if we allow peers twors untiln independent blocks have been received.
produce new coded blocks as they receive from the upstreanWe vary the network topology randomness by adjusting the
peers, it is very likely that network coding leads to lingarlrewiring probability in small-world topologies. Small-wd
dependent blocks that bring redundant traffic to peer-t-paopologies are graphs that have been studied for many years
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Fig. 3. Small-world topology with some rewired links. - (a) Average redundancy experienced at a peer
Qo
to explain social networks [12] As explained in the seminal & 200 % ‘ ‘ ‘ 02005 o
paper by Watts and Strogatz [13], one way to construct a small 2 180 | E,Sz 01 o
world graph is by organizing the peers into a ring, conngctin % 160l » Ps = 0.15 v
each peer tad local neighbors, then rewiring each link to 5 ., /1  ° Ps=02 —=
a random peer in the network with probability as shown & 4| .
in Fig. 3. Choosingp = 0 results in a completely regular g 200 L v O -
graph where each peer has the same number of downstrearg 80|
and upstream neighbors. Peers ip & 1 small-world graph = 0 0.2 0.4 0.6 0.8 1

chooses each of itd downstream links uniformly at random Rewiring probabilityp

from all other peers in the network. The flexibility of adjungt

the parametep between these two extremes allows us to

smoothly alter the randomness in the network. Fig. 4. Performance_ experienced in a network with differeavels of
When the regularity of the graphs varies, the path lengtff§idomness and sparsity.

and clustering in the graphs change the structure. Random . )
graphs have low clustering, and since peers of degraee above intuition. Furthermore, we observe that, in most $ase

likely to haved 1-hop neighborsd? 2-hop neighborsd? 3- the effects of randomness decrease significantly fpom0.1

hop neighborsetc, it is likely that any two peers will have atop=1

short path length between them. Alternatively, regulappsa ~ With respect to sparsity, we observe that the degieef

are likely to have long paths between peers and significdh€ peers has a significant impact on redundancy introduced
clustering. Some analytical and numerical results for ¢heBy network coding. Fig. 4 shows that choosidg= 6 as
metrics are presented in [14]. Clearly, the number of nedghb the degree of peers leads to the best performance of the

(b) Time to complete block forwarding

d of a peer characterizes the Sparsity of the topo|ogy. network when the rewiring probability is not too hlgh This
) observation conforms to our intuition that, too few neigtsho
A. Impact of Randomness and Sparsity result in topologies where there is infrequent introductid

We first evaluate a network di00 peers using segments ofnew information, leading to redundant blocks sent between
100 data blocks. Each peer forwards a coded block constructegkrs. Too many neighbors, however, also lead to common
from m = 6 coded blocks with aggressiveness= 0.04, downstream peers receiving the same information from mul-
server connectivityps = 0.15, and the segment contaiif0 tiple sources.
data blocks. Link delays follow a uniform random distribu- server cost is another key concern when scaling any P2P
tion in [0.75¢5,1.25¢,]. The impact of both randomness anghetwork to large numbers of nodes. Clearly, the fraction of
sparsity on redundancy and distribution times is exhibit§gbers connected to the server has a direct impact on the
quantitatively in Fig. 4. server cost. The cost is also indirectly affected by the eenn

We first examine the effect of randomness. Recall th@ity of the peers themselves. Networks may experienceemor
rewiring with p = 0 forms a regular topology where Weforwarding of independent blocks due to the choice of server
see high clustering and long path lengths between peers. Igigribution period or due to the available links betweea th
regular network, we expect redundancy because the topolagers. In either of these cases, the server cost is reduced.
is designed so that peers are likely to share neighbors. Th?:ig. 5 allows us to consider the server cost in terms of

Ior_lgdpath Idengtr:js alsgl teEd to |n”crease thg t'T]e tor?'ser']bl{ e redundancy and distribution time metrics for four value
1 INdepen ﬁnt 7a'ia ocks to a ||Ioeers.d n the ?t er '6;1% 'server connection probability;. The parameter values are
rewiring with p = 1 creates a totally random topology Withg;jjar 1 those in the previous figure except where noted. As

very low clustering. Since it is unlikely for peers to shar intuitively clear, we see a minimum in the server cost when
neighbors, we expect lower redundancy and short path Ieng} dundancy is low and the distribution time is low for gny

should decrease the distribution times. Fig. 4 confirms ﬂll?owever, the lowest server cost is achieved (at the expense o

IThese graphs are also sometimes labelled as having “six degree diStribution time) when the server has the fewest downstrea
separation.” peers.
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Fig. 5. The choice op; affects redundancy and server cost. Fig. 6. Regardless of the number of peesneighbors show the best
performance.

B. Impact of Network Size
P approximately linearly withV, but is lower for smaller (non-

Up to this point, the sparsity of network topologies hasero) values of the rewiring probability. In other wordsgutar
been varied in the context of the degrdeof each peer. topologies with a few long-distance links are preferredrove
Another notion of sparsity is related to the number of peers purely random topologies. Topologies with peers of degree
the network,N. In a global sense, increasing the number afix to ten experience more than twice as much server cost
peers in the network decreases the overall connectivigt thn a purely random network than a small-world network with
is, the likelihood that a particular peer is directly linkéal rewiring probability0.05.
another particular peer is smaller. Hence it may appeathieat As one would expect, the distribution time increases sub-
ratio betweend and V has a significant effect on the codindinearly as N increases. Path lengths increase between peers
efficiency. aslog N, and distribution times increase even more slowly

Fig. 6 shows that it is not the global connectivity that hathan that because it is not necessary for the same blocks to
the most significant impact on network coding redundancy. iéach every part of the network. Since network coding reguir
is instead the local connectivity (the peer degree) thaatis anyn independent blocks for decoding, the distribution time
the redundancy in the network. The values of redundancy aeales more effectively. Our simulation results confirms thi
nearly identical as the number of network peers varies forcanclusion. However, we have omitted the graphs due to space
large range of rewiring probabilitigs Again, we observe that, constraint.
as long as the topology is not completely random, the optimal
number of downstream peersés V. CONCLUSION ONPREFERREDTOPOLOGIES

Other performance metrics differ considerably, however. We have observed — using both examples and empirical
Perhaps the most notable scaling metric Msincreases is studies — that peer-to-peer networks with network coding
the server cost. Shown in Fig. 7, the server cost increasegerience inefficiencies due to the timing of arrivals of



0
5 1400
S 1200}
g
= 1000}
8
8 800t
“é‘ 600
§ 400t g
200 L— : : : i
2 4 6 8 10 12
Number of neighborg)
(a) Network of 100 peers
0
@ 7000
x
g 6000
h="
g 5000 |
O 4000+
¢ 3000t
h 2000}
Number of neighborg)
(b) Network of 500 peers
T
_gg 14000 -
g 12000 -
g 10000 -
o 8000
g 6000}
@ 4000}

Number of neighbors)
(c) Network of 1000 peers

Fig. 7. Server cost increases approximately linearly iithand much better
performance is observed for smallas N scales up.

relayed blocks and due to the links formed between peers.
Although these inefficiencies naturally present themsglve

we have found that network parameters can be chosen
intentionally minimize redundancy and optimize perforicean

Based on extensive studies in the previous section, we halfd

shown that the peer-to-peer topologies offering the bestadlv

performance are small-world topologies with low rewirindl0]

probability (aroundp = 0.1) with peer degree of sfx These
networks enjoy low redundancy, comparable with purely ral
dom networks, but have lower distribution times. Furthemeno

ability to achieve better overhead and load balance thaglyur
random networks without overwhelming cost to the server
or to the peers. Finding random neighbors for each peer is
usually a costly operation that requires global knowledghé
network. When the rewiring probability is small, messaging
overhead is only needed for a small fraction of the links, and
local links are straightforward to acquire.

The above observations can be applied to generate design
guidelines for P2P topology design [15] when network coding
is used. In particular, in the case when multiple data se¢gnen
are to be distributede(g., peer-to-peer streaming), good load
balance can be achieved by changing the rewired links for
different segments of the data stream. Clearly, data agiat
a peer from a different part of the network (along a rewired
“long-distance” link) is more likely to be independent from
coded blocks acquired locally. Changing the rewired links
will alter the flow of data through the network, so that peers
would appear to have different positions in the topology.
Averaging over many data segments, each peer should serve
approximately the same number of coded blocks to the other
peers.
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